WorldWideScience

Sample records for plasma processing space

  1. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  2. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  3. Solar terrestrial coupling through space plasma processes

    Energy Technology Data Exchange (ETDEWEB)

    Birn, J. [and others

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  4. Magnetic Reconnection: A Fundamental Process in Space Plasmas

    Science.gov (United States)

    Hesse, Michael

    2010-01-01

    For many years, collisionless magnetic reconnect ion has been recognized as a fundamental process, which facilitates plasma transport and energy release in systems ranging from the astrophysical plasmas to magnetospheres and even laboratory plasma. Beginning with work addressing solar dynamics, it has been understood that reconnection is essential to explain solar eruptions, the interaction of the solar wind with the magnetosphere, and the dynamics of the magnetosphere. Accordingly, the process of magnetic reconnection has been and remains a prime target for space-based and laboratory studies, as well as for theoretical research. Much progress has been made throughout the years, beginning with indirect verifications by studies of processes enabled by reconnection, such as Coronal Mass Ejections, Flux Transfer Events, and Plasmoids. Theoretical advances have accompanied these observations, moving knowledge beyond the Sweet-Parker theory to the recognition that other, collisionless, effects are available and likely to support much faster reconnect ion rates. At the present time we are therefore near a break-through in our understanding of how collisionless reconnect ion works. Theory and modeling have advanced to the point that two competing theories are considered leading candidates for explaining the microphysics of this process. Both theories predict very small spatial and temporal scales. which are. to date, inaccessible to space-based or laboratory measurements. The need to understand magnetic reconnect ion has led NASA to begin the implementation of a tailored mission, Magnetospheric MultiScale (MMS), a four spacecraft cluster equipped to resolve all relevant spatial and temporal scales. In this presentation, we present an overview of current knowledge as well as an outlook towards measurements provided by MMS.

  5. Educational software for the visualization of space plasma processes

    Science.gov (United States)

    Russell, C. T.; Le, G.; Luhmann, J. G.; Littlefield, B.

    1995-01-01

    The UCLA Space Physics Group has developed educational software composed of a series of modules to assist students with understanding basic concepts of space plasmas and charged particle motion. Present modules cover planetary magnetospheres, charged particle motion, cold plasma waves, collisionless shock waves, and solar wind. The software is designed around the principle that students can learn more by doing rather than by reading or listening. The programs provide a laboratory-like environment in which the student can control, observe, and measure complex behavior. The interactive graphics environment allows the student to visualize the results of his or her experimentation and to try different parameters as desired. The current version of the software runs on UNIX-based operating systems in an X-Windows environment. It has been used in a classroom setting at both UCLA and the University of California at San Diego.

  6. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  7. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    Science.gov (United States)

    Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.

    2016-11-01

    Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.

  8. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    Science.gov (United States)

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  9. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions

    Science.gov (United States)

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  10. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  11. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  12. Space and Astrophysical Plasmas : Space and astrophysical plasmas: Pervasive problems

    Indian Academy of Sciences (India)

    Chanchal Uberoi

    2000-11-01

    The observations and measurements given by Earth orbiting satellites, deep space probes, sub-orbital systems and orbiting astronomical observatories point out that there are important physical processes which are responsible for a wide variety of phenomena in solar-terrestrial, solar-system and astrophysical plasmas. In this review these topics are exemplified both from an observational and a theoretical point of view.

  13. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    Science.gov (United States)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  14. Space Plasma Effects

    Directory of Open Access Journals (Sweden)

    Miguel Herraiz

    2009-06-01

    Full Text Available

    This paper summarizes the activities carried out by WP 3.1 of WG 3 of COST 296 action. The Work Package

    deals mostly with medium and large ionospheric structures that impacts on GNSS signals. In the research done

    by this European team, particular attention was given to the ionosphere/space weather monitoring, to the analysis

    of the variability of the ionospheric plasma during quiet and disturbed conditions and to the characterization

    of the behavior of low latitudes ionospheric depletions or bubbles and the spatial and temporal gradients of total electron contet.


  15. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  16. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  17. Nonextensivity, Complexity and Nonlinearity in Space Plasmas

    Science.gov (United States)

    Pavlos, G. P.

    2017-01-01

    Experimental time series, extracted from many and different space plasma systems corresponding to, solar wind, magnetospheric and other space plasma systems reveal common dynamical, geometrical, or statistical characteristics. Such characteristics are the low dimensionality, the typical intermittent turbulence multifractality, the temporal or spatial multiscale correlations and power laws scale invariance, non Gaoussianity and others. This universal aspect of experimental time series profiles was understood in the past as the chaos or SOC universality. However, after two or three decades of theoretical development in understanding of the nonlinearity and complexity, we can give a more compact theoretical description of the underline universal physical processes that produce the experimental time series complexity. Finally, in this study, we present and explain the modern complex set of theoretical concepts from the point of view of physics as the unification theory of nonlinear theory of non-equilibrium plasma systems as well as the presupposed theoretical framework of time series analysis of space plasma charachteristics.

  18. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  19. Active probing of space plasmas

    Science.gov (United States)

    Chan, Chang; Silevitch, Michael B.; Villalon, Elena

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  20. Micro- to macroscale perspectives on space plasmas

    Science.gov (United States)

    Eastman, Timothy E.

    1993-01-01

    The Earth's magnetosphere is the most accessible of natural collisionless plasma environments; an astrophysical plasma 'laboratory'. Magnetospheric physics has been in an exploration phase since its origin 35 years ago but new coordinated, multipoint observations, theory, modeling, and simulations are moving this highly interdisciplinary field of plasma science into a new phase of synthesis and understanding. Plasma systems are ones in which binary collisions are relatively negligible and collective behavior beyond the microscale emerges. Most readily accessible natural plasma systems are collisional and nearest-neighbor classical interactions compete with longer-range plasma effects. Except for stars, most space plasmas are collisionless, however, and the effects of electrodynamic coupling dominate. Basic physical processes in such collisionless plasmas occur at micro-, meso-, and macroscales that are not merely reducible to each other in certain crucial ways as illustrated for the global coupling of the Earth's magnetosphere and for the nonlinear dynamics of charged particle motion in the magnetotail. Such global coupling and coherence makes the geospace environment, the domain of solar-terrestrial science, the most highly coupled of all physical geospheres.

  1. Space plasma physics results from Spacelab 1

    Science.gov (United States)

    Burch, J. L.

    1985-01-01

    The Spacelab 1 payload carried several instrument systems which together investigated a number of space plasma phenomena. These experiments used the Space Shuttle Orbiter as a platform for making controlled particle-beam, plasma and neutral gas inputs to the ionosphere and magnetosphere and for observing the outputs produced. Spacelab 1 space-plasma investigations included the Space Experiments with Particle Accelerators (SEPAC), Phenomena Induced by Charged Particle Beams (PICPAB), Atmospheric Emissions Photometric Imaging (AEPI) and the Low Energy Electron Spectrometer and Magnetometer. Among the major phenomena investigated both singly and jointly by these experiments are vehicle charging and neutralization, beam-plasma and wave-particle interactions, anomalous ionization phenomena produced by neutral-gas and plasma injections and several phenomena induced by modulated particle beam injections.

  2. Landau damping in space plasmas

    Science.gov (United States)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.

  3. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  4. INTRODUCTION: Nonequilibrium Processes in Plasmas

    Science.gov (United States)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    cosmos collapsed from the uniform plasma stage into stars and empty space, practically nothing is in real equilibrium only in local equilibrium. How wrong we were. As our focus turned to anti particles, positrons and positronium, we realized that even in those early stages there was major non-equilibrium between matter and anti matter originating from the earliest stages of the Big Bang. Thus it is safe to correct the famous quote by the renowned natural philosopher Sheldon Cooper into: 'If you know the laws of [non-equilibrium] physics anything is possible'. From the matter-anti-matter ratio in the universe to life itself. But do we really need such farfetched introductory remarks to justify our scientific choices? It suffices to focus on non-equilibrium plasmas and transport of pollutants in the air and see how many new methods for diagnostics and treatment have been proposed for medicine in the past 10 years. So in addition to the past major achievements such as plasma etching for integrated circuit production, the field is full of possibilities and truly, almost anything is possible. We hope that some of the papers presented here summarize well how we learn about the laws of non-equilibrium physics in the given context of plasmas and air pollution and how we open new possibilities for further understanding and further applications. A wide range of topics is covered in this volume. This time we start with elementary collisional processes and a review of the data for excitation of polyatomic molecules obtained by the binary collision experiments carried out at the Institute of Physics in Belgrade by the group of Bratislav Marinković. A wide range of activities on the foundation of gaseous positronics ranging from new measurements in the binary regime to the simulation of collective transport in dense gases is presented by James Sullivan and coworkers. This work encompasses three continents, half a dozen groups and several lectures at the workshops while also covering

  5. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.

    Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  6. Low-Frequency Waves in Space Plasmas

    Science.gov (United States)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  7. Physical processes associated with current collection by plasma contactors

    Science.gov (United States)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  8. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  9. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J. Y.; Kim, Y. S. [Hanyang Univ., Seoul (Korea, Republic of); Bae, K. K.; Yang, M. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  10. Plasma Processing of Lunar and Planetary Materials

    Science.gov (United States)

    Currier, R.; Blacic, J.

    2000-01-01

    Space exploration and colonization must include oxygen for propulsion and life support, as well as, structural materials for construction. To the extent possible, these should be derived from locally available planetary resources. We propose an extractive metallurgy and oxygen recovery process well-suited for resource utilization in space. Locally available minerals are placed in a radio frequency-generated hydrogen plasma. This is accomplished using a fluidized bed contacting device. Electromagnetic energy is coupled to the hydrogen gas forming a non-equilibrium plasma. The plasma produces the ideal reducing agent - atomic hydrogen - in direct and intimate contact with the solid particles. When using oxide minerals as a feed, atomic hydrogen extracts oxygen from the matrix through the formation of water. The water is subsequently split into oxygen and hydrogen (the hydrogen is then recycled back to the plasma reactor). The processed solids could then be refined to produce structural materials. A conceptual process flow diagram, which requires an initial charge of hydrogen, is given.

  11. Plasma detachment with molecular processes in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N.; Ezumi, N.; Nishijima, D.; Takamura, S. [Dept. of Energy Engineering and Science, Graduate School of Engineering, Nagoya Univ., Nagoya, Aichi (Japan); Krasheninnikov, S.I.; Pigarov, A.Yu. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2000-01-01

    Molecular processes in detached recombining plasmas are briefly reviewed. Several reactions with vibrationally excited hydrogen molecule related to recombination processes are described. Experimental evidence of molecular activated recombination observed in a linear divertor plasma simulator is also shown. (author)

  12. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  13. Plasma diagnostics in plasma processing for nanotechnology and nanolevel chemistry

    Directory of Open Access Journals (Sweden)

    Hiroshi Akatsuka

    2004-01-01

    Full Text Available The author reviews the role of various plasma diagnostics in plasma processing for nanotechnology, and points out some essential methods of spectroscopic methods to diagnose plasmas for nanoprocessing. Two experimental examples are discussed between the characteristics of nanomaterials and plasma parameters. One is measurement of rotation temperature in processing of carbon nanotube. The other is that of vibrational temperature in surface nitriding of titanium by nitrogen plasma processing. We summarize what to measure and how to measure them from the technical viewpoint of plasma diagnostics.

  14. Space dusty plasmas: recent developments, advances, and unsolved problems

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev

    2016-07-01

    The area of space dusty plasma research is a vibrant subfield of plasma physics that belongs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, and atmospheric science. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust at the Moon, etc. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. The present review covers the main aspects of the area of space dusty plasma research. Emphasis is given to the description of dusty plasmas at the Moon which is important from the viewpoint of the future lunar missions and lunar observatory. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, "Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a).

  15. Plasma and Field Boundaries in Space

    Science.gov (United States)

    Sonnerup, B. U.

    2010-12-01

    Many of the most important and intriguing phenomena in a space plasma occur at the boundaries between regions containing plasmas of different thermodynamic and flow properties, and different magnetization. In this lecture, I will describe and discuss a few of the observed effects and their proposed interpretations, with emphasis on the earth’s magnetopause as well as on certain magnetic discontinuities and structures seen in the solar wind. Among the physical phenomena is magnetic reconnection and associated current filamentation, as well as Kelvin-Helmholtz instability and waves. A primary tool for the illustration and interpretation of local structure within and near these boundaries will be reconstruction based on various versions of the MHD equations. These new methods produce field/flow maps in two dimensions of a narrow region of space surrounding the path of an observing spacecraft as it passes through the structure.

  16. Unique variable polarity plasma arc welding for space shuttle

    Science.gov (United States)

    Schwinghamer, R. J.

    1985-01-01

    Since the introduction of the Plasma Arc Torch in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. Several very important advantages to this process are given, and the genesis of PA welding, the genesis of VPPA welding, special equiment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations are discussed.

  17. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  18. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  19. Multipoint observations of plasma phenomena made in space by Cluster

    Science.gov (United States)

    Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.

    2015-06-01

    Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series

  20. Space as an open plasma laboratory

    Science.gov (United States)

    Papadopoulos, Konstantinos

    2011-10-01

    Ionospheric heaters supplemented by ground and space based diagnostic instruments have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The recently completed HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), far exceeds the capabilities of previous ionospheric heaters and allows for new frontier research in plasma physics, geophysics and radio science. The transmitter radiates 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. The beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between.36-4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform in linear and circular polarization. We present a number of HAARP experiments that used space as an open plasma laboratory. The experiments cover the areas of (i) Artificial ULF/ELF/VLF generation and injection in the magnetosphere (ii) Studies of wave-particle interactions in the magnetosphere (iii) Langmuir turbulence, parametric instabilities, electron acceleration and optical emissions (iv) Artificial ionization. Ionospheric heaters supplemented by ground and space based diagnostic instruments have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The recently completed HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), far exceeds the capabilities of previous ionospheric heaters and allows for new frontier research in plasma physics, geophysics and radio science. The transmitter radiates 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. The beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP

  1. Computerized tomographic imaging for space plasma physics

    Science.gov (United States)

    Zhang, Yuhong; Coplan, Michael A.; Moore, John H.; Berenstein, Carlos A.

    1990-01-01

    The measurement of plasma electron velocity distribution functions as a problem in imaging and image reconstruction is considered. A model instrument that measures the integral of the distribution function along lines in velocity space is presented. This allows the use of the powerful mathematical and numerical methods that have recently been so successful in other areas of imaging. It is found that this approach leads to classes of instruments that are qualitatively different from contemporary designs. An investigation of different methods of reconstruction of the distribution function from integral measurements reveals that the mathematical tools appropriate to one particular imaging problem may be very different from those required to deal with another.

  2. Lagrangian coherent structures and plasma transport processes

    CERN Document Server

    Falessi, M V; Schep, T J

    2015-01-01

    A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom the Poincar\\'e map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers; i.e., a trajectory cannot cross such boundaries during the whole evolution of the system. Lagrangian Coherent Structure (LCS) generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.

  3. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  4. NASA/Marshall Space Flight Center's Contributions to Space Plasma Physics

    Science.gov (United States)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Since the mid-l970's, the Space Plasma Physics Group at NASA's Marshall Space Flight Center has contributed critical instrumentation to numerous satellite and sounding rocket missions exploring the plasmas of near-Earth space. This talk will review major discoveries in Earth's ionosphere, plasmasphere, and magnetosphere directly attributable to the researchers of the Space Plasma Physics Group and the significance of these discoveries to the field of plasma physics.

  5. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  6. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    Science.gov (United States)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  7. Plasma chemistry study of PLAD processes

    Energy Technology Data Exchange (ETDEWEB)

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying [Nanya Technology Inc., Santa Clara, CA 95054 (United States); Micron Technology Inc., Boise, ID 83707 (United States)

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  8. Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators

    CERN Document Server

    Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C

    2013-01-01

    The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.

  9. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  10. Complex and Dusty Plasmas From Laboratory to Space

    CERN Document Server

    Fortov, Vladimir E

    2009-01-01

    Dusty or complex plasmas are plasmas containing solid or liquid charged particles referred to as dust. Naturally occurring in space, on earth dust plays a key role in plasma applications associated with etching technologies in microelectronics. International in scope, this volume covers theoretical and application research.

