WorldWideScience

Sample records for plasma sheet plasma

  1. Sheet Plasma Produced by Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙

    2003-01-01

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  2. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  3. Energetic electron spectra in Saturn's plasma sheet

    Science.gov (United States)

    Carbary, J. F.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.

    2011-07-01

    The differential spectra of energetic electrons (27-400 keV) in Saturn's plasma sheet can be characterized by power law or kappa distributions. Using all available fluxes from 2005 to 2010, fits to these distributions reveal a striking and consistent pattern of radial dependence in Saturn's plasma sheet (∣z∣ constant throughout the Cassini mission. Inward of about 10 RS, the presence of the electron radiation belts and losses of lower-energy electrons to the gas and grain environment give rise to the very hard spectra in the inner magnetosphere, while the hard spectra in the outer magnetosphere may derive from auroral acceleration at high latitudes. The gradual softening of the spectra from 20 to 10 RS is explained by inward radial diffusion.

  4. Thermomechanical processing of plasma sprayed intermetallic sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  5. Plasma Relaxation Dynamics Moderated by Current Sheets

    Science.gov (United States)

    Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho

    2014-10-01

    Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.

  6. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  7. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.

    Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  8. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  9. Magnetic turbulence in the plasma sheet

    CERN Document Server

    Vörös, Z; Nakamura, R; Runov, A; Zhang, T L; Eichelberger, H U; Treumann, R A; Georgescu, E; Balogh, A; Klecker, B; R`eme, H

    2004-01-01

    Small-scale magnetic turbulence observed by the Cluster spacecraft in the plasma sheet is investigated by means of a wavelet estimator suitable for detecting distinct scaling characteristics even in noisy measurements. The spectral estimators used for this purpose are affected by a frequency dependent bias. The variances of the wavelet coefficients, however, match the power-law shaped spectra, which makes the wavelet estimator essentially unbiased. These scaling characteristics of the magnetic field data appear to be essentially non-steady and intermittent. The scaling properties of bursty bulk flow (BBF) and non-BBF associated magnetic fluctuations are analysed with the aim of understanding processes of energy transfer between scales. Small-scale ($\\sim 0.08-0.3$ s) magnetic fluctuations having the same scaling index $\\alpha \\sim 2.6$ as the large-scale ($\\sim 0.7-5$ s) magnetic fluctuations occur during BBF-associated periods. During non-BBF associated periods the energy transfer to small scales is absent, ...

  10. Gyrophase bunched ions in the plasma sheet

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu; Huang, Chaoyan

    2017-01-01

    Gyrophase bunched ions were first detected in the upstream region of the Earth's bow shock in the early 1980s which is formed by the microphysical process associated with reflected solar wind ions at the bow shock. Inside the magnetosphere, the results of computer simulations demonstrated that nonlinear wave-particle interaction can also result in the gyrophase bunching of particles. However, to date direct observations barely exist regarding this issue occurred inside the magnetosphere. In this paper, we report for the first time an event of gyrophase bunched ions observed in the near-Earth plasma sheet. The nongyrotropic distributions of ions were closely accompanied with the electromagnetic waves at the oxygen cyclotron frequency. The phase of bunched ions and the phase of waves mainly have very narrow phase differences (helicity with respect to the propagation direction, which agrees with the characteristic of electromagnetic ion cyclotron waves. The observation of O+ ions composition suggests that the oxygen band waves are excited due to the enhancements of the O+ ion density. This study suggests that the gyrophase bunching is a significant nonlinear effect that exists not only in the bow shock but also in the inner magnetosphere.

  11. Comparison of plasma sheet ion composition with the IMF and solar wind plasma

    Science.gov (United States)

    Lennartsson, W.

    Plasma sheet energetic ion data (0.1- to 16 keV/e) obtained by the Plasma Composition Experiment on ISEE-1 between 10 and 23 earth radii are compared with concurrent IMF and solar wind plasma data. The densities of H(+) and He(++) ions in the plasma sheet are found to be the highest, and the most nearly proportional to the solar wind density, when the IMF B(z) is not northward. The density of terrestrial O(+) ions increases strongly with increasing magnitude of the IMF, in apparent agreement with the notion that the IMF plays a fundamental role in the electric coupling between the solar wind and the ionosphere.

  12. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  13. Thin current sheets caused by plasma flow gradients in space plasma

    Science.gov (United States)

    Nickeler, D.; Wiegelmann, T.

    2011-12-01

    To understand complex space plasma systems like the solar wind-magnetosphere coupling, we need to have a good knowledge of the slowly evolving equilibrium state. The slow change of external constraints on the system (for example boundary conditions or other external parameters) lead in many cases to the formation of current sheets. These current sheets can trigger micro-instabilities, which cause resistivity on fluid scales. Consequently resistive instabilities like magnetic reconnection can occur and the systems evolves dynamically. Therefore such a picture of quasi-magneto-hydro-static changes can explain the quasy-static phase of many space plasma before an eruption occurs. Within this work we extend the theory by the inclusion of a nonlinear stationary plasma flows. Our analysis shows that stationary plasma flows with strong flow gradients (for example the solar wind magnetosphere coupling) can be responsible for the existence or generation of current sheets.

  14. Magnetic configuration of the distant plasma sheet - ISEE 3 observations

    Science.gov (United States)

    Slavin, J. A.; Smith, E. J.; Daly, P. W.; Sanderson, T. R.; Wenzel, K.-P.; Lepping, R. P.

    1987-01-01

    The influence of the IMF orientation and magnitude and substorm activity on the magnetic configuration of the central plasma sheet at 20-240 earth radii down the geomagnetic tail is investigated on the basis of ISEE-3 data. The results are presented graphically, and high-speed antisolar bulk flows threaded by southward magnetic fields are shown to be present in the distant plasma sheet after periods of substorm activity and southward IMF Bz. The effective dayside reconnection efficiency is estimated as 25 + or - 4 percent, in good agreement with theoretical models.

  15. Thin current sheets caused by plasma flow gradients in space and astrophysical plasma

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2010-08-01

    Full Text Available Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation. We concentrate here on incompressible plasma flows and 2-D equilibria, which allow us to find analytic solutions of the stationary magnetohydrodynamics equations (SMHD. First we solve the magnetohydrostatic (MHS equations with the help of a Grad-Shafranov equation and then we transform these static equilibria into a stationary state with plasma flow. We are in particular interested to study SMHD-equilibria with strong plasma flow gradients perpendicular to separatrices. We find that induced thin current sheets occur naturally in such situations. The strength of the induced currents depend on the Alfvén Mach number and its gradient, and on the magnetic field.

  16. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    Science.gov (United States)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  17. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  18. Plasma-Jet Forming of Sheet Metal Shapes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Plasma-jet forming is a newly proposed flexible sheet metal forming process. A non-transferred arc plasma torch is used as a controllable heat source to produce internal stress in sheet metals, causing plastic deformation without the necessity of hard tooling. This method has potential for rapid prototyping of sheet metal parts by reducing development costs and lead times. A robotic system has been used to perform simple linear bends in several different alloys. In order to develop a controllable process and to improve the forming accuracy, the effects of various process parameters on the obtained shape changes and on the resulting structure and properties have been studied. The overall goal is to understand the roles of the forming parameters and their inter-relationship in optimizing the forming procedure-a high forming speed without damage to the material structure or properties.

  19. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  20. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle

  1. Analysis of radiation performances of plasma sheet antenna

    Science.gov (United States)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  2. 3-D Magnetospheric Field and Plasma Containing Thin Current Sheets

    Science.gov (United States)

    Zaharia, S.; Cheng, C. Z.; Maezawa, K.; Wing, S.

    2002-05-01

    In this study we present fully-3D self-consistent solutions of the magnetosphere by using observation-based plasma pressure distributions and computational boundary conditions based on the T96 magnetospheric field model. The pressure profiles we use are either taken directly from observations (GEOTAIL pressure data in the plasma sheet and DMSP ionospheric pressure) or empirical (Spence-Kivelson formula for pressure on the midnight equatorial line). The 3-D solutions involve solving 2 coupled elliptic equations in a flux coordinate systems, with the magnetic field expressed by two Euler potentials and using appropriate boundary conditions for both the closed- and open-field regions derived from the empirical field model. We look into how the self-consistent magnetic field and current structures change under different external conditions, and we discuss the appearance of thin cross-tail current sheets during disturbed magnetospheric times.

  3. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  4. The statistical studies of the inner boundary of plasma sheet

    Directory of Open Access Journals (Sweden)

    J. B. Cao

    2011-02-01

    Full Text Available The penetration of plasma sheet ions into the inner magnetosphere is very important to the inner magnetospheric dynamics since plasma sheet ions are one of the major particle sources of ring current during storm times. However, the direct observations of the inner boundary of the plasma sheet are fairly rare due to the limited number of satellites in near equatorial orbits outside 6.6 RE. In this paper, we used the ion data recorded by TC-1 from 2004 to 2006 to study the distribution of inner boundary of ion plasma sheet (IBIPS and for the first time show the observational distribution of IBIPS in the equatorial plane. The IBIPS has a dawn-dusk asymmetry, being farthest to the Earth in the 06:00 08:00 LT bin and closest to the Earth in the 18:00–20:00 LT bin. Besides, the IBIPS has also a day-night asymmetry, which may be due to the fact that the ions on the dayside are exposed more time to loss mechanisms on their drift paths. The radial distance of IBIPS decrease generally with the increase of Kp index. The mean radial distance of IBIPS is basically larger than 6.6 RE during quiet times and smaller than 6.6 RE during active times. When the strength of convection electric field increases, the inward shift of IBIPS is most significant on the night side (22:00–02:00 LT. For Kp ≤ 0+, only 16% of IBIPSs penetrate inside the geosynchronous orbit. For 2 ≤ Kp < 3+, however, 70% of IBIPSs penetrate inside the geosynchronous orbit. The IBIPS has weak correlations with the AE and Dst indexes. The average correlation coefficient between Ri and Kp is −0.58 while the correlation coefficient between Ri and AE/Dst is only −0.29/0.17. The correlation coefficients are local time dependent. Particularly, Ri and Kp are highly correlated (r=−0.72 in the night sector, meaning that the radial distance of IBIPS

  5. Effects of auroral potential drops on plasma sheet dynamics

    Science.gov (United States)

    Xi, Sheng; Lotko, William; Zhang, Binzheng; Wiltberger, Michael; Lyon, John

    2016-11-01

    The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model including, for the first time in a global simulation, the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the field-aligned current (j||) supplied by nightside reconnection dynamos. The system adapts by forcing the nightside X line closer to Earth, with a corresponding reduction in current lensing (j||/B = constant) at the ionosphere and additional contraction of the plasma sheet during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include (1) an average X line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.

  6. Cluster multi-point observations of the magnetotail plasma sheet

    Science.gov (United States)

    Henderson, Paul David

    This thesis presents observations of the terrestrial magnetotail plasma sheet made by the European Space Agency Cluster mission. The Cluster mission is composed of four identical spacecraft, the first such multi-spacecraft mission, and enables, for the first time, the disambiguation of time versus space phenomena. Using the data from 2003, when the spacecraft were at their smallest average separation to date, many small-scale processes, both microphysical and macrophysical, are investigated. In the first study presented, two small flux ropes, a possible signature of multiple X-line reconnection, are investigated. By the development and utilisation of various multi-spacecraft methods, the currents and magnetic forces internal and external to the flux ropes, as well as the internal structure of the flux ropes, are investigated. In addition, a theory of their early evolution is suggested. In the second study presented, various terms of the generalised Ohm's law for a plasma are determined, including, for the first time, the divergence of the full electron pressure tensor, during the passage past the spacecraft of an active reconnection X-line. It is found that the electric field contribution from the divergence of the electron pressure tensor is anti-correlated with the contribution from the Hall term in the direction normal to the neutral sheet. In addition, further signatures of reconnection are quantified, such as parallel electric field generation and Hall quadrupolar magnetic field and current systems. In the final study presented, the anti-correlation between the divergence of the electron pressure tensor and Hall terms is investigated further. It is found that the anti-correlation is general, appearing in the direction normal to the neutral sheet because of a cross tail current. In a simple magnetohydrostatic treatment, a force balance argument leads to the conclusion that the gradient of the anti-correlation is a function of the ratio of the electron to ion

  7. Casimir effects for a flat plasma sheet: I. Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2005-04-01

    We study a fluid model of an infinitesimally thin plasma sheet occupying the xy plane, loosely imitating a single base plane from graphite. In terms of the fluid charge e/a{sup 2} and mass m/a{sup 2} per unit area, the crucial parameters are q nsce 2{pi}e{sup 2}/mc{sup 2}a{sup 2}, a Debye-type cutoff K{identical_to}{radical}(4{pi})/a on surface-parallel normal-mode wavenumbers k, and X nsce K/q. The cohesive energy {beta} per unit area is determined from the zero-point energies of the exact normal modes of the plasma coupled to the Maxwell field, namely TE and TM photon modes, plus bound modes decaying exponentially with vertical bar zvertical bar. Odd-parity modes (with E{sub x,y}(z = 0) = 0) are unaffected by the sheet except for their overall phases, and are irrelevant to {beta}, although the following paper shows that they are essential to the fields (e.g. to their vacuum expectation values), and to the stresses on the sheet. Realistically one has X >> 1, the result {beta} {approx} {Dirac_h}cq{sup 1/2}K{sup 5/2} is nonrelativistic, and it comes from the surface modes. By contrast, X << 1 (nearing the limit of perfect reflection) would entail {beta} {approx} -{Dirac_h}cqK{sup 2}log(1/X): contrary to folklore, the surface energy of perfect reflectors is divergent rather than zero. An appendix spells out the relation, for given k, between bound modes and photon phase-shifts. It is very different from Levinson's theorem for 1D potential theory: cursory analogies between TM and potential scattering are apt to mislead.

  8. Central Plasma Sheet Ion Properties as Inferred from Ionospheric Observations

    Science.gov (United States)

    Wing, Simon; Newell, Patrick T.

    1998-01-01

    A method of inferring central plasma sheet (CPS) temperature, density, and pressure from ionospheric observations is developed. The advantage of this method over in situ measurements is that the CPS can be studied in its entirely, rather than only in fragments. As a result, for the first time, comprehensive two-dimensional equatorial maps of CPS pressure, density, and temperature within the isotropic plasma sheet are produced. These particle properties are calculated from data taken by the Special Sensor for Precipitating Particles, version 4 (SSJ4) particle instruments onboard DMSP F8, F9, F10, and F11 satellites during the entire year of 1992. Ion spectra occurring in conjunction with electron acceleration events are specifically excluded. Because of the variability of magnetotail stretching, the mapping to the plasma sheet is done using a modified Tsyganenko [1989] magnetic field model (T89) adjusted to agree with the actual magnetotail stretch at observation time. The latter is inferred with a high degree of accuracy (correlation coefficient -0.9) from the latitude of the DMSP b2i boundary (equivalent to the ion isotropy boundary). The results show that temperature, pressure, and density all exhibit dawn-dusk asymmetries unresolved with previous measurements. The ion temperature peaks near the midnight meridian. This peak, which has been associated with bursty bulk flow events, widens in the Y direction with increased activity. The temperature is higher at dusk than at dawn, and this asymmetry increases with decreasing distance from the Earth. In contrast, the density is higher at dawn than at dusk, and there appears to be a density enhancement in the low-latitude boundary layer regions which increases with decreasing magnetic activity. In the near-Earth regions, the pressure is higher at dusk than at dawn, but this asymmetry weakens with increasing distance from the Earth and may even reverse so that at distances X less than approx. 10 to -12 R(sub E

  9. Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms

    Directory of Open Access Journals (Sweden)

    M. Stepanova

    2009-04-01

    Full Text Available Study of the plasma turbulence in the central plasma sheet was performed using the Interball-Tail satellite data. Fluctuations of the plasma bulk velocity in the plasma sheet were deduced from the measurements taken by the Corall instrument for different levels of geomagnetic activity and different locations inside the plasma sheet. The events that satisfied the following criteria were selected for analysis: number density 0.1–10 cm−3, ion temperature T≥0.3 keV, and average bulk velocity ≤100 km/s. It was found that the plasma sheet flow generally appears to be strongly turbulent, i.e. is dominated by fluctuations that are unpredictable. Corresponding eddy-diffusion coefficients in Y- and Z-direction in the GSM coordinate system were derived using the autocorrelation time and rms velocity. Statistical studies of variation of the eddy-diffusion coefficients with the location inside the plasma sheet showed a significant increase in these coefficients in the tailward direction. During substorms this dependence shows strong increase of eddy-diffusion in the central part of the plasma sheet at the distances of 10–30 Earth's radii. This effect is much stronger for Y-components of the eddy-diffusion coefficient, which could be related to the geometry of the plasma sheet, allowing more room for development of eddies in this direction.

  10. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  11. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    Science.gov (United States)

    Lennartsson, O. W.

    1994-01-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  12. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  13. Ion Beams in the Plasma Sheet Boundary Layer

    Science.gov (United States)

    Birn, J.; Hesse, M.; Runov, A.; Zhou, X.

    2015-12-01

    We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population; this beam, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with ``Time History of Events and Macroscale Interactions during Substorms" (THEMIS) observations.

  14. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  15. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  16. Study of the turbulence in the central plasma sheet using the CLUSTER satellite data

    Science.gov (United States)

    Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.

    2008-05-01

    Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.

  17. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau, F-91128 (France); Vaivads, A.; Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Sundkvist, D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Greco, A. [Dipartimento di Fisica, Universita della Calabria (Italy); Sorriso-Valvo, L., E-mail: alexandros.chasapis@lpp.polytechnique.fr [IMIP-CNR, U.O.S. LICRYL di Cosenza (Italy)

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  18. Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma

    Science.gov (United States)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  19. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  20. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Science.gov (United States)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  1. On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    2012-09-01

    Full Text Available The problem of identification of the interface region between the lobe and the Plasma Sheet (PS – the Plasma Sheet Boundary Layer (PSBL – using ion moments and magnetic field data often arises in works devoted to statistical studies of various PSBL phenomena. Our experience in the identification of this region based on the analysis of ion velocity distribution functions demonstrated that plasma parameters, such as the ion density and bulk velocity, the plasma beta or the dynamic pressure vary widely depending on the state of magnetotail activity. For example, while field-aligned beams of accelerated ions are often observed propagating along the lobeward edge of the PSBL there are times when no signatures of these beams could be observed. In the last case, a spacecraft moving from the lobe region to the PS registers almost isotropic PS-like ion velocity distribution. Such events may be classified as observations of the outer PS region. In this paper, we attempt to identify ion parameter ranges or their combinations that result in a clear distinction between the lobe, the PSBL and the adjacent PS or the outer PS regions. For this we used 100 crossings of the lobe-PSBL-PS regions by Cluster spacecraft (s/c made in different periods of magnetotail activity. By eye inspection of the ion distribution functions we first identify and separate the lobe, the PSBL and the adjacent PS or outer PS regions and then perform a statistical study of plasma and magnetic field parameters in these regions. We found that the best results in the identification of the lobe-PSBL boundary are reached when one uses plasma moments, namely the ion bulk velocity and density calculated not for the entire energy range, but for the energies higher than 2 keV. In addition, we demonstrate that in many cases the plasma beta fails to correctly identify and separate the PSBL and the adjacent PS or the outer PS regions.

  2. Thermal Structure and Dynamics in Supra-arcade Downflows and Flare Plasma Sheets

    Science.gov (United States)

    Reeves, K.; Hanneman, W.; Freed, M.; McKenzie, D. E.

    2014-12-01

    During a long duration solar flare, a hot plasma sheet is commonly formed above the flare loops. Often produced within this sheet are down-flowing voids referred to as supra-arcade downflows, thought to be the products of a patchy reconnection process. Models differ on the question of whether the downflows should be hotter than the surrounding plasma or not. We use imaging data from Hinode/XRT and SDO/AIA to determine the thermal structure of the plasma sheet and downflows. We find that the temperatures of the plasma within the downflows are either roughly the same as or lower than the surrounding fan plasma. This result implies that a mechanism for forming the voids that involves a sunward directed hydrodynamic shock pattern combined with perpendicular magnetic shock is unlikely. Additionally, we use the high cadence AIA data to trace the velocity fields in these regions through the use of a local correlation tracking algorithm. Through these measurements, we can determine areas of diverging velocity fields, as well as velocity shear fields and correlate them with temperature changes in order to understand the heating mechanisms in the plasma sheet. This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and NASA grant numbers NNX13AG54G and NNX14AD43G

  3. Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available Here, and in a companion paper by Hamrin et al. (2009 [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs as Concentrated Generator Regions (CGRs. We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL. For both CLRs and CGRs, E and J in the GSM y (cross-tail direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.

  4. Survey of 0. 1- to 16-keV/e plasma sheet ion composition

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Shelley, E.G.

    1986-03-01

    A large statistical survey of the 0.1- to 16-keV/e plasma sheet ion composition has been carried out using data obtained by the Plasma Composition Experiment on ISEE 1 between 10 and 23 R/sub E/ during 1978 and 1979. This survey includes more than 10 times the quantity of data used in earlier studies of the same topic and makes it possible to investigate in finer detail the relationship between the ion composition and the substorm activity. The larger data base also makes it possible for the first time to study the spatial distribution of the principal ion species. As found in previous studies, the ion composition has a large variance at any given value of the AE index, but a number of distinct trends emerge when the data are averaged at each activity level. During quiet conditions the plasma sheet is dominated by ions of solar origin (H/sup +/ and He/sup + +/), as found in earlier studies, and these ions are most numerous during extended periods of very low activity (AE< or approx. =30 ..gamma..). The quiet time density of these ions is particularly large in the flanks of the plasma sheet (GSM Yapprox. +- 10 R/sub E/), where it is about twice as large as it is near the central axis of the plasma sheet (Y = Z = 0). In contrast, the energy of these ions peaks near the central axis.

  5. On the plasma-based growth of ‘flowing’ graphene sheets at atmospheric pressure conditions

    Science.gov (United States)

    Tsyganov, D.; Bundaleska, N.; Tatarova, E.; Dias, A.; Henriques, J.; Rego, A.; Ferraria, A.; Abrashev, M. V.; Dias, F. M.; Luhrs, C. C.; Phillips, J.

    2016-02-01

    A theoretical and experimental study on atmospheric pressure microwave plasma-based assembly of free standing graphene sheets is presented. The synthesis method is based on introducing a carbon-containing precursor (C2H5OH) through a microwave (2.45 GHz) argon plasma environment, where decomposition of ethanol molecules takes place and carbon atoms and molecules are created and then converted into solid carbon nuclei in the ‘colder’ nucleation zones. A theoretical model previously developed has been further updated and refined to map the particle and thermal fluxes in the plasma reactor. Considering the nucleation process as a delicate interplay between thermodynamic and kinetic factors, the model is based on a set of non-linear differential equations describing plasma thermodynamics and chemical kinetics. The model predictions were validated by experimental results. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the ‘hot’ plasma zone. Raman spectroscopy, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) techniques have been applied to analyze the synthesized nanostructures. The microstructural features of the solid carbon nuclei collected from the colder zones of plasma reactor vary according to their location. A part of the solid carbon was deposited on the discharge tube wall. The solid assembled from the main stream, which was gradually withdrawn from the hot plasma region in the outlet plasma stream directed to a filter, was composed by ‘flowing’ graphene sheets. The influence of additional hydrogen, Ar flow rate and microwave power on the concentration of obtained stable species and carbon-dicarbon was evaluated. The ratio of sp3/sp2 carbons in graphene sheets is presented. A correlation between changes in C2 and C number densities and sp3/sp2 ratio was found.

  6. Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component

    Institute of Scientific and Technical Information of China (English)

    宋慧敏; 张乔根; 李应红; 贾敏; 吴云; 梁华

    2012-01-01

    A type of electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A three-electrode plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component was used to generate sliding discharge, which can be called nanosecond-pulse sliding discharge. The phenomenology and behaviour of the plasma sheet actuator were investigated experimentally. Discharge morphology shows that the formation of nanosecond-pulse sliding discharge is dependent on the peak value of the repetitive nanosecond pulses and negative DC component applied on the plasma sheet actuator. Compared to dielectric barrier discharge (DBD), the extension of plasma in nanosecond-pulse sliding discharge is quasi-diffusive, stable, longer and more intensive. Test results of particle image velocimetry demonstrate that the negative DC component applied to a third electrode could significantly modify the topology of the flow induced by nanosecond-pulse DBD. Body force induced by the nanosecond-pulse sliding discharge can be approximately in the order of mN. Both the maximum velocity and the body force induced by sliding discharge increase significantly as compared to single DBD. Therefore, nanosecond-pulse sliding discharge is a preferable plasma aerodynamic actuation generation mode, which is very promising in the field of aerodynamics.

  7. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  8. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  9. IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth plasma sheet

    Science.gov (United States)

    Luo, Hao; Kronberg, Elena; Nykyri, Katariina; Daly, Patrick; Chen, Gengxiong; Du, Aimin; Ge, Yasong

    2017-04-01

    Energetic ion distributions in the near-Earth plasma sheet can provide important information for understanding the entry of ions into the magnetosphere, and their transportation, acceleration, and losses in the near-Earth region. In this study, 11 years of energetic proton and oxygen observations (> 100 keV) from Cluster/RAPID were used to statistically study the energetic ion distributions in the near-Earth region. The dawn-dusk asymmetries of the distributions in three different regions (dayside magnetosphere, near-Earth nightside plasma sheet, and tail plasma sheet) are examined in northern and southern hemispheres. The results show that the energetic ion distributions are influenced by the dawn-dusk IMF direction. The enhancement of intensity largely correlates with the location of the magnetic reconnection at the magnetopause and the consequent formation of a diamagnetic cavity in the same quadrant of the magnetosphere. The results imply that substorm-related processes in the magnetotail are not the only source of energetic ions in the dayside and the near-Earth plasma sheet. We propose that large-scale cusp diamagnetic cavities can be an additional source and can thus significantly affect the energetic ion population in the magnetosphere. We also believe that the influence of the dawn-dusk IMF direction should not be neglected in models of the particle population in the magnetosphere.

  10. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, O.W.

    1994-04-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  11. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  12. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam

    Indian Academy of Sciences (India)

    A Hadap; J Mondal; K C Mittal; K P Maheshwari

    2011-03-01

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.

  13. A Statistical study of plasma sheet oscillations with kinetic ballooning/interchange instability signatures using THEMIS spacecraft

    Science.gov (United States)

    Jurisic, Mirjana; Panov, Evgeny; Nakamura, Rumi; Baumjohann, Wolfgang

    2016-04-01

    We use THEMIS data from 2010-2012 tail seasons to collect observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Over seventy observations with closely located THEMIS probes P3-P5 reveal that BICI-like plasma sheet oscillations may appear at different magnetic local time. For these, we derive background plasma sheet parameters such as BZ, δBZ/δx and plasma beta, and investigate solar wind conditions. We also estimate the proper parameters of BICI-like oscillations such as frequency and amplitude. Based on this, we search for a relation between the background plasma sheet parameters and the proper parameters of BICI-like oscillations.

  14. Effect of the initial plasma parameters on the structure of the current sheets developing in two-dimensional magnetic fields with a null line

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.; Bogdanov, S. Yu.

    2010-07-01

    The effect of the initial plasma parameters on the structure of the plasma of the current sheets that form in two-dimensional magnetic fields with a null line is studied by holographic interferometry. The evolution of the plasma sheets that develop in an initial low-density plasma, where a gas is mainly ionized by a pulse current passing through the plasma and initiating the formation of a current sheet, has been comprehensively studied for the first time. At the early stage of evolution, the spatial structure of such a plasma sheet differs substantially from the classic current sheets forming in a dense plasma. Nevertheless, extended plasma sheets with similar parameters form eventually irrespective of the initial plasma density.

  15. Plasma sheet ion composition at various levels of geomagnetic and solar activity

    Science.gov (United States)

    Lennartsson, W.

    1987-08-01

    The data obtained in the earth's plasma sheet by the Plasma Composition Experiment on the ISEE-1 spacecraft are briefly reexamined. The data are shown in the form of statistically averaged bulk parameters for the four major ions H(+), He(2+), He(+), and O(+) to illustrate the apparent mixture of solar and terrestrial ions, a mixture that varies with geomagnetic and other conditions. Some major differences in the statistical properties of different ions, which may have a bearing on the physics of the solar wind-magnetosphere interaction, are highlighted.

  16. Sounding of the plasma sheet in the deep geomagnetic tail using energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Daly, P.W.; Wenzel, K.; Sanderson, T.R.

    1984-10-01

    Energetic ions (E>35 keV) at 90/sup 0/ to the magnetic field line are measured on ISEE-3 in the distant geomagnetic tail and are used as tracers of the particle density during two encounters with the plasma sheet at 210 and 128 earth radii from the earth. Because of the finite gyroradius (2400 km) of these (assumed) protons, different orientation about the magnetic field measure the intensity of different locations, allowing a separation of spatial from temporal variations. Density contour maps of the plasma hseet are constructed, demonstrating the wavy nature of this regime, as well as the existence of density layers within it.

  17. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  18. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  19. Kink-like mode of a double gradient instability in a compressible plasma current sheet

    Science.gov (United States)

    Korovinskiy, D.B.; Ivanova, V.V.; Erkaev, N.V.; Semenov, V.S.; Ivanov, I.B.; Biernat, H.K.; Zellinger, M.

    2011-01-01

    A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet. PMID:22053125

  20. Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet

    Directory of Open Access Journals (Sweden)

    M. N. Nishino

    2007-03-01

    Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.

  1. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    CERN Document Server

    Kronberg, E A; Haaland, S E; Daly, P W; Delcourt, D C; Luo, H; Kistler, L M; Dandouras, I

    2016-01-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure ($\\mathit{P}_{dyn}$) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW $\\mathit{P}_{dyn}$, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of t...

  2. On the 3-dimensional structure of plasmoids. [in near-earth plasma sheets

    Science.gov (United States)

    Hughes, W. J.; Sibeck, D. G.

    1987-01-01

    The hypothesis that the IMF penetrates plasmoids causing them to be three- rather than two-dimensional is tested by comparing observations of By within plasmoids and related tail structures to upstream IMF By data. The magnetic topologies that result from the mergings of closed plasma sheet flux tubes and open tail lobe flux tubes at a near-earth neutral line, and merging near the tail flanks are described and studied. The particle signals and isotropic electron distributions are examined. It is observed that the IMF By penetrates plasmoids and that their structure is three-dimensional. In the three-dimensional model of plasmoids the reconnected plasma sheet field lines form a magnetic flux-ropelike structure. The three-dimensional model is utilized to analyze stagnant, slowly moving and earthward moving structures.

  3. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang

    2007-01-01

    We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.

  4. Formation and evolution of flapping and ballooning waves in magnetospheric plasma sheet

    Science.gov (United States)

    Ma, J. Z. G.; Hirose, A.

    2016-05-01

    By adopting Lembége & Pellat's 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor-Goldstein equation of magnetic perturbations. Fourier spectral method and Runge-Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, the flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1-7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.

  5. Piezoresistive Effect in Plasma-Doping of Graphene Sheet for High-Performance Flexible Pressure Sensing Application.

    Science.gov (United States)

    Haniff, M A S M; Hafiz, S M; Huang, N M; Rahman, S A; Wahid, K A A; Syono, M I; Azid, I A

    2017-05-03

    This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.

  6. Responses of properties in the plasma sheet and at the geosynchronous orbit to interplanetary shock

    Institute of Scientific and Technical Information of China (English)

    YAO Li; LIU ZhenXing; ZUO PingBing; ZHANG LingQian; DUAN SuPing

    2009-01-01

    On July 22,2004,the WIND spacecraft detected a typical interplanetary shock. There was sustaining weak southward magnetic field in the preshock region and the southward field was suddenly enhanced across the shock front (i.e.,southward turning). When the shock impinged on the magnetosphere,the magnetospheric plasma convection was abruptly enhanced in the central plasma sheet,which was directly observed by both the TC-1 and Cluster spacecraft located in different regions. Simultaneously,the Cluster spacecraft observed that the dawn-to-dusk electric field was abruptly enhanced. The variations of the magnetic field observed by TC-1,Cluster,GOES-10 and GOES-12 that were distributed in different regions in the plasma sheet and at the geosynchronous orbit are obviously distinct. TC-1 observations showed that the magnetic intensity kept almost unchanged and the elevation angle decreased,but the Cluster spacecraft,which was also in the plasma sheet and was further from the equator,observed that the magnetic field was obviously enhanced. Simultaneously,GOES-12 located near the midnight observed that the magnetic intensity sharply increased and the elevation angle decreased,but GOES-10 located in the dawn side observed that the magnetic field was merely compressed with its three components all sharply increasing. Furthermore,the energetic proton and electron fluxes at nearly all channels observed by five LANL satellites located at different magnetic local times (MLTs) all showed impulsive enhancements due to the compression of the shock. The responses of the energetic particles were much evident on the dayside than those on the nightside. Especially the responses near the midnight were rather weak. In this paper,the possible reasonable physical explanation to above observations is also discussed. All the shock-induced responses are the joint effects of the solar wind dynamic pressure pulse and the magnetic field southward turning.

  7. Cluster and TC-1 observation of magnetic holes in the plasma sheet

    Directory of Open Access Journals (Sweden)

    W. J. Sun

    2012-03-01

    Full Text Available Magnetic holes with relatively small scale sizes, detected by Cluster and TC-1 in the magnetotail plasma sheet, are studied in this paper. It is found that these magnetic holes are spatial structures and they are not magnetic depressions generated by the flapping movement of the magnetotail current sheet. Most of the magnetic holes (93% were observed during intervals with Bz larger than Bx, i.e. they are more likely to occur in a dipolarized magnetic field topology. Our results also suggest that the occurrence of these magnetic holes might have a close relationship with the dipolarization process. The magnetic holes typically have a scale size comparable to the local proton Larmor radius and are accompanied by an electron energy flux enhancement at a 90° pitch angle, which is quite different from the previously observed isotropic electron distributions inside magnetic holes in the plasma sheet. It is also shown that most of the magnetic holes occur in marginally mirror-stable environments. Whether the plasma sheet magnetic holes are generated by the mirror instability related to ions or not, however, is unknown. Comparison of ratios, scale sizes and propagation direction of magnetic holes detected by Cluster and TC-1, suggests that magnetic holes observed in the vicinity of the TC-1 orbit (~7–12 RE are likely to be further developed than those observed by Cluster (~7–18 RE.

  8. Relative contributions of terrestrial and solar wind ions in the plasma sheet

    Science.gov (United States)

    Lennartsson, W.; Sharp, R. D.

    A major uncertainty concerning the origins of plasma sheet ions is due to the fact that terrestrial H(+) can have similar fluxes and energies as H(+) from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE less than 60 gamma) when H(+) typically contributes more than 90 percent of the plasma sheet ion population. In this study that problem is examined using a large data set obtained by the ISEE-1 Plasma Composition Experiment. The data suggest that one component of the H(+) increases in energy with increasing activity, roughly in proportion to 1/4 the energy of the He(++), whereas the other H(+) component has about the same energy at all activity levels, as do the O(+) and the He(+). If it is assumed that the H(+) of solar wind origin on the average has about the same energy-per-nucleon as the He(++), which is presumably almost entirely from the solar wind, then the data imply that as much as 20-30 percent of the H(+) can be of terrestrial origin even during quiet conditions.

  9. Relative contributions of terrestrial and solar wind ions in the plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Sharp, R.D.

    1985-01-01

    A major uncertainty concerning the origins of plasma sheet ions is due to the fact that terrestrial H(+) can have similar fluxes and energies as H(+) from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE less than 60 gamma) when H(+) typically contributes more than 90 percent of the plasma sheet ion population. In this study that problem is examined using a large data set obtained by the ISEE-1 Plasma Composition Experiment. The data suggest that one component of the H(+) increases in energy with increasing activity, roughly in proportion to 1/4 the energy of the He(++), whereas the other H(+) component has about the same energy at all activity levels, as do the O(+) and the He(+). If it is assumed that the H(+) of solar wind origin on the average has about the same energy-per-nucleon as the He(++), which is presumably almost entirely from the solar wind, then the data imply that as much as 20-30 percent of the H(+) can be of terrestrial origin even during quiet conditions.

  10. Survey of 0.1- to 16-keV/e plasma sheet ion composition

    Science.gov (United States)

    Lennartsson, W.; Shelley, E. G.

    1986-03-01

    An analysis is performed of all plasma sheet data collected in 1978-79 in order to discern statistical trends in the data. Attention is focused on the bulk parameters of 0.1-16 keV/e plasma sheet ions detected by the Plasma Composition Experiment on the ISEE 1 satellite. The data were collected at 10-23 earth radii, and are averaged for various levels of activity in the AE index. Solar H(+) and He(2+) ions dominate during quiet periods and possess energies similar to those of the solar wind when the quiet period lasts several hours. Increasing AE index values eventually lead to a replacement of the solar ions with terrestrial ions, particularly O(+), which can have an average energy density of 3-4 keV/e at every activity level. The solar ions, however, increase in energy as their density decreases. The O(+) density is highest near the local midnight and becomes the most numerous during highly disturbed conditions. Finally, the O(+) density was observed to increase by a factor of three over the monitoring period, possibly due to enhanced solar EUV radiation.

  11. Optimized H{sup -} extraction in an argon-magnesium seeded magnetized sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Noguera, Virginia R. [Plasma Physics Laboratory, National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines)], E-mail: virginia.noguera@gmail.com; Blantocas, Gene Q. [Plasma Physics Laboratory, National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines); West Visayas State University, Lapaz, Iloilo City 5000 (Philippines); Ramos, Henry J. [Plasma Physics Laboratory, National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines)

    2008-06-15

    The enhancement and optimization of H{sup -} extraction through argon and magnesium seeding of hydrogen discharges in a magnetized sheet plasma source are reported. The paper first presents the modification of the production chamber into a hexapole multicusp configuration resulting in decreased power requirements, improved plasma confinement and longer filament lifetime. By this, a wider choice of discharge currents for sustained quiescent plasmas is made possible. Second, the method of adding argon to the hydrogen plasma similar to the scheme in Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689] was performed to find the optimum conditions for H{sup -} formation and extraction. Using an E x B probe, H{sup -} yields were investigated at varied argon-hydrogen admixtures, different discharge currents and spatial points relative to the core plasma. The optimum H{sup -} current density extracted at 3.0 cm from the plasma core using 3.0 A plasma current with 10% argon seeding increased by a factor of 2.42 (0.63 A/m{sup 2}) compared to the measurement of Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689]. Third, the argon-hydrogen plasma at the extraction chamber is seeded with magnesium. Mg disk with an effective area of 22 cm{sup 2} is placed at the extraction region's anode biased 175 V with respect to the cathode. With Mg seeding, the optimum H{sup -} current density at the same site and discharge conditions increased by 4.9 times (3.09 A/m{sup 2}). The enhancement effects were analyzed vis-a-vis information gathered from the usual Langmuir probe (electron temperature and density), electron energy distribution function (EEDF) and the ensuing dissociative attachment (DA) reaction rates at different spatial points for various plasma discharges and gas ratios. Investigations on the changes in the effective electron temperature and electron density indicate that the enhancement is due to increased density of low

  12. Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meiling [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Yang, Lei [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Fan, Xue [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2015-12-01

    Highlights: • Oxygen plasma etching was developed to improve tribological properties of GSEC film. • Etching restructured 3 nm top layer with smaller crystallite size and higher sp{sup 3} fraction. • The etched film had smoother surface, enhanced mechanical properties, longer wear life. • High electrical conductivity and strong magnetism were retained after etching. - Abstract: An oxygen plasma etching technique was introduced for improving the tribological properties of the graphene sheets embedded carbon (GSEC) film in electron cyclotron resonance plasma processing system. The nanostructural changing in the film caused by oxygen plasma etching was examined by transmission electron microscope, Raman spectroscopy and X-ray photoelectron spectroscopy, showing that the 3 nm thick top surface layer was restructured with smaller graphene nanocrystallite size as well as higher sp{sup 3} bond fraction. The surface roughness, mechanical behavior and tribological properties of the original GSEC and oxygen plasma treated GSEC films were compared. The results indicated that after the oxygen plasma treatment, the average roughness decreased from 20.8 ± 1.1 nm to 1.9 ± 0.1 nm, the hardness increased from 2.3 ± 0.1 GPa to 2.9 ± 0.1 GPa, the nanoscratch depth decreased from 64.5 ± 5.4 nm to 9.9 ± 0.9 nm, and the wear life increased from 930 ± 390 cycles to more than 15,000 frictional cycles. The origin of the improved tribological behavior was ascribed to the 3 nm thick graphene nanocrystallite film. This finding can be expected for wide applications in nanoscale surface engineering.

  13. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  14. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    Energy Technology Data Exchange (ETDEWEB)

    Allanson, O., E-mail: oliver.allanson@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Wilson, F., E-mail: fw237@st-andrews.ac.uk; Troscheit, S., E-mail: s.troscheit@st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2015-10-15

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  15. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    CERN Document Server

    Allanson, O; Wilson, F; Troscheit, S

    2015-01-01

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely the Force-Free Harris Sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite Polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  16. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  17. Plasma sheet stretching accompanied by field aligned energetic ion fluxes observed by the MUADU instrument aboard TC-2

    Institute of Scientific and Technical Information of China (English)

    Lu Li; S.MCKENNA-LAWLOR; S.BARABASH; LIU ZhenXing; CAO JinBin; J.BALAZ; K.KUDELA; T.L.ZHANG; C.M.CARR

    2007-01-01

    The NUADU(NeUtral Atom Detector Unit)instrument aboard TC-2 recorded 4π solid angle images of charged particles(E>180 keV)spiraling around the magnetic field lines in the near-Earth plasma sheet (at~-7 RE,equatorial dawn-to-night side)during a geomagnetic storm(Dst=-219 nT)on August 24,2005.Energetic ion beam events characterized by symmetrical,ring-like,solid angle distributions around ambient magnetic field lines were observed during a 34-minute traversal of the plasma sheet by the TC-2 spacecraft.Also,observations during these multiple crossings of the plasma sheet were monitored by the magnetometer experiment(FGM)aboard the same spacecraft.During each crossing,a whistler-mode chorus enhancement was observed in the anisotropic area by the TC-2 low frequency electromagnetic wave detector(LFEW/TC-2)at a frequency just above that of the local lower hybrid wave.A comparison of the ion pitch angle distribution(PAD)map with the ambient magnetic field shows that an enhancement in the field aligned energetic ion flux was accompanied by tailward stretching of the magnetic field lines in the plasma sheet.In contrast,the perpendicular ion-flux enhancement was accompanied by a signature indicating the corresponding shrinkage of the magnetic field lines in the plasma sheet.Since both parallel ion-flux and perpendicular ion-flux enhancements occurred intermittently,the data were interpreted to imply a dynamical,oscillatory process of the magnetic field line(stretching and shrinking)in the near-Earth plasma sheet,which might have acted to help establish an interaction region in this area which would support continuous aurora-substorm triggering during the ongoing magnetic storm.The whistler-mode chorus may have been produced due to ion gyro-resonance during particle pitch angle diffusion after the plasma sheet compression.