  11. Using Space as a Nonlinear Plasma Laboratory

    Science.gov (United States)

    Papadopoulos, Konstantinos

    2008-11-01

    Ionospheric heaters have been an important tool of plasma physics investigations. The extent that non-linear plasma phenomena can be triggered and observed depends critically on the heater power, its Effective Radiative Power (ERP) and its scanning capability. Increasing these parameters allows us to reach thresholds associated with effects that were not previously observed. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP) was completed in June 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power (a factor of almost 4 higher than any previous heater) in the 2.8-10.0 MHz range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in ERP between 1-5 GW. The antenna can point to any direction in a cone 30 degrees from the vertical, with reposition time of 15 microseconds resulting in superluminal scanning speeds. The transmitter can synthesize essentially any waveform and transmit any polarization. These capabilities far exceed those of any previous heater and allow for new frontier research in non-linear plasma physics. The presentation will focus first on the relationship of the new capabilities of the facility with thresholds of physical processes that had not been achieved previously. It will then present new spectacular results that have been achieved during the last year. They include whistler injection and amplification, injection of shear and magnetosonic waves in the magnetosphere, Langmuir turbulence, upper hybrid waves and thermal instabilities, electron acceleration, optical emissions and formation of artificial ducts for whistler propagation. The presentation will also discuss future experiments made possible for the first time by the new transmitter capabilities, large bandwidth and high ERP.

  12. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    Science.gov (United States)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  13. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    Science.gov (United States)

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  14. Cold plasma processing to improve food safety

    Science.gov (United States)

    Cold plasma is an antimicrobial process being developed for application as a food processing technology. This novel intervention is the subject of an expanding research effort by groups around the world. A variety of devices can be used to generate cold plasma and apply it to the food commodity bein...

  15. Space Qualified Heterogeneous Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to develop a radiation hardened, monolithic, heterogeneous processor for space imaging and radar systems. High performance processors are needed...

  16. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  17. Atomic processes in optically thin plasmas

    Science.gov (United States)

    Kaastra, Jelle S.; Gu, Liyi; Mao, Junjie; Mehdipour, Missagh; Raassen, Ton; Urdampilleta, Igone

    2016-10-01

    The Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution we give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas, where improvements have to be made that are important for the analysis of astrophysical plasmas. We present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further we discuss the development of models for photo-ionised plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.

  18. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  19. Model of strong stationary vortex turbulence in space plasmas

    Directory of Open Access Journals (Sweden)

    G. D. Aburjania

    2009-01-01

    Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k−8/3 is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.

  20. A plasma process monitor/control system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  1. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  2. Quantum processes on phase space

    CERN Document Server

    Anastopoulos, C

    2003-01-01

    Quantum theory predicts probabilities as well as relative phases between different alternatives of the system. A unified description of both probabilities and phases comes through a generalisation of the notion of a density matrix for histories; this object is the decoherence functional of the consistent histories approach. If we take phases as well as probabilities as primitive elements of our theory, we abandon Kolmogorov probability and can describe quantum theory in terms of fundamental commutative observables, without being obstructed by Bell's and related theorems. Generalising the theory of stochastic processes, we develop the description of relative phases and probabilities for paths on the classical phase space. This description provides a theory of quantum processes. We identify a number of basic postulates and study its corresponding properties. We strongly emphasise the notion of conditioning and are able to write ``quantum differential equations'' as analogous to stochastic differential equations...

  3. Developments in Plasma Processes for Extractive Metallurgy

    Science.gov (United States)

    Gauvin, W. H.; Drouet, M. G.; Munz, R. J.

    1987-12-01

    With the recent availability of commercial plasma-generating devices capable of reliable performance at powers as high as 30 MW, the applications of plasma technology in high-temperature extractive metallurgy are rapidly increasing. Some of the more promising process developments are reviewed in this paper, as are newer reactor designs.

  4. Multicore Rad Hard Processing in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to research and develop a high performance computing/processing platform for NASA space missions. Leveraging our previous work for both NASA and...

  5. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    Science.gov (United States)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this

  6. Spitzer Space Telescope proposal process

    Science.gov (United States)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  7. Surface waves on a quantum plasma half-space

    CERN Document Server

    Lázár, M; Smolyakov, A

    2007-01-01

    Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.

  8. Fundamental Processes in Plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, Thomas M.; Driscoll, C. Fred

    2009-11-30

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN.

  9. Saturn Plasma Sources and Associated Transport Processes

    Science.gov (United States)

    Blanc, M.; Andrews, D. J.; Coates, A. J.; Hamilton, D. C.; Jackman, C. M.; Jia, X.; Kotova, A.; Morooka, M.; Smith, H. T.; Westlake, J. H.

    2015-10-01

    This article reviews the different sources of plasma for Saturn's magnetosphere, as they are known essentially from the scientific results of the Cassini-Huygens mission to Saturn and Titan. At low and medium energies, the main plasma source is the H2O cloud produced by the "geyser" activity of the small satellite Enceladus. Impact ionization of this cloud occurs to produce on the order of 100 kg/s of fresh plasma, a source which dominates all the other ones: Titan (which produces much less plasma than anticipated before the Cassini mission), the rings, the solar wind (a poorly known source due to the lack of quantitative knowledge of the degree of coupling between the solar wind and Saturn's magnetosphere), and the ionosphere. At higher energies, energetic particles are produced by energy diffusion and acceleration of lower energy plasma produced by the interchange instabilities induced by the rapid rotation of Saturn, and possibly, for the highest energy range, by contributions from the CRAND process acting inside Saturn's magnetosphere. Discussion of the transport and acceleration processes acting on these plasma sources shows the importance of rotation-induced radial transport and energization of the plasma, and also shows how much the unexpected planetary modulation of essentially all plasma parameters of Saturn's magnetosphere remains an unexplained mystery.

  10. Magnetic fluctuations in anisotropic space plasmas: The effect of the plasma environment

    Science.gov (United States)

    Valdivia, J. A.; Toledo, B. A.; Gallo, N.; Muñoz, V.; Rogan, J.; Stepanova, M.; Moya, P. S.; Navarro, R. E.; Viñas, A. F.; Araneda, J.; López, R. A.; Díaz, M.

    2016-11-01

    The observations in the solar wind, which are usually organized in a beta-anisotropy diagram, seem to be constrained by linear instability thresholds. Unexpectedly, under these quasi-stable conditions, there is a finite level of electromagnetic fluctuations. A relevant component of these fluctuations can be understood in terms of the electromagnetic fields produced by the thermal motion of the charged particles. For the simple case of parallel propagating fields in an electron-proton plasma, we study the effect of the parameter ωpp /Ωc that characterizes the different space physics environments, and can affect the continuum spectrum produced by these fluctuations, which in turn may be used to understand the relevance of these processes occurring in a specific plasma environment.

  11. Hollow cathode heater development for the Space Station plasma contactor

    Science.gov (United States)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  12. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  13. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-03-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  14. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  15. Pulsed Plasma Methods in Materials Processing

    Science.gov (United States)

    Rej, D. J.

    1996-05-01

    Plasmas are routinely used to synthesize advanced materials, because of their ability to produce reactant species that enable a wide variety of chemical reactions. For example, in microelectronics manufacturing, plasmas are used to etch, clean, ash photoresist, implant, deposit, polymerize, and metalize. The use of pulsed power may extend the utility of plasma processing. Pulsed devices such as coaxial plasma guns, cathodic arcs, pseudosparks have been employed to synthesize materials ranging from novel steel alloys and high-temperature superconductors to diamond coatings. In this talk, we will highlight plasma immersion ion implantation and deposition, methods that improve conventional steady-state chemical and physical vapor deposition techniques. Pulsed power enables energetic ion bombardment before plasma deposition to promote better film adhesion through the formation of a graded interface. Ion bombardment during deposition reduces residual stress in the deposited film, thereby enabling formation of thick layers. Also, pulsed plasma sources have advantages over steady-state devices in that they conserve electrical power and can produce high-density, fully-dissociated plasmas. As an example, we will review recent experiments on the formation of adherent diamond-like carbon films deposited onto relatively large batches of automotive components.

  16. Plasma characterization studies for materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Pfender, E.; Heberlein, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  17. Cluster processes in gases and plasmas

    CERN Document Server

    Smirnov, Boris M

    2009-01-01

    Boris M. Smirnov received his Ph.D. in physics from Leningrad State University in 1968. After working in different research positions, he finally accepted a post as head of one of the divisions of the Institute for High Temperatures at the Russian Academy of Sciences in Moscow in 1986. Professor Smirnov is the author and co-author of approximately 50 books as well as 400 research articles in plasma physics, atomic physics, and atomic clusters. He is Vice Chairman of the National Council for Low Temperature Plasma and Chairman ofa Section on Elementary Processes in Plasma. Professor Smirnov`s r

  18. Ultrasonic Plasma Spray--A New Plasma Spray Process

    Institute of Scientific and Technical Information of China (English)

    LU Zhi-qing; ZHANG Hua-tang; WEN Xiong-wei; LI Lu-ming

    2004-01-01

    The method of arc- ultrasonic is introduced into plasma spray process. The process of spray ZrO2-NiCoCr AlY thermal barrier coatings (TBCs) using air plasma spray (APS) process is studied. A exciting source which can be adjusted from audio frequency to several hundred thousand Hertz is designed successfully. The ultrasonic exciting source is coupled with conventional DC spraying power supply. A few ultrasonic frequencies are selected in the testing. Several parts of the coatings with the coupling arc- ultrasonic are compared with the coatings without it. The results show: with 50 kHz and 80 kHz ultrasound, the coating qualities are improved, whereas 30 kHz has an opposite effect.

  19. Negative-permittivity plasma generation in negative-permeability space with high-energy metamaterials

    Science.gov (United States)

    Sakai, Osamu; Nakamura, Yoshihiro; Iwai, Akinori; Iio, Satoshi

    2016-10-01

    Plasma generation by electromagnetic waves in negative-permeability space is analyzed using experimental results and theoretical models. Installation of negative-permeability metamaterials triggers drastic changes to the propagation of electromagnetic waves. Unlike usual cases in which permeability is  +1, negative permeability induces evanescent modes in a space without plasma. However, if permittivity becomes negative due to high-electron-density or overdense plasma, electromagnetic waves can propagate because negative-refractive-index states emerge. In this study, reviewing our previous experimental data, we study the underlying physical processes in plasma generation in terms of wave propagation and parameters of wave media. We confirm nonlinear (transition) processes in the phase of density evolution up to the negative permittivity state and negative-refractive-index states in the quasi-steady phase. We also note that such energetic metamaterials are built up when we use plasma, unlike conventional metamaterials composed of solid-state materials.

  20. Kinetic Alfven wave turbulence in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)

    2010-07-26

    This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.

  1. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  2. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  3. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  4. Energetic particles in laboratory, space and astrophysical plasmas

    Science.gov (United States)

    McClements, K. G.; Turnyanskiy, M. R.

    2017-01-01

    Some recent studies of energetic particles in laboratory, space and astrophysical plasmas are discussed, and a number of common themes identified. Such comparative studies can elucidate the underlying physical processes. For example microwave bursts observed during edge localised modes (ELMs) in the mega amp spherical tokamak (MAST) can be attributed to energetic electrons accelerated by parallel electric fields associated with the ELMs. The very large numbers of electrons known to be accelerated in solar flares must also arise from parallel electric fields, and the demonstration of energetic electron production during ELMs suggests close links at the kinetic level between ELMs and flares. Energetic particle studies in solar flares have focussed largely on electrons rather than ions, since bremsstrahlung from deka-keV electrons provides the best available explanation of flare hard x-ray emission. However ion acceleration (but not electron acceleration) has been observed during merging startup of plasmas in MAST with dimensionless parameters similar to those of the solar corona during flares. Recent measurements in the Earth’s radiation belts demonstrate clearly a direct link between ion cyclotron emission (ICE) and fast particle population inversion, supporting the hypothesis that ICE in tokamaks is driven by fast particle distributions of this type. Shear Alfvén waves in plasmas with beta less than the electron to ion mass ratio have a parallel electric field that, in the solar corona, could accelerate electrons to hard x-ray-emitting energies; an extension of this calculation to plasmas with Alfvén speed arbitrarily close to the speed of light suggests that the mechanism could play a role in the production of cosmic ray electrons.

  5. Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina; B T Tsurutani; J K Arballo; C Galvan

    2000-11-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufficient precipitated energy flux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.

  6. On the dynamics of space plasma

    Science.gov (United States)

    Albert, Jay; Chan, Chung; Silevitch, Michael; Villalon, Elena

    1992-09-01

    The research was focused into three related areas. These were: (1) an examination of stochastic electron acceleration mechanisms in the ionosphere and the resulting dynamics of magnetospheric (i.e., Radiation Belt) particles and waves; (2) a study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere-ionosphere auroral arc system; (3) an experimental investigation of the wake signatures created by a solid body immersed in a flowing plasma.

  7. Effect of space flights on plasma hormone levels in man and in experimental animal

    Science.gov (United States)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  8. Signal processing methods for MFE plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  9. Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves

    Indian Academy of Sciences (India)

    R P Patel; Abhay Kumar Singh; R P Singh

    2000-11-01

    The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.

  10. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  11. Driven phase space vortices in plasmas with nonextensive velocity distribution

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  12. Nonlinear processes in the strong wave-plasma interaction

    Science.gov (United States)

    Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei

    2000-10-01

    Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.

  13. Plasma Interaction with International Space Station High Voltage Solar Arrays

    Science.gov (United States)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  14. A space-charge-neutralizing plasma for beam drift compression

    Science.gov (United States)

    Roy, P. K.; Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Coleman, J. E.; Gilson, E. P.; Greenway, W.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Sefkow, A. B.; Waldron, W. L.; Welch, D. R.

    2009-07-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a ˜10-cm-long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter ˜5 mm along the solenoid axis when the FFS is powered with an 8 T field. Measured plasma density of ⩾1×10 13 cm -3 meets the challenge of np/ Znb>1, where np and nb are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the beam ions.

  15. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  16. Plasma Physics of the Subauroral Space Weather

    Science.gov (United States)

    2016-03-20

    observations near the magnetic equator and in the ionosphere, we specified their features and space weather effects. Near substorm onsets, highly...SAID events As the fast timescale is characteristic of propagation of substorm injection fronts, we focus on the observations near substorm onsets...magnetosphere data, respectively. The main initial tusk is to identify events near the magnetic equator following the onsets of substorms and Approved for

  17. Kappa distributions: theory and applications in space plasmas

    CERN Document Server

    Pierrard, V

    2010-01-01

    Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distributions in different space plasmas suggests a universal mechanism for the creation of such suprathermal tails. Different theories have been proposed and are recalled in this review paper. The suprathermal particles have important consequences concerning the acceleration and the temperature that are well evidenced by the kinetic approach where no closure requires the distributions to be nearly Maxwellians. Moreover, the presence of the suprathermal particles take an important role in the wave-particle interactions.

  18. Methods for characterising microphysical processes in plasmas

    CERN Document Server

    de Wit, T Dudok; Furno, I; Sorriso-Valvo, L; Zimbardo, G

    2013-01-01

    Advanced spectral and statistical data analysis techniques have greatly contributed to shaping our understanding of microphysical processes in plasmas. We review some of the main techniques that allow for characterising fluctuation phenomena in geospace and in laboratory plasma observations. Special emphasis is given to the commonalities between different disciplines, which have witnessed the development of similar tools, often with differing terminologies. The review is phrased in terms of few important concepts: self-similarity, deviation from self-similarity (i.e. intermittency and coherent structures), wave-turbulence, and anomalous transport.

  19. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  20. Microwave plasma torch for processing hydrocarbon gases

    Directory of Open Access Journals (Sweden)

    Alex G. Zherlitsyn

    2016-03-01

    Full Text Available We designed and developed an ultrahigh-frequency (microwave plasma torch with a combined (nitrogen, methane plasma-forming environment, and microwave output of up to 2 kW, continuously. We demonstrate the possibility of using it in order to process natural and associated petroleum (APG gas into valuable products (hydrogen and carbon nanomaterial CNM with up to 70% efficiency. Based on the developed microwave plasma torch, we developed an apparatus capable of converting hydrocarbon feedstock at a capacity of 50 g/h yielding CNM and hydrogen of up to 70 vol. %. In its mobile small-tonnage version, this technology can be used on gas-condensate fields.

  1. Prediction of plasma simulation data with the Gaussian process method

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, R.; Toussaint, U. von, E-mail: udo.v.toussaint@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany)

    2014-12-05

    The simulation of plasma-wall interactions of fusion plasmas is extremely costly in computer power and time - the running time for a single parameter setting is easily in the order of weeks or months. We propose to exploit the already gathered results in order to predict the outcome for parametric studies within the high dimensional parameter space. For this we utilize Gaussian processes within the Bayesian framework and perform validation with one and two dimensional test cases from which we learn how to assess the outcome. Finally, the newly implemented method is applied to simulated data from the scrape-off layer of a fusion plasma. Uncertainties of the predictions are provided which point the way to parameter settings of further (expensive) simulations.