  18. Cluster view of the plasma sheet boundary layer and bursty bulk flow connection

    Directory of Open Access Journals (Sweden)

    O. W. Lennartsson

    2009-04-01

    Full Text Available The high-latitude boundaries of the plasma sheet (PSBL are dynamic latitude zones of recurring and transient (minutes to tens of minutes earthward and magnetic field-aligned bursts of plasma, each being more or less confined in longitude as well, whose ionic component is dominated by protons with flux, energies and density that are consistent with a central plasma sheet (CPS source at varying distance (varying rates of energy time dispersion, sometimes as close as the ~19 RE Cluster apogees, or closer still. The arguably most plausible source consists of so called "bursty bulk flows" (BBFs, i.e. proton bulk flow events with large, positive and bursty GSE vx. Known mainly from CPS observations made at GSE x>−30 RE, the BBF type events probably take place much further downtail as well. What makes the BBFs an especially plausible source are (1 their earthward bulk flow, which helps explain the lack of distinctive latitudinal PSBL energy dispersion, and (2 their association with a transient strong increase of the local tail Bz component ("local dipolarization". The enhanced Bz provides intermittent access to higher latitudes for the CPS plasma, resulting in local density reductions in the tail midplane, as illustrated here by proton data from the Cluster CIS CODIF instruments. Another sign of kinship between the PSBL bursts and the BBFs is their similar spatial fine structure. The PSBL bursts have prominent filaments aligned along the magnetic field with transverse flux gradients that are often characterized by local ~10 keV proton gyroradii scale size (or even smaller, as evidenced by Cluster measurements. The same kind of fine structure is also found during Cluster near-apogee traversals of the tail midplane, as illustrated here and implied by recently published statistics on BBFs obtained with Cluster multipoint observations at varying satellite

  19. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  20. Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Ritoku; Sato, Tetsuya [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-06-01

    Generation of anomalous resistivity and dynamical development of collisionless reconnection in the vicinity of a magnetically neutral sheet are investigated by means of a three-dimensional particle simulation. For no external driving source, two different types of plasma instabilities are excited in the current layer. The lower hybrid drift instability (LHDI) is observed to grow in the periphery of current layer in an early period, while a drift kink instability (DKI) is triggered at the neutral sheet in a late period as a result of the nonlinear deformation of the current sheet by the LHDI. A reconnection electric field grows at the neutral sheet in accordance with the excitation of the DKI. When an external driving field exists, the convective electric field penetrates into the current layer through the particle kinetic effect and collisionless reconnection is triggered by the convective electric field earlier than the DKI is excited. It is also found that the anisotropic ion distribution is formed through the anomalous ion heating by the DKI. (author)

  1. Collective dynamics of bursty particle precipitation initiating in the inner and outer plasma sheet

    Science.gov (United States)

    Uritsky, V. M.; Donovan, E.; Klimas, A. J.; Spanswick, E.

    2009-02-01

    Using multiscale spatiotemporal analysis of bursty precipitation events in the nighttime aurora as seen by the POLAR UVI instrument, we report a set of new statistical signatures of high- and low-latitude auroral activity, signaling a strongly non-uniform distribution of dissipation mechanism in the plasma sheet. We show that small-scale electron emission events that initiate in the equatorward portion of the nighttime auroral oval (scaling mode A1) have systematically steeper power-law slopes of energy, power, area, and lifetime probability distributions compared to the events that initiate at higher latitudes (mode B). The low-latitude group of events also contain a small but energetically important subpopulation of substorm-scale disturbances (mode A2) described by anomalously low distribution exponents characteristic of barely stable thermodynamic systems that are prone to large-scale sporadic reorganization. The high latitude events (mode organized critical (SOC) behavior. The low- and high latitude events have distinct inter-trigger time statistics, and are characterized by significantly different MLT distributions. Based on these results we conjecture that the inner and outer portions of the plasma sheet are associated with two (or more) mechanisms of collective dynamics that may represent an interplay between current disruption and magnetic reconnection scenarios of bursty energy conversion in the magnetotail.

  2. Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster

    Science.gov (United States)

    Engebretson, M. J.; Kahlstorf, C. R. G.; Posch, J. L.; Keiling, A.; Walsh, A. P.; Denton, R. E.; Broughton, M. C.; Owen, C. J.; FornaçOn, K.-H.; RèMe, H.

    2010-12-01

    The passage of the Cluster satellites in a polar orbit through Earth's magnetotail has provided numerous observations of harmonically related Pc 1-2 ULF wave events, with the fundamental near the local proton cyclotron frequency Ωcp. Broughton et al. (2008) reported observations by Cluster of three such events in the plasma sheet boundary layer, and used the wave telescope technique to determine that their wave vectors k were nearly perpendicular to B. This paper reports the results of a search for such waves throughout the 2003 Cluster tail passage. During the 4 month period of July-October 2003, 35 multiple-harmonic wave events were observed, all in the plasma sheet boundary layer (PSBL). From the first observed event (22 July) to the last (28 October), 13 of Cluster's 42 tail passes had at least one event. The wave events were rather evenly distributed from XGSE = -7 RE out to the Cluster apogee distance of -18 RE, with one event observed at -4 RE. ZGSE for these events ranged from -10 to -3 RE and +3 to +7 RE (i.e., there were no events for ∣Z∣ elevated fluxes of counterstreaming ions with energies ranging from ˜3 to 30 keV, and elevated fluxes of electrons with energies ranging from 0.25 to ˜5 keV. Analysis of plasma parameters suggests that although waves occurred only when the ion beta exceeded 0.1 (somewhat larger than typical for the PSBL), ion particle pressure may be of more physical importance in controlling wave occurrence. Electron distributions were more isotropic in pitch angles than the ion distributions, but some evidence of counterstreaming electrons was detected in 83% of the events. The ions also showed clear signatures of shell-like or ring-like distributions; i.e., with reduced fluxes below the energy of maximum flux. The suprathermal ion fluxes were asymmetric in all events studied, with more ions streaming earthward (for events both north and south of the central plasma sheet). Good agreement between the observed frequency of the

  3. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Directory of Open Access Journals (Sweden)

    R. T. Mist

    Full Text Available A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

    Key words. Magnetospheric physics (magnetotail boundary layers; plasma convection; plasma sheet

  4. A computational model for He{sup +} ions in a magnetized sheet plasma: comparative analysis between model and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Blantocas, Gene Q. [West Visayas State Univ., Lapaz, Iloilo City (Philippines); Ramos, Henry J. [Univ. of the Phillippines, College of Science, National Inst. of Physics, Deliman Quezon City (Philippines); Wada, Motoi [Doshisha Univ., Dept. of Engineering, Kyoto (Japan)

    2003-07-01

    An E x B probe was used to extract He{sup +} ions from a magnetized steady sheet plasma. Plasma parameters T{sub e}, n{sub e} and extracted He{sup +} ion current were analyzed vis-a-vis a modified Saha population density equation of the collisional-radiative model. Numerical calculations show that at low discharge currents and in the hot electron region of the sheet plasma, relative densities of He{sup +} ions show some degree of correlation with ion current profiles established experimentally using the E x B probe. Both experimental and computational results indicate a division of the plasma into two distinct regions each with different formation mechanisms of He{sup +} ions. (author)

  5. Substorm effects on the plasma sheet on composition on March 22, 1979 (CDAW 6)

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Sharp, R.D.; Zwickl, R.D.

    1985-02-01

    Data from the Plasma Composition Experiment on ISSE 1, covering the energy range 0.1--16 keV/e, show that a dramatic change took place in the plasma sheet ion composition in conjunction with the magnetic substorm activity on March 22, 1979. Beginning about 1124 UT the ion population at the ISEE 1 location changed from what appeared to be predominantly ions from the solar wind to a mixture of comparable numbers of solar wind and terrestrial ions. ISEE 1 was inbound in the predawn sector during this time, and the plasma composition experiment provided data from Rapprox. =21 R/sub E/ and LTapprox. =0130, down to Rapprox. =3 R/sub E/ and LTapprox. =0530. Prior to the substorm activity about 90--95% of the ion density was due to H/sup +/ and He/sup + +/ ions, which appeared to be mostly of solar wind origin. The H/sup +/ and He/sup + +/ components, each approximated by a Maxwell-Boltzmann distribution, had a temperature ratio T(He/sup + +/)/T(H/sup +/)approx. =4 and a density ratio n(He/sup + +/)/n(H/sup +/)approx. =1.5--3%. Both values are consistent with measurements made concurrently in the solar wind by the plasma experiment on ISSE 3. The remaining 5--10% of the density was due mainly to O/sup +/ and He/sup +/ ions of ionospheric origin. All four ion populations had broad energy spectra with mean energies of several keV/e.

  6. A Theoretical Model of Pinching Current Sheet in Low-beta Plasmas

    CERN Document Server

    Takeshige, Satoshi; Shibata, Kazunari

    2015-01-01

    Magnetic reconnection is an important physical process in various explosive phenomena in the universe. In the previous studies, it was found that fast re- connection takes place when the thickness of a current sheet becomes on the order of a microscopic length such as the ion larmor radius or the ion inertial length. In this study, we investigated the pinching process of a current sheet by the Lorentz force in a low-{\\beta} plasma using one-dimensional magnetohydrodynam- ics (MHD) simulations. It is known that there is an exact self-similar solution for this problem that neglects gas pressure. We compared the non-linear MHD dynamics with the analytic self-similar solution. From the MHD simulations, we found that with the gas pressure included the implosion process deviates from the analytic self-similar solution as t {\\rightarrow} t 0, where t 0 is the explosion time when the thickness of a current sheet of the analytic solution becomes 0. We also found a pair of MHD fast-mode shocks are generated and propaga...

  7. Long-term variations in the plasma sheet ion composition and substorm occurrence over 23 years

    Science.gov (United States)

    Nosé, Masahito

    2016-12-01

    The Geotail satellite has been operating for almost two solar cycles (~23 years) since its launch in July 1992. The satellite carries the energetic particle and ion composition (EPIC) instrument that measures the energetic ion flux (9.4-212 keV/e) and enables the investigation of long-term variations of the ion composition in the plasma sheet for solar cycles 22-24. From the statistical analysis of the EPIC data, we find that (1) the plasma ion mass ( M) is approximately 1.1 amu during the solar minimum, whereas it increases to 1.5-2.7 amu during the solar maximum; (2) the increases in M seem to have two components: a raising of the baseline levels (~1.5 amu) and a large transient enhancement (~1.8-2.7 amu); (3) the baseline level change of M correlates well with the Mg II index, which is a good proxy for the solar extreme ultraviolet (EUV) or far ultraviolet (FUV) irradiance; and (4) the large transient enhancement of M is caused by strong magnetic storms. We also study the long-term variations of substorm occurrences in 1992-2015 that are evaluated with the number of Pi2 pulsations detected at the Kakioka observatory. The results suggest no clear correlation between the substorm occurrence and the Mg II index. Instead, when the substorms are classified into externally triggered events and non-triggered events, the number of the non-triggered events and the Mg II index are negatively correlated. We interpret these results that the increase in the solar EUV/FUV radiation enhances the supply of ionospheric ions (He+ and O+ ions) into the plasma sheet to increase M, and the large M may suppress spontaneous plasma instabilities initiating substorms and decrease the number of the non-triggered substorms. The present analysis using the unprecedentedly long-term dataset covering ~23 years provides additional observational evidence that heavy ions work to prevent the occurrence of substorms.

  8. Anisotropic Equilibrium and Ballooning Mode Analysis in the Tail Plasma Sheet.

    Science.gov (United States)

    Lee, Dae-Young

    This thesis is a theoretical study about the Earth's tail plasma sheet with regard to two aspects: the equilibrium structure for the anisotropic pressure, and the ideal-MHD ballooning stability. By adopting a stretched magnetotail model where ion motions are generally nonadiabatic, and assuming that the anisotropy resides only in the electron pressure tensor, it is shown that the magnetic field lines with rm p_| > p_| are less stretched than the isotropic cases. As the parallel pressure p_| exceeds the perpendicular pressure p_| approaching the conventional marginal firehose limit, rm p_| = p{_ |} + B^2/ mu_0, the magnetic field lines are more and more stretched. It is also shown that the current density is highly enhanced at the same limit, a situation that might be subject to a microscopic instability. However, we also emphasize that such an enhancement in the current density is heavily localized near the z = 0 plane, and thus it is unclear if such a microscopic instability can significantly alter the global configuration of the tail. It is further argued, in terms of the radius of the field curvature versus the particle's gyroradius, that the conventional adiabatic description of electrons may become questionable, very close to the conventional marginal firehose limit. To study the ideal-MHD ballooning mode, we first adopt a hard ionospheric boundary condition where the perturbation is required to vanish at the ionospheric foot points. For such a hard boundary condition, an "untypical" magnetic field configuration is found to be unstable to a ballooning mode that is antisymmetric about the equatorial plane while most of the "typical" tail plasma-sheet configurations are stable against the ideal-MHD ballooning mode. The unstable magnetic field model, however, does not look like the average observation-based model, but rather resembles some of the characteristics of the steady-state magnetic field models by Hau (1989, 1991). In addition, a physical argument is

  9. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    Science.gov (United States)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  10. Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet

    Science.gov (United States)

    Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.

    2016-10-01

    We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of 6.0. However, in many PS intervals Tp/Te varies over a wide range from a few units to several tens of units. In 86 PS intervals the Tp/Te decreases below 3.5. Generally, the decreases of Tp/Te are due to some increase of Te while Tp either decreases or remains unchanged. In the majority of these intervals the Tp/Te drops are observed during magnetotail dipolarizations. A superposed epoch analysis applied to these events shows that the minimum value of Tp/Te is observed after the dipolarization onset during the "turbulent phase" of dipolarization, when a number of transient BZ pulses are reduced, but the value of BZ is still large and an intensification of wave activity is observed. The Tp/Te drops, and associated increases of Te often coincide either with bursts of broadband electrostatic emissions, which may include electron cyclotron harmonics, or with broadband electromagnetic emission in a frequency range from proton plasma frequency (fpp) up to the electron gyrofrequency (fce). These findings show that the wave activity developing in the current sheet after dipolarization onset may play a role in the additional electron heating and the associated Tp/Te decrease.

  11. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction.

    Science.gov (United States)

    Dong, Quan-Li; Wang, Shou-Jun; Lu, Quan-Ming; Huang, Can; Yuan, Da-Wei; Liu, Xun; Lin, Xiao-Xuan; Li, Yu-Tong; Wei, Hui-Gang; Zhong, Jia-Yong; Shi, Jian-Rong; Jiang, Shao-En; Ding, Yong-Kun; Jiang, Bo-Bin; Du, Kai; He, Xian-Tu; Yu, M Y; Liu, C S; Wang, Shui; Tang, Yong-Jian; Zhu, Jian-Qiang; Zhao, Gang; Sheng, Zheng-Ming; Zhang, Jie

    2012-05-25

    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

  12. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    C. H. KIM; Y. N. AHN; J. H. KIM

    2011-01-01

    A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.

  13. Fractal Structure of the Heliospheric Plasma Sheet at the Earth's Orbit

    Institute of Scientific and Technical Information of China (English)

    M. V. Eselevich; V. G. Eselevich

    2005-01-01

    An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind,flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density(N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from2°-3° (at the Earth's orbit, it is equivalent to 3.6-5.4 h, or(5.4-8.0) × 106 km) to the minimum about0.025°, i.e. the angular siz.e of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift)current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore,the value of β = 8π[N(Te + Tp)]/B2 within the tube exceeds the value of β outside the tube. In many cases total pressure P = N(Te + Tp) + B2/8π is almost constant within and outside the tubes at any one of the aforementioned scales.

  14. The evaluation of surface and adhesive bonding properties for cold rolled steel sheet for automotive treated by Ar/O{sub 2} atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Joo; Lee, Sang Kon; Kim Byung Min [Pusan National University, Busan (Korea, Republic of); Park, Keun Whan [Sungwoo Hitech Technical Institute, Busan (Korea, Republic of)

    2008-04-15

    Cold rolled steel sheet for automotive was treated by Ar/O{sub 2} atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of O{sub 2} gas. Results shows that the bonding strength of steel sheet treated in Ar/O{sub 2} atmospheric pressure plasma was improved about 20% compared with untreated sheet.

  15. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis

    Science.gov (United States)

    Denton, R. E.; Engebretson, M. J.; Keiling, A.; Walsh, A. P.; Gary, S. P.; DéCréAu, P. M. E.; Cattell, C. A.; RèMe, H.

    2010-12-01

    Multiple-harmonic electromagnetic waves in the ULF band have occasionally been observed in Earth's magnetosphere, both near the magnetic equator in the outer plasmasphere and in the plasma sheet boundary layer (PSBL) in Earth's magnetotail. Observations by the Cluster spacecraft of multiple-harmonic electromagnetic waves with fundamental frequency near the local proton cyclotron frequency, Ωcp, were recently reported in the plasma sheet boundary layer by Broughton et al. (2008). A companion paper surveys the entire magnetotail passage of Cluster during 2003, and reports 35 such events, all in the PSBL, and all associated with elevated fluxes of counterstreaming ions and electrons. In this study we use observed pitch angle distributions of ions and electrons during a wave event observed by Cluster on 9 September 2003 to perform an instability analysis. We use a semiautomatic procedure for developing model distributions composed of bi-Maxwellian components that minimizes the difference between modeled and observed distribution functions. Analysis of wave instability using the WHAMP electromagnetic plasma wave dispersion code and these model distributions reveals an instability near Ωcp and its harmonics. The observed and model ion distributions exhibit both beam-like and ring-like features which might lead to instability. Further instability analysis with simple beam-like and ring-like model distribution functions indicates that the instability is due to the ring-like feature. Our analysis indicates that this instability persists over an enormous range in the effective ion beta (based on a best fit for the observed distribution function using a single Maxwellian distribution), β', but that the character of the instability changes with β'. For β' of order unity (for instance, the observed case with β' ˜ 0.4), the instability is predominantly electromagnetic; the fluctuating magnetic field has components in both the perpendicular and parallel directions, but the

  16. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  17. Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alex; Uritsky, Vadim; Baker, Daniel

    2006-01-01

    Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  18. Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alexander J.

    2006-01-01

    Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  19. Shock wave interaction with a thermal layer produced by a plasma sheet actuator

    Science.gov (United States)

    Koroteeva, E.; Znamenskaya, I.; Orlov, D.; Sysoev, N.

    2017-03-01

    This paper explores the phenomena associated with pulsed discharge energy deposition in the near-surface gas layer in front of a shock wave from the flow control perspective. The energy is deposited in 200 ns by a high-current distributed sliding discharge of a ‘plasma sheet’ type. The discharge, covering an area of 100× 30 mm2, is mounted on the top or bottom wall of a shock tube channel. In order to analyse the time scales of the pulsed discharge effect on an unsteady supersonic flow, we consider the propagation of a planar shock wave along the discharge surface area 50–500 μs after the discharge pulse. The processes in the discharge chamber are visualized experimentally using the shadowgraph method and modelled numerically using 2D/3D CFD simulations. The interaction between the planar shock wave and the discharge-induced thermal layer results in the formation of a lambda-shock configuration and the generation of vorticity in the flow behind the shock front. We determine the amount and spatial distribution of the electric energy rapidly transforming into heat by comparing the calculated flow patterns and the experimental shadow images. It is shown that the uniformity of the discharge energy distribution strongly affects the resulting flow dynamics. Regions of turbulent mixing in the near-surface gas are detected when the discharge energy is deposited non-uniformly along the plasma sheet. They account for the increase in the cooling rate of the discharge-induced thermal layer and significantly influence its interaction with an incident shock wave.

  20. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  1. Plasma arc brazing - a low energy joining technology for steel sheets; Plasmalichtbogenloeten - eine energiearme Fuegetechnik fuer Feinblechwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B.; Draugelates, U.; Helmich, A.; Ouaissa, B. [TU Clausthal, Clausthal-Zellerfeld (Germany)

    2001-07-01

    Mild and high strength steel sheets are comparatively difficult to weld. The heat input in the case of conventional welding processes is too high, so that plasma brazing is an attractive alternative and complementary joining process. One characteristic of the process is the independent input of energy and filler material. In addition, the process is practically spatter-free. Plasma brazing reduces joint and panel distortion and is tolerant to surface contamination and metallic surface coatings. The brazed seams are aesthetic in appearance and clear good mechanical properties. (orig.)

  2. ISEE 3 observations during a plasma sheet encounter at 140 earth radii - Evidence for enhancement of reconnection at the distant neutral line

    Science.gov (United States)

    Scholer, M.; Terasawa, T.; Baker, D. N.; Zwickl, R. D.; Gloeckler, G.; Hovestadt, D.; Smith, E. J.; Tsurutani, B. T.

    1986-01-01

    A plasma sheet encounter of the ISEE-3 spacecraft in the distant tail at 140 earth radii on March 20, 1983 is studied using magnetic field, energetic particle, and plasma electron data sets. The H-component magnetograms from auroral magnetometer stations, intensity-time profiles, high resolution magnetic field measurements, and electron and proton angular distributions are analyzed. The dynamics of the plasma sheet displayed by the strong tailward and earthward directed ion beams, large northward and southward magnetic fields excursions, and short tailward and earthward plasma flows are described.

  3. New types of coating systems for steel sheets by high-rate evaporation in combination with plasma processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, B.; Metzner, C. [Fraunhofer-Institut fuer Elektronenstrahl und Plasmatechnik (FEP), Dresden (Germany); Ehlers, K.D. [Salzgitter AG Stahl und Technologie (Germany); Schuhmacher, B. [Dortmunder Oberflaechencentrum GmbH, Dortmund (Germany); Flossdorf, F.J.; Steinbeck, G. [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany); Steffen, R. [Stahlwerke Bremen GmbH (Germany); Hagler, J. [voestalpine Stahl GmbH, Linz (Austria)

    2002-03-01

    High-rate evaporation in combination with plasma processes is a promising approach to obtain new types of steel sheet coating with improved corrosion resistance and application properties. To estimate the potential for the application of PVD-coatings (physical vapour deposition) different coating systems for steel sheet as well as for hot-dip or electro-galvanized steel sheet were designed. The samples were produced on a laboratory scale using PVD processes with very high deposition rates (in the order of 1 {mu}m s{sup -1}) as well as high-power plasma processes for the pre-treatment. The relationship between the composition, microstructure and properties of the coating systems, in particular concerning corrosion protection, abrasion during forming, phosphating and paint adhesion, were studied. It was found that the corrosion resistance of galvanized steel sheets can be considerably improved by vapour deposition of metal or inorganic films with a thickness of several hundred nanometers. Investigations on vapour deposition of titanium and stainless steel coatings on steel sheets, for applications in a severely corrosive environment, showed that the corrosion resistance in relation to the coating thickness can be significantly enhanced by means of plasma activation during the vapour deposition process. Finally, an outlook on possible industrial applications including an estimation of the process costs will be presented. For certain coating systems the results look promising. Consequently, these particular coating systems will be investigated in more detail by means of using a large-scale in-line deposition plant for metallic strips and sheets. (orig.)

  4. A feature of negative hydrogen ion production in the Uramoto-type sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, Kouichi [Kyoto Univ., Uji (Japan). Inst. of Atomic Energy

    1997-02-01

    It seems that negative hydrogen ions H{sup -} are formed directly from atomic hydrogens H. When the chamber was biased more negative against the anode potential at constant are power, forming a much deeper electrostatic well in the Uramoto-type sheet plasma negative ion source, more negative hydrogen ion currents were extracted. The chamber potential V{sub B} was biased down to -100V in the 150V discharge. The negative ion current J{sup -} was evaluated by the JAERI-probe measurement. J{sup -} increases linearly with the chamber current I{sub B}. The largest J{sup -} value was obtained at absolute value of |V{sub prob,f}|=15V and absolute value of |V{sub B}|=100V; the discharge was not operated for absolute value of |V{sub B}|>100V. We speculate the following collisional (three-body) electron attachment to H as a possible production process for H{sup -}; e+e+H{yields}e+H{sup -}. This process may explain the linear increase of J{sup -} with absolute value of |V{sub prob,f}|. (S.Y.)

  5. Study of kinetic Alfven wave (KAW) in plasma - sheet-boundary- layer

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Varma, P; Tiwari, M S, E-mail: tiwarims@rediffmail.co, E-mail: poornimavarma@yahoo.co, E-mail: nidhiphy.shukla@gmail.co [Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.), 470003 (India)

    2010-02-01

    The effect of parallel electric field with general loss-cone distribution function on the dispersion relation and damping rate/growth rate of the kinetic Alfven wave (KAW) is evaluated by kinetic approach. The generation of KAW by the combined effect of parallel electric field and loss-cone distribution indices (J) at a particular range of k{sub p}erpendicular{rho}{sub i} (k{sub p}erpendicular{rho}{sub i} <1 and k{sub p}erpendicular{rho}{sub i} >1) is noticed, where k{sub p}erpendicular is perpendicular wave number and {rho}{sub i} is the ion-gyro radius. Thus the propagation of KAW and loss of the Poynting flux from plasma sheet boundary layer (PSBL) to the ionosphere can be explained on the basis of present investigation. It is found that the present study also shows that the loss-cone distribution index is an important parameter to study KAW in the PSBL.

  6. Controllable formation of graphene and graphene oxide sheets using photo-catalytic reduction and oxygen plasma treatment

    Science.gov (United States)

    Ostovari, Fatemeh; Abdi, Yaser; Ghasemi, Foad

    2012-12-01

    Au/SiO2/Si interdigital electrodes with thickness of 1 μm were created on silicon substrate. Graphene oxide (GO) sheets hanging from these electrodes were obtained by spin coating of chemically synthesized GO dispersed in water. We used UV-light-induced photo-catalytic activity of titanium oxide nanoparticles to reduce the GO layer. Effects of the photo-induced chemical reduction on the conductivity of the GO were investigated. Also, low power DC plasma was used for oxidation of the sheets. Oxygen bombardment leads to sheets with low electrical conductivity. Measurements show that graphene and GO sheets with the controlled electrical conductivity were obtained by these processes. Scanning electron and atomic force microscopy were used to study the morphology of the TiO2/GO and graphene structures. X-ray diffraction and Raman scattering analysis were used to verify the structural characteristics of the prepared sheets. Analysis showed a gradual increase in the number of C-O bonds on the surface of the graphene layer as a result of increasing the time of plasma bombardment. Based on the Raman spectroscopy, the photo-catalytic activity of TiO2 nanoparticles resulted in a decrease in the number of C-O bonds.

  7. Field-aligned currents observed by MMS in the near-Earth plasma sheet during large-scale substorm dipolarizations.

    Science.gov (United States)

    Nakamura, Rumi; Nagai, Tsugunobu; Giles, Barbara; Le Contel, Olivier; Stawarz, Julia; Khotyaintsev, Yuri; Artemyev, Anton

    2017-04-01

    During substorms significant energy conversion has been reported to take place at the sharp dipolarization front in the flow braking region where the probability of observing bursty bulk flows (BBFs) significantly drops. On 10 August 2016, MMS traversed the pre-midnight near-Earth plasma sheet when dipolarization disturbances were detected in an extended nightside local time region by Cluster, Geotail, GOES 13, 14 and 15, and the Van Allen Probes. In an expanding plasma sheet during the dipolarization, MMS detected sub-ion scale field-aligned current layers that are propagating both Earthward (equatorward) as well as tailward (outward). These multi-scale multi-point observations enable a unique investigation of both the meso-scale evolution of the disturbances and the detailed kinetic structures of the fronts and boundaries relevant to the dipolarizations.

  8. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  9. Role of magnetic field fluctuations in the Evolution of the kappa Distribution Functions in the Plasma Sheet

    Science.gov (United States)

    Espinoza, Cristobal; Antonova, Elizaveta; Stepanova, Marina; Valdivia, Juan Alejandro

    2016-07-01

    The evolution with the distance to Earth of ion and electron distribution functions in the plasma sheet, approximated by kappa distributions, was studied by Stepanova and Antonova (2015, JGRA 120). Using THEMIS data for 5 events of satellite alignments along the tail, covering between 5 and 30 Earth radii, they found that the kappa parameter increases tailwards, for both ions and electrons. In this work we analyse the magnetic fluctuations present in THEMIS data for the same 5 events. The aim is to explore the hypothesis proposed by Navarro et al. (2014, PRL 112), for solar wind plasmas, that the observed magnetic fluctuations could be closely related to spontaneous fluctuations in the plasma, if this can be described by stable distributions. Here we present our first results on the correlation between the spectral properties of the magnetic fluctuations and the observed parameters of the kappa distributions for different distances from Earth.

  10. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz in...

  11. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmh...

  12. Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the plasma sheet

    Science.gov (United States)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.

    2013-12-01

    Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically

  13. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    Science.gov (United States)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field

  14. Energetic electron bursts in the plasma sheet and their relation with BBFs

    Science.gov (United States)

    Duan, A. Y.; Cao, J. B.; Dunlop, M.; Wang, Z. Q.

    2014-11-01

    We studied energetic electron bursts (EEBs) (40-250 keV) in the plasma sheet (PS) and their relation to bursty bulk flows (BBFs) using the data recorded by Cluster from 2001 to 2009. The EEBs in the PS can be classified into four types. Three types of EEBs are dispersionless, including EEBs accompanied with BBFs (V > 250 km/s) but without dipolarization front (DF); EEBs accompanied with both dipolarization front (DF) and BBF; and EEBs accompanied with DF and fast flow with V EEB, i.e., EEBs not accompanied with BBFs and DFs, is dispersed. The energetic electrons (40-130 keV) can be easily transported earthward by BBFs due to the strong dawn-dusk electric field embedded in BBFs. The DFs in BBFs can produce energetic electrons (40 to 250 keV). For the EEBs with DF and BBFs, the superposed epoch analyses show that the increase of energetic electron flux has two phases: gradual increase phase before DF and rapid increase phase concurrent with DF. In the PS around x = -18 RE, 60%-70% of EEBs are accompanied with BBFs, indicating that although hitherto there have been various acceleration mechanisms of energetic electrons, most of the energetic electrons in the PS are related with magnetic reconnection, and they are produced either directly by magnetic reconnection or indirectly by the DFs within BBFs. In the BBF's braking region of -12 RE EEBs are accompanied with BBFs. The corresponding ratio between EEBs and BBFs shows a dawn-dusk asymmetry.

  15. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  16. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  17. Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.

    2012-04-01

    An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10-4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.

  18. Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Micheal, E-mail: micheal.burke@tyndall.ie; Blake, Alan; Povey, Ian M.; Schmidt, Michael; Petkov, Nikolay; Carolan, Patrick; Quinn, Aidan J., E-mail: aidan.quinn@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland)

    2014-05-15

    A design of experiments methodology was used to optimize the sheet resistance of titanium nitride (TiN) films produced by plasma-enhanced atomic layer deposition (PE-ALD) using a tetrakis(dimethylamino)titanium precursor in a N{sub 2}/H{sub 2} plasma at low temperature (250 °C). At fixed chamber pressure (300 mTorr) and plasma power (300 W), the plasma duration and N{sub 2} flow rate were the most significant factors. The lowest sheet resistance values (163 Ω/sq. for a 20 nm TiN film) were obtained using plasma durations ∼40 s, N{sub 2} flow rates >60 standard cubic centimeters per minute, and purge times ∼60 s. Time of flight secondary ion mass spectroscopy data revealed reduced levels of carbon contaminants in the TiN films with lowest sheet resistance (163 Ω/sq.), compared to films with higher sheet resistance (400–600 Ω/sq.) while transmission electron microscopy data showed a higher density of nanocrystallites in the low-resistance films. Further significant reductions in sheet resistance, from 163 Ω/sq. to 70 Ω/sq. for a 20 nm TiN film (corresponding resistivity ∼145 μΩ·cm), were achieved by addition of a postcycle Ar/N{sub 2} plasma step in the PE-ALD process.

  19. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  20. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Science.gov (United States)

    Mist, R. T.; Owen, C. J.

    2002-05-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

  1. Nanoshaping field emitters from glassy carbon sheets: a new functionality induced by H-plasma etching.

    Science.gov (United States)

    Gay, S; Orlanducci, S; Passeri, D; Rossi, M; Terranova, M L

    2016-09-14

    This paper reports on the morphological and electrical characterization at the nanometer scale and the investigation of the field emission characteristics of glassy carbon (GC) plates which underwent H-induced physical/chemical processes occurring in a dual-mode MW-RF plasma reactor. Plasma treatment produced on the GC surface arrays of vertically aligned conically shaped nanostructures, with density and height depending on the plasma characteristics. Two kinds of samples obtained under two different bias regimes have been deeply analyzed using an AFM apparatus equipped with tools for electric forces and surface potential measurements. The features of electron emission via the Field Emission (FE) mechanism have been correlated with the morphology and the structure at the nanoscale of the treated glassy carbon samples. The measured current density and the characteristics of the emission, which follow the Fowler-Nordheim law, indicate that the plasma-based methodology utilized for the engineering of the GC surfaces is able to turn conventional GC plates into efficient emission devices. The outstanding properties of GC suggest the use of such nanostructured materials for the assembling of cold cathodes to be used in a harsh environment and under extreme P/T conditions.

  2. Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves

    Science.gov (United States)

    Ni, Binbin; Thorne, Richard M.; Horne, Richard B.; Meredith, Nigel P.; Shprits, Yuri Y.; Chen, Lunjin; Li, Wen

    2011-04-01

    Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000-0600 MLT sector. The results show that ECH wave scattering of plasma sheet electrons varies from near the strong diffusion rate (timescale of an hour or less) during active times with peak wave amplitudes of an order of 1 mV/m to very weak scattering (on the timescale of >1 day) during quiet conditions with typical wave amplitudes of tenths of mV/m. However, for the low-energy (˜100 eV to below 2 keV) electron population mainly associated with the diffuse auroral emission, ECH waves are only responsible for rapid pitch angle diffusion (occasionally near the limit of strong diffusion) for a small portion of the electron population with pitch angles αeq 70°. Computations of the bounce-averaged coefficients of momentum diffusion and (pitch angle, momentum) mixed diffusion indicate that both mixed diffusion and energy diffusion of plasma sheet electrons due to ECH waves are very small compared to pitch angle diffusion and that ECH waves have little effect on local electron acceleration. Consequently, the multiple harmonic ECH emissions cannot play a dominant role in the occurrence of diffuse auroral precipitation near L = 6, and other wave-particle interaction mechanisms, such as whistler mode chorus-driven resonant scattering, are required to explain the global distribution of diffuse auroral precipitation and the formation of the pancake distribution in the inner magnetosphere.

  3. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-110042 (India)

    2016-08-15

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  4. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    W. K. Peterson

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  5. Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales

    Science.gov (United States)

    Cao, Xing; Ni, Binbin; Liang, Jun; Xiang, Zheng; Wang, Qi; Shi, Run; Gu, Xudong; Zhou, Chen; Zhao, Zhengyu; Fu, Song; Liu, Jiang

    2016-02-01

    This is a companion study to Liang et al. (2014) which reported a "reversed" energy-latitude dispersion pattern of ion precipitation in that the lower energy ion precipitation extends to lower latitudes than the higher-energy ion precipitation. Electromagnetic ion cyclotron (EMIC) waves in the central plasma sheet (CPS) have been suggested to account for this reversed-type ion precipitation. To further investigate the association, we perform a comprehensive study of pitch angle diffusion rates induced by EMIC wave and the resultant proton loss timescales at L = 8-12 around the midnight. Comparing the proton scattering rates in the Earth's dipole field and a more realistic quiet time geomagnetic field constructed from the Tsyganenko 2001 (T01) model, we find that use of a realistic, nondipolar magnetic field model not only decreases the minimum resonant energies of CPS protons but also considerably decreases the limit of strong diffusion and changes the proton pitch angle diffusion rates. Adoption of the T01 model increases EMIC wave diffusion rates at > ~ 60° equatorial pitch angles but decreases them at small equatorial pitch angles. Pitch angle scattering coefficients of 1-10 keV protons due to H+ band EMIC waves can exceed the strong diffusion rate for both geomagnetic field models. While He+ and O+ band EMIC waves can only scatter tens of keV protons efficiently to cause a fully filled loss cone at L > 10, in the T01 magnetic field they can also cause efficient scattering of ~ keV protons in the strong diffusion limit at L > 10. The resultant proton loss timescales by EMIC waves with a nominal amplitude of 0.2 nT vary from a few hours to several days, depending on the wave band and L shell. Overall, the results demonstrate that H+ band EMIC waves, once present, can act as a major contributor to the scattering loss of a few keV protons at lower L shells in the CPS, accounting for the reversed energy-latitude dispersion pattern of proton precipitation at low

  6. Effects of solar wind ultralow-frequency fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine

    Science.gov (United States)

    Wang, Chih-Ping; Kim, Hee-Jeong; Yue, Chao; Weygand, James M.; Hsu, Tung-Shin; Chu, Xiangning

    2017-04-01

    To investigate whether ultralow-frequency (ULF) fluctuations from 0.5 to 8.3 mHz in the solar wind and interplanetary magnetic field (IMF) can affect the plasma sheet electron temperature (Te) near geosynchronous distances, we use a support vector regression machine technique to decouple the effects from different solar wind parameters and their ULF fluctuation power. Te in this region varies from 0.1 to 10 keV with a median of 1.3 keV. We find that when the solar wind ULF power is weak, Te increases with increasing southward IMF Bz and solar wind speed, while it varies weakly with solar wind density. As the ULF power becomes stronger during weak IMF Bz ( 0) or northward IMF, Te becomes significantly enhanced, by a factor of up to 10. We also find that mesoscale disturbances in a time scale of a few to tens of minutes as indicated by AE during substorm expansion and recovery phases are more enhanced when the ULF power is stronger. The effect of ULF powers may be explained by stronger inward radial diffusion resulting from stronger mesoscale disturbances under higher ULF powers, which can bring high-energy plasma sheet electrons further toward geosynchronous distance. This effect of ULF powers is particularly important during weak southward IMF or northward IMF when convection electric drift is weak.

  7. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  8. Observation of a planetward ion beam in the plasma sheet boundary layer at Saturn following tail reconnection

    Science.gov (United States)

    Jackman, C. M.

    2014-04-01

    We present an interval of data from 2006 when the Cassini spacecraft was located 32 RS (1 RS = 60268km) downtail, at a local time of 22:00 hrs and a latitude of 13.8°. The interval in question displayed a range of dynamic behaviour, including a southward turning of the tail magnetic field, indicative of a dipolarization, and an energetic, fast, planetward beam of ions. Preliminary interpretation of this event suggests that it represents a reconnection-driven ion beam in Saturn's magnetotail plasma sheet boundary layer. This event is explored using several of the Cassini instruments to build up a picture of the reconfiguration of the tail in terms of local and global effects.

  9. Relationship between FAC at plasma sheet boundary layers and AE index during storms from August to October,2001

    Institute of Scientific and Technical Information of China (English)

    DUNLOP; M

    2008-01-01

    Unlike the previous single (dual) satellite observation, the four ClusterII satellites make it possible to directly compute the continuous field-aligned current (FAC) density according to the magnetic data from them and to enable the investigation of the relationship between the FAC and geomagnetic activity. This paper analyzes the observation data when the Cluster satellites crossed the plasma sheet bound- ary layer (PSBL) in the magnetotail during the two magnetic storms in August to October 2001. According to the data, during the magnetic storms the relationship between the variations of FAC and AE index turned out to be: 1) FAC was obviously increasing during the storms; 2) FAC density was approximately negatively corre- lated with AE index from the sudden commencement to the early main phase of the storm; 3) they were approximately positively correlated during the late main phase and early recovery phase; 4) they were no apparent correlation during the late re- covery phase.

  10. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Phadnaik Mangesh

    2010-01-01

    Full Text Available Plasma cell granuloma is a rare reactive lesion composed of polyclonal plasma cells. It manifests primarily in the lungs, but may occur in various other anatomic locations like the oral cavity. Intraoral plasma cell granulomas involving the tongue, lip, oral mucosa and gingiva have been reported in the past. This case presents a 54-year-old female with chronic periodontitis and mandibular anterior gingival overgrowth treated by Phase I therapy (scaling and root planing and excisional biopsy. Histological examination revealed inflammatory cell infiltrate containing sheets of plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. This case highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  11. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years......) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk...... of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality....

  12. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  13. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  14. Observations of energetic electrons /E no less than about 200 keV/ in the earth's magnetotail - Plasma sheet and fireball observations

    Science.gov (United States)

    Baker, D. N.; Stone, E. C.

    1977-01-01

    An earlier paper by the authors (1976) has reported on energetic electron anisotropies observed in conjunction with the acceleration regions identified by Frank et al., (1976). The present paper gives more detailed analyses of observations in the distant plasma sheet, including specific features of intensities, energy spectra, and pitch angle distributions of the very energetic electrons associated with intense plasma particle events, with energies ranging between 50 eV and 45 keV, detected with an electron/isotope spectrometer aboard the earth-orbiting spacecraft Imp 8. Two domains are considered: the plasma sheet and the regions near and within the localized magnetotail acceleration regions known as the fireball regions. The instrumentation used offered a number of observational advantages over many previous studies, including inherently low background, large geometric factors, excellent species identification, good angular distribution measurement capability, and availability of high resolution of differential intensities.

  15. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    Science.gov (United States)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  16. plasma treatment

    Directory of Open Access Journals (Sweden)

    Puač Nevena

    2014-11-01

    Full Text Available In this paper we will present results for plasma sterilization of planktonic samples of two reference strains of bacteria, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. We have used a plasma needle as a source of non-equilibrium atmospheric plasma in all treatments. This device is already well characterized by OES, derivative probes and mass spectrometry. It was shown that power delivered to the plasma is bellow 2 W and that it produces the main radical oxygen and nitrogen species believed to be responsible for the sterilization process. Here we will only present results obtained by electron paramagnetic resonance which was used to detect the OH, H and NO species. Treatment time and power delivered to the plasma were found to have the strongest influence on sterilization. In all cases we have observed a reduction of several orders of magnitude in the concentration of bacteria and for the longest treatment time complete eradication. A more efficient sterilization was achieved in the case of gram negative bacteria.

  17. Plasma metallization

    CERN Document Server

    Crowther, J M

    1997-01-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of s...

  18. Plasma dynamo

    CERN Document Server

    Rincon, F; Schekochihin, A A; Valentini, F

    2015-01-01

    Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...

  19. Plasma medicine

    CERN Document Server

    Fridman, Alexander

    2012-01-01

    This comprehensive text is suitable for researchers and graduate students of a 'hot' new topic in medical physics. Written by the world's leading experts,  this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medic

  20. Observation of an Extremely Large-Density Heliospheric Plasma Sheet Compressed by an Interplanetary Shock at 1 AU

    Science.gov (United States)

    Wu, Chin-Chun; Liou, Kan; Lepping, R. P.; Vourlidas, Angelos; Plunkett, Simon; Socker, Dennis; Wu, S. T.

    2017-08-01

    At 11:46 UT on 9 September 2011, the Wind spacecraft encountered an interplanetary (IP) fast-forward shock. The shock was followed almost immediately by a short-duration (˜ 35 minutes) extremely dense pulse (with a peak ˜ 94 cm-3). The pulse induced an extremely large positive impulse (SYM-H = 74 nT and Dst = 48 nT) on the ground. A close examination of other in situ parameters from Wind shows that the density pulse was associated with i) a spike in the plasma β (ratio of thermal to magnetic pressure), ii) multiple sign changes in the azimuthal component of the magnetic field (B_{φ}), iii) a depressed magnetic field magnitude, iv) a small radial component of the magnetic field, and v) a large (> 90°) change in the suprathermal (˜ 255 eV) electron pitch angle across the density pulse. We conclude that the density pulse is associated with the heliospheric plasma sheet (HPS). The thickness of the HPS is estimated to be {˜} 8.2×105 km. The HPS density peak is about five times the value of a medium-sized density peak inside the HPS (˜ 18 cm-3) at 1 AU. Our global three-dimensional magnetohydrodynamic simulation results (Wu et al. in J. Geophys. Res. 212, 1839, 2016) suggest that the extremely large density pulse may be the result of the compression of the HPS by an IP shock crossing or an interaction between an interplanetary shock and a corotating interaction region.

  1. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Directory of Open Access Journals (Sweden)

    E. Amata

    2006-01-01

    Full Text Available We study plasma transport at a thin magnetopause (MP, described hereafter as a thin current sheet (TCS, observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF model in the magnetosheath (MSH up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23. The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV, being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006.

  2. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  3. O+ ion conic and plasma sheet dynamics observed by Van Allen Probe satellites during the 1 June 2013 magnetic storm

    Science.gov (United States)

    Burke, W. J.; Erickson, P. J.; Yang, J.; Foster, J.; Wygant, J.; Reeves, G.; Kletzing, C.

    2016-05-01

    The Van Allen Probe satellites were near apogee in the late evening local time sector during the 1 June 2013 magnetic storm's main phase. About an hour after crossing the ring current's "nose structure" into the plasma sheet, the satellites encountered a quasiperiodic sequence of 0.08-3 keV O+ ions. Pitch angle distributions of this population consistently peaked nearly antiparallel to the local magnetic field. We interpret this population as O+ conics originating in the northern ionosphere. Sequences began as fairly steady state conic fluxes with energies in the ~ 80 to 100 eV range. Over about a half hour buildup phase, O+ energies peaked near 1 keV. During subsequent release phases lasting ~ 20 min, O+ energies returned to low-energy starting points. We argue these observations reflect repeated formations and dissolutions of downward, magnetically aligned electric fields (ɛ||) layers trapping O+ conics between mirror points within heating layers below and electrostatic barriers above. Nearly identical variations were observed at the locations of both satellites during 9 of these 13 conic cycles. Phase differences between cycles were observed at both spacecraft during the remaining events. Most "buildup" to "release" phase transitions coincided with AL index minima. However, in situ magnetometer measurements indicate only weak dipolarizations of tail-like magnetic fields. The lack of field-aligned reflected O+ and tail-like magnetic fields suggest that both ionospheres may be active. However, Southern Hemisphere origin conics cannot be observed since they would be isotropized and accelerated during neutral sheet crossings.