  2. Space Station Freedom solar array panels plasma interaction test facility

    Science.gov (United States)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  3. Space-time evolution of ejected plasma for the triggering of gas switch

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shanhong, E-mail: liushanhong108098@163.com; Liu, Xuandong; Shen, Xi; Feng, Lei; Zhang, Qiaogen [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Institute of High Voltage Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Tie, Weihao [Xi' an Electrical Engineering Research Institute, Xi' an 710049 (China)

    2016-06-15

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from “plasmoid” to “plasma flow,” and the distribution of the ejected plasma goes through “cloud,” “core-cloud,” and “branch” in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted “U”-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the “branch” channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%–90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.

  4. Space-time evolution of ejected plasma for the triggering of gas switch

    Science.gov (United States)

    Liu, Shanhong; Liu, Xuandong; Shen, Xi; Feng, Lei; Tie, Weihao; Zhang, Qiaogen

    2016-06-01

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from "plasmoid" to "plasma flow," and the distribution of the ejected plasma goes through "cloud," "core-cloud," and "branch" in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted "U"-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the "branch" channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%-90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.

  5. Spacecraft charging and plasma interaction implications for large space systems

    Science.gov (United States)

    Miller, E.; Stauber, M.; Rossi, M.; Fischbein, W.

    1978-01-01

    Specific discharge mechanisms, plasma interactions, and scale effects associated with very large spacecraft are studied. The large area, low density character, and extensive use of non-conducting materials is thought to have a major impact on the performance and survivability of many large space systems.

  6. Creating Space Plasma from the Ground

    Science.gov (United States)

    2016-05-12

    Excitation and ionization and calculation of mean free paths and to add conjugate pe flux for the net composite steady state flux (cm-2 s-1 eV-1 str-1), flux...constant typical for Arecibo HF heating experiments. We used an S-20 extended-red photocathode to feed our ASIP II. Key is to use an all sky ...determine the net fraction of energy which through some ensemble of processes will end up carried away as accelerated electrons. i.e. focus on the

  7. Coherent phase space matching for staging plasma and traditional accelerator using longitudinally tailored plasma structure

    CERN Document Server

    Xu, X L; Zhang, C J; Li, F; Wan, Y; Hua, J F; Pai, C -H; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C; Hogan, M J

    2014-01-01

    For the further development of plasma based accelerators, phase space matching between plasma acceleration stages and between plasma stages and traditional accelerator components becomes a very critical issue for high quality high energy acceleration and its applications in light sources and colliders. Without proper matching, catastrophic emittance growth in the presence of finite energy spread may occur when the beam propagating through different stages and components due to the drastic differences of transverse focusing strength. In this paper we propose to use longitudinally tailored plasma structures as phase space matching components to properly guide the beam through stages. Theoretical analysis and full 3-dimensional particle-in-cell simulations are utilized to show clearly how these structures may work in four different scenarios. Very good agreements between theory and simulations are obtained.

  8. Thin current sheets caused by plasma flow gradients in space plasma

    Science.gov (United States)

    Nickeler, D.; Wiegelmann, T.

    2011-12-01

    To understand complex space plasma systems like the solar wind-magnetosphere coupling, we need to have a good knowledge of the slowly evolving equilibrium state. The slow change of external constraints on the system (for example boundary conditions or other external parameters) lead in many cases to the formation of current sheets. These current sheets can trigger micro-instabilities, which cause resistivity on fluid scales. Consequently resistive instabilities like magnetic reconnection can occur and the systems evolves dynamically. Therefore such a picture of quasi-magneto-hydro-static changes can explain the quasy-static phase of many space plasma before an eruption occurs. Within this work we extend the theory by the inclusion of a nonlinear stationary plasma flows. Our analysis shows that stationary plasma flows with strong flow gradients (for example the solar wind magnetosphere coupling) can be responsible for the existence or generation of current sheets.

  9. Transient dynamics of secondary radiation from an HF pumped magnetized space plasma

    NARCIS (Netherlands)

    Norin, L.; Grach, S. M.; Thide, B.; Sergeev, E. N.; Leyser, T. B.

    2007-01-01

    In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission ( SEE), from the ionosphere, preconditione

  10. Recent results from studies of electron beam phenomena in space plasmas

    Science.gov (United States)

    Neubert, Torsten; Banks, Peter M.

    1992-01-01

    The paper examines selected results from experiments, performed in 1980s, involving the ejection of beams of electrons from spacecraft. Special attention is given to the basic processes associated with the spacecraft charging, passive current collection, beam-atmosphere interactions, beam-plasma interactions, and neutral gas emission. Consideration is also given to future experiments on active electron beam ejections in space.

  11. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  12. Plasma process optimization for N-type doping applications

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Deven; Persing, Harold; Salimian, Siamak; Lacey, Kerry; Qin Shu; Hu, Jeff Y.; McTeer, Allen [Applied Materials, Inc., Varian Semiconductor Business Unit, 35 Dory Road, Gloucester, MA 01930 (United States); Micron Technology, Inc., 8000 S. Federal Way, Boise, ID 83707 (United States)

    2012-11-06

    Plasma doping (PLAD) has been adopted across the implant technology space and into high volume production for both conventional DRAM and NAND doping applications. PLAD has established itself as an alternative to traditional ion implantation by beamline implantation. The push for high doping concentration, shallow doping depth, and conformal doping capability expand the need for a PLAD solution to meet such requirements. The unique doping profile and doping characteristics at high dose rates allow for PLAD to deliver a high throughput, differentiated solution to meet the demand of evolving transistor technology. In the PLAD process, ions are accelerated to the wafer as with a negative wafer bias applied to the wafer. Competing mechanisms, such as deposition, sputtering, and etching inherent in plasma doping require unique control and process optimization. In this work, we look at the distinctive process tool control and characterization features which enable an optimized doping process using n-type (PH{sub 3} or AsH{sub 3}) chemistries. The data in this paper will draw the relationship between process optimization through plasma chemistry study to the wafer level result.

  13. Space Plasma Science as a Motivator for Education & Outreach

    Science.gov (United States)

    Dusenbery, Paul

    1999-11-01

    Education and public outreach (EPO) continue to play an important role in how science is funded by the federal government. The plasma science community has a responsibility to share their exciting science with the American public. Bruce Alberts, president of the National Academy of Sciences, and Neal Lane, former head of NSF, are on record as strong advocates of scientists becoming more actively and effectively engaged in K-12 science education reform. In addition, research directorates of funding agencies like NASA and NSF are increasingly encouraging (and in some cases requiring) the integration of science and education and greater scientist involvement in EPO. How does plasma science and scientists fit into this broader political and social landscape? How well does the public understand our science and technology? Are there ways to effectively engage the public that provide good visibility for plasma science? These questions and more will be addressed in this talk. The Space Science Institute (SSI), a nonprofit organization in Colorado, provides national leadership in developing innovative ways to translate the activities and resources of space and earth science research into exciting and effective K-12 and museum education programs. SSI’s mission is to link its space science research enterprise with its education programs. SSI has active programs in curriculum and exhibit development and professional development for both scientists about education and for educators about science. I will share with you one exhibit project and one curriculum project whose goals are to raise public understanding of space plasmas and by extension all of plasma science.

  14. Seismic processing in the inverse data space

    NARCIS (Netherlands)

    Berkhout, A.J.

    2006-01-01

    Until now, seismic processing has been carried out by applying inverse filters in the forward data space. Because the acquired data of a seismic survey is always discrete, seismic measurements in the forward data space can be arranged conveniently in a data matrix (P). Each column in the data matrix

  15. Enhancement of space plasma images by complex wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vitor Moura; Domingues, Margarete Oliveira; Mendes, Odim, E-mail: vitor.souza@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Pagamisse, Aylton [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil). Fav. de Ciencias e Tecnologia; Stenborg, Guilhermo Adrian [College of Science, George Mason University, Fairfax, VA (United States)

    2015-10-15

    The Sun is a natural laboratory for plasma processes. A myriad of instruments aboard satellites and on ground record(ed) the plasma emission in different ranges of the electromagnetic spectrum to help understand such processes. In particular, in the outer part of the solar atmosphere, the solar corona, we can observe a multitude of electrodynamical phenomena. There, the faint corona emission and the associated dynamic plasma structures (e.g., coronal mass ejections - CMEs) recorded in white light images can be used as basis for some insight of this physical scenario. In order to characterize the dynamics and morphology of such structures in a better way, it seems crucial that some features of those images should be enhanced. To deal with this need, a new approach using a complex wavelet transform methodology was developed. With the proposed methodology, we can highlight the plasma ejections improving the identification of those structures. (author)

  16. From laboratory plasma experiments to space plasma experiments with `CubeSat' nano-satellites

    Science.gov (United States)

    Charles, Christine

    2016-09-01

    `CubeSat' nano-satellites provide low-cost access to space. SP3 laboratory's involvement in the European Union `QB50' `CubeSat' project [www.qb50.eu] which will launch into space 50 `CubeSats' from 27 Countries to study the ionosphere and the lower thermosphere will be presented. The Chi Kung laboratory plasma experiment and the Helicon Double Layer Thruster prototype can be tailored to investigate expanding magnetized plasma physics relevant to space physics (solar corona, Earth's aurora, adiabatic expansion and polytropic studies). Chi Kung is also used as a plasma wind tunnel for ground-based calibration of the University College London QB50 Ion Neutral Mass Spectrometer. Space qualification of the three Australian QB50 `CubeSats' (June 2016) is carried out in the WOMBAT XL space simulation chamber. The QB50 satellites have attitude control but altitude control is not a requirement. SP3 is developing end-to-end miniaturised radiofrequency plasma propulsion systems (such as the Pocket Rocket and the MiniHel thrusters with power and propellant sub-systems) for future `CubeSat' missions.

  17. Gas plasma sterilization--application of space-age technology.

    Science.gov (United States)

    Crow, S; Smith, J H

    1995-08-01

    Gas plasma sterilization is new to the healthcare field. The first such sterilizer has been manufactured by Advanced Sterilization Products (J&J, Irvine, CA). The system uses hydrogen peroxide as the substrate gas and radio frequency emissions to generate plasma. This system is a low-temperature, quick-acting process with no toxic residues. It appears that this sterilizer system holds promise in the healthcare field and could help to reduce the use of ethylene oxide.

  18. Thin current sheets caused by plasma flow gradients in space and astrophysical plasma

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2010-08-01

    Full Text Available Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation. We concentrate here on incompressible plasma flows and 2-D equilibria, which allow us to find analytic solutions of the stationary magnetohydrodynamics equations (SMHD. First we solve the magnetohydrostatic (MHS equations with the help of a Grad-Shafranov equation and then we transform these static equilibria into a stationary state with plasma flow. We are in particular interested to study SMHD-equilibria with strong plasma flow gradients perpendicular to separatrices. We find that induced thin current sheets occur naturally in such situations. The strength of the induced currents depend on the Alfvén Mach number and its gradient, and on the magnetic field.

  19. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  20. Vasyliunas-Cairns distribution function for space plasma species

    Science.gov (United States)

    Abid, A. A.; Ali, S.; Du, J.; Mamun, A. A.

    2015-08-01

    A more generalized form of non-Maxwellian distribution function (that can be named as Vasyliunas-Cairns distribution function) is introduced. Its basic properties are numerically analyzed by the variation of two important parameters, namely, α (which shows the amount of energetic particles present in the plasma system) and κ (which shows the superthermality of the plasma species). It has been observed that (i) for α → 0 ( κ → ∞ ), the Vasyliunas-Cairns distribution function reduces to the Vasyliunas or κ (Cairns or nonthermal) distribution function; (ii) for α → 0 and κ → ∞ , it reduces to the Maxwellian distribution function; and (iii) the effect of the parameter α (κ) significantly modifies the basic properties of the Vasyliunas (Cairns) distribution function. The applications of this generalized non-Maxwellian distribution function (Vasyliunas-Cairns distribution function) in different space plasma situations are briefly discussed.

  1. The role of magnetohydrodynamics in heliospheric space plasma physics research

    Science.gov (United States)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  2. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable ro...

  3. Real-Time Fault Classification for Plasma Processes

    OpenAIRE

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, ...

  4. Radiant-and-plasma technology for coal processing

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance ...

  5. Operationalizing Space Weather Products - Process and Issues

    Science.gov (United States)

    Scro, K. D.; Quigley, S.

    2006-12-01

    Developing and transitioning operational products for any customer base is a complicated process. This is the case for operational space weather products and services for the USAF. This presentation will provide information on the current state of affairs regarding the process required to take an idea from the research field to the real-time application of 24-hour space weather operations support. General principles and specific issues are discussed and will include: customer requirements, organizations in-play, funding, product types, acquisition of engineering and validation data, security classification, version control, and various important changes that occur during the process. The author's viewpoint is as an individual developing space environmental system-impact products for the US Air Force: 1) as a member of its primary research organization (Air Force Research Laboratory), 2) working with its primary space environment technology transition organization (Technology Application Division of the Space and Missile Systems Center, SMC/WXT), and 3) delivering to the primary sponsor/customer of such system-impact products (Air Force Space Command). The experience and focus is obviously on specific military operationalization process and issues, but most of the paradigm may apply to other (commercial) enterprises as well.

  6. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  7. Solar concentrators for space processing applications

    Science.gov (United States)

    Mcdermit, J. H.; Ruff, R. C.

    1975-01-01

    A study on the technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies related to the many aspects of the problem are reviewed. It was concluded from this effort that the technology for fabricating, orbiting, and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conducive to the processes of interest. The study indicates that solar concentrators of reasonable dimensions can satisfactorily provide both of these factors. This study also indicates that solar concentrators are attractive for space processing from the viewpoint of system specific power and system flexibility.

  8. Space weather circulation model of plasma clouds as background radiation medium of space environment.

    Science.gov (United States)

    Kalu, A. E.

    A model for Space Weather (SW) Circulation with Plasma Clouds as background radiation medium of Space Environment has been proposed and discussed. Major characteristics of the model are outlined and the model assumes a baroclinic Space Environment in view of observed pronounced horizontal electron temperature gradient with prevailing weak vertical temperature gradient. The primary objective of the study is to be able to monitor and realistically predict on real- or near real-time SW and Space Storms (SWS) affecting human economic systems on Earth as well as the safety and Physiologic comfort of human payload in Space Environment in relation to planned increase in human space flights especially with reference to the ISS Space Shuttle Taxi (ISST) Programme and other prolonged deep Space Missions. Although considerable discussions are now available in the literature on SW issues, routine Meteorological operational applications of SW forecast data and information for Space Environment are still yet to receive adequate attention. The paper attempts to fill this gap in the literature of SW. The paper examines the sensitivity and variability in 3-D continuum of Plasmas in response to solar radiation inputs into the magnetosphere under disturbed Sun condition. Specifically, the presence of plasma clouds in the form of Coronal Mass Ejections (CMEs) is stressed as a major source of danger to Space crews, spacecraft instrumentation and architecture charging problems as well as impacts on numerous radiation - sensitive human economic systems on Earth. Finally, the paper considers the application of model results in the form of effective monitoring of each of the two major phases of manned Spaceflights - take-off and re-entry phases where all-time assessment of spacecraft transient ambient micro-incabin and outside Space Environment is vital for all manned Spaceflights as recently evidenced by the loss of vital information during take-off of the February 1, 2003 US Columbia

  9. Spaced resolved analysis of suprathermal electrons in dense plasma

    Directory of Open Access Journals (Sweden)

    Moinard A.

    2013-11-01

    Full Text Available The investigation of the hot electron fraction is a crucial topic for high energy density laser driven plasmas: first, energy losses and radiative properties depend strongly on the hot electron fraction and, second, in ICF hohlraums suprathermal electrons preheat the D-T-capsule and seriously reduce the fusion performance. In the present work we present our first experimental and theoretical studies to analyze single shot space resolved hot electron fractions inside dense plasmas via optically thin X-ray line transitions from autoionizing states. The benchmark experiment has been carried out at an X-pinch in order to create a dense, localized plasma with a well defined symmetry axis of hot electron propagation. Simultaneous high spatial and spectral resolution in the X-ray spectral range has been obtained with a spherically bent quartz Bragg crystal. The high performance of the X-ray diagnostics allowed to identify space resolved hot electron fractions via the X-ray spectral distribution of multiple excited states.

  10. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Scime, E. E., E-mail: escime@wvu.edu; Keesee, A. M.; Elliott, D. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Dugas, M.; Ellison, S.; Tersteeg, J.; Wagner, G. [Advanced Research Corporation, White Bear Lake, Minnesota 55110 (United States); Barrie, A.; Rager, A. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-11-15

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  11. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    Science.gov (United States)

    Scime, E. E.; Keesee, A. M.; Dugas, M.; Ellison, S.; Tersteeg, J.; Wagner, G.; Barrie, A.; Rager, A.; Elliott, D.

    2016-11-01

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  12. Molecular processes in plasmas collisions of charged particles with molecules

    CERN Document Server

    Itikawa, Yukikazu

    2007-01-01

    Molecular Processes in Plasmas describes elementary collision processes in plasmas, particularly those involving molecules or molecular ions. Those collision processes (called molecular processes) maintain plasmas, produce reactive species and emissions, and play a key role in energy balance in plasmas or more specifically in determining the energy distribution of plasma particles. Many books on plasma physics mention the elementary processes, but normally rather briefly. They only touch upon the general feature or fundamental concept of the collision processes. On the other hand, there are many books on atomic and molecular physics, but most of them are too general or too detailed to be useful to people in the application fields. The present book enumerates all the possible processes in the collisions of electrons, as well as ions, with molecules. For each process, a compact but informative description of its characteristics is given together with illustrative examples. Since the author has much experience a...

  13. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  14. Origins and properties of kappa distributions in space plasmas

    Science.gov (United States)

    Livadiotis, George

    2016-07-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as the space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions to the solid statistical framework of Tsallis non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, some of which will be presented in this talk: (i) The physical meaning of thermal parameters, e.g., temperature and kappa index; (ii) the multi-particle description of kappa distributions; (iii) the phase-space kappa distribution of a Hamiltonian with non-zero potential; (iv) the Sackur-Tetrode entropy for kappa distributions, and (v) the new quantization constant, h _{*}˜10 ^{-22} Js.

  15. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  16. Exploring Transitions of Space Plasmas Out of Equilibrium

    Science.gov (United States)

    Livadiotis, G.; McComas, D. J.

    2010-05-01

    Space plasmas from the solar wind to planetary magnetospheres and the outer heliosphere are systems in stationary states out of equilibrium. Empirical kappa distributions, which naturally emerge from Tsallis Statistics, successfully describe these space plasmas. The Tsallis formalism offers a solid statistical foundation and provides a set of proven tools for understanding these distributions, including a consistent definition of temperature—the physical temperature, which characterizes the non-equilibrium stationary states. Here, we develop a measure of the "thermodynamic distance" of stationary states away from equilibrium. The stationary states are labeled by the value of the entropic q-index, lying in a spectrum from q = 1 (equilibrium) to the maximum value of q, which specifies the furthest possible stationary state from equilibrium. We call this the "q-frozen state," because as a system approaches this state, it behaves analogously to when its temperature approaches absolute zero. We also introduce a novel isothermal procedure that describes a system's transition into different stationary states by varying the q-index, and show how the variation of temperature can be realized using an "iso-metastability" procedure, in which the system remains in a fixed stationary state. These innovations allow a generalization of the zeroth law of thermodynamics to cover stationary states out of equilibrium. By expressing the entropy in terms of the q-index, we show the detailed paths by which the transition of stationary states evolves toward equilibrium following the dynamics of a characteristic difference equation along the q-indices. This naturally exhibits certain stationary states out of equilibrium that are frequently observed in space plasmas.

  17. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion.......Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...

  18. Microbial adherence to a nonprecious alloy after plasma nitriding process.

    Science.gov (United States)

    Sonugelen, Mehmet; Destan, Uhmut Iyiyapici; Lambrecht, Fatma Yurt; Oztürk, Berran; Karadeniz, Süleyman

    2006-01-01

    To investigate the microbial adherence to the surfaces of a nonprecious metal alloy after plasma nitriding. The plasma-nitriding process was performed to the surfaces of metals prepared from a nickel-chromium alloy. The microorganisms were labeled with technetium-99m. After the labeling procedure, 60 metal disks were treated with a microorganism for each use. The results revealed that the amount of adherence of all microorganisms on surfaces was changed by plasma-nitriding process; adherence decreased substantially (P plasma nitriding time were not significant (P> .05) With the plasma-nitriding process, the surface properties of nonprecious metal alloys can be changed, leading to decreased microbial adherence.

  19. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  20. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    Science.gov (United States)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  1. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  2. Preliminary Hazards Analysis Plasma Hearth Process

    Energy Technology Data Exchange (ETDEWEB)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  3. The Space-Fractional Poisson Process

    CERN Document Server

    Orsingher, Enzo

    2011-01-01

    In this paper we introduce the space-fractional Poisson process whose state probabilities $p_k^\\alpha(t)$, $t>0$, $\\alpha \\in (0,1]$, are governed by the equations $(\\mathrm d/\\mathrm dt)p_k(t) = -\\lambda^\\alpha (1-B)p_k^\\alpha(t)$, where $(1-B)^\\alpha$ is the fractional difference operator found in the study of time series analysis. We explicitly obtain the distributions $p_k^\\alpha(t)$, the probability generating functions $G_\\alpha(u,t)$, which are also expressed as distributions of the minimum of i.i.d.\\ uniform random variables. The comparison with the time-fractional Poisson process is investigated and finally, we arrive at the more general space-time fractional Poisson process of which we give the explicit distribution.

  4. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  5. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  6. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  7. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  8. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    2014-01-01

    Dry processing based on reactive plasmas was the main driven force for micro- and recently nano-electronic industry. Once with the increasing in plasma complexity new diagnostics methods have been developed to ensure a proper process control during etching, thin film deposition, ion implantation...... or other steps in device fabrication. This work reviews some of the unconventional methods developed in the last two decays to measure the parameters of reactive plasmas including, the test function method, thermal probes, and plasma-sheath-lens probes. The negative ion detection and surface contamination...... in plasmas with a high degree of contamination are also addressed. (C) 2014 Elsevier B.V. All rights reserved....

  9. STATISTICAL SPACE-TIME ADAPTIVE PROCESSING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Yang Jie

    2010-01-01

    For the slowly changed environment-range-dependent non-homogeneity,a new statistical space-time adaptive processing algorithm is proposed,which uses the statistical methods,such as Bayes or likelihood criterion to estimate the approximative covariance matrix in the non-homogeneous condition. According to the statistical characteristics of the space-time snapshot data,via defining the aggregate snapshot data and corresponding events,the conditional probability of the space-time snapshot data which is the effective training data is given,then the weighting coefficients are obtained for the weighting method. The theory analysis indicates that the statistical methods of the Bayes and likelihood criterion for covariance matrix estimation are more reasonable than other methods that estimate the covariance matrix with the use of training data except the detected outliers. The last simulations attest that the proposed algorithms can estimate the covariance in the non-homogeneous condition exactly and have favorable characteristics.

  10. Plasma and urine catecholamine levels in cosmonauts during long-term stay on Space Station Salyut-7

    Science.gov (United States)

    Kvetn̆anský, R.; Davydova, N. A.; Noskov, V. B.; Vigas̆, M.; Popova, I. A.; Us̆akov, A. C.; Macho, L.; Grigoriev, A. I.

    The activity of the sympathetic adrenal system in cosmonauts exposed to a stay in space lasting for about half a year has so far been studied only by measuring catecholamine levels in plasma and urine samples taken before space flight and after landing. The device "Plasma 01", specially designed for collecting and processing venous blood from subjects during space flight on board the station Salyut-7 rendered it possible for the first time to collect and freeze samples of blood from cosmonauts in the course of a long-term 237-day space flight. A physician-cosmonaut collected samples of blood and urine from two cosmonauts over the period of days 217-219 of their stay in space. The samples were transported to Earth frozen. As indicators of the sympathetic adrenal system activity, plasma and urine concentrations of epinephrine and norepinephrine as well as urine levels of the catecholamine metabolites metanephrine, normetanephrine, and vanillylmandelic acid were determined before, during and after space flight. On days 217-219 of space flight plasma epinephrine and norepinephrine levels were slightly increased, yet not substantially different from normal. During stress situations plasma norepinephrine and epinephrine levels usually exhibit a manifold increase. On days 217-219 of space flight norepinephrine and epinephrine levels in urine were comparable with pre-flight values and the levels of their metabolites were even significantly decreased. All the parameters studied, particularly plasma norepinephrine as well as urine norepinephrine, normetanephrine, and vanillylmandelic acid, reached the highest values 8 days after landing. The results obtained suggest that, in the period of days 217-219 of the cosmonauts' stay in space in the state of weightlessness, the sympathetic adrenal system is either not activated at all or there is but a slight activation induced by specific activities of the cosmonauts, whereas in the process of re-adaptation after space flight on

  11. Methods utilized in evaluating the profitability of commercial space processing

    Science.gov (United States)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  12. Atomic processes in high-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1982-12-21

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described. (MOW)

  13. Near Earth space plasma monitoring under COST 296

    Directory of Open Access Journals (Sweden)

    Jürgen Bremer

    2009-06-01

    Full Text Available

    This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296

    Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time

    data and providing data users measurement uncertainties. These value added data also served for calibration and

    validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC, other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications.


  14. Thermomechanical processing of plasma sprayed intermetallic sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  15. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  16. Commercialization of materials processing in space

    Science.gov (United States)

    Yost, Charles F.

    1986-01-01

    NASA research to date on materials processing in space (MPS) has revealed that microgravity conditions to a large degree eliminate normal convection, sedimentation, buoyancy, and deformations due to gravity, and permit the exploration of containerless processing. The goals of current NASA MPS work is to augment the fundamental database on MPS and to foster commercial participation in MPS. Techniques being applied by NASA to fulfill the latter goal are described, including technical exchange, industrial guest investigator and joint endeavor agreements, and tangible market incentives. Guidelines for each type of agreement are summarized.

  17. Data Analysis Techniques for Resolving Nonlinear Processes in Plasmas : a Review

    OpenAIRE

    de Wit, T. Dudok

    1996-01-01

    The growing need for a better understanding of nonlinear processes in plasma physics has in the last decades stimulated the development of new and more advanced data analysis techniques. This review lists some of the basic properties one may wish to infer from a data set and then presents appropriate analysis techniques with some recent applications. The emphasis is put on the investigation of nonlinear wave phenomena and turbulence in space plasmas.

  18. Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links

    Science.gov (United States)

    Armstrong, John W.; Estabrook, Frank B.

    2011-01-01

    Space weather is described as the variability of solar wind plasma that can disturb satellites and systems and affect human space exploration. Accurate prediction requires information of the heliosphere inside the orbit of the Earth. However, for predictions using remote sensing, one needs not only plane-of-sky position but also range information the third spatial dimension to show the distance to the plasma disturbances and thus when they might propagate or co-rotate to create disturbances at the orbit of the Earth. Appropriately processed radio signals from spacecraft having communications lines-of-sight passing through the inner heliosphere can be used for this spacetime localization of plasma disturbances. The solar plasma has an electron density- and radio-wavelength-dependent index of refraction. An approximately monochromatic wave propagating through a thin layer of plasma turbulence causes a geometrical-optics phase shift proportional to the electron density at the point of passage, the radio wavelength, and the thickness of the layer. This phase shift is the same for a wave propagating either up or down through the layer at the point of passage. This attribute can be used for space-time localization of plasma irregularities. The transfer function of plasma irregularities to the observed time series depends on the Doppler tracking mode. When spacecraft observations are in the two-way mode (downlink radio signal phase-locked to an uplink radio transmission), plasma fluctuations have a two-pulse response in the Doppler. In the two-way mode, the Doppler time series y2(t) is the difference between the frequency of the downlink signal received and the frequency of a ground reference oscillator. A plasma blob localized at a distance x along the line of sight perturbs the phase on both the up and down link, giving rise to two events in the two-way tracking time series separated by a time lag depending the blob s distance from the Earth: T2-2x/c, where T2 is the

  19. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  20. Magnetic Null Points in Kinetic Simulations of Space Plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  1. Magnetic null points in kinetic simulations of space plasmas

    CERN Document Server

    Olshevsky, Vyacheslav; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2015-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and lunar magnetic ano...

  2. A Plasma Aerocapture and Entry System for Manned Missions and Planetary Deep Space Orbiters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Plasma Magnetoshell is based on demonstrated experimental results and the successful implementation would dramatically decrease mission risk, launch cost, mass,...

  3. Process characterization and Design Space definition.

    Science.gov (United States)

    Hakemeyer, Christian; McKnight, Nathan; St John, Rick; Meier, Steven; Trexler-Schmidt, Melody; Kelley, Brian; Zettl, Frank; Puskeiler, Robert; Kleinjans, Annika; Lim, Fred; Wurth, Christine

    2016-09-01

    Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody (MAb). This chapter describes the tools used for the characterization and validation of MAb manufacturing process under the QbD paradigm. This comprises risk assessments for the identification of potential Critical Process Parameters (pCPPs), statistically designed experimental studies as well as studies assessing the linkage of the unit operations. Outcome of the studies is the classification of process parameters according to their criticality and the definition of appropriate acceptable ranges of operation. The process and product knowledge gained in these studies can lead to the approval of a Design Space. Additionally, the information gained in these studies are used to define the 'impact' which the manufacturing process can have on the variability of the CQAs, which is used to define the testing and monitoring strategy.

  4. Fundamental Study of Interactions Between High-Density Pulsed Plasmas and Materials for Space Propulsion

    Science.gov (United States)

    2012-09-01

    interactions studies (plasma too cold and too “dirty.”) We have built and tested a new, gas -fed, non- ablative, rep-rated capillary plasma source for our...those encountered in space propulsion devices including Pulsed Plasma Thrusters (PPT), Magneto-Plasma Dynamic (MPD) thrusters and capillary plasma...based thrusters . The ongoing research work brings together a team of researchers from the University of Texas at Austin (UT) and the University of

  5. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  6. Clarification on Polarity of Bipolar Electric Field Solitary Structures in Space Plasmas with Satellite Observation

    Institute of Scientific and Technical Information of China (English)

    M. N. S.Qureshi; SHI Jian-Kui; LIU Zhen-Xing; Klaus Torkar

    2011-01-01

    The bipolar electric field solitary (EFS) structures observed frequently in space plasmas by satellites have two different polarities, first positive electric field peak then negative (i.e., positive/negative) and first negative then positive peak (i.e., negative/positive). We provide the physical explanation on the polarity of observed bipolar EFS structures with an electrostatic ion fluid model. The results show that ii initial electric field E0 > 0, the polarity of the bipolar EFS structure will be positive/negative; and if E0 < 0, the polarity of the bipolar EFS structure will be negative/positive. However, for a fixed polarity of the EFS, either positive/negative or negative/positive, if the satellite is located at the positive side of the EFS, the observed polarity should be positive/negative, if the satellite is located at the negative side of the EFS, the observed polarity should be negative/positive. Therefore, we provide a method to clarify the natural polarity of the EFS with observed polarity by satellites. Our results are significant to understand the physical process in space plasma with the satellite observation.%@@ The bipolar electric field solitary (EFS) structures observed frequently in space plasmas by satellites have two different polarities, first positive electric Held peak then negative (i.e., positive/negative) and first negative then positive peak (i.e., negative/positive).We provide the physical explanation on the polarity of observed bipolar EFS structures with an electrostatic ion fluid model.

  7. Plasma Processes : Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    R Bhattacharyya; M S Janaki; B Dasgupta

    2000-11-01

    Relaxation of toroidal discharges is described by the principle of minimum energy dissipation together with the constraint of conserved global helicity. The resulting Euler-Lagrange equation is solved in toroidal coordinates for an axisymmetric torus by expressing the solutions in terms of Chandrasekhar-Kendall (C-K) eigenfunctions analytically continued in the complex domain. The C-K eigenfunctions are obtained as hypergeometric functions that are solutions of scalar Helmholtz equation in toroidal coordinates in the large aspect-ratio approximation. Equilibria are constructed by assuming the current to vanish at the edge of plasma. For the = 0; = 0 ( and are the poloidal and toroidal mode numbers respectively) relaxed states, the magnetic field, current, (safety factor) and pressure profiles are calculated for a given value of aspect-ratio of the torus and for different values of the eigenvalue 0. The new feature of the present model is that solutions allow for both tokamak as well as RFP-like behaviour with increase in the values of 0, which is related directly to volt-sec in the experiment.