  4. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective

  5. pTC-1 observation of ion high-speed flow reversal in the near-Earth plasma sheet during substorm

    Institute of Scientific and Technical Information of China (English)

    H.; RME; I.; DANDOURAS; C.; M.; CARR

    2008-01-01

    Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailward high-speed flows (Vx ~ -350 km/s) were first seen at about X ~ -13.2 RE in near-Earth magnetotail, one minute later the flows reversed from tailward to earthward. The reversal process occurred quickly after the substorm expansion onset. The near-Earth magnetotail plasma sheet was one of key regions for substorm onset. Our analysis showed that the ion flow reversal from tailward to earthward was likely to be in close relation with the substorm expansion initiation and might play an important role in trigger-ing the substorm expansion onset.

  6. Using PEACE Data from the four CLUSTER Spacecraft to Measure Compressibility, Vorticity, and the Taylor Microscale in the Magnetosheath and Plasma Sheet

    Science.gov (United States)

    Goldstein, Melvyn L.; Parks, George; Gurgiolo, C.; Fazakerley, Andrew N.

    2008-01-01

    We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.

  7. Magnetoresistive waves in plasmas

    Science.gov (United States)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  8. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

  9. Electrosurgical plasmas

    Science.gov (United States)

    Stalder, Kenneth R.; McMillen, Donald F.; Woloszko, Jean

    2005-06-01

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  10. Electrosurgical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Kenneth R; McMillen, Donald F; Woloszko, Jean [ArthroCare Corp., Sunnyvale, CA 94085-3523 (United States)

    2005-06-07

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  11. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  12. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  13. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    Science.gov (United States)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  14. Studying the Important Relationship Between Earth's Plasma Sheet and the Outer Radiation Belt Electrons Using Newly Calibrated and Corrected Themis-Sst Data

    Science.gov (United States)

    Cruce, P. R.; Turner, D. L.; Angelopoulos, V.; Larson, D. E.; Shprits, Y.; Huang, C.; Ukhorskiy, A. Y.

    2011-12-01

    Most recently, the solid-state telescope (SST) data from the THEMIS mission, which consisted of 5 spacecraft in highly elliptic, equatorial orbits that have traversed the outer radiation belt and sampled the plasma sheet for more than 4 years, have been characterized, calibrated, and decontaminated. Here, we present a brief introduction on this corrected dataset and go into detail on the valuable resource it provides to address science questions concerning the important relationship between ~1 keV-10's keV electrons in the plasma sheet and 100's keV-MeV electrons in Earth's outer radiation belt. We demonstrate this by presenting preliminary results on: studying phase space density (PSD) radial gradients for fixed first and second adiabatic invariants from the radiation belt into the plasma sheet, examining pitch angle distributions near the boundary between these two regions, and studying the boundary region itself around the last closed drift shell and the role of magnetopause shadowing losses. We examine the dependence of PSD radial gradients on the first and second invariants to test previous results [e.g., Turner et al., GRL, 2008; Kim et al., JGR, 2010] that reveal mostly positive radial gradients for lower energy electrons (10's - couple hundred keV) but negative gradients for relativistic electrons beyond geosynchronous orbit. This directly relates to the current theory that lower energy electrons have a source in the plasma sheet and are introduced to the ring current and radiation belt via substorm injections and enhanced convection, and these particles then generate the waves necessary to accelerate a fraction of this seed population to relativistic energies, providing a source of the outer radiation belt. Next, we take advantage of the pitch angle resolved differential energy fluxes to examine variations in pitch angle distributions to establish the role that Shabansky drift orbits, which break electrons' second adiabatic invariant, play on outer belt

  15. Plasma Free Metanephrines

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? Also known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine ...

  16. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  17. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  18. Optimization Of Pulsed Current Parameters To Minimize Pitting Corrosion İn Pulsed Current Micro Plasma Arc Welded Aısı 304l Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kondapalli Siva Prasad

    2013-06-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA was developed to optimize the process parameters for minimizing the pitting corrosion rates.

  19. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  20. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  1. Large-Scale Structure of Magnetospheric Plasma

    Science.gov (United States)

    Moore, T. E.; Delcourt, D. C.

    1995-01-01

    Recent investigations of magnetospheric plasma structure are summarized under the broad categories of empirical models, transport across boundaries, formation, and dynamics of the plasma sheet. This report reviews work in these areas during the period 1991 to 1993. Fully three-dimensional empirical models and simulations have become important contributors to our understanding of the magnetospheric system. Some new structural concepts have appeared in the literature: the 'entry boundary' and 'geo-pause', the plasma sheet 'region 1 vortices', the 'low-energy layer', the 'adia-baticity boundary' or 'wall region', and a region in the tail to which we refer as the 'injection port'. Traditional structural concepts have also been the subject of recent study, notably the plasmapause, the magnetopause, and the plasma sheet. Significant progress has been made in understanding the nature of plasma sheet formation and dynamics, but the acceleration of electrons to high energy remains somewhat mysterious.

  2. Sources of Pressure in Titan's Plasma Environment

    CERN Document Server

    Achilleos, N; Bertucci, C; Guio, P; Romanelli, N; Sergis, N

    2013-01-01

    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main source is the dynamic pressure associated with Saturn's cold, subcorotating plasma. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of five as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by < 10 deg. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet.

  3. Communication through Plasma Sheaths

    CERN Document Server

    Korotkevich, A O; Zakharov, V E

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  4. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  5. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  6. Paper-based plasma sanitizers

    Science.gov (United States)

    Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.; Mazzeo, Aaron D.

    2017-05-01

    This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nWṡcm-2ṡnm-1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.

  7. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  8. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  9. STUDIES ON SURFACE CHARACTERIZATION AND ECOMATERIAL SHEET DEGRADATION OF BASALT FIBERS BY PLASMA TREATMENTS AND WOOD FIBERS

    Institute of Scientific and Technical Information of China (English)

    Guangjian Wang; Yajie Guo; Deku Shang; linna Hu; Zhenhua Guo; Kailiang Zhang

    2004-01-01

    Plasma surface modification (Argon: Hydrogen =0.6:0.4) of basalt fibers was investigated and the element contents of basalt and wood fibers were determined by X-ray energy dispersion spectroscope (EDS).Configuration of basalt fibers was described by means of confocal Laser Raman microRaman spectrometer and Fourier transform infrared spectroscopy. And the morphology of fiber surface was studied with scanning electron microscope(SEM). The modified samples were characterized by X-ray photoelectron spectra (XPS). The results showed that the roughness of basalt fibers was increased with the increase of exposure time of plasma. At the same time the wettability and surface characteristics such as active groups of NH2, OH were improved as well. Basaltfibers were of good chemical stability, better mechanism intension and thermo-stability etc. They mainly consist of [SiO4]4-,[Si2O6]4-, [Si2O5]2-. Further experiments demostrated that they were degraded into edaphic matrix after use.Therefore, they were environmentally friendly.

  10. STUDIES ON SURFACE CHARACTERIZATION AND ECOMATERIAL SHEET DEGRADATION OF BASALT FIBERS BY PLASMA TREATMENTS AND WOOD FIBERS

    Institute of Scientific and Technical Information of China (English)

    GuangjianWang; YajieGuo; DekuShang; linnaHu; ZhenhuaGuo; KailiangZhang

    2004-01-01

    plasma surtace modification (Argon: Hydrogen=0.6:0.4) of basalt fibers was mvestigated and the element contents of basalt and wood fibers were determined by X-ray energy dispersion spectroscope (EDS). configuration of basalt fibers was described by means of confocal Laser Raman microRaman spectrometer and Fourier transform infrared spectroscopy. And the morphology of fiber surface was studied with scanning electron microscope (SEM). The modified samples were characterized by X-ray photoelectron spectra (XPS). The results showed that the roughness of basalt fibers was increased with the increase of exposure time of plasma. At the same time the wettability and surface characteristics such as active groups of NH2, OH were improved as well. Basalt fibers were of good chemical stability, better mechanism intension and thermo-stability etc. They mainly consist of [SiO4]4-, [Si2O6]4-,[Si2O5]2-. Further experiments demostrated that they were degraded into edaphic matrix after use. Therefore, they were environmentally friendly.

  11. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  12. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  13. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  14. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  15. Plasma heating in a post eruption Current Sheet: a case study based on ultraviolet, soft, and hard X-ray data

    CERN Document Server

    Susino, Roberto; Krucker, Säm

    2013-01-01

    Off-limb observations of the solar corona after Coronal Mass Ejections (CMEs) often show strong, compact, and persistent UV sources behind the eruption. They are primarily observed by the SOHO/UVCS instrument in the "hot" Fe XVIII {\\lambda}974 {\\AA} line and are usually interpreted as a signature of plasma heating due to magnetic reconnection in the post-CME Current Sheet (CS). Nevertheless, the physical process itself and the altitude of the main energy release are currently not fully understood. In this work, we studied the evolution of plasma heating after the CME of 2004 July 28 by comparing UV spectra acquired by UVCS with soft X-ray (SXR) and hard X-ray (HXR)images of the post-flare loops taken by GOES/SXI and RHESSI. The X-ray data show a long-lasting extended source that is rising upwards, toward the high-temperature source detected by UVCS. UVCS data show the presence of significant non-thermal broadening in the CS (signature of turbulent motions) and a strong density gradient across the CS region. T...

  16. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  17. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  18. Microwave Argon Plasma Torch

    Science.gov (United States)

    2013-07-01

    an electron-ion pair in the discharge. Fig. 2. EEDF is non - Maxwellian and changes along the plasma column The electron–neutral collision...plasma radius. Even at atmospheric pressure the EEDF is non - Maxwellian and it is changing along the plasma column. ...18 31st ICPIG, July 14-19, 2013, Granada, Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  19. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  20. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  1. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  2. Plasma in dentistry

    OpenAIRE

    Cha, Seunghee; Park, Young-Seok

    2014-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, deco...

  3. The Plasma Universe

    Science.gov (United States)

    Suplee, Curt

    2009-09-01

    Preface; 1. The fourth state of matter; 2. The music and dance of plasmas; 3. The Sun-Earth connection; 4. Bringing the Sun to Earth: the story of controlled thermonuclear fusion; 5. The cosmic plasma theater: galaxies, stars, and accretion disks; 6. Putting plasmas to work; Index.

  4. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  5. Plasma Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    Rajkumar Diwan

    2011-01-01

    Full Text Available Definition: Plasma, the fourth state of matter, is a collection of charged particles (electrons, ions, neutral atoms. Recent demonstration of plasma technology in treatment of living cells, tissue and organs are creating a new field at the intersection of plasma science and technology with biology and medicine known as plasma medicine. Plasma medicine is one of the newest fields of modem applied plasma chemistry. It appeared several years ago and comprises studies concerning the direct action of low-temperature, one atmosphere air plasma (cold plasma/nonthermal plasmalnonequilibrium on body tissues for various noninvasive therapeutic treatments or diagnostics purpose. The study of plasma holds promise for a myriad of applications ranging from lasers and electronics, hazardous decontamination, sterilization and disinfection of foods, soil, water, instruments, to medical uses in wound healing and treating certain types of tumors and cancers. Plasma represents a new state-of-the-art sterilization and disinfection treatment for certain oral and environmental pathogens, heat-sensitive materials, hard and soft surfaces, and may assist health care facilities in the management of various health concerns. The role that low temperature atmospheric pressure plasma (LTAPP could play in the inactivation of pathogenic microorganisms might prove to be a new, faster, more economical alternative.

  6. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  7. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.

    2002-01-01

    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  8. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  9. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  10. Plasmas for medicine

    Science.gov (United States)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  11. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  12. Plasma Biomedicine in Orthopedics

    Science.gov (United States)

    Hamaguchi, Satsohi

    2012-10-01

    Various effects of plasmas irradiation on cells, tissues, and biomaterials relevant for orthopedic applications have been examined. For direct application of plasmas to living cells or tissues, dielectric barrier discharges (DBDs) with helium flows into ambient air were used. For biomaterial processing, on the other hand, either helium DBDs mentioned above or low-pressure discharges generated in a chamber were used. In this presentation, plasma effects on cell proliferation and plasma treatment for artificial bones will be discussed. First, the conditions for enhanced cell proliferation in vitro by plasma applications have been examined. The discharge conditions for cell proliferation depend sensitively on cell types. Since cell proliferation can be enhanced even when the cells are cultured in a plasma pre-treated medium, long-life reactive species generated in the medium by plasma application or large molecules (such as proteins) in the medium modified by the plasma are likely to be the cause of cell proliferation. It has been found that there is strong correlation between (organic) hydroperoxide generation and cell proliferation. Second, effects of plasma-treated artificial bones made of porous hydroxyapatite (HA) have been examined in vitro and vivo. It has been found that plasma treatment increases hydrophilicity of the surfaces of microscopic inner pores, which directly or indirectly promotes differentiation of mesenchymal stem cells introduced into the pores and therefore causes faster bone growth. The work has been performed in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  13. Plasma detachment in linear devices

    Science.gov (United States)

    Ohno, N.

    2017-03-01

    Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.

  14. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  15. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  16. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  17. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  18. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  19. Pulsed plasma electron sourcesa)

    Science.gov (United States)

    Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.

    2009-05-01

    There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E ≤105 V/cm and duration ≤10-5 s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.

  20. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  1. Atmospheric Plasma Depainting

    Science.gov (United States)

    2014-11-19

    Plasma Carbon Dioxide Water Vapor 11 Atmospheric Plasma Depainting, ASETSDefense, Nov 19, 2014 Features and Benefits of APCR Technology Feature...Depainting, ASETSDefense, Nov 19, 2014 14 APC on Aluminum Removal to Primer RAM on Carbon Fiber Partial Topcoat Removal APC Topcoat RAM...60Hz Plasma Flux™ Power Supply VENT To Facility HEPA <= Filtration COTS Six-Axis Robot Aircraft part Particulate Collection System

  2. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  3. Plasma adiabatic lapse rate

    CERN Document Server

    Amendt, Peter; Wilks, Scott

    2012-01-01

    The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.

  4. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  5. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  6. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  7. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  8. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  9. Plasma and particles

    Science.gov (United States)

    Špatenka, Petr; Vacková, Tat'ana; Nováček, Vojtěch; Jeníková, Zdenka

    2016-12-01

    Plasma has been proved as a standard industrial method for surface treatment of solid bulk materials. Recently plasma has also been used in connection with production, treatment and functionalization of powder and granulate materials. Functionalization was originally developed for hydrophylization of hydrophobic surfaces of particles made from various materials. An industrial scale device with a capacity of several hundreds of tons per year based on plasma treatment will be presented. As examples of the applications are given plasma treated polyethylene powder dispersed in the water; and very good adhesion of polymer powders to metals or glass, which is promising for development of new generation of thermoplastic composites.

  10. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  11. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  12. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  13. [Acute plasma cell leukemia].

    Science.gov (United States)

    Monsalbe, V; Domíngues, C; Roa, I; Busel, D; González, S

    1989-01-01

    Plasma Cell Leukemia is a very rare form of plasmocytic dyscrasia, whose clinical and pathological characteristics warrant its recognition as a distinct subentity. We report the case of a 60 years old man who presented a rapidly fatal acute plasma cell leukemia, with multiple osteolytic lesions, hipercalcemia, renal and cardiac failure.

  14. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Department of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from a plasma reflects the anisotropic properties of the plasma, especially the angular anisotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and the GAMMA-10 tandem mirror machines. The soft x-ray laser line from the neonlike germanium was also found polarized. (author)

  15. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwamae, Atsushi; Inoue, Takeru; Tanaka, Akihiro; Kawakami, Kazuki; Fujimoto, Takashi [Kyoto Univ., Dept. of Engineering Physics, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from plasma reflects the anisotropic properties of the plasma, especially the angular isotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and GAMMA 10 tandem mirror device. (author)

  16. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  17. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  18. Modelling of Complex Plasmas

    NARCIS (Netherlands)

    Akdim, M.R. (Mohamed Reda)

    2003-01-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a r

  19. "Angular" plasma cell cheilitis.

    Science.gov (United States)

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  20. "Angular" plasma cell cheilitis

    OpenAIRE

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus

    2014-01-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  1. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  2. Innovations in plasma sensors

    Science.gov (United States)

    Zurbuchen, Thomas H.; Gershman, Daniel J.

    2016-04-01

    During the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.

  3. Wakes in inhomogeneous plasmas

    CERN Document Server

    Kompaneets, Roman; Nosenko, Vladimir; Morfill, Gregor E

    2014-01-01

    The Debye shielding of a charge immersed in a flowing plasma is an old classic problem in plasma physics. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it non-oscillatory and weaker.

  4. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  5. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  6. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  7. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    as reactive splvent (as shown in Figure 1). 1] H. Biederman, in Plasma Polymer Films. (ed.) H. Biederman. Imperial College Press, Singapore, 13-24 ~OO~· '. , [2] R. d'Agostino et.a!. in Plasma Depd~itiqn, 'Treatment, and Etching ofPolymers. (ed.) R. d'Agostino, Academic Press, U.S. (1990). [3] F. F. Shi......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...

  8. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  9. Diagnostics of Nanodusty Plasma

    Science.gov (United States)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  10. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  11. Electronegative Plasma Instabilities in Industrial Pulsed Plasmas

    Science.gov (United States)

    Pribyl, Patrick; Hansen, Anders; Gekelman, Walter

    2016-10-01

    Electronegative gases that are important for industrial etch processes have a series of instabilities that occur at process relevant conditions. These have been studied since the 1990s, but are becoming a much more important today as plasma reactors are being pushed to produce ever finer features, and tight control of the etch process is becoming crucial. The experiments are being done in a plasma etch tool that closely simulates a working industrial device. ICP coils in different configurations are driven by a pulsed RF generators operating at 2-5 MHz. A computer controlled automated probe drive can access a volume above the substrate. The probe can be a Langmuir probe, a ``Bdot'' probe, or an emissive probe the latter used for more accurate determination of plasma potential. A microwave interferometer is available to measure line-averaged electron density. The negative ion instability is triggered depending upon the gas mix (Ar,SF6) , pressure and RF power. The instability can be ``burned through'' by rapidly pulsing the RF power. In this study we present measurements of plasma current and density distribution over the wafer before, after and during the rapid onset of the instability. Work suported by NSF-GOALI Award and done at the BAPSF.

  12. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  13. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  14. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  15. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  16. Urine and plasma propranolol.

    Science.gov (United States)

    Andreasen, F; Jakobsen, P; Kornerup, H J; Pedersen, E B; Pedersen, O L

    1983-01-01

    Eight hypertensive patients who had been followed in an outpatient clinic during long-term therapy with propranolol (40 to 160 mg twice daily) were studied during a 24-hr stay in the ward. The usual oral dose was given and the total and free plasma concentrations were determined during the 24 hr and the urinary excretion of unchanged drug was measured. Average free plasma concentration of propranolol (y free) was calculated from: y free = Excreted propranolol (ng/24 hr)/Creatinine clearance (ml/24 hr). There was a significant relationship between log y free and average free plasma concentration (means free) determined from the directly measured plasma concentration curve: log y free = 0.0743 means free - 0.0466 (r = 0.98, P less than 0.001). In another group of propranolol-treated hypertensive patients there was a significant positive relationship between orosomucoid concentration and reciprocal of the free propranolol fraction in plasma. From this relationship the average total drug concentration (y total) was calculated from y free; there was a significant correlation with directly measured total plasma level: log y total = 0.0038 . means total + 1.0895 (r = 0.91, P less than 0.001). It is suggested that individually determined values of y free below 30 ng/ml and y total below 400 ng/ml (the concentration range studied) can be used to calculate the average mean 24-hr free and total plasma concentrations.

  17. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  18. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  19. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  20. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  1. Stirring Unmagnetized Plasma

    CERN Document Server

    Collins, C; Wallace, J; Jara-Almonte, J; Reese, I; Zweibel, E; Forest, C B; 10.1103/PhysRevLett.108.115001

    2012-01-01

    A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multi-cusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge exchange collisions.

  2. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  3. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  4. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    OpenAIRE

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  5. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  6. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  7. Understanding Micro Plasmas

    CERN Document Server

    Winter, J; Böke, M; Ellerweg, D; Hemke, T; Knake, N; Mussenbrock, T; Niermann, B; Schröder, D; der Gathen, V Schulz-von; von Keudell, A

    2011-01-01

    Micro plasmas are operated around atmospheric pressure exhibiting pronounced non-equilibrium characteristics, i.e. they possess energetic electrons while ions and neutrals remain cold. They have gained significant interest due to their enormous application potential e.g. in the biomedical, surface modification and light source areas, just to name a few. Many different configurations are in use. Their understanding and quantification is mandatory for further progress in applications. We report on recent progress in the diagnostics and simulation of the entire micro plasma system from gas introduction, via the plasma discharge up to the samples at the example of a plasma jet operated in He/O2 in an ambient air environment.

  8. Plasma Cell Cheilitis

    Directory of Open Access Journals (Sweden)

    Thami Gurvinder P

    1999-01-01

    Full Text Available A case of plasma cell cheilitis with good response to glucocorticoids, is described for its rarity and probable aetiological correlation with habit of use of nasal snuff is discussed.

  9. The plasma scalpel.

    Science.gov (United States)

    Link, W J; Incropera, F P; Glover, J L

    1976-01-01

    The plasma scalpel simultaneously cuts tissue and cauterizes blood vessels measuring 3 mm in diameter with a small, hot (3000 C) gas jet. In animal studies, the amount of hemorrhage has been shown to be less with the plasma scalpel than with steel or electrosurgical scalpels, and incisions have healed without complications. Amount of damaged tissue is limited. Human trials are under way, and the device shows promise as a clinical tool.

  10. Plasma Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the course of plasma spray, the plasma jet is comprehensively functioned by such effects as thermal pinch, magnetic pinch and mechanical compression and the flow is jetting at a high speed, the energy is concentrated and its center temperature is so high as to reach upwards of 15 000 ℃ which is capable of melting various kinds of materials inclusive of ceramic, it has a broad applied prospects in the fields of automobile, electronics, telecommunications, medical treatment, air navigation & space navigati...