  8. Plasma Processes : Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Mary Alex; V Balagi; K R Prasad; K P Sreekumar; P V Ananthapadmanabhan

    2000-11-01

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research Centre. These components act as thin spacers that have good mechanical strength as well as high electrical insulation and replace alumina insulators with the same dimensions. As a result, the design of the beam loss monitor ion chamber for CAT could be simplified by coating the outer surface of the HT electrode with alumina. One of the chambers developed for isotope calibrator for brachytherapy gamma sources has its outer aluminium electrode (60 mm dia × 220 mm long) coated with 250 thick alumina (97%) + titania (3%). In view of potential applications in neutron-sensitive ion chambers used in reactor control instrumentation, studies were carried out on alumina 100 to 500 thick coatings on copper, aluminium and SS components. The electrical insulation varied from 108 ohms to 1012 ohms for coating thicknesses above 200 . The porosity in the coating resulted in some fall in electrical insulation due to moisture absorption. An improvement could be achieved by providing the ceramic surface with moisture-repellent silicone oil coating. Irradiation at Apsara reactor core location showed that the coating on aluminium was found to be unaffected after exposure to 1017 nvt fluence.

  9. Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska

    Science.gov (United States)

    Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.

    2013-07-01

    We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.

  10. Process characteristics of fibre-laser-assisted plasma arc welding

    OpenAIRE

    Mahrle, A; SCHNICK, M; Rose, S; Demuth, C; Beyer, E.; Füssel, U

    2011-01-01

    Abstract Experimental and theoretical investigations on fibre-laser assisted plasma arc welding (LAPW) have been performed. Welding experiments were carried out on aluminium and steel sheets. In case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In case of aluminium weldin...

  11. Laser initiation and decay processes in an organic vapor plasma

    Science.gov (United States)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  12. Use of cold plasma in food processing

    NARCIS (Netherlands)

    Mastwijk, H.C.; Nierop Groot, M.N.

    2010-01-01

    Application of cold plasma has been reported in agriculture, food, and bioscience literature as an effective, non-chemical, gas-phase disinfection agent that can be applied at moderate temperatures. The unusual thermodynamic properties of these gases are discussed with focus on nitrogen-based

  13. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    Science.gov (United States)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  14. Plasma processing methods for hydrogen production

    Science.gov (United States)

    Mizeraczyk, Jerzy; Jasiński, Mariusz

    2016-08-01

    In the future a transfer from the fossil fuel-based economy to hydrogen-based economy is expected. Therefore the development of systems for efficient H2 production becomes important. The several conventional methods of mass-scale (or central) H2 production (methane, natural gas and higher hydrocarbons reforming, coal gasification reforming) are well developed and their costs of H2 production are acceptable. However, due to the H2 transport and storage problems the small-scale (distributed) technologies for H2 production are demanded. However, these new technologies have to meet the requirement of producing H2 at a production cost of (1-2)/kg(H2) (or 60 g(H2)/kWh) by 2020 (the U.S. Department of Energy's target). Recently several plasma methods have been proposed for the small-scale H2 production. The most promising plasmas for this purpose seems to be those generated by gliding, plasmatron and nozzle arcs, and microwave discharges. In this paper plasma methods proposed for H2 production are briefly described and critically evaluated from the view point of H2 production efficiency. The paper is aiming at answering a question if any plasma method for the small-scale H2 production approaches such challenges as the production energy yield of 60 g(H2)/kWh, high production rate, high reliability and low investment cost. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  16. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven (Belgium); Deca, Jan [Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO (United States); Divin, Andrey [St. Petersburg State University, St. Petersburg (Russian Federation); Peng, Ivy Bo; Markidis, Stefano, E-mail: sya@mao.kiev.ua [High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm (Sweden)

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  17. Catalytic processes for space station waste conversion

    Science.gov (United States)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  18. Mirror-field confined compact plasma source using permanent magnet for plasma processings

    Science.gov (United States)

    Goto, Tetsuya; Sato, Kei-ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 1011 cm-3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  19. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    Science.gov (United States)

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10(11) cm(-3) could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  20. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  1. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  2. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  3. A thin column of dense plasma for space-charge neutralization of intense ion beams

    Science.gov (United States)

    Roy, P. K.; Seidl, P. A.; Anders, A.; Barnard, J. J.; Bieniosek, F. M.; Friedman, A.; Gilson, E. P.; Greenway, W.; Sefkow, A. B.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Waldron, W. L.; Welch, D. R.

    2008-11-01

    Typical ion driven warm dense matter experiment requires a plasma density of 10^14/cm^3 to meet the challenge of np>nb, where np, and nb are the number densities of plasma and beam, respectively. Plasma electrons neutralize the space charge of an ion beam to allow a small spot of about 1-mm radius. In order to provide np>nb for initial warm, dense matter experiments, four cathodic arc plasma sources have been fabricated, and the aluminum plasma is focused in a focusing solenoid (8T field). A plasma probe with 37 collectors was developed to measure the radial plasma profile inside the solenoid. Results show that the plasma forms a thin column of diameter ˜7mm along the solenoid axis. The magnetic mirror effect, plasma condensation, and the deformation of the magnetic field due to eddy currents are under investigation. Data on plasma parameters and ion beam neutralization will be presented.

  4. A Review of Nonlinear Low Frequency (LF) Wave Observations in Space Plasmas: On the Development of Plasma Turbulence

    Science.gov (United States)

    Tsurutani, Bruce T.

    1995-01-01

    As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.

  5. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    Science.gov (United States)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be

  6. Mathematical SETI Statistics, Signal Processing, Space Missions

    CERN Document Server

    Maccone, Claudio

    2012-01-01

    This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part...

  7. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  8. Method and system for nanoscale plasma processing of objects

    Science.gov (United States)

    Oehrlein, Gottlieb S.; Hua, Xuefeng; Stolz, Christian

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  9. Apparatus and method for plasma processing of SRF cavities

    CERN Document Server

    Upadhyay, J; Peshl, J; Bašović, M; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vuškovića, L

    2015-01-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segment...

  10. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    Reactive plasmas produced in oxygen, nitrogen, hydrogen and other complex gas mixture are used for various applications including thin films, etching, ion implantation, ashing, particles growth, oxidation and other surface functionalization processes. Most of the reactive gases are also...... the possibility to control and use these plasmas for processing. Development of reactive plasma sources for both applications and basic science is rather challenging and some of these efforts will be presented in direct correlation with diagnostic approaches....... electronegative so that, the role of negative ions cannot be neglected. The continuous decrease of the features size in micro- and nanoelectronic industry requires a precise control of plasma parameters including the negative ions. Despite of a good progress in plasma diagnostics, yet more is to be done...

  11. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  12. SOME COLLISION PROCESSES IN PLASMAS WITH HIGHER TEMPERATURE AND DENSITY

    Institute of Scientific and Technical Information of China (English)

    KazuoTakayanagi

    1990-01-01

    Some collision processes important in hot and dense plasmas are discussed.Recent calculation of secondary electron velocity distribution in ionizing collision between an electron and a multiply-charged ion is reported.

  13. Development of Expert Controller for Plasma Spraying Process

    Institute of Scientific and Technical Information of China (English)

    LIChun-xu; CHENKe-xuan; LIHe-qi; LIDe-wu

    2004-01-01

    Aiming at the plasma spraying process control, the control system model is developed on the basis of analyzing control parameters and coating properties and their correlation, and the corresponding control method and regulations are also given. With the developed expert controller for plasma spraying process, stable spraying can be realized using ordinary spraying powder and the coating of compaction, homogeneity and high bonding strength can be obtained.

  14. Fundamental Processes in Partially Ionized Plasmas

    Science.gov (United States)

    1992-11-01

    capacitive coupiing) or an oscillating magnetic field (inductive coupling). The principies of inductive coupling are presented in Section 2.1 since the...Information Division, National Aeronautics and Space Administration , Washington, DC 20546, August 1966. Allison, A.C., Guberman, S.L., and Dalgamo, A., "A

  15. Time dependent atomic processes in discharge produced low Z plasma

    Science.gov (United States)

    Yuyama, M.; Sasaki, T.; Horioka, K.; Kawamura, T.

    2008-05-01

    The z-pinch simulation have been performed with magneto-hydro dynamics and atomic population kinetics codes. A factor associated with transient atomic processes was proposed. The atomic transient degrees of dopant lithium in hydrogen plasma were calculated with initial plasma densities of 1.0 × 1016 ~ 5.0 × 1017cm-3. The higher initial plasma density is, the lower is the transient degree generally. It is also found that the transient properties of the atomic processes are sensitive to ionization energy and electron temperature.

  16. Space manufacturing utilizing the directional electrostatic accretion process

    Science.gov (United States)

    Mortensen, A.

    1986-01-01

    The Directional Electrostatic Accretion Process (DEAP) is described with respect to both the physical process and its application to manufacturing in space. This high precision portable manufacturing method will revolutionize current practices in manufacturing and repair of spacecraft and space structures. The cost effectiveness of this process will be invaluable to future space manufacturing projects.

  17. Microwave Materials Processing for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For a space-based fabrication effort to be effective, the weight, power requirements and footprint must be minimized. Because of the unique beam forming properties...

  18. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  19. Initial damage processes for diamond film exposure to hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, A., E-mail: acd@ansto.gov.au [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Guenette, M.C. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Samuell, C.M. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Karatchevtseva, I. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Ionescu, M.; Cohen, D.D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Blackwell, B. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Corr, C., E-mail: cormac.corr@anu.edu.au [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Riley, D.P., E-mail: dry@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia)

    2013-12-15

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films.

  20. Multiscale, Intermittent, Turbulent Fluctuations in Space Plasmas and Their Influence on the Interscale Behavior of the Space Environment

    Science.gov (United States)

    2012-06-26

    Belgium Institute of Spatial Aeronomy and Center of Excellence in Solar-Terrestrial Physics, 2010. Invited Lectures: 1. Invited Lecturer, (ROMA...NM 87545, USA 4Belgian Institute for Space Aeronomy , 1180 Brussels, Belgium 5Institute for Space Sciences, 077125 Bucharest, Romania 6Plasma and

  1. Real-Time Fault Classification for Plasma Processes

    Directory of Open Access Journals (Sweden)

    Ryan Yang

    2011-07-01

    Full Text Available Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703-5723 is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success.

  2. Real-time fault classification for plasma processes.

    Science.gov (United States)

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703-5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success.

  3. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  4. Study on the ignition process of a segmented plasma torch

    Science.gov (United States)

    Cao, Xiuquan; Yu, Deping; Xiang, Yong; Li, Chao; Jiang, Hui; Yao, Jin

    2017-07-01

    Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been little study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process are set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.

  5. Spectroscopic diagnostics of plasma during laser processing of aluminium

    Science.gov (United States)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  6. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  7. Irregularities Associated with Artificially Created Dusty Plasmas in the near Earth Space Environment

    Science.gov (United States)

    Bordikar, M. R.; Scales, W.; Mahmoudian, A.; Fu, H.

    2009-12-01

    A natural dust layer formed by tons of meteoric dust spans the altitude range between 80 and 100 kilometers of the earth’s upper mesosphere and lower thermosphere which forms Noctilucent Clouds NLCs. These dust layers are charged due to collection of electrons and ions from the earth’s ionosphere. Polar Mesospheric Summer Echoes are radar echoes which result from scattering from the irregularities in the electron density above the NLC altitude. An alternate approach to understanding natural dust layers is to perform active space experiments in which a dust cloud is artificially created in a controlled manner in the upper atmosphere. The goal of Charged Aerosol Release Experiment (CARE) is to investigate similarity in plasma irregularity associated with natural and artificial dust layers. This presentation will address some of the physical processes expected to be important during the early time phase after creation of an artificial dust cloud in the earth’s ionosphere. Of major importance will be the production of plasma irregularities which may lead to radar echoes and the possibility of their relationship to PMSEs observed from natural dusty space plasmas. The objective is to investigate the production of electron irregularities due to growth of plasma instabilities driven by inhomogeneities in the boundary between the background plasma and the expanding charged dust layer. First, a two dimensional plasma simulation model will be described that may be used for examining early time evolution after expansion of an artificial dust cloud across the magnetic field in the ionosphere. The model considers a three species system with fluid electrons and ions and Particle-In-Cell PIC charged dust grains in which the dust charge on the grains varies in time according to the standard charging model. The electrons are magnetized and the algorithm incorporates the parallel electron dynamics while the ions are assumed to be unmagnetized. Simulations runs were made to

  8. Atmospheric pressure plasmas for aerosols processes in materials and environment

    Science.gov (United States)

    Borra, J. P.; Jidenko, N.; Bourgeois, E.

    2009-08-01

    The paper highlights applications of some atmospheric pressure plasmas (dc-corona, streamer and spark and ac-Dielectric Barrier Discharges) to aerosol processes for Materials and Environment (filtration, diagnostics). The production of vapor i.e. condensable gaseous species, leads to nano-sized particles by physical and chemical routes of nucleation in these AP plasmas: (i) when dc streamer and spark filamentary discharges as well as ac filamentary dielectric barrier discharges interact with metal or dielectric surfaces, and (ii) when discharges induce reactions with gaseous precursors in volume. It is shown how composition, size and structure of primary nano-particles are related to plasma parameters (energy, number per unit surface and time and thermal gradients). Then the growth by coagulation controls the final size of agglomerates versus plasma parameters and transit time in and after the plasma. Charging and electro-thermal collection are depicted to account for the related potential applications of controlled kinematics of charged aerosol.

  9. Drift Kelvin-Helmholtz instabilities in space plasmas

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1992-01-01

    Drift Kelvin-Helmholtz instabilities of a finite-beta plasma in equilibrium electric and magnetic fields which are perpendicular to each other are studied using two fluid equations. Three types of these instabilities are considered including the magnetosonic instability of a finite beta-homogeneous plasma, the electrostatic drift instability of an inhomogeneous low-beta plasma, and the magneto-acoustic instability of a high-beta inhomogeneous isothermal plasma. It is shown that the electric field has either stabilizing or destabilizing effect depending on conditions under consideration.

  10. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  11. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence...

  12. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  13. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

    CERN Document Server

    Nicolaou, Georgios

    2016-01-01

    This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument's response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the d...

  14. Modelling of the arc reattachment process in plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Trelles, J P; Pfender, E; Heberlein, J V R [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-09-21

    The need to improve plasma spraying processes has motivated the development of computational models capable of describing the arc dynamics inside plasma torches. Although progress has been made in the development of such models, the realistic simulation of the arc reattachment process, a central part of the arc dynamics inside plasma torches, is still an unsolved problem. This study presents a reattachment model capable of mimicking the physical reattachment process as part of a local thermodynamic equilibrium description of the plasma flow. The fluid and electromagnetic equations describing the plasma flow are solved in a fully-coupled approach by a variational multi-scale finite element method, which implicitly accounts for the multi-scale nature of the flow. The effectiveness of our modelling approach is demonstrated by simulations of a commercial plasma spraying torch operating with Ar-He under different operating conditions. The model is able to match the experimentally measured peak frequencies of the voltage signal, arc lengths and anode spot sizes, but produces voltage drops exceeding those measured. This finding, added to the apparent lack of a well-defined cold boundary layer all around the arc, points towards the importance of non-equilibrium effects inside the torch, especially in the anode attachment region.

  15. A Course on Plasma Processing in Integrated Circuit Fabrication.

    Science.gov (United States)

    Sawin, Herbert H.; Reif, Rafael

    1983-01-01

    Describes a course, taught jointly by electrical/chemical engineering departments at the Massachusetts Institute of Technology, designed to teach the fundamental science of plasma processing as well as to give an overview of the present state of industrial processes. Provides rationale for course development, texts used, class composition, and…

  16. Process Model for Defining Space Sensing and Situational Awareness Requirements

    Science.gov (United States)

    2006-04-01

    process model for defining systems for space sensing and space situational awareness is presented. The paper concentrates on eight steps for determining the requirements to include: decision maker needs, system requirements, exploitation methods and vulnerabilities, critical capabilities, and identify attack scenarios. Utilization of the USAF anti-tamper (AT) implementation process as a process model departure point for the space sensing and situational awareness (SSSA...is presented. The AT implementation process model , as an

  17. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    space environment forecast input to the ISS charging model indicates floating potentials (FP) within specified limits. These recommendations were based on the persistence of conditions in the space environment due to the current low solar cycle and belief in the accuracy and completeness of the ISS charging model. Subsequently, a Noncompliance Report (NCR), ISS-NCR-232G, Lack of Two-fault Tolerance to EVA Crew Shock in the Low Earth Orbit Plasma Environment, was signed in September 2013 specifying new guidelines for the use of shock hazard controls based on a forecast of the space environment from ISS plasma measurements taken prior to the EVA [ISS-EVA-312-AC, 2012]. This NESC assessment re-evaluates EVA charging hazards through a process that is based on over 14 years of ISS operations, charging measurements, laboratory tests, EMU studies and modifications, and safety reports. The assessment seeks an objective review of the plasma charging hazards associated with EVA operations to determine if any of the present hazard controls can safely change the PCU utilization plan to allow more flexibility in ISS operations during EVA preparation and execution.

  18. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  19. The distribution of radio plasma in time and space.

    Science.gov (United States)

    Blundell, Katherine M

    2005-03-15

    The influence of jet-ejected plasma has been an important theme of this meeting; I draw attention to the prevalence of jet-ejected plasma, in particular that which has not been properly accounted for in the past. There are three strands to this paper: important emission which is prominent only at the lowest radio frequencies; relic radio plasma which must exist if even the most basic aspects of radio source evolutionary models are correct; and evidence that some 'radio-quiet' quasars could be FR-I radio sources.

  20. Synchronous pulsing plasma utilization in dummy poly gate removal process

    Science.gov (United States)

    Huang, Ruixuan; Meng, Xiao-Ying; Han, Qiu-Hua; Zhang, Hai-Yang

    2015-03-01

    When CMOS technology reaches 28/20nm node and beyond, several new schemes are implemented such as High K metal gate (HKMG) which can enhance the device performance and has better control of device current leakage. Dummy poly gate removal (DPGR) process is introduced for HKMG, and works as a key process to control the work function of metal gate and threshold voltage (Vt) shift. In dry etch technology, conventional continuous wave (CW) plasma process has been widely used, however, it may not be capable for some challenging process in 28nm node and beyond. In DPGR process for HKMG scheme, CW scheme may result in plasma damage of gate oxide/capping layer for its inherent high electron temperature (Te) and ion energy while synchronous pulsing scheme is capable to simultaneously pulse both source and bias power, which could achieve lower Te, independent control of ion and radical flux, well control the loading of polymer deposition on dense/ isolate features. It's the first attempt to utilize synchronous pulsing plasma in DPGR process. Experiment results indicate that synchronous pulsing could provide less silicon recess under thin gate oxide which is induced by the plasma oxidation. Furthermore, the loading of HK capping layer loss between long channel and short channel can be well controlled which plays a key role on transistor performance, such as leakage and threshold voltage shift. Additionally, it has been found that synchronous pulsing could distinctly improve ILD loss when compared with CW, which is helpful to broaden the whole process window.

  1. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  2. Unity connecting module in the Space Station Processing Facility

    Science.gov (United States)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  3. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  4. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    Science.gov (United States)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  5. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...

  6. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.

    1991-01-01

    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...

  7. Standardization Process for Space Radiation Models Used for Space System Design

    Science.gov (United States)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  8. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    Science.gov (United States)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  9. Plasma density fluctuations observed during Space Shuttle Orbiter water releases

    Science.gov (United States)

    Pickett, J. S.; D'Angelo, N.; Kurth, W. S.

    1989-01-01

    Observations by the Langmuir probe on the Plasma Diagnostics Package flown as part of the Spacelab 2 mission in the summer of 1985 show a strong increase in the level of turbulence near the Shuttle Orbiter during operations in which liquid water is released. The spectrum of the plasma density fluctuations peaks at the lowest frequencies measured (a few Hz) and extends up to a few kHz, near the lower hybrid frequency. Two potential mechanisms for generating the plasma turbulence are suggested which are both based on the production of water ions as a result of charge exchange with the ambient oxygen ions in the ionosphere. The first mechanism proposed is the ion-plasma instability which arises from the drift of the contaminant with respect to the ambient oxygen ions. The other mechanism proposed is the Ott-Farley instability, which is a result of the ring distribution formed by the 'pick-up' water ions.

  10. Plasma Processes : Sheath and plasma parameters in a magnetized plasma system

    Indian Academy of Sciences (India)

    Bornali Singha; A Sharma; J Chutia

    2000-11-01

    The variation of electron temperature and plasma density in a magnetized 2 plasma is studied experimentally in presence of a grid placed at the middle of the system. Plasma leaks through the negatively biased grid from the source region into the diffused region. It is observed that the electron temperature increases with the magnetic field in the diffused region whereas it decreases in the source region of the system for a constant grid biasing voltage. Also, investigation is done to see the change of electron temperature with grid biasing voltage for a constant magnetic field. This is accompanied by the study of the variation of sheath structure across the grid for different magnetic field and grid biasing voltage as well. It reveals that with increasing magnetic field and negative grid biasing voltage, the sheath thickness expands.

  11. Technical issues in the conduct of large space platform experiments in plasma physics and geoplasma sciences

    Science.gov (United States)

    Szuszczewicz, Edward P.

    1986-01-01

    Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.

  12. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  13. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  14. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  15. 40 Years of Processing Pieces of Space

    Science.gov (United States)

    Satterwhite, C. E.; Funk, R. C.; Righter, K.; Harrington, R. H.

    2016-01-01

    This year marks the 40th year anniversary for the Antarctic Search for Meteorite (ANSMET) program. In 1976, the ANSMET program led the first expedition to Antarctica. The ANSMET program is a US-led field-based science project that recovers meteorite samples from Antarctica. Once a year from late November to late January, a field team consisting of 8 to 12 people, spends 6-8 weeks camping on the ice and collecting meteorites. Since 1976, more than 22,000 meteorite samples have been recovered. These meteorites come from asteroids, planets and other bodies of the solar system. Once collected, the Antarctic meteorites are shipped to NASA/Johnson Space Center (JSC) Houston, TX. in a refrigerated truck and are kept frozen to minimize oxidation until they are ready for initial processing. In Antarctica each meteorite is given a field tag which consists of numbers, once in the lab, this is replaced by an official tag, consisting of the Antarctic field location and year collected. The types and numbers of meteorites that have been classified include 849 carbonaceous chondrites, 135 enstatites, 512 achondrites, 64 stony, 115 irons, 48 others (27 R chondrites, 7 ungrouped), 6,161 H chondrites, 7,668 L chondrites, and 4,589 LL chondrites. Although 80-85 percent of the collected meteorites fall in the ordinary chondrite group, the other approximately 15 percent represent rare types of achondrites and carbonaceous chondrites. These rare meteorites include 25 lunar meteorites, 15 Martian meteorites, scores of various types of carbonaceous chondrites, and unique achondrites. The Antarctic meteorites that have been collected are processed in the Meteorite Processing Lab at JSC in Houston, TX. Initial processing of the meteorites begins with thawing/drying the meteorites in a nitrogen glove box for 24 to 48 hours. The meteorites are then photographed, measured, weighed and a description of the interior and exterior of each meteorite is written. The meteorite is broken and a

  16. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of)

    2016-07-15

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.

  17. From pulsed power to processing: Plasma initiated chemical process intensification

    NARCIS (Netherlands)

    Heesch, E.J.M. van; Yan, K.; Pemen, A.J.M.; Winands, G.J.J.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.

    2012-01-01

    Smart electric power for process intensification is a challenging research field that integrates power engineering, chemistry and green technology. Pulsed power technology is offering elegant solutions. This work focuses on backgrounds of matching the power source to the process. Important items are

  18. 14th High-Tech Plasma Processes Conference (HTPP 14)

    Science.gov (United States)

    2017-04-01

    Preface The High-Tech Plasma Processes Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. This conference is open to all the international community in the world involved in plasma science and plasma technology. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have achieved a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 75 people from 17 countries attended the conference with the total number of contributions being 74, consisting of 19 invited talks and 55 poster contributions. As a HTPP tradition a poster competition has been carried out during the conference. The winner of the poster competition was Fabrice Mavier from Université de Limoges, France with his paper “Pulsed arc plasma jet synchronized with drop-on-demand dispenser” All the participants also ejoyed the social program including an “unconventional” tour of the city, the visit to the famous Hofbräuhaus and the dinner at the Blutenburg, a beautiful inner-city castle. We have received papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 18 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We deeply thank the authors for their enthusiastic and high-grade contributions and we

  19. On the iodine doping process of plasma polymerised thiophene layers

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Engbers, G.H.M.; White, R.; Feijen, Jan

    2002-01-01

    To make a fair comparison of the conductive properties of plasma polymerised thiophene (PPT) layers deposited under different conditions, optimal doping procedures should be applied. The iodine doping process of PPT layers deposited at high (HP) and low (LP) pressure has been studied in detail.

  20. Cold plasma as a nonthermal food processing technology

    Science.gov (United States)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  1. Electron beam generated plasmas for the processing of graphene

    Science.gov (United States)

    Walton, S. G.; Hernández, S. C.; Boris, D. R.; Petrova, Tz B.; Petrov, G. M.

    2017-09-01

    The Naval Research Laboratory (NRL) has developed a processing system based on an electron beam-generated plasma and applied it to the processing of graphene. Unlike conventional discharges produced by electric fields (DC, RF, microwave, etc), the plasma is driven by a high-energy (~few keV) electron beam, an approach that simplifies the relative production of species while providing comparatively high ion-to-radical production rates. The resulting plasmas are characterized by high charged particle densities (1010-1011 cm-3) and electron temperatures that are typically about 1.0 eV or lower. Accordingly, the flux to adjacent surfaces is generally dominated by ions with kinetic energies in the range of 1-5 eV, a value at or near the bond strength of most materials. This provides the potential for controllably engineering materials with monolayer precision, an attribute attractive for the processing of atomically thin material systems. This work describes the attributes of electron beam driven plasma processing system and its use in modification of graphene.

  2. On the iodine doping process of plasma polymerised thiophene layers

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Engbers, G.H.M.; White, R.; Feijen, J.

    2001-01-01

    To make a fair comparison of the conductive properties of plasma polymerised thiophene (PPT) layers deposited under different conditions, optimal doping procedures should be applied. The iodine doping process of PPT layers deposited at high (HP) and low (LP) pressure has been studied in detail. Dopi

  3. Cross-scale energy transport in space plasmas

    Science.gov (United States)

    Moore, T. W.; Nykyri, K.; Dimmock, A. P.

    2016-12-01

    The solar wind is a supersonic magnetized plasma streaming far into the heliosphere. Although cooling as it flows, it is rapidly heated upon encountering planetary obstacles. At Earth, this interaction forms the magnetosphere and its sub-regions. The present paper focuses on particle heating across the boundary separating the shocked solar wind and magnetospheric plasma, which is driven by mechanisms operating on fluid, ion and electron scales. The cross-scale energy transport between these scales is a compelling and fundamental problem of plasma physics. Here, we present evidence of the energy transport between fluid and ion scales: free energy is provided in terms of a velocity shear generating fluid-scale Kelvin-Helmholtz instability. We show the unambiguous observation of an ion-scale magnetosonic wave packet, inside a Kelvin-Helmholtz vortex, with sufficient energy to account for observed ion heating. The present finding has universal consequences in understanding cross-scale energy transport, applicable to environments experiencing velocity shears during comparable plasma regimes.

  4. Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma

    Science.gov (United States)

    Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.

    2007-12-01

    The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.

  5. Space Plasma Studies by In-Situ and Remote Measurements

    Science.gov (United States)

    2007-11-02

    Awarded by Lenin Prize (highest in USSR). 1962 Plasma experiments aboard KOSMOS 2, evidence of the lack of charged particles thermodynamic equilibrium...ionosphere of Venus. 1970- 1979 Ionospheric experiments aboard COSMOS 378, INTERCOSMOS 8,10,12,14,18,19 and KOSMOS 900. 1970- 1981 Series of in

  6. Data capture and processing. [for Space Station

    Science.gov (United States)

    Lyon, John; Smith, Gene; Carper, Richard

    1987-01-01

    A systems concept developed in response to the specific requirements imposed by the Space Station and affiliated instrumentation is described. Particular attention is given to those subsystems associated with initial data capture, handling, routing, and distribution control for return link data via the Tracking and Data Relay Satellite System. The conceived approach, designated the Customer Data and Operations System, includes a data interface facility and a data handling center whose functions are data capture, demultiplexing and routing, early preprocessing, and ancillary data handling.

  7. Plasma Processes and Polymers: 16th International Symposium on Plasma Chemistry Taormina, Italy June 22-27, 2003

    Science.gov (United States)

    D'Agostino, Riccardo; Favia, Pietro; Oehr, Christian; Wertheimer, Michael R.

    2005-04-01

    This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.

  8. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  9. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  10. Optimization of the process of plasma ignition of coal

    Energy Technology Data Exchange (ETDEWEB)

    Peregudov, V.S. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2009-04-15

    Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

  11. Study of the interaction between space plasma and high voltage solar array

    OpenAIRE

    Iwasa, Minoru; TANAKA, KOJI; Sasaki, Susumu; ODAWARA, OSAMU; 岩佐 稔; 田中 孝治; 佐々木 進; 小田原 修

    2006-01-01

    We are studying the problems associated with high voltage power systems in space. Especially we are interested in the potential distribution of the solar array that is resistant to the electrical discharge. We have carried out experiment on the interaction between the space plasma and the high voltage solar array. An array of electrodes distributed on a dielectric material was used to simulate the inter-connectors of the solar array panel in space environment. One of major concerns in the usa...

  12. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  13. Space and Astrophysical Plasmas : High energy universe – Satellite missions

    Indian Academy of Sciences (India)

    Vinod Krishan

    2000-11-01

    A variety of satellite missions to observe the high energy universe are currently operating and some more with more versatility and capability are on the anvil. In this paper, after giving a brief introduction to the constituents of the high energy universe and the related plasma physical problems, general as well as specific features of the current and future x-ray and gamma-ray satellite missions are described.

  14. Magnetic null points in kinetic simulations of space plasmas

    OpenAIRE

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2015-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral n...

  15. Process characteristics of fibre-laser-assisted plasma arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Schnick, M; Rose, S; Demuth, C; Beyer, E; Fuessel, U, E-mail: achim.mahrle@iws.fraunhofer.de [Dresden University of Technology, Institute of Surface and Manufacturing Technology, PO Box, D-01062 Dresden (Germany)

    2011-08-31

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  16. Roadmaps—A new tool for commercial space processing

    Science.gov (United States)

    Whitten, Raymond P.; Crawford, James L.

    1996-03-01

    This paper presents a new management and planning tool ``roadmaps'' for the commercial development and use of space. It is focused around the disciplines of biotechnology and material science. Roadmaps have evolved from changes in U.S. space policy and NASA strategic plans. The evolution of the Roadmaps concept is tied to five observations: 1) Space Processing Division projects are not subject to standard ``peer'' reviews; 2) government funding requires early commercial investments in space; 3) marketable products are essential to the program mission; 4) funding of new science or technology is incidental to new product development; and 5) the use of roadmaps forces early planning to the market. The result is a course chartered for the future development of products in biotechnology and materials using space based infrastructure and technology development. These tools chart a course for commercial space processing; where the project completion is the development of new products in biotechnology and materials using space based technology.

  17. Frequency dependent plasma characteristics in a capacitively coupled 300 mm wafer plasma processing chamber

    Energy Technology Data Exchange (ETDEWEB)

    Hebner, Gregory A [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Barnat, Edward V [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Miller, Paul A [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Paterson, Alex M [Applied Materials, 974 Arques Avenue, Sunnyvale CA, 94086 (United States); Holland, John P [Applied Materials, 974 Arques Avenue, Sunnyvale CA, 94086 (United States)

    2006-11-01

    Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K.

  18. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  19. Plasma process control for improved PEO coatings on magnesium alloys

    Science.gov (United States)

    Hussein, Riyad Omran

    Plasma Electrolytic Oxidation (PEO) is a high voltage plasma-assisted oxidation process uses an environmentally-friendly aqueous electrolyte to oxidize the metal surfaces to form ceramic oxide coatings which impart a high corrosion and wear resistance. One of the main advantages of PEO process is that it can be applied to treat samples with complex shapes, and surfaces with different composition and microstructure. The PEO process of Mg alloys is strongly influenced by such parameters as electrolyte composition and concentration, current or voltage applied and substrate alloy. Generally, these parameters have a direct influence on the discharging behavior. The discharges play an essential role in the formation and resulting composition of the 3-layer oxide structure. A detailed knowledge of the coating mechanisms is extremely important in order to produce a desired coating quality to reach the best performance of the PEO coatings in terms of corrosion resistance and tribological properties (wear rate, COF). During PEO processing of magnesium, some of the metal cations are transferred outwards from the substrate and react with anions to form ceramic coatings. Also, due to the high electric field in the discharge channels, oxygen anions transfer towards the magnesium substrate and react with Mg2+ cations to form a ceramic coating. Although, in general, PEO coating of Mg alloys produces the three-layered structure, the relative proportions of the three-layers are strongly influenced by the PEO processing parameters. In PEO process, the ceramic coating grows inwards to the alloy substrate and outwards to the coating surface simultaneously. For the coating growth, there are three simultaneous processes taking place, namely the electrochemical, the plasma chemical reactions and thermal diffusion. Optical emission spectroscopy (OES) was employed for the discharge characterization by following the substrate and electrolyte element present in the plasma discharge during the

  20. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen.