  11. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  12. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  13. Residual stress in plasma sprayed ceramic turbine tip and gas path seal specimens

    Science.gov (United States)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The residual stresses in a ceramic sheet material used for turbine blade tip gas path seals, were estimated. These stresses result from the plasma spraying process which leaves the surface of the sheet in tension. To determine the properties of plasma sprayed ZrO2-Y2O3 sheet material, its load deflection characteristics were measured. Estimates of the mechanical properties for sheet materials were found to differ from those reported for plasma sprayed bulk materials.

  14. Plasma Injection Schemes for Laser-Plasma Accelerators

    OpenAIRE

    J. Faure

    2017-01-01

    Plasma injection schemes are crucial for producing high-quality electron beams in laser-plasma accelerators. This article introduces the general concepts of plasma injection. First, a Hamiltonian model for particle trapping and acceleration in plasma waves is introduced; ionization injection and colliding-pulse injection are described in the framework of this Hamiltonian model. We then proceed to consider injection in plasma density gradients.

  15. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  16. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  17. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  18. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...

  19. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  20. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  1. Plasma coal reprocessing

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  2. Alcohol and plasma triglycerides.

    Science.gov (United States)

    Klop, Boudewijn; do Rego, Ana Torres; Cabezas, Manuel Castro

    2013-08-01

    This study reviews recent developments concerning the effects of alcohol on plasma triglycerides. The focus will be on population, intervention and metabolic studies with respect to alcohol and plasma triglycerides. Alcohol consumption and fat ingestion are closely associated and stimulated by each other via hypothalamic signals and by an elevated cephalic response. A J-shaped relationship between alcohol intake and plasma triglycerides has been described. A normal body weight, polyphenols in red wine and specific polymorphisms of the apolipoprotein A-V and apolipoprotein C-III genes may protect against alcohol-associated hypertriglyceridemia. In contrast, obesity exaggerates alcohol-associated hypertriglyceridemia and therefore the risk of pancreatitis. High alcohol intake remains harmful since it is associated with elevated plasma triglycerides, but also with cardiovascular disease, alcoholic fatty liver disease and the development of pancreatitis. Alcohol-induced hypertriglyceridemia is due to increased very-low-density lipoprotein secretion, impaired lipolysis and increased free fatty acid fluxes from adipose tissue to the liver. However, light to moderate alcohol consumption may be associated with decreased plasma triglycerides, probably determined by the type of alcoholic beverage consumed, genetic polymorphisms and lifestyle factors. Nevertheless, patients should be advised to reduce or stop alcohol consumption in case of hypertriglyceridemia.

  3. New Large Diameter RF Complex Plasma Device

    Science.gov (United States)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  4. Plasma diagnostics in plasma processing for nanotechnology and nanolevel chemistry

    Directory of Open Access Journals (Sweden)

    Hiroshi Akatsuka

    2004-01-01

    Full Text Available The author reviews the role of various plasma diagnostics in plasma processing for nanotechnology, and points out some essential methods of spectroscopic methods to diagnose plasmas for nanoprocessing. Two experimental examples are discussed between the characteristics of nanomaterials and plasma parameters. One is measurement of rotation temperature in processing of carbon nanotube. The other is that of vibrational temperature in surface nitriding of titanium by nitrogen plasma processing. We summarize what to measure and how to measure them from the technical viewpoint of plasma diagnostics.

  5. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  6. Plasma rico en plaquetas Platelet -rich plasma

    Directory of Open Access Journals (Sweden)

    J. González Lagunas

    2006-04-01

    Full Text Available El Plasma Rico en Plaquetas es una suspensión concentrada de la sangre centrifugada que contiene elevadas concentraciones de trombocitos. Durante los últimos años, este producto ha aparecido de forma repetida en publicaciones científicas y en medios de comunicación generales como un producto que por sus características induce la curación y regeneración de los tejidos. La premisa de su uso es que las elevadas concentraciones de plaquetas en el PRP, liberan cantidades significativas de factores de crecimiento. En este artículo se van a recoger las evidencias científicas que se han presentado en la literatura médica con respecto al PRP y a la curación ósea, así como las diferentes aplicaciones clínicas que se han sugerido.Platelet-rich plasma is a by-product of centrifuged whole blood that contains high levels of thrombocytes. In the last decade, scientific and media interest has been generated by this product that apparently has the capacity of inducing and promoting tissue healing and regeneration. The premise of its use is that the large number of platelets in PRP release significant amounts of growth factors. In this paper, a critical review of the medical literature regarding PRP and bone healing will be presented. Also, the suggested clinical applications of the product will be addressed.

  7. Plasma Colloquium Travel Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  8. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  9. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  10. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  11. Large area plasma source

    Science.gov (United States)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  12. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  13. The 2012 Plasma Roadmap

    Science.gov (United States)

    Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel

    2012-06-01

    Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.

  14. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  15. Kinetics of complex plasmas

    CERN Document Server

    Sodha, Mahendra Singh

    2014-01-01

    The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.

  16. Plasma Cell Disorders.

    Science.gov (United States)

    Castillo, Jorge J

    2016-12-01

    Plasma cell disorders are benign, premalignant, and malignant conditions characterized by the presence of a monoclonal paraprotein detected in serum or urine. These conditions are biologically, pathologically, and clinically heterogeneous. There have been major advances in the understanding of the biology of these diseases, which are promoting the development of therapies with novel mechanisms of action. Novel agents such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have gained approval in the United States and Europe for the treatment of plasma cell disorders. Such therapies are translating into higher rates of response and survival and better toxicity profiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Plasma YKL-40

    DEFF Research Database (Denmark)

    Jensen, Peter; Wiell, C; Milting, K

    2013-01-01

    Background  Plasma YKL-40 is an inflammatory biomarker. No useful biomarker exists in patients with psoriasis or psoriatic arthritis. Objective  To measure YKL-40 and high-sensitivity C-reactive protein (hs-CRP) in patients with psoriasis or psoriatic arthritis before and during treatment. Methods......-CRP at inclusion and during 48 weeks of adalimumab treatment. The patients with psoriatic arthritis were divided into responders and non-responders. Results  In patients with psoriasis, the baseline median PASI score was 10.8 and baseline YKL-40 was 45 μg/L. Seventeen per cent had elevated plasma YKL-40 compared...

  18. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Iwamae, Atsushi (eds.) [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2008-07-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment. (orig.)

  19. Plasma Assisted Combustion

    Science.gov (United States)

    2007-02-28

    pressure hydrogen is given in Fig. 2.14. The regions typical for “common” glow discharges (negative glow, Faraday dark space, and positive column) are...Hollenstein Ch. Plasma Phys. Control. Fusion, 42 (2000) 93. [107] M.A. Heald and C.B. Wahrton, Plasma diagnostics with microwaves, John Wi- ley &Sons, New York...Nitrous Oxide J. Chem. Soc. Faraday Trans. 69 352 [194] Albers E A, Hoyermann K, Schacke H, Schmatjko K J, Wagner H Gg, Wolfrum J 1975 Absolute Rate

  20. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  1. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  2. Some plasma aspects and plasma diagnostics of ion sources.

    Science.gov (United States)

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  3. The field of plasmas. L'univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. (Direction des Recherches, Etudes et Techniques d' Armement (DRET), (France))

    1999-01-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo's fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  4. The field of plasmas; L`univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. [Direction des Recherches, Etudes et Techniques d`Armement (DRET), (France)

    1999-12-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo`s fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  5. Microwave Probing of Air-Plasma and Plasma Metamaterials

    Science.gov (United States)

    Schneider, Katherine; Rock, Ben; Helle, Mike

    2016-10-01

    Plasma metamaterials are of recent interest due to their unique ability to be engineered with specific electromagnetic responses. One potential metamaterial architecture is based on a `forest' of plasma rods that can be produced using intense laser plasma filaments. In our work, we use a continuous microwave source at 26.5 GHz to measure a single air plasma filament characteristics generated from a 5 mJ laser pulse within a cylindrical hole in a Ka-band waveguide. Preliminary results show the air plasma produces a strong shock and acts to reflect microwave radiation. A computational comparison using 3D EM modeling is performed to examine the reflection and transmission properties of a single plasma rod, and further, to investigate an array of plasma rods as a potential plasma based metamaterial.

  6. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  7. Plasma detachment with molecular processes in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N.; Ezumi, N.; Nishijima, D.; Takamura, S. [Dept. of Energy Engineering and Science, Graduate School of Engineering, Nagoya Univ., Nagoya, Aichi (Japan); Krasheninnikov, S.I.; Pigarov, A.Yu. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2000-01-01

    Molecular processes in detached recombining plasmas are briefly reviewed. Several reactions with vibrationally excited hydrogen molecule related to recombination processes are described. Experimental evidence of molecular activated recombination observed in a linear divertor plasma simulator is also shown. (author)

  8. Plasma flow in peripheral region of detached plasma in linear plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.

  9. Laser-plasma-based linear collider using hollow plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B., E-mail: CBSchroeder@lbl.gov; Benedetti, C.; Esarey, E.; Leemans, W.P.

    2016-09-01

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  10. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  11. Merging of plasma currents

    NARCIS (Netherlands)

    Bergmans, J.; Schep, T. J.

    2001-01-01

    The merging process of current filaments in a strongly magnetized plasma is described. The evolution is calculated using a contour dynamics method, which accurately tracks piecewise constant distributions of the conserved quantities. In the interaction of two screened currents, both develop dipolar

  12. Microscopic plasma Hamiltonian

    Science.gov (United States)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  13. Flare Plasma Iron Abundance

    Science.gov (United States)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  14. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  15. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  16. Plasma Theory and Simulation.

    Science.gov (United States)

    1982-12-31

    expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as

  17. Plasma Theory and Simulation.

    Science.gov (United States)

    1980-09-30

    William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow

  18. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  19. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  20. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    Science.gov (United States)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  1. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...

  2. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  3. Energy spectra of plasma sheet ions and electrons from about 50 eV/e to about 1 MeV during plamsa temperature transitions

    Science.gov (United States)

    Christon, S. P.; Mitchell, D. G.; Williams, D. J.; Frank, L. A.; Huang, C. Y.; Eastman, T. E.

    1988-01-01

    ISEE-1 charged-particle measurements obtained during eight plasma temperature transitions (PTTs) in 1978-1979 are compiled in tables and graphs and analyzed in detail, comparing the ion and electron differential energy spectra with the predictions of theoretical models. PTTs are defined as approximately 1-h periods of low bulk plasma velocity and steadily increasing or decreasing thermal energy. A Maxwellian distribution is found to be inadequate in describing the PTT energy spectra, but velocity-exponential and kappa distributions are both successful, the latter especially at higher energies. The power-law index kappa varies from PTT to PTT, but the high-energy spectral index and overall shape of the distribution remain constant during a PTT; both spatial and temporal effects are observed.

  4. Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets

    Institute of Scientific and Technical Information of China (English)

    Kondapalli Siva Prasad; Chalamalasetti Srinivasa Rao; Damera Nageswara Rao

    2012-01-01

    The paper focuses on developing mathematical models to predict grain size and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy.Four factors,five levels,central composite rotatable design matrix is used to optimize the number of experiments.The mathematical models have been developed by response surface method.The adequacy of the models is checked by analysis of variance technique.By using the developed mathematical models,grain size and ultimate tensile strength of the joints can be predicted with 99%0 confidence level.Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld ioints.

  5. Theory of gas discharge plasma

    CERN Document Server

    Smirnov, Boris M

    2015-01-01

    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  6. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  7. Modelling of Complex Plasmas

    Science.gov (United States)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is

  8. Plasma in the near Venus tail: Venus Express observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.

    2013-12-01

    Although Venus has no global intrinsic magnetic fields, it possesses a long magnetotail of induced origin. The topology of the tail is determined by the interplanetary magnetic field orientation. We present recent plasma and magnetic field observations in the near Venus tail (X≥-3RV) made by the Venus Express spacecraft. We show that ion acceleration in the Venus plasma sheet is produced by the slingshot effect of the draping magnetic field lines, though some features as differential streaming of different ion species point to the existence of other forces. We explain a bell shape of ion spectrograms while the spacecraft crosses the current sheet. The absence of a balance between the lobe magnetic pressure and thermal pressure of plasma in the plasma sheet indicates a dynamic rather than a static equilibrium in the Venus magnetotail. A strong asymmetry of the plasma sheet is controlled by the direction of the motional electric field in the upstream solar wind. In the hemisphere pointed in the direction of the motional electric field, the j×B force accelerates plasma tailward supplying the plasma sheet, while in the opposite hemisphere, the flow pattern occurs less regularly with smaller speeds but higher number densities.

  9. Process characteristics of fibre-laser-assisted plasma arc welding

    OpenAIRE

    Mahrle, A; SCHNICK, M; Rose, S; Demuth, C; Beyer, E.; Füssel, U

    2011-01-01

    Abstract Experimental and theoretical investigations on fibre-laser assisted plasma arc welding (LAPW) have been performed. Welding experiments were carried out on aluminium and steel sheets. In case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In case of aluminium weldin...

  10. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  11. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  12. Numerical simulation of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  13. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  14. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  15. Modulational interactions in quantum plasmas

    CERN Document Server

    Sayed, Fatema; Tyshetskiy, Yuriy; Ishihara, Osamu

    2013-01-01

    A formalism for treating modulational interactions of electrostatic fields in collisionless quantum plasmas is developed, based on the kinetic Wigner-Poisson model of quantum plasma. This formalism can be used in a range of problems of nonlinear interaction between electrostatic fields in a quantum plasma, such as development of turbulence, self-organization, as well as transition from the weak turbulent state to strong turbulence. In particular, using this formalism, we obtain the kinetic quantum Zakharov equations, that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.

  16. Closed inductively coupled plasma cell

    Science.gov (United States)

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  17. Experimental plasma research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  18. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  19. Plasma chemistry for inorganic materials

    Science.gov (United States)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  20. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  1. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  2. Adiabatic plasma buncher

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Katsouleas, T.C. [Los Angeles Univ. of Southern California, Los Angeles, CA (United States); Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ben Zvi, I. [Brookhaven National Laboratory, Upton, NY (United States)

    2000-07-01

    In this paper is presented a new scheme of injection into a plasma accelerator, aimed at producing a high quality beam while relaxing the demands on the bunch length of the injected beam. The beam dynamics in the injector, consisting of a high voltage pulsed photo-diode, is analyzed and optimized to produce a {lambda}{sub p}/20 long electron bunch at 2.5 MeV. This bunch is injected into a plasma wave in which it compresses down to {lambda}{sub p}/100 while simultaneously accelerating up to 250 MeV. This simultaneous bunching and acceleration of a high quality beam requires a proper combination of injection energy and injection phase. Preliminary results from simulations are shown to assess the potentials of the scheme.

  3. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  4. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  5. Plasma Trytophan and Sleep

    Science.gov (United States)

    Chen, C. N.; Kalucy, R. S.; Hartmann, M. K.; Lacey, J. H.; Crisp, A. H.; Bailey, J. E.; Eccleston, E. G.; Coppen, A.

    1974-01-01

    Free, bound, and total plasma tryptophan (F.P.T., B.P.T., and T.P.T.) levels have been measured throughout the night in six young female volunteers. All-night polygraphic sleep recordings were also made. No direct temporal relationship was found between plasma tryptophan levels and specific sleep stages. The mean F.P.T. levels, however, were found to have a positive correlation with rapid-eye-movement (R.E.M.) sleep and a negative correlation with non-R.E.M. sleep. An inverse relationship existed between the F.P.T. and B.P.T. levels. There appeared to be a diurnal variation in F.P.T. levels, with high readings in the first half of the night. PMID:4373116

  6. Microinstabilities in stellarator plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Nasim, M.H.; Persson, M. [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, Goeteborg (Sweden)

    2003-07-01

    Linear stability and localization of ion temperature gradient modes in fully 3-dimensional stellarator plasmas is calculated in the electrostatic limit. A ballooning mode formalism with WKB assumption is applied to reduce the equations into ordinary differential equation along the field lines which are solved numerically for different plasma parameters. The results are correlated with the geometrical effects such as magnetic curvature, local magnetic shear and its integrated value along the field line and the effects of trapped electrons are also investigated. The eigenfunctions of the most unstable modes are found to be localized but the nodes in the amplitude of the eigenfunctions may be large depending upon the location on the magnetic surface. The results are compared and contrasted with calculations in tokamak geometry and the implications on future stellarator design is also discussed. (orig.)

  7. Plasma dust crystallization

    Science.gov (United States)

    Goree, John; Thomas, H.; Morfill, G.

    1994-01-01

    In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure.

  8. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  9. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  10. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  11. Dusty plasma (Yukawa) rings

    CERN Document Server

    Sheridan, T E

    2010-01-01

    One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H\\"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.

  12. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  13. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  14. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  15. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  16. Plasma is a strategic resource.

    Science.gov (United States)

    Strengers, Paul F W; Klein, Harvey G

    2016-12-01

    Plasma-derived medicinal products (PDMPs) such as immunoglobulins and clotting factors are listed by the World Health Organization as essential medicines. These and other PDMPs are crucial for the prophylaxis and treatment of patients with bleeding disorders, immune deficiencies, autoimmune and inflammatory diseases, and a variety of congenital deficiency disorders. While changes in clinical practice in developed countries have reduced the need for red blood cell transfusions thereby significantly reducing the collection volumes of whole blood and recovered plasma suitable for fractionation, the need for PDMPs worldwide continues to increase. The majority of plasma supplies for the manufacture of PDMPs is met by the US commercial plasma industry. However, geographic imbalance in the collection of plasma raises concerns that local disruptions of plasma supplies could result in regional and global shortages of essential PDMPs. Plasma, which fits the definition of a strategic resource, that is, "an economically important raw material which is subject to a higher risk of supply interruption," should be considered a strategic resource comparable to energy and drinking water. Plasma collections should be increased outside the United States, including in low- and middle-income countries. The need for capacity building in these countries is an essential part to strengthen quality plasma collection. This will require changes in national and regional policies. We advocate the need for the restoration of an equitable balance of the international plasma supply to reduce the risk of supply shortages worldwide. Strategic independence of plasma should be endorsed on a global level. © 2016 AABB.

  17. Electrosurgical Plasma Discharges

    Science.gov (United States)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  18. Plasma Modeling of Electrosurgery

    Science.gov (United States)

    Jensen, Scott; Friedrichs, Daniel; Gilbert, James; Park, Wounjhang; Maksimovic, Dragan

    2014-10-01

    Electrosurgery is the use of high frequency alternating current (AC) to illicit a clinical response in tissue, such as cutting or cauterization. Power electronics converters have been demonstrated to generate the necessary output voltage and current for electrosurgery. The design goal of the converter is to regulate output power while supplying high frequency AC. The design is complicated by fast current and voltage transients that occur when the current travels through air in the form of an arc. To assist in designing a converter that maintains the desired output power during these transients, we have used the COMSOL Plasma Module to determine the output voltage and current characteristics during an arc. This plasma model, used in conjunction with linear circuit elements, allows the full electrosurgical system to be validated. Two models have been tested with the COMSOL Plasma Module. One is a four-species, four-reaction model based on the local field approximation technique. The second simulates the underlying air chemistry using 30 species, 151 chemical reactions, and a coupled electron energy distribution function. Experimental output voltage and current samples have been collected and compared to both models.

  19. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  20. Modeling electronegative plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  1. PLASMA CELL LEUKEMIA

    Science.gov (United States)

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  2. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  3. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  4. Plasma Torch for Plasma Ignition and Combustion of Coal

    Science.gov (United States)

    Ustimenko, Alexandr; Messerle, Vladimir

    2015-09-01

    Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.

  5. Analysis of propagation prop erties of electromagnetic waves through large planar plasma sheets%电磁波在大面积等离子体片中传播特性的分析∗

    Institute of Scientific and Technical Information of China (English)

    夏俊明; 徐跃民; 孙越强; 霍文青; 孙海龙; 白伟华; 柳聪亮; 孟祥广

    2015-01-01

    Large planar plasma sheets, generated by a linear hollow cathode in pulse discharge mode under magnetic con-finement, can be used in the field of plasma antenna, plasma stealth, and simulation of a plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth’s atmosphere. Firstly, to investigate the propagation prop-erties of electromagnetic waves at different frequencies and polarization, the transverse field transfer matrix method is introduced. Secondly, the measured electron density temporal and spatial distribution and the transverse field transfer matrix method are utilized to calculate the reflection, transmission and absorption of electromagnetic waves by large planar plasma sheets with different currents. Finally, 1 GHz (less than the critical cut-off frequency) electromagnetic waves and 4 GHz (greater than the critical frequency) electromagnetic waves are chosen to investigate the evolution of propagation properties during the pulsed discharge period. Results show that both the reflection and absorption of the electromagnetic waves are greater for their polarization direction parallel to that of magnetic field, and their frequencies lower than the critical cut-off frequency, and as the discharge currents rise, the reflection increases while the absorption decreases. However both the reflection and absorption of the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction and their frequency greater than the critical cut-off frequency become less, and as the discharge currents rise, both the reflection and absorption will increase. For the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction, there is an upper hybrid resonance absorption band near the upper hybrid resonance frequencies, in which the absorption is significant but the absorption peak value is not affected by the discharge current. The propagation characteristics of the

  6. Optimization of audio - ultrasonic plasma system parameters

    Science.gov (United States)

    Haleem, N. A.; Abdelrahman, M. M.; Ragheb, M. S.

    2016-10-01

    The present plasma is a special glow plasma type generated by an audio ultrasonic discharge voltage. A definite discharge frequency using a gas at a narrow band pressure creates and stabilizes this plasma type. The plasma cell is a self-extracted ion beam; it is featured with its high output intensity and its small size. The influence of the plasma column length on the output beam due to the variation of both the audio discharge frequency and the power applied to the plasma electrodes is investigated. In consequence, the aim of the present work is to put in evidence the parameters that influence the self-extracted collected ion beam and to optimize the conditions that enhance the collected ion beam. The experimental parameters studied are the nitrogen gas, the applied frequency from 10 to 100 kHz, the plasma length that varies from 8 to 14 cm, at a gas pressure of ≈ 0.25 Torr and finally the discharge power from 50 to 500 Watt. A sheet of polyethylene of 5 micrometer covers the collector electrode in order to confirm how much ions from the beam can go through the polymer and reach the collector. To diagnose the occurring events of the beam on the collector, the polymer used is analyzed by means of the FTIR and the XRF techniques. Optimization of the plasma cell parameters succeeded to enhance and to identify the parameters that influence the output ion beam and proved that its particles attaining the collector are multi-energetic.