    Science.gov (United States)

    Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  3. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    Science.gov (United States)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  4. Cross-Scale: Multi-Scale Coupling in Space Plasma, Assessment Study Report

    CERN Document Server

    Schwartz, Steve; Fujimoto, Masaki; Hellinger, Petr; Kessel, Mona; Le, Guan; Liu, William; Louarn, Philippe; Mann, Ian; Nakamura, Rumi; Owen, Chris; Pinçon, Jean-Louis; Sorriso-Valvo, Luca; Vaivads, Andris; Wimmer-Schweingruber, Robert F

    2009-01-01

    Driven by the support and interest of the international space plasma community to examine simultaneous physical plasma scales and their interactions, the Cross-Scale Mission concept was submitted and accepted as an ESA Cosmic Vision M-class candidate mission. This report presents an overview of the assessment study phase of the 7 ESA spacecraft Cross-Scale mission. Where appropriate, discussion of the benefit of international collaboration with the SCOPE mission, as well as other interested parties, is included.

  5. Dusty Plasma Research under Microgravity: from the Orbital Station ``Mir'' to the International Space Station

    Science.gov (United States)

    Fortov, Vladimir

    Dusty, or complex plasmas are composed of a weakly ionized gas and charged microparticles. Dust and dusty plasmas are ubiquitous in space -- they are present in planetary rings, cometary tails, interplanetary and interstellar clouds, the mesosphere, thunderclouds, they are found in the vicinity of artificial satellites and space stations, etc. Dusty plasmas formed by micronsize particles are actively investigated in many laboratories. This research has many interesting applications like nanomaterial synthesis, nanoparticle handling or particle waste removal just to mention a few. But, the most interesting application of dusty plasmas is the use as model systems for fundamental physics. It allows investigation on the most fundamental -- the kinetic level and provides insights into physics of solids and liquids with a precision not achievable in natural systems. Experiments performed on Earth are always altered or even hindered by gravity. Microgravity conditions are necessary to make investigations of large homogeneous 3-dimensional dusty plasma systems. Here we present the survey of results of the dusty plasma physics investigations under microgravity conditions with the help of experimental installations ``Plasma Crystal-1'' (PK-1) and ``PK-2'' used on the Orbital Station ``Mir'', and the unique experimental installations ``PK-3'' and ``PK-3 Plus'' used on the International Space Station. The use of these installations has given a possibility to obtain new knowledge on the dusty plasma properties. The phase transition from the isotropic liquid dusty plasma system to the so-called electrorheological plasma has been performed. The transition is the isotropic one and is fully reversible. The other interesting phenomenon is an interpenetration of two clouds of microparticles of different sizes. When a velocity of the penetrating particles is rather high the lane formation has been observed. This phenomenon is the non-equilibrium transition, depends upon peculiarities

  6. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  7. EXAFS investigation of nanoparticles produced in a thermal plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Luetzenkirchen-Hecht, D.; Frahm, R. [Heinrich-Heine-Univ. Duesseldorf, Inst. fuer Angewandte Physik (Germany); Buchner, P. [Heinrich-Heine-Univ. Duesseldorf, Inst. fuer Laser- und Plasmaphysik (Germany); Strehblow, H.H. [Heinrich-Heine-Univ., Inst. fuer Physikalische Chemie (Germany)

    1999-11-01

    Nanosized ceramic powders (Cu/SiC, Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2}) were produced by evaporation of coarsely grained powders of the respective materials in an inductively coupled thermal plasma process and rapid quenching of the vapor. The atomic short range order of these nanoparticles with an average diameter of about 10 nm was investigated ex situ with EXAFS. The results are compared to crystalline reference materials. (au) 10 refs.

  8. Poisson process Fock space representation, chaos expansion and covariance inequalities

    CERN Document Server

    Last, Guenter

    2009-01-01

    We consider a Poisson process $\\eta$ on an arbitrary measurable space with an arbitrary sigma-finite intensity measure. We establish an explicit Fock space representation of square integrable functions of $\\eta$. As a consequence we identify explicitly, in terms of iterated difference operators, the integrands in the Wiener-Ito chaos expansion. We apply these results to extend well-known variance inequalities for homogeneous Poisson processes on the line to the general Poisson case. The Poincare inequality is a special case. Further applications are covariance identities for Poisson processes on (strictly) ordered spaces and Harris-FKG-inequalities for monotone functions of $\\eta$.

  9. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

    Science.gov (United States)

    Nicolaou, Georgios; Livadiotis, George

    2016-11-01

    This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument's response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the difference of the derived temperature as a function of the kappa index. We further consider the concept of using a forward model of a typical plasma instrument to fit its observations. We find that the relative error of the derived temperature is highly depended on the kappa index and occasionally on the instrument's field of view and response.

  10. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    Science.gov (United States)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  11. Concept Study of Radio Frequency (RF Plasma Thruster for Space Propulsion

    Directory of Open Access Journals (Sweden)

    Anna-Maria Theodora ANDREESCU

    2016-12-01

    Full Text Available Electric thrusters are capable of accelerating ions to speeds that are impossible to reach using chemical reaction. Recent advances in plasma-based concepts have led to the identification of electromagnetic (RF generation and acceleration systems as able to provide not only continuous thrust, but also highly controllable and wide-range exhaust velocities. For Future Space Propulsion there is a pressing need for low pressure, high mass flow rate and controlled ion energies. This paper explores the potential of using RF heated plasmas for space propulsion in order to mitigate the electric propulsion problems caused by erosion and gain flexibility in plasma manipulation. The main key components of RF thruster architecture are: a feeding system able to provide the required neutral gas flow, plasma source chamber, antenna/electrodes wrapped around the discharge tube and optimized electromagnetic field coils for plasma confinement. A preliminary analysis of system performance (thrust, specific impulse, efficiency is performed along with future plans of Space Propulsion based on this new concept of plasma mechanism.

  12. On the rogue waves propagation in non-Maxwellian complex space plasmas

    Science.gov (United States)

    El-Tantawy, S. A.; El-Awady, E. I.; Tribeche, M.

    2015-11-01

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.

  13. On the rogue waves propagation in non-Maxwellian complex space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-11-15

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.

  14. Deposição por plasma com arco transferido Hardfacing by plasma transfer arc process

    Directory of Open Access Journals (Sweden)

    Víctor Vergara Díaz

    2010-03-01

    Full Text Available Em virtude do Processo de Soldagem Plasma com Alimentação de Pó ter similaridades com o Processo de Soldagem Plasma com Alimentação de Arame, foi realizado um estudo comparativo entre ambos os processos utilizando-se a liga a base de cobalto comercialmente conhecida como Stellite 6, como material de adição na forma de pó e arame. A pesquisa foi realizada com a expectativa de ser aplicada nas operações de revestimentos de superfícies, em especial em pás de turbinas hidráulicas desgastadas por cavitação. A seleção do material de adição a ser empregado depende da natureza do mecanismo de desgaste encontrado. No Labsolda, a liga Stellite 6 vem sendo uma das mais utilizadas, por apresentar uma excelente resistência ao desgaste erosivo por cavitação. Foi avaliada a influência da vazão de gás de plasma a partir dos valores de diluição, dimensões do cordão, dureza e microestrutura. O Processo de Soldagem Plasma com Alimentação de Pó foi o que produziu o melhor acabamento superficial, menor diluição, melhor molhamento e maior largura. Com isto abre-se uma nova perspectiva para revestimentos metálicos e neste contexto se insere a recuperação por soldagem de partes erodidas de turbinas hidráulicas.The Plasma powder transferred arc welding process, which uses feed stock in the powder form, has similarities with Plasma wire transferred arc welding. This work describes a comparative study of the two processes using a Cobalt-based alloy commercially known as Stellite 6. This Co-based alloy is recognized for its superior cavitation erosion resistance. The aim of this work is to investigate the potential of PTA coatings for the protection and refurbishiment hydraulic turbine blades. Coatings were evaluated for the influence of Plasma gas flow rate on coating dilution, geometry, hardness and microstructure. Coatings processed with the atomized Stellite 6 powder feestock showed a superior surface quality, lower dilution

  15. Some consequences of intense electromagnetic wave injection into space plasmas

    Science.gov (United States)

    Burke, William J.; Villalon, Elena; Rothwell, Paul L.; Silevitch, Michael

    1986-10-01

    The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.

  16. Recent advances in numerical simulation of space-plasma-physics problems

    Science.gov (United States)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  17. Spaced-Resolved Electron Density of Aluminum Plasma Produced by Frequency-Tripled Laser

    Institute of Scientific and Technical Information of China (English)

    Yang Boqian; Han Shensheng; Zhang Jiyan; Zheng Zhijian; Yang Guohong; Yang Jiaming; Li Jun; Wang Yan

    2005-01-01

    By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas.

  18. Magnetic reconnection rate in space plasmas: a fractal approach.

    Science.gov (United States)

    Materassi, Massimo; Consolini, Giuseppe

    2007-10-26

    Magnetic reconnection is generally discussed via a fluid description. Here, we evaluate the reconnection rate assuming a fractal topology of the reconnection region. The central idea is that the fluid hypothesis may be violated at the scales where reconnection takes place. The reconnection rate, expressed as the Alfvén Mach number of the plasma moving toward the diffusion region, is shown to depend on the fractal dimension and on the sizes of the reconnection or diffusion region. This mechanism is more efficient than prediction of the Sweet-Parker model and even Petschek's model for finite magnetic Reynolds number. A good agreement also with rates given by Hall MHD models is found. A discussion of the fractal assumption on the diffusion region in terms of current microstructures is proposed. The comparison with in-situ satellite observations suggests the reconnection region to be a filamentary domain.

  19. Nonextensive entropy approach to space plasma fluctuations and turbulence

    CERN Document Server

    Leubner, M P; Baumjohann, W

    2006-01-01

    Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation the classical Boltzmann-Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distributions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-kappa functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing kappa-values in case of slow solar wind conditions where a Gaussian is approached i...

  20. The effect of decreased interletter spacing on orthographic processing.

    Science.gov (United States)

    Montani, Veronica; Facoetti, Andrea; Zorzi, Marco

    2015-06-01

    There is growing interest in how perceptual factors such as the spacing between letters within words modulate performance in visual word recognition and reading aloud. Extra-large letter spacing can strongly improve the reading performance of dyslexic children, and a small increase with respect to the standard spacing seems beneficial even for skilled word recognition in adult readers. In the present study we examined the effect of decreased letter spacing on perceptual identification and lexical decision tasks. Identification in the decreased spacing condition was slower than identification of normally spaced strings, thereby confirming that the reciprocal interference among letters located in close proximity (crowding) poses critical constraints on visual word processing. Importantly, the effect of spacing was not modulated by string length, suggesting that the locus of the spacing effect is at the level of letter detectors. Moreover, the processing of crowded letters was facilitated by top-down support from orthographic lexical representation as indicated by the fact that decreased spacing affected pseudowords significantly more than words. Conversely, in the lexical decision task only word responses were affected by the spacing manipulation. Overall, our findings support the hypothesis that increased crowding is particularly harmful for phonological decoding, thereby adversely affecting reading development in dyslexic children.

  1. Early Visual Deprivation Alters Multisensory Processing in Peripersonal Space

    Science.gov (United States)

    Collignon, Olivier; Charbonneau, Genevieve; Lassonde, Maryse; Lepore, Franco

    2009-01-01

    Multisensory peripersonal space develops in a maturational process that is thought to be influenced by early sensory experience. We investigated the role of vision in the effective development of audiotactile interactions in peripersonal space. Early blind (EB), late blind (LB) and sighted control (SC) participants were asked to lateralize…

  2. AIRS Maps from Space Processing Software

    Science.gov (United States)

    Thompson, Charles K.; Licata, Stephen J.

    2012-01-01

    This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.

  3. Charging of small grains in a space plasma: Application to Jovian stream particles

    CERN Document Server

    Dzhanoev, A R; Liu, X; Spahn, F

    2016-01-01

    Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, as they are often observed in space environments, a dependence on grain size is expected due to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which form the Jovian dust streams. We revise the theory of charging of small (sub-micron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to b...

  4. An assessment of space shuttle flight software development processes

    Science.gov (United States)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  5. Advanced plasma etching processes for dielectric materials in VLSI technology

    Science.gov (United States)

    Wang, Juan Juan

    Manufacturable plasma etching processes for dielectric materials have played an important role in the Integrated Circuits (IC) industry in recent decades. Dielectric materials such as SiO2 and SiN are widely used to electrically isolate the active device regions (like the gate, source and drain from the first level of metallic interconnects) and to isolate different metallic interconnect levels from each other. However, development of new state-of-the-art etching processes is urgently needed for higher aspect ratio (oxide depth/hole diameter---6:1) in Very Large Scale Integrated (VLSI) circuits technology. The smaller features can provide greater packing density of devices on a single chip and greater number of chips on a single wafer. This dissertation focuses on understanding and optimizing of several key aspects of etching processes for dielectric materials. The challenges are how to get higher selectivity of oxide/Si for contact and oxide/TiN for vias; tight Critical Dimension (CD) control; wide process margin (enough over-etch); uniformity and repeatability. By exploring all of the parameters for the plasma etch process, the key variables are found and studied extensively. The parameters investigated here are Power, Pressure, Gas ratio, and Temperature. In particular, the novel gases such as C4F8, C5F8, and C4F6 were studied in order to meet the requirements of the design rules. We also studied CF4 that is used frequently for dielectric material etching in the industry. Advanced etch equipment was used for the above applications: the medium-density plasma tools (like Magnet-Enhanced Reactive Ion Etching (MERIE) tool) and the high-density plasma tools. By applying the Design of Experiments (DOE) method, we found the key factors needed to predict the trend of the etch process (such as how to increase the etch rates, selectivity, etc.; and how to control the stability of the etch process). We used JMP software to analyze the DOE data. The characterization of the

  6. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  7. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas; Dinamica nao linear de ondas de Langmuir e eletromagneticas em plasmas espaciais

    Energy Technology Data Exchange (ETDEWEB)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  8. Polymerisation processes in expoy resins under influence of free space environment

    Science.gov (United States)

    Kondyurin, A.; Lauke, B.; Kondyurina, I.

    A creation of large size constructions in space or on celestial bodies is possible by the way of chemical reactions of liquid viscous components under space environment conditions [1-2]. In particular, a new technology for large-size space module for electronic components, energy and materials production is developed on the basis of polymerisation technique. The factors of free space environment have a significant influence on the polymerisation processes. The polymerisation processes in active liquid components are sensitive to microgravitation, temperature variations (-150{ldots}+1500C), high vacuum (10-3{ldots}10-7 Pa), atomic oxygen flux (on LEO), UV and VUV irradiations, X-ray and γ -irradiations, high energy electron and ion fluxes. Experiments of polymerisation processes under simulated free space conditions were conducted. The influences of high vacuum, high energy ion beam and rf- and mw-plasma on polymerisation of epoxy resins were observed. The effects of low molecular components evaporations, free radical formations, additional chemical reactions and mixing processes during polymerisation were observed. Our results showed, that the space factors can initiate the polymerisation reaction in epoxy matrix of glass and carbon fibre composites. The result can be used for a technology for large size constructions on Earth orbit, in far space and on space bodies as for deployed antennas, solar sail stringers, solar shield stringers, frame for large-size space station, frame for Moon, Mars, asteroids bases, frame for space plant on Earth orbit and on other celestial bodies. The study was partially supported by Alexander von Humboldt Foundation (A. Kondyurin) and European Space Agency, ESTEC (contract 17083/03/NL/Sfe "Space Environmental Effects on the Polymerisation of Composite Structures"). 1. A.Kondyurin, B.Lauke, Polymerisation processes in simulated free space conditions, Proceedings of the 9th International Symposium on Materials in a Space Environment

  9. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  10. Materials processing in space - A strategy for commercialization

    Science.gov (United States)

    Naumann, R. J.

    1978-01-01

    Major aerospace companies are talking about space factories manufacturing billions of dollars worth of high technology materials per year. On the other hand, a recent National Academy of Sciences study team saw little prospect for space manufacturing because, in their opinion, most of the disturbing effects of gravity in the processes they considered could be overcome on the ground for much less expenditure. This paper presents a current assessment of the problems and promises of the Materials Processing in Space Program and outlines a strategy for developing the first products of commercial value. These early products are expected to serve as paradigms of what can be accomplished by manufacturing in space and should stimulate industry to develop space manufacturing to whatever degree is economically justifiable.