  7. Online plasma diagnostics of a laser-produced plasma

    Science.gov (United States)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  8. Clinical use of Plasma and Plasma Fractions in Bleeding Disorders

    Institute of Scientific and Technical Information of China (English)

    王兆钺

    2008-01-01

    Internal and/or external bleeding is a common and sometimes very severe clinical manifestations of disorders of hemostasis. It may follow minor trauma or may arise apparently spontaneously. Disorders of hemostasis are generally divided into those caused by abnormalities of platelets, abnormalities of blood vessels, abnormalities of plasma coagulation factors, and hyperfibrinolysis, or com-binations of these. The use of plasma and plasma fractions dependents on the causing diseases and their severity. Several plasma products and plasma fractions are availa-ble in China and other plasma components and deriva-tives are commercially obtained. There have been the guidelines for their clinical use, and the revised ones will soon be published by Chinese Medical Association.

  9. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  10. Compressional plasma flows near magnetic null points

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S.V.; Ol' shanetskii, M.A.

    1985-06-01

    Self-similar solutions of the MHD equations describing time-varying plasma flows near magnetic null points are analyzed. Various classes of particular solutions are constructed. Special attention is paid to compressional flows which involve the development of sharp maxima. The stability of the self-similar solutions is studied. Solutions describing the motion of a vortex in MHD are constructed. The possibility of producing current sheets in nonuniform magnetic configurations is demonstrated.

  11. The diverse applications of plasma

    Science.gov (United States)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  12. The diverse applications of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in [Acropolis Institute of Pharmaceutical Education & Research, Indore MP India (India); Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com [Mata Gujri College of Professional Studies, Indore MP India (India); Jain, Sudhir Kumar, E-mail: sudhirkjain1@rediffmail.com [School of Studies in Microbiology, Vikram University, Ujjain MP India (India)

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  13. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2013-10-01

    sensitive surfaces. In this paper, the consumed power for plasma generation (plasma power) has been estimated from voltage-current waveform analysis in... consumed power for plasma generation is calculated by integrating the product of the discharge voltage and current over one cycle; according to the...Faculty Symposium: Course Design for the Millennial Student, Texas A&M University – Corpus Christi, 2011. (Showcased by the Center for Faculty

  14. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    research associates. The PI and the research team have published over 10 journal articles and over 50 conference proceedings and over 50 symposiums...reflections. Optical interference filters with center wavelength at 5322 or 632.82 nm are used in front of the ICCD to suppress the plasma self- luminescence ...wavelength at 532 ± 2 nm was used in front of the ICCD to suppress the plasma jet self- luminescence . The shadow of the laser induced plasma falls onto

  15. A contoured gap coaxial plasma gun with injected plasma armature

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  16. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  17. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  18. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  19. Flexible plasma linear antenna

    Science.gov (United States)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  20. The control of TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Hofmann, F.; Moret, J.M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)] [and others

    1996-07-01

    The general control of tokamak plasmas has evolved considerably over the last few years with an increase in the plasma pulse length, an increase in the control of additional heating and fuelling and an increase in the degree to which the shape of the plasma can be varied. The TCV tokamak is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents which impose the desired shape. This paper deals with all aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via control algorithms and overall supervision. (author) 44 figs., tabs., 25 refs.

  1. MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan

    2016-10-01

    Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.

  2. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  3. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    Science.gov (United States)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  4. Plasma cell granuloma of lip

    Directory of Open Access Journals (Sweden)

    B Sabarinath

    2012-01-01

    Full Text Available Plasma cells are medium-sized round-to-oval cells with eccentrically placed nuclei, usually found in the red pulp of the spleen, tonsils, medulla of the lymph nodes, nasal mucosa, upper airway, lamina propria of the gastrointestinal tract, and sites of inflammation. Plasma cell granuloma is a rare reactive tumor-like proliferation composed chiefly of plasmacytic infiltrate. Here, we present a case of plasma cell granuloma of lip in a female patient.

  5. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  6. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  7. Autoresonant Excitation of Antiproton Plasmas

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  8. Plasma placental lactogen in pregnancy.

    Science.gov (United States)

    Raghuramulu, N

    1978-01-01

    Plasma placental lactogen (HPL) and urinary oestrogen levels were investigated in pregnant women belonging to low and high socio-economic groups. Plasma HPL levels increased progressively with increasing gestation in women of both the socio-economic groups. The mean values in the two groups were not statistically different at any period of gestation. No correlation was observed between the birth weight of the infant and the maternal plasma placental lactogen levels at term. A positive correlation was observed between urinary oestrogen excretion and plasma HPL concentration.

  9. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  10. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  11. Plasma cell granuloma of gingiva

    Directory of Open Access Journals (Sweden)

    Balaji Manohar

    2011-01-01

    Full Text Available Plasma cell granuloma is a rare benign lesion characterized by the infiltration of plasma cells; primarily occurring in the lungs. It is also seen to occur in the brain, kidney stomach, heart, and so on. In the intraoral region it is seen to involve the tongue, oral mucosa, and gingiva. This case presents a 42-year-old female, with an enlargement in the maxillary anterior region, treated by excisional biopsy. Histological evaluation revealed plasma cell infiltrates in the connective tissue. The immunohistochemistry revealed kappa and lambda light chains with a polyclonal staining pattern, which confirmed the diagnosis of plasma cell granuloma.

  12. Plasma on a foundry cupola

    Science.gov (United States)

    Pineau, Didier

    An experiment of a plasma torch on a production foundry cupola is reported. The test runs were conducted on a hot blast cupola, the blast temperature in the absence of plasma being 400 C. With the torch, the temperature of the blast was increased to 1000 C. The experiment was conducted for the manufacture of car engines with a 2.5 MW transportable plasma system. The cupola was boosted with a 4 MW torch and results included an increase in production of 45 percent, a decrease in coke rate and no more new iron in the loads. The plasma torch and hot air cupola furnace are described.

  13. Criticality in Plasma Membranes

    Science.gov (United States)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  14. Measuring Kinetic Plasma Eigenmodes

    Science.gov (United States)

    Mattingly, Sean; Berumen, Jorge; Chu, Feng; Hood, Ryan; Skiff, Fred

    2015-11-01

    We present a method for measuring kinetic plasma eigenmodes of a cylindrical axially magnetized (1 kG) laboratory plasma (n ~109cm-3 , Te ~ 5eV , Ti ~ 0 . 06eV) by measuring velocity space correlation functions. This method simultaneously observes two separate laser induced fluorescence schemes. Each scheme has its own indepedently tunable laser and its own set of collection optics. With this setup, we are able to measure the time - averaged correlation function as a function of position on the cylindrical axis parallel to the magnetic field (z) and velocity on the deconvolved ion velocity distribution function (v) : C (z , v ,z' ,v' , τ) = t. The freedom of two lasers allows us to measure a two dimensional velocity correlation matrix. This matrix is investigated with the Vlasov equation in the collisionless and weakly collisional regime. The former case, which is continuous, is diagonalized with an integral transform defined by P. J. Morrison while the latter case, which is discrete, is diagonalized through the use of Hermite polynomials.

  15. Plasma Redshift Cosmology

    Science.gov (United States)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  16. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  17. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  18. Variation of plasma parameters in a modified mode of plasma production in a double plasma device

    Indian Academy of Sciences (India)

    A Phukan; M K Mishra; B K Saikia; M Chakraborty

    2010-03-01

    A modified mode of plasma production in a double plasma device is presented and plasma parameters are controlled in this configuration. Here plasma is produced by applying a discharge voltage between the hot filaments in the source (cathode) and the target magnetic cage (anode) of the device. In this configuration, the hot electron emitting filaments are present only in the source and the magnetic cage of this is kept at a negative bias such that due to the repulsion of the cage bias, the primary electrons can go to the grounded target and produce plasma there. The plasma parameters can be controlled by varying the voltages applied to the source magnetic cage and the separation grid of the device.

  19. Plasma volume nomograms for use in therapeutic plasma exchange.

    Science.gov (United States)

    Buffaloe, G W; Heineken, F G

    1983-01-01

    Nomograms have been developed for the convenient estimation of the plasma volumes of patients undergoing therapeutic plasma exchange (TPE), based on equations employing height, body weight, and hematocrit. These nomograms are offered as an aid to prescribing continuous-flow TPE procedure exchange volumes.

  20. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  1. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  2. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  3. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  4. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  5. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  6. Plasma probe characteristics in low density hydrogen pulsed plasmas

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V; Bijkerk, F

    2014-01-01

    Probe theories are only applicable in the regime where the probe's perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas. Indeed, in the case studied here, probe measurements would lead to a large overestimate of the plasma density. In contrast, the ...

  7. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Felten, A.; Nittler, L.; Pireaux, J.-J. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, Namur (Belgium); McManus, D. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Rice, C.; Casiraghi, C. [School of Chemistry and Photon Science Institute, University of Manchester, Manchester (United Kingdom)

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  8. On the excess energy of nonequilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Power Engineering and Plasma Technologies (Russian Federation)

    2012-01-15

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  9. Plasma treatment of crane rails

    Directory of Open Access Journals (Sweden)

    Владислав Олександрович Мазур

    2016-07-01

    Full Text Available Crane operation results in wear and tear of rails and crane wheels. Renovation and efficiency of these details is therefore relevant. Modern technologies of wheels and rails restoration use surfacing or high-frequency currents treatment. Surface treatment with highly concentrated streams of energy- with a laser beam, plasma jet- is a promising direction.. It is proposed to increase the efficiency of crane rails by means of surface plasma treatment. The modes of treatment have been chosen.. Modelling of plasma jet thermal impact on a solid body of complex shape has been made. Plasma hardening regimes that meet the requirements of production have been defined. Structural transformation of the material in the crane rails on plasma treatment has been investigated. It has been concluded that for carbon and low alloy crane steels the plasma exposure zone is characterized by a high degree of hardened structure dispersion and higher hardness as compared to the hardness after high-frequency quenching. As this takes place phase transformations are both shift (in the upper zone of plasma influence and fluctuation (in the lower zone of the plasma. With high-speed plasma heating granular or lamellar pearlite mainly transforms into austenite. The level of service characteristics of hardened steel, which is achieved in this case is determined by the kinetics and completeness of pearlite → austenite transformation. For carbon and low alloy rail steels plasma hardening can replace bulk hardening, hardening by high-frequency currents, or surfacing. The modes for plasma treatment which make it possible to obtain a surface layer with a certain service characteristics have been defined

  10. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  11. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  12. COSMIC PLASMA DYNAMO

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new dynamo model based on the polarization of plasma is presented in this paper.From the Maxwell equations in a moving medium, a magnetization vector can be causedwith Rongon current. The steady solar magnetic field is solved from the equations. Onthe assumption that the meridianal flow is ignored, the distribution of magnetic field isput out. In the model, there is no additional parameter considered. The intensity ofmagnetic field inside the sun ranges from 1-6T. The surface magnetic field around thepole is in the order of 1×10-3T, at low latitude the calculated surface magnetic fieldhas the order of 1×10-2 T. The maximum magnetic field is around 30° in latitude.

  13. Optimization of plasma amplifiers

    Science.gov (United States)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  14. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  15. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  16. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  17. Waves and instabilities in plasmas

    CERN Document Server

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  18. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  19. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  20. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  1. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  2. Plasma-heating by induction

    Science.gov (United States)

    Harrington, K.; Thorpe, M. L.

    1969-01-01

    Induction-heated plasma torch operates with an input of 1 Mw of direct current of which 71 percent is transferred to the plasma and the remainder is consumed by electrical losses in the system. Continuous operation of the torch should be possible for as long as 5,000 hours.

  3. Spectroscopy of Low Temperature Plasma

    CERN Document Server

    Ochkin, Vladimir N

    2009-01-01

    Providing an up-to-date overview on spectroscopical diagnostics of low temperature plasma Spectroscopy of Low Temperature Plasma covers the latest developments and techniques. Written by a distinguished scientist and experienced book author this text is applicable to many fields in materials and surface science as well as nanotechnology and contains numerous appendices with indispensable reference data.

  4. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  5. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  6. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    Science.gov (United States)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  7. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Experimental optimisation of the gas-assisted laser cutting of thick steel sheets

    Science.gov (United States)

    Malikov, A. G.; Orishich, Anatolii M.; Shulyat'ev, Viktor B.

    2009-06-01

    We report on the experimental optimisation of the oxygen-assisted CO2 laser cutting of low-carbon sheet steel 5 to 25 mm in thickness. It is shown that the cut edge roughness is minimal when the energy input per unit volume of the material removed and the incident beam power per unit sheet thickness remain constant at ~20 J mm-3 and ~200 W mm-1, respectively, over the entire range of sheet thicknesses examined. The corresponding Péclet number is Pe = 0.5. These results can be used to determine the optimal beam power and cutting speed for a particular sheet thickness. At sufficiently large thicknesses, the conditions that ensure the minimum roughness can be written in the form of relations between nondimensional parameters.

  8. Etching with atomic precision by using low electron temperature plasma

    Science.gov (United States)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Monroy, G. A.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2017-07-01

    There has been a steady increase in sub-nm precision requirement for many critical plasma etching processes in the semiconductor industry. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in conventional radio-frequency (RF) plasma processing systems, even during layer-by-layer or ‘atomic layer’ etch. To meet these increasingly stringent requirements, it is necessary to have an accurate control over ion energy and ion/radical composition during plasma processing. In this work, a new plasma etch system designed to facilitate atomic precision plasma processing is presented. An electron sheet beam parallel to the substrate surface is used to produce a plasma in this system. This plasma has a significantly lower electron temperature T e ~ 0.3 eV and ion energy E i  plasmas. Electron beam plasmas also have a higher ion-to-radical ratio compared to RF plasmas, so this plasma etch system employs an independent radical source for accurate control over relative ion and radical concentrations. A low frequency RF bias capability that allows control of ion energy in the 2-50 eV range is another important component of this plasma etch system. The results of etching of a variety of materials and structures in this low-electron temperature plasma system are presented in this study: (1) layer-by-layer etching of p-Si at E i ~ 25-50 eV using electrical and gas cycling is demonstrated; (2) continuous etching of epi-grown µ-Si in Cl2-based plasmas is performed, showing that surface damage can be minimized by keeping E i  etching at low E i.

  9. Intermittent transport in edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.; Juul Rasmussen, J. [Association EURATOM-Riso National Laboratory, Optics and Plasma Research, Roskilde (Denmark)

    2004-07-01

    The properties of low-frequency convective fluctuations and transport are investigated for the boundary region of magnetized plasmas. We employ a two-dimensional fluid model for the evolution of the global plasma quantities in a geometry and with parameters relevant to the scrape-off layer of confined toroidal plasmas. Strongly intermittent plasma transport is regulated by self-consistently generated sheared poloidal flows and is mediated by burst ejection of particles and heat from the bulk plasma in the form of blobs. Coarse grained probe signals reveal a highly skewed and flat distribution on short time scales, but tends towards a normal distribution at large time scales. Conditionally averaged signals are in perfect agreement with experimental measurements. (authors)

  10. Helicon plasma thruster discharge model

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  11. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  12. Plasma treatment advantages for textiles

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    The textile industry is searching for innovative production techniques to improve the product quality, as well as society requires new finishing techniques working in environmental respect. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Such systems are now existing and the use of plasma physics in industrial problems is rapidly increasing. On textile surfaces, three main effects can be obtained depending on the treatment conditions: the cleaning effect, the increase of microroughness (anti-pilling finishing of wool) and the production of radicals to obtain hydrophilic surfaces. Plasma polymerisation, that is the deposition of solid polymeric materials with desired properties on textile substrates, is under development. The advantage of such plasma treatments is that the modification turns out to ...

  13. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  14. Residual stress in plasma-sprayed ceramic turbine tip and gas-path seal specimens

    Science.gov (United States)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The residual stresses in a ceramic sheet material used for turbine blade tip gas path seals, were estimated. These stresses result from the plasma spraying process which leaves the surface of the sheet in tension. To determine the properties of plasma sprayed ZrO2-Y2O3 sheet material, its load deflection characteristics were measured. Estimates of the mechanical properties for sheet materials were found to differ from those reported for plasma sprayed bulk materials. Previously announced in STAR as N83-28380

  15. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  16. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.

    2017-08-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

  17. Meter scale plasma source for plasma wakefield experiments

    Science.gov (United States)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-01

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 1017 cm-3 has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  18. Meter scale plasma source for plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J. [Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  19. Revisiting the plasma sheath - dust in plasma sheath

    CERN Document Server

    Das, G C; Bora, M P

    2015-01-01

    In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of lunar plasma sheath, though the results obtained in this work could be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisso...

  20. Arc Plasma Gun With Coaxial Powder Feed

    Science.gov (United States)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  1. [Plasma technology for biomedical material applications].

    Science.gov (United States)

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  2. EIDOSCOPE: particle acceleration at plasma boundaries

    Science.gov (United States)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  3. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    Science.gov (United States)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  4. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  5. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; /Southern California U.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O' Connell, C.; Siemann, R.H.; Walz, D.; /SLAC; Clayton,; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  6. Range of fractionated plasma products to optimize plasma resources

    Institute of Scientific and Technical Information of China (English)

    Thierry Burnouf

    2010-01-01

    @@ HUMAN PLASMA is a source material that is crucial for the production of unique therapeutic fractionated products. Indeed, plasma contains hundreds of proteins ensuring many physiological functions. The most abun-dant proteins, albumin and immunoglobulin G (IgG) ,are present at about 35 and 10 g/L,respectively,repre-senting about 80% of all plasma proteins. However,other important therapeutic proteins include the coagu-lation factors (factor Ⅷ (F Ⅷ) ; FIX ; Von Willebrand Factor (VWF), fibrinogen) various protease inhibitors (alpha 1-antitrypsin ; antithrombin; C1-esterase) and anticoagulants (protein C) which exhibit potent physi-ological activity.

  7. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  8. Negative Plasma Densities Raise Questions

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-26

    Nearly all the matter encountered on Earth is either a solid, liquid, or gas. Yet plasma-the fourth state of matter-comprises more than 99 percent of the visible universe. Understanding the physical characteristics of plasmas is important to many areas of scientific research, such as the development of fusion as a clean, renewable energy source. Lawrence Livermore scientists study the physics of plasmas in their pursuit to create fusion energy, because plasmas are an integral part of that process. When deuterium and tritium are heated to the extreme temperatures needed to achieve and sustain a fusion reaction (about 100 million degrees), the electrons in these light atoms become separated from the nuclei. This process of separation is called ionization, and the resulting collection of negatively charged free electrons and positively charged nuclei is known as a plasma. Although plasmas and gases have many similar properties, plasmas differ from gases in that they are good conductors of electricity and can generate magnetic fields. For the past decade, x-ray laser interferometry has been used in the laboratory for measuring a plasma's index of refraction to determine plasma density. (The index of refraction for a given material is defined as the wavelength of light in a vacuum divided by the wavelength of light traveling through the material.) Until now, plasma physicists expected to find an index of refraction less than one. Researchers from Livermore and Colorado State University recently conducted experiments on aluminum plasmas at the Laboratory's COMET laser facility and observed results in which the index of refraction was greater than one. This surprising result implied a negative electron density. Livermore physicist Joseph Nilsen and his colleagues from Livermore and the University of Notre Dame have performed sophisticated calculations to explain this phenomenon. Previously, researchers believed that only free electrons contributed to the index

  9. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    Minami, S; Baum, P. J.; Kamin, G.; R. S. White; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  10. Waves in plasmas (part 1 - wave-plasma interaction general background); Ondes dans les plasmas (Partie 1 - interaction onde / plasma: bases physiques)

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, R

    2004-07-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  11. Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids

    CERN Document Server

    Ostrikov, K; Meyyappan, M

    2013-01-01

    The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter...

  12. The Martian Plasma Environment: Model Calculations and Observations

    Science.gov (United States)

    Lichtenegger, H. I. M.; Dubinin, E.; Schwingenschuh, K.; Riedler, W.

    Based on a modified version of the model of an induced martian magnetosphere developed by Luhmann (1990), the dynamics and spatial distribution of different planetary ion species is examined. Three main regions are identified: A cloud of ions travelling along cycloidal trajectories, a plasma mantle and a plasma sheet. The latter predominantly consists of oxygen ions of ionospheric origin with minor portions of light particles. Comparison of model results with Phobos-2 observations shows reasonable agreement.

  13. Plasma medicine: an introductory review

    Science.gov (United States)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  14. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  15. Thomson scattering from laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  16. Couette Flow of Unmagnetized Plasma

    CERN Document Server

    Collins, C; Cooper, C M; Flanagan, K; Khalzov, I V; Nornberg, M D; Seidlitz, B; Wallace, J; Forest, C B

    2014-01-01

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_s\\sim 0.7$) are driven by edge ${\\bf J \\times B}$ torques in helium, neon, argon, and xenon plasmas. We present measurements of a self-consistent, rotation-induced, species-dependent rad...

  17. Special issue on transient plasmas

    Science.gov (United States)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-11-01

    This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.

  18. Modeling the Europa plasma torus

    Science.gov (United States)

    Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.

    1993-12-01

    The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.

  19. Cold plasma decontamination of foods.

    Science.gov (United States)

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.

  20. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  1. Plasma spheroidization of nickel powders in a plasma reactor

    Indian Academy of Sciences (India)

    G Shanmugavelayutham; V Selvarajan

    2004-10-01

    Thermal spray coatings of surfaces with metal, alloy and ceramic materials for protection against corrosion, erosion and wear is an intense field of research. The technique involves injection of the powder into a plasma flame, melting, acceleration of the powder particles, impact and bonding with the substrate. Feedstock powders of metals, alloys and ceramics for thermal spray applications have to meet several requirements. Particle shape, size and its distribution, powder flow characteristics and density are the important factors to be considered in order to ensure high spray efficiency and better coating properties. For smooth and uniform feeding of powders into plasma jet, the powder particles have to be spherical in shape. High temperatures and steep temperatures present in thermal plasma is exploited to spheroidize particles in the present investigation. Nickel powder particles in the size range from 40–100 m were spheroidized using plasma processing. SEM and optical micrographs showed spherical shape of processed particles.

  2. Collapse of nonlinear electron plasma waves in a plasma layer

    Science.gov (United States)

    Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.

    2016-10-01

    The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.

  3. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  4. The Absence of Plasma in"Spark Plasma Sintering"

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  5. The Absence of Plasma in"Spark Plasma Sintering"

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  6. Radiometric force in dusty plasmas

    CERN Document Server

    Ignatov, A M

    2000-01-01

    A radiofrequency glow discharge plasma, which is polluted with a certain number of dusty grains, is studied. In addition to various dusty plasma phenomena, several specific colloidal effects should be considered. We focus on radiometric forces, which are caused by inhomogeneous temperature distribution. Aside from thermophoresis, the role of temperature distribution in dusty plasmas is an open question. It is shown that inhomogeneous heating of the grain by ion flows results in a new photophoresis like force, which is specific for dusty discharges. This radiometric force can be observable under conditions of recent microgravity experiments.

  7. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  8. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  9. Radiation reaction in fusion plasmas.

    Science.gov (United States)

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  10. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  11. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Christensen, N J

    1991-01-01

    -induced hypoglycaemia with total autonomic blockade (alpha-adrenoceptor blockade combined with beta-adrenoceptor blockade and atropine); and insulin-induced hypoglycaemia without any autonomic blockade. In the experiments without autonomic blockade the peripheral venous hematocrit increased, plasma volume decreased......, intravascular albumin content decreased and the transcapillary escape rate of albumin increased. In both experiments with autonomic blockade the increase in venous haematocrit was abolished, yet plasma volume decreased, intravascular albumin content decreased and the transcapillary escape rate of albumin...... increased in these experiments. Thus, the changes in plasma volume and composition in response to hypoglycaemia are due to the combined actions of adrenaline and of insulin....

  12. Microwave Plasma Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Joseph; Lik; Hang; Chau

    2007-01-01

    1 Results and Discussion Nanopowders were synthesized by using microwave plasma synthesis technique.The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz.The reaction temperature is directly related to the power of the microwave generator that can be controlled by adjusting the actual operating current.Firstly,ionization and dissociation of precursor species will be occurred in the plasma,nucleus can then be formed by the collision of these molecules,followed by the growth...

  13. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  14. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2014-10-01

    Gadri, J. R. Roth , T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, Z. Y. Chen, and U. P. S...Edinburgh, Scotland : 39th IEEE International Conference on Plasma Science (ICOPS), 2012). 20. Magesh Thiyagarajan, Xavier Gonzales$, Heather...Anderson# and Megan Norfolk. Non-thermal Plasma Induction of Pre-Programmed Cell Death in Monocytic Leukemia Cells. (Edinburgh, Scotland : 39th IEEE

  15. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  16. Space Plasma Effects

    Directory of Open Access Journals (Sweden)

    Miguel Herraiz

    2009-06-01

    Full Text Available

    This paper summarizes the activities carried out by WP 3.1 of WG 3 of COST 296 action. The Work Package

    deals mostly with medium and large ionospheric structures that impacts on GNSS signals. In the research done

    by this European team, particular attention was given to the ionosphere/space weather monitoring, to the analysis

    of the variability of the ionospheric plasma during quiet and disturbed conditions and to the characterization

    of the behavior of low latitudes ionospheric depletions or bubbles and the spatial and temporal gradients of total electron contet.


  17. Undamped electrostatic plasma waves

    CERN Document Server

    Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M

    2015-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...

  18. The Mars Plasma Environment

    CERN Document Server

    Russell, C. T

    2007-01-01

    Mars sits very exposed to the solar wind and, because it is a small planet, has but a weak hold on its atmosphere. The solar wind therefore plays an important role in the evolution of the martian atmosphere. Over the last four decades a series of European missions, first from the Soviet Union and more recently from the European Space Agency, together with a single investigation from the U.S., the Mars Global Surveyor spacecraft, have added immeasurably to our understanding of the interplay between the solar wind and Mars atmosphere. Most recently the measurements of the plasma and fast neutral populations, conducted on the Mars Express spacecraft by the ASPERA-3 instrument have been acquired and analyzed. Their presentation to the public, most notably at the workshop "The Solar Wind Interaction and Atmosphere Evolution of Mars" held in Kiruna in early 2006, was the inspiration for this series of articles. However participation in the Kiruna conference was not a selection criterion for this volume. The papers ...

  19. Shrinking equatorial plasma bubbles

    Science.gov (United States)

    Narayanan, V. L.; Gurubaran, S.; Shiokawa, K.; Emperumal, K.

    2016-07-01

    The formation of equatorial plasma bubbles (EPBs) associated with spread F irregularities are fairly common phenomenon in the postsunset equatorial ionosphere. These bubbles grow as a result of eastward polarization electric field resulting in upward E × B drift over the dip equator. As they grow they are also mapped to low latitudes along magnetic field lines. The EPBs are often observed as airglow depletions in the images of OI 630 nm emission. On occasions the growth of the features over the dip equator is observed as poleward extensions of the depletions in all-sky images obtained from low latitudes. Herein, we present interesting observations of decrease in the latitudinal extent of the EPBs corresponding to a reduction in their apex altitudes over the dip equator. Such observations indicate that these bubbles not only grow but also shrink on occasions. These are the first observations of shrinking EPBs. The observations discussed in this work are based on all-sky airglow imaging observations of OI 630.0 nm emission made from Panhala (11.1°N dip latitude). In addition, ionosonde observations made from dip equatorial site Tirunelveli (1.1°N dip latitude) are used to understand the phenomenon better. The analysis indicates that the speed of shrinking occurring in the topside is different from the bottomside vertical drifts. When the EPBs shrink, they might decay before sunrise hours.

  20. Plasma Post Oxidation of Plasma Nitrocarburized SKD 61 Steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of SKD 61 steel. Plasma nitrocarburizing was conducted for 12 h at 540℃ in the nitrogen,hydrogen and methane atmosphere to produce the ε-Fe,2-3(N,C) phase. The compound layer produced by plasma nitrocarburising was predominantly composed of ε-phase, with a small proportion of γ′-Fe4(N,C) phase.The thickness of the compound layer and the diffusion layer are about 10 μm and about 200μm, respectively.Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of 500℃ for 1 h. The very thin magnetite (Fe3O4) layer of 1-2μm in thickness on top of the compound layer was obtained. Anodic polarization test revealed that plasma nitrocarburizing process contributed a significant improvement of corrosion resistance of SKD 61 steel. However, the corrosion characteristics of the nitrocarburized compound layer was deteriorated by oxidation treatment.

  1. Study of Coupling between a Plasma Source and Plasma Fluctuations

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2014-10-01

    An experimental study on the coupling between a plasma source and plasma fluctuations in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional is presented. Typical plasma conditions are n ~1010 cm-3 Te ~ 3 eV and B ~ 1 kG. Amplitude Modulation (AM) of the inductively-coupled RF plasma source is produced near the fundamental-mode ion-acoustic wave frequency (~1 kHz) to study the effects of the source-wave interaction and plasma production. Density fluctuation measurements are implemented using Laser-Induced Fluorescence techniques and Langmuir probes. We apply coherent detection with respect to the wave frequency to obtain the perturbed ion distribution function associated with the waves. Measurements of fluctuating I-V traces from a Langmuir probe array and antenna current load are also used to show the effects of the interaction. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  2. Hollow plasma channel for positron plasma wakefield acceleration

    Directory of Open Access Journals (Sweden)

    W. D. Kimura

    2011-04-01

    Full Text Available Plasma wakefield acceleration (PWFA has demonstrated the ability to produce very high gradients to accelerate electrons and positrons. In PWFA, a drive bunch of charged particles passes through a uniform plasma, thereby generating a wakefield that accelerates a witness bunch traveling behind the drive bunch. This process works well for electrons, but much less so for positrons due to the positive charge attracting rather than repealing the plasma electrons, which leads to reduced acceleration gradient, halo formation, and emittance growth. This problem can be alleviated by having the positron beam travel through a hollow plasma channel. Presented are modeling results for producing 10–100 cm long hollow plasma channels suitable for positron PWFA. These channels are created utilizing laser-induced gas breakdown in hydrogen gas. The results show that hollow channels with plasma densities of order 10^{16}  cm^{-3} and inner channel radii of order 20  μm are possible using currently available terawatt-level lasers. At these densities and radii, preliminary positron PWFA modeling indicates that longitudinal electric fields on axis can exceed 3  GV/m.

  3. Thermal plasmas: fundamental aspects; Plasmas thermiques: aspects fondamentaux

    Energy Technology Data Exchange (ETDEWEB)

    Fauchais, P. [Limoges Univ. Faculte des Sciences, Lab. Science des Procedes Ceramiques et Traitements de Surface (SPCTS-UMR-6638-CNRS), 87 (France)

    2005-10-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10{sup 4} and 10{sup 6} Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10{sup 20} and 10{sup 24} m{sup -3} and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  4. The marker of cobalamin deficiency, plasma methylmalonic acid, correlates to plasma creatinine

    DEFF Research Database (Denmark)

    Hvas, A M; Juul, S; Gerdes, Lars Ulrik

    2000-01-01

    OBJECTIVE: To examine the relationship between the two diagnostic tests, plasma methylmalonic acid and plasma cobalamins, and their association with plasma creatinine, age and sex. DESIGN: Cross-sectional study of simultaneous laboratory measurements. SETTING: County of Aarhus, Denmark. SUBJECTS......: Records on 1689 patients who had their first plasma methylmalonic acid measurement during 1995 and 1996, and who had a simultaneous measurement of plasma cobalamins. Plasma creatinine values measured within a week of measurements of plasma methylmalonic acid and plasma cobalamins were available for 1255...... of the patients. MAIN OUTCOME MEASURES: Predictors of variation in plasma methylmalonic acid; plasma cobalamins, plasma creatinine, age and sex. RESULTS: Plasma methylmalonic acid was positively correlated with plasma creatinine, even for plasma creatinine within the normal range. These associations remained...

  5. Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    CERN Document Server

    Osman, K T; Hnat, B; Chapman, S C

    2012-01-01

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3--4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  6. Kinetic signatures and intermittent turbulence in the solar wind plasma.

    Science.gov (United States)

    Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C

    2012-06-29

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  7. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  8. Miniature Flat Plasma Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This phase I SBIR project will develop a micromachined charged particle energy collimator plate to be used as a principle component in a micromachined plasma...

  9. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  10. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  11. Plasma fluoride and enamel fluorosis.

    Science.gov (United States)

    Angmar-Månsson, B; Ericsson, Y; Ekberg, O

    1976-11-24

    It is postulated that tissue fluid F concentrations are the primary determinants of flouride effects on bones and developing teeth and that these concentrations are dependent on, or mirrored by, blood plasma F. It has earlier been shown that the plasma F levels are dependent on the dietary F supply as well as on skeletal F concentration. Fasting and post-ingestion or postinjection plasma F levels have been determined in rats on F doses that cause different degrees of enamel fluorosis. The results indicate that temporary peak values rather than elevated fasting values are responsible for the occurrence of enamel fluorosis and that the peak values must approach about 10 muM in order to block enamel formation by the ameloblasts. The diagnostic and prognostic importance of plasma F determinations is discussed.

  12. Hall Effect in a Plasma.

    Science.gov (United States)

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  13. The plasma-solid transition

    CERN Document Server

    Celebonovic, V

    2001-01-01

    Using a criterion proposed by Salpeter and standard solid-state physics,we have determined conditions for the occurence of the plasma-solid transition.Possible astrophysical applications are discussed.

  14. Landau damping in space plasmas

    Science.gov (United States)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.

  15. The Wisconsin Plasma Astrophysics Laboratory

    CERN Document Server

    Forest, C B; Brookhart, M; Cooper, C M; Clark, M; Desangles, V; Egedal, J; Endrizzi, D; Miesch, M; Khalzov, I V; Li, H; Milhone, J; Nornberg, M; Olson, J; Peterson, E; Roesler, F; Schekochihin, A; Schmitz, O; Siller, R; Spitkovsky, A; Stemo, A; Wallace, J; Weisberg, D; Zweibel, E

    2015-01-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries which mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of $ T_{e}\\approx5-20$ eV and $n_{e}\\approx10^{11}-5\\times10^{12}$ cm$^{-3}$ provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  16. EDITORIAL: Stochasticity in fusion plasmas Stochasticity in fusion plasmas

    Science.gov (United States)

    Unterberg, Bernhard

    2010-03-01

    Structure formation and transport in stochastic plasmas is a topic of growing importance in many fields of plasma physics from astrophysics to fusion research. In particular, the possibility to control transport in the boundary of confined fusion plasmas by resonant magnetic perturbations has been investigated extensively during recent years. A major research achievement was finding that the intense transient particle and heat fluxes associated with edge localized modes (here type-I ELMs) in magnetically confined fusion plasmas can be mitigated or even suppressed by resonant magnetic perturbation fields. This observation opened up a possible scheme to avoid too large erosion and material damage by such transients in future fusion devices such as ITER. However, it is widely recognized that a more basic understanding is needed to extrapolate the results obtained in present experiments to future fusion devices. The 4th workshop on Stochasticity in Fusion Plasmas was held in Jülich, Germany, from 2 to 4 March 2009. This series of workshops aims at gathering fusion experts from various plasma configurations such as tokamaks, stellarators and reversed field pinches to exchange knowledge on structure formation and transport in stochastic fusion plasmas. The workshops have attracted colleagues from both experiment and theory and stimulated fruitful discussions about the basics of stochastic fusion plasmas. Important papers from the first three workshops in 2003, 2005 and 2007 have been published in previous special issues of Nuclear Fusion (stacks.iop.org/NF/44/i=6, stacks.iop.org/NF/46/i=4 and stacks.iop.org/NF/48/i=2). This special issue comprises contributions presented at the 4th SFP workshop, dealing with the main subjects such as formation of stochastic magnetic layers, energy and particle transport in stochastic magnetic fields, plasma response to external, non-axis-symmetric perturbations and last but not least application of resonant magnetic perturbations for

  17. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  18. Simplifying plasma chemistry via ILDM

    Science.gov (United States)

    Rehman, T.; Kemaneci, E.; Graef, W.; van Dijk, J.

    2016-02-01

    A plasma fluid model containing a large number of chemical species and reactions yields a high computational load. One of the methods to overcome this difficulty is to apply Chemical Reduction Techniques as used in combustion engineering. The chemical reduction technique that we study here is ILDM (Intrinsic Lower Dimensional Manifold). The ILDM method is used to simplify an argon plasma model and then a comparison is made with a CRM (Collisional Radiative Model).

  19. Enhanced incoherent scatter plasma lines

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

  20. Viscosities of the quasigluon plasma

    CERN Document Server

    Bluhm, M; Redlich, K

    2010-01-01

    We investigate bulk and shear viscosities of the gluon plasma within relaxation time approximation to an effective Boltzmann-Vlasov type kinetic theory by viewing the plasma as describable in terms of quasigluon excitations with temperature dependent self-energies. The found temperature dependence of the transport coefficients agrees fairly well with available lattice QCD results. The impact of some details in the quasigluon dispersion relation on the specific shear viscosity is discussed.

  1. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, H.; Pécseli, H.L.; Trulsen, J.

    1987-01-01

    Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....

  2. Breathing Modes in Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    王晓钢; 王爽; 潘秋惠; 刘悦; 贺明峰

    2003-01-01

    Acoustic breathing modes of dusty plasmas have been investigated in a cylindricalsystem with an axial symmetry. The linear wave solution and a "dispersion" relation were derived.It was found that in an infinite area, the mode is reduced to a "classical" dust acoustic wave inthe region away from the center. If the dusty plasma is confined in a finite region, however, thebreathing (or heart-beating) behavior would be found as observed in many experiments.

  3. Cholecystokinin Elevates Mouse Plasma Lipids

    Science.gov (United States)

    Zhou, Lichun; Yang, Hong; Lin, Xinghua; Okoro, Emmanuel U.; Guo, Zhongmao

    2012-01-01

    Cholecystokinin (CCK) is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR−/−) mice. The same dose of [Thr28, Nle31]-CCK induced 6 and 13% increases in plasma triglyceride and cholesterol, respectively, in wild-type mice. However, these particular before and after CCK treatment values did not achieve statistical significance. Oral feeding of olive oil further elevated plasma triglycerides, but did not alter plasma cholesterol levels in CCK-treated mice. The increased plasma cholesterol in CCK-treated mice was distributed in very-low, low and high density lipoproteins (VLDL, LDL and HDL) with less of an increase in HDL. Correspondingly, the plasma apolipoprotein (apo) B48, B100, apoE and apoAI levels were significantly higher in the CCK-treated mice than in untreated control mice. Ligation of the bile duct, blocking CCK receptors with proglumide or inhibition of Niemann-Pick C1 Like 1 transporter with ezetimibe reduced the hypercholesterolemic effect of [Thr28, Nle31]-CCK in LDLR−/− mice. These findings suggest that CCK-increased plasma cholesterol and triglycerides as a result of the reabsorption of biliary lipids from the intestine. PMID:23300532

  4. Cholecystokinin elevates mouse plasma lipids.

    Directory of Open Access Journals (Sweden)

    Lichun Zhou

    Full Text Available Cholecystokinin (CCK is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR(-/- mice. The same dose of [Thr28, Nle31]-CCK induced 6 and 13% increases in plasma triglyceride and cholesterol, respectively, in wild-type mice. However, these particular before and after CCK treatment values did not achieve statistical significance. Oral feeding of olive oil further elevated plasma triglycerides, but did not alter plasma cholesterol levels in CCK-treated mice. The increased plasma cholesterol in CCK-treated mice was distributed in very-low, low and high density lipoproteins (VLDL, LDL and HDL with less of an increase in HDL. Correspondingly, the plasma apolipoprotein (apo B48, B100, apoE and apoAI levels were significantly higher in the CCK-treated mice than in untreated control mice. Ligation of the bile duct, blocking CCK receptors with proglumide or inhibition of Niemann-Pick C1 Like 1 transporter with ezetimibe reduced the hypercholesterolemic effect of [Thr28, Nle31]-CCK in LDLR(-/- mice. These findings suggest that CCK-increased plasma cholesterol and triglycerides as a result of the reabsorption of biliary lipids from the intestine.

  5. Analysis of plasma nitrided steels

    Science.gov (United States)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  6. EDITORIAL: Focus on Plasma Medicine

    Science.gov (United States)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  7. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  8. Plasma chemistry in wire chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  9. Antimicrobial outcomes in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  10. Zakharov equations in quantum dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, F. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Vladimirov, S. V. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya st. 13 Bld. 2, Moscow 125412 (Russian Federation); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Institute of Science and Technology Research, Chubu University, Kasugai 487-8501 (Japan)

    2015-08-15

    By generalizing the formalism of modulational interactions in quantum dusty plasmas, we derive the kinetic quantum Zakharov equations in dusty plasmas that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.

  11. 21 CFR 866.2160 - Coagulase plasma.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...

  12. 21 CFR 640.30 - Plasma.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one unit...

  13. 21 CFR 640.60 - Source Plasma.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  14. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  15. Sausage oscillations of coronal plasma slabs

    Science.gov (United States)

    Hornsey, C.; Nakariakov, V. M.; Fludra, A.

    2014-07-01

    Context. Sausage oscillations are observed in plasma non-uniformities of the solar corona as axisymmetric perturbations of the non-uniformity. Often, these non-uniformities can be modelled as field-aligned slabs of the density enhancement. Aims: We perform parametric studies of sausage oscillations of plasma slabs, aiming to determine the dependence of the oscillation period on its parameters, and the onset of leaky and trapped regimes of the oscillations. Methods: Slabs with smooth transverse profiles of the density of a zero-beta plasma are perturbed by an impulsive localised perturbation of the sausage symmetry. In particular, the slab can contain an infinitely thin current sheet in its centre. The initial value problem is then solved numerically. The numerical results are subject to spectral analysis. The results are compared with analytical solutions for a slab with a step-function profile and also with sausage oscillations of a plasma cylinder. Results: We established that sausage oscillations in slabs generally have the same properties as in plasma cylinders. In the trapped regime, the sausage oscillation period increases with the increase in the longitudinal wavelength. In the leaky regime, the dependence of the period on the wavelength experiences saturation, and the period becomes independent of the wavelength in the long-wavelength limit. In the leaky regime the period is always longer than in the trapped regime. The sausage oscillation period in a slab is always longer than in a cylinder with the same transverse profile. In slabs with steeper transverse profiles, sausage oscillations have longer periods. The leaky regime occurs at shorter wavelengths in slabs with smoother profiles.

  16. Characterisation of plasma in a rail gun

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  17. An Experimental Study of Microwave Transmission through a Decaying Plasma

    Science.gov (United States)

    1989-05-01

    pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma’s decay phase (the plasma after- glow). We have...lorf) An rf pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma’s decay phase (the plasma...CHAPTER 1. THEORETICAL DISCUSSION ................................ 9 1.1 PLASMA IONIZATION ................................. 9 1.2 PLASMA REIONIZATION

  18. Characteristics of plasma properties in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Tony; Nees, Frank; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Herdrich, Georg [Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Baden-Wuerttemberg (Germany)

    2013-03-15

    Pulsed plasma thrusters are electric space propulsion devices which create a highly transient plasma bulk in a short-time arc discharge that is expelled to create thrust. The transitional character and the dependency on the discharge properties are yet to be elucidated. In this study, optical emission spectroscopy and Mach-Zehnder interferometry are applied to investigate the plasma properties in variation of time, space, and discharge energy. Electron temperature, electron density, and Knudsen numbers are derived for the plasma bulk and discussed. Temperatures were found to be in the order of 1.7 to 3.1 eV, whereas electron densities showed maximum values of more than 10{sup 17} cm{sup -3}. Both values showed strong dependency on the discharge voltage and were typically higher closer to the electrodes. Capacitance and time showed less influence. Knudsen numbers were derived to be in the order of 10{sup -3}-10{sup -2}, thus, indicating a continuum flow behavior in the main plasma bulk.

  19. Plasma production for electron acceleration by resonant plasma wave

    Science.gov (United States)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  20. Plasma Guns for the Plasma Liner Experiment (PLX)

    Science.gov (United States)

    Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.

    2009-11-01

    A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.