  11. Transformation of state space for two-parameter Markov processes

    Institute of Scientific and Technical Information of China (English)

    周健伟

    1996-01-01

    Let X=(X) be a two-parameter *-Markov process with a transition function (p1, p2, p), where X, takes values in the state space (Er,), T=[0,)2. For each r T, let f, be a measurable transformation of (E,) into the state space (E’r, ). Set Y,=f,(X,), r T. A sufficient condition is given for the process Y=(Yr) still to be a two-parameter *-Markov process with a transition function in terms of transition function (p1, p2, p) and fr. For *-Markov families of two-parameter processes with a transition function, a similar problem is also discussed.

  12. Performance of a space-based wavelet compressor for plasma count data on the MMS Fast Plasma Investigation

    Science.gov (United States)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  13. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    Science.gov (United States)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  14. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲

    2012-01-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  15. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.

    Science.gov (United States)

    Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10(3)-10(4) e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  16. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

    Science.gov (United States)

    Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  17. Statistics of magnetic field fluctuations in a partially ionized space plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Dastgeer, E-mail: dastgeer.shaikh@uah.ed [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2010-07-05

    Voyager 1 and 2 data reveals that magnetic field fluctuations are compressive and exhibit a Gaussian distribution in the compressed heliosheath plasma, whereas they follow a lognormal distribution in a nearly incompressible supersonic solar wind plasma. To describe the evolution of magnetic field, we develop a nonlinear simulation model of a partially ionized plasma based on two-dimensional time-dependent multifluid model. Our model self-consistently describes solar wind plasma ions, electrons, neutrals and pickup ions. It is found from our simulations that the magnetic field evolution is governed by mode conversion process that leads to the suppression of vortical modes, whereas the compressive modes are amplified. An implication of the mode conversion process is to quench the Alfvenic interactions associated with the vortical motions. Consequently anisotropic cascades are reduced. This is accompanied by the amplification of compressional modes that tend to isotropize the plasma fluctuations and lead to a Gaussian distribution of the magnetic field.

  18. Ignition of beam plasma discharge in the electron beam experiment in space

    Science.gov (United States)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  19. Fundamental Study of Interactions Between Pulsed High-Density Plasmas and Materials for Space Propulsion

    Science.gov (United States)

    2016-05-23

    thermal shock and allows for optical plasma diagnostics. The new capillary uses a flash lamp approach for triggering to eliminate the need for a...add silicon oxide to alumina processing to form relatively low- melting aluminosilicate phases to enhance densification/ sintering at temperatures well...pressure on the microstructure of spark plasma sintered silicon carbide,” Journal of Chemical Processing Research 16, 303 (2007). 5. O. Sharia

  20. Review of relaxation oscillations in plasma processing discharges

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhu-Wen; M.A.Lieberman; Sungjin Kim

    2007-01-01

    Relaxation oscillations due to plasma instabilities at frequencies ranging from a few Hz to tens of kHz have been observed in various types of plasma processing discharges.Relaxation oscillations have been observed in electropositive capacitive discharges between a powered anode and a metallic chamber whose periphery iS grounded through a slot with dielectric spacers.The oscillations of time-varying optical emission from the main discharge chamber show,for example,a high-frequency (~40 kHz) relaxation oscillation at 13.33Pa,with an absorbed power being nearly the peripheral breakdown power,and a low-frequency (~3 Hz) oscillation,with an even higher absorbed power.The high-frequency oscillation is found to ignite plasma in the slot,but usually not in the peripheral chamber.The kilohertz oscillations are modelled using an electromagnetic model of the slot impedance,coupled to a circuit analysis of the system including the matching network.The model results are in general agreement with the experimental observations,and indicate a variety of behaviours dependent on the matching conditions.In low-pressure inductive discharges,oscillations appear in the transition between low-density capacitively driven and high-density inductively driven discharges when attaching gases such as SF6 and Ar/SF6 mixtures are used.Oscillations of charged particles,plasma potential,and light,at frequencies ranging from a few Hz to tens of kHz,are seen for gas pressures between 0.133 Pa and 13.33 Pa and discharge powers in a range of 75-1200 W.The region of instability increases as the plasma becomes more electronegative,and the frequency of plasma oscillation increases as the power,pressure,and gas flow rate increase.A volume-averaged (global) model of the kilohertz instability has been developed;the results obtained from the model agree well with the experimental observations.

  1. Plasma aided coal gasification and the variables in this process

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X.; Lu, Y.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China)

    2005-12-15

    In order to investigate the characters of plasma aided coal gasification in the industry-scale equipment, the tests with changing feeding rate, steam output pressure, feeding gas flux, input power of plasma generator and the additives were carried out with Datong coal. The produced gas components were analyzed by gas chromatography. And the optimal process conditions, such as, the feeding rate of 150 g/min, the feeding gas flow of 18 m{sup 3}/h, the output power of plasma generator of 100 kW, the steam output pressure of 0.3 MPa are obtained. When the contents of CaO and CaCO{sub 3} in the whole feed are 10 and 5% respectively, the experimental data show their catalytic effect is the best. Considering the molar mass of CaO and CaCO{sub 3}, it is concluded that the catalytic effect of CaO is more important than the reduction of CO{sub 2} in the gasification. 12 refs., 2 figs., 3 tabs.

  2. Electron-silane scattering cross section for plasma assisted processes

    Science.gov (United States)

    Verma, Pankaj; Kaur, Jaspreet; Antony, Bobby

    2017-03-01

    Silane is an important molecule with numerous applications to natural and technological plasmas. In such environments, where plasma assisted processes are vital, electron induced reactions play a major role in its chemistry. In view of this, electron induced scattering of molecules such as silane finds significance. This article reports a comprehensive study of electron impact cross sections for silane over a wide energy range. In particular, the emphasis is given in providing a complete dataset for various electron scattering events possible with silane. Such dataset is the need for the plasma modeling community. Moreover, literature survey shows that the cross section database for silane is fragmentary. To fill this void, we have computed the differential elastic, total, rotational excitation, and momentum transfer cross sections. Two formalisms that are reliable in their energy domain are employed to accomplish the task: the R-matrix method through QUANTEMOL-N at low incident energies and the spherical complex optical potential formalism at intermediate to high energies. Interestingly, the comparison of the present cross section exhibits a good concurrence with the previous data, wherever available.

  3. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  4. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-09-01

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  5. Further observations of Space Shuttle plasma-electrodynamic effects from OSS-1/STS-3

    Science.gov (United States)

    Stone, N. H.; Hwang, K. S.; Wright, K. H., Jr.; Samir, U.; Murphy, G. B.; Shawhan, S. D.

    1986-01-01

    Recent analyses of ion measurements obtained from the Differential Ion Flux Probe (DIFP) on the deployed Plasma Diagnostics Package (PDP) during the OSS-1/STS-3 mission have provided an additional insight into the plasma-electrodynamics of the Space Shuttle Orbiter: (1) Measured ion flow directions and energies suggest that the disturbance created in the ionospheric plasma by the Shuttle Orbiter may be confined to an interaction region that extends on the order of 10 m in the forward direction and has a boundary thickness of about 2 m. (2) A correlation between the DIFP and pressure gauge measurements indicates a direct, local proportionality between the neutral gas and ion densities. (3) Preliminary results from a theoretical model of the possible interaction between measured secondary, high inclination ion streams and the ambient plasma indicate the generation of broad-band electrostatic noise such as that observed by wave instruments on the PDP.

  6. Long-lived laboratory plasmas sustained by a free-space microwave beam

    Science.gov (United States)

    Reid, Remington

    2015-11-01

    The Air Force Research Laboratory is developing a laboratory experiment to study the free-space interaction of microwave beams with low temperature, low density plasmas. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 Ghz radiation. The pressure windows are approximately 1m in diameter, allowing for minimal interaction between the beam and the chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. Plasmas generated by the beam have been observed to be stable for more than 10s. A series of optical and microwave diagnostics are being developed to measure the plasma properties, and to quantify the interaction of the plasma and the background neutral gas.

  7. Numerical simulations of the electrodynamic interactions between the Tethered-Satellite-System and space plasma

    Science.gov (United States)

    Vashi, Bharat I.

    1992-01-01

    The first Tethered-Satellite-System (TSS-1), scheduled for a flight in late 1992, is expected to provide relevant information related to the concept of generating an emf in a 20-km-long (or longer) conducting wire. This paper presents numerical simulations of the electrodynamic interactions between the TSS system and space plasma, using a 2D and 3D models of the system. The 2D case code simulates the motion of a long cylinder past a plasma, which is composed of electrons and H(+) ions. The system is solved by allowing the plasma to flow past the cylinder with an imposed magnetic field. The more complex 3D case is considered to study the dynamics in great detail. Results of 2D simulation show that the interaction of a satellite with plasma flowing perpendicularly to the magnetic field results in an enhancement in the current collection.

  8. Investigation of the electron capture process in semiclassical plasma

    Directory of Open Access Journals (Sweden)

    Seisembayeva Madina M.

    2016-06-01

    Full Text Available In this work, the process of electron capture in partially ionized plasma is considered. Electron-atom interaction was described by the effective interaction potential, which takes into account the screening effect at large distances and the diffraction effect at the small distances. The results of numerical calculations of the electron capture radius, differential cross-section for different values of the coupling and density parameters are presented. The differential cross-section was obtained on the basis of perturbation theory and also by solving of the equation of motion of the projectile electron.

  9. Scattering processes and electrical conductivity of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K.; Dzhumagulova, K.N. [SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G.; Redmer, R. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)

    2003-07-01

    We consider partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18} / 10{sup 22}) cm{sup -} {sup 3}. The cross sections for scattering processes between the particles are calculated within the partial wave method. Charged particles in the system (electrons, protons) interact via an effective potential that takes into account three-particle correlations. The Buckingham polarization potential is used to describe electron-atom and proton-atom interactions. The electrical conductivity is determined using the Chapman-Enskog method. The results are compared with other available data. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark; Liu, Z.; Ravn, A.P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  11. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  12. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  13. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  14. PKE-Nefedov: plasma crystal experiments on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, Anatoli P [Institute for High Energy Densities, Russian Academy of Sciences, 127412 Moscow (Russian Federation); Morfill, Gregor E [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Fortov, Vladimir E [Institute for High Energy Densities, Russian Academy of Sciences, 127412 Moscow (Russian Federation); Thomas, Hubertus M [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Rothermel, Hermann [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Hagl, Tanja [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Ivlev, Alexei V [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Zuzic, Milenko [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Klumov, Boris A [Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Lipaev, Andrey M [Institute for High Energy Densities, Russian Academy of Sciences, 127412 Moscow (Russian Federation); Molotkov, Vladimir I [Institute for High Energy Densities, Russian Academy of Sciences, 127412 Moscow (Russian Federation); Petrov, Oleg F [Institute for High Energy Densities, Russian Academy of Sciences, 127412 Moscow (Russian Federation); Gidzenko, Yuri P [Y Gagarin Cosmonauts Training Centre, 141160 Star City, Moscow Region (Russian Federation); Krikalev, Sergey K [SP Korolev RSC Energia, Korolev 141070, Moscow Region (Russian Federation); Shepherd, William [Expedition 1 Crew, International Space Station (ISS) (Country Unknown)] [and others

    2003-04-01

    The plasma crystal experiment PKE-Nefedov, the first basic science experiment on the International Space Station (ISS), was installed in February 2001 by the first permanent crew. It is designed for long-term investigations of complex plasmas under microgravity conditions. 'Complex plasmas' contain ions, electrons, neutrals and small solid particles - normally in the micrometre range. These microparticles obtain thousands of elementary charges and interact with each other via a 'screened' Coulomb potential. Complex plasmas are of special interest, because they can form liquid and crystalline states (Thomas et al 1994 Phys. Rev. Lett. 73 652-5, Chu and I 1994 Phys. Rev. Lett. 72 4009-12) and are observable at the kinetic level. In experiments on Earth the microparticles are usually suspended against gravity in strong electric fields. This creates asymmetries, stresses and pseudo-equilibrium states with sufficient free energy to readily become unstable. Under microgravity conditions the microparticles move into the bulk of the plasma (Morfill et al 1999 Phys. Rev. Lett. 83 1598), experiencing much weaker volume forces than on Earth. This allows investigations of the thermodynamics of strongly coupled plasma states under substantially stress-free conditions. In this first paper we report our results on plasma crystals, in particular the first experimental observations of bcc lattice structures.

  15. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    Science.gov (United States)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  16. Formation and interaction of multiple coherent phase space structures in plasma

    Science.gov (United States)

    Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu

    2017-06-01

    The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.

  17. Monitoring and Improving the Reliability of Plasma Spray Processes

    Science.gov (United States)

    Mauer, Georg; Rauwald, Karl-Heinz; Mücke, Robert; Vaßen, Robert

    2017-06-01

    Monitoring and improving of process reliability are prevalent issues in thermal spray technology. They are intended to accomplish specific quality characteristics by controlling the process. For this, implicit approaches are in demand to rapidly conclude on relevant coating properties, i.e., they are not directly measured, but it is assumed that the monitored variables are in fact suggestive for them. Such monitoring can be performed in situ (during the running process) instead of measuring coating characteristics explicitly (directly) and ex situ (after the process). Implicit approaches can be based on extrinsic variables (set from outside) as well as on intrinsic parameters (internal, not directly adjustable) having specific advantages and disadvantages, each. In this work, the effects of atmospheric plasma spray process variables are systemized in process schemes. On this basis, different approaches to contribute to improved process reliability are described and assessed paying particular attention to in-flight particle diagnostics. Finally, a new test applying spray bead analysis is introduced and first results are presented.

  18. Real-Time Plasma Process Condition Sensing and Abnormal Process Detection

    Directory of Open Access Journals (Sweden)

    Ryan Yang

    2010-06-01

    Full Text Available The plasma process is often used in the fabrication of semiconductor wafers. However, due to the lack of real-time etching control, this may result in some unacceptable process performances and thus leads to significant waste and lower wafer yield. In order to maximize the product wafer yield, a timely and accurately process fault or abnormal detection in a plasma reactor is needed. Optical emission spectroscopy (OES is one of the most frequently used metrologies in in-situ process monitoring. Even though OES has the advantage of non-invasiveness, it is required to provide a huge amount of information. As a result, the data analysis of OES becomes a big challenge. To accomplish real-time detection, this work employed the sigma matching method technique, which is the time series of OES full spectrum intensity. First, the response model of a healthy plasma spectrum was developed. Then, we defined a matching rate as an indictor for comparing the difference between the tested wafers response and the health sigma model. The experimental results showed that this proposal method can detect process faults in real-time, even in plasma etching tools.

  19. Space-Time Coding and Signal Processing for MIMO Communications

    Institute of Scientific and Technical Information of China (English)

    Inaki Berenguer; Xiaodong Wang

    2003-01-01

    Rapid growth in mobile computing and other wireless multimedia services is inspiring many research and development activities on high-speed wireless communication systems.Main challenges in this area include the development of efficient coding and modulation signal processing techniques for improving the quality and spectral efficiency of wireless systems. The recently emerged space-time coding and signal processing techniques for wireless communication systems employing multiple transmit and receive antennas offer a powerful paradigm for meeting these challenges. This paper provides an overview on the recent development in space-time coding and signal processing techniques for multiple-input multiple-output (MIMO) communication systems. We first review the information theoretic results on the capacities of wireless systems employing multiple transmit and receive antennas. We then describe two representative categories of space-time systems, namely, the BLAST system and the space-time block coding system, both of which have been proposed for next-generation high-speed wireless system. Signal processing techniques for channel estimation and decoding in space-time systems are also discussed. Finally, some other coding and signal processing techniques for wireless systems employing multiple transmit and receive antennas that are currently under intensive research are also briefly touched upon.

  20. Defining process design space for monoclonal antibody cell culture.

    Science.gov (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  1. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  2. Space Shuttle processing - A case study in artificial intelligence

    Science.gov (United States)

    Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte

    1991-01-01

    A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.

  3. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    Science.gov (United States)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  4. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  5. Study of magnetic field expansion using a plasma generator for space radiation active protection

    Institute of Scientific and Technical Information of China (English)

    JIA Xiang-Hong; JIA Shao-Xia; XU Feng; BAI Yan-Qiang; WAN Jun; LIU Hong-Tao; JIANG Rui

    2013-01-01

    There are many active protecting methods including Electrostatic Fields,Confined Magnetic Field,Unconfined Magnetic Field and Plasma Shielding etc.for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration.The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far.The magnetic field expansion caused by plasma can improve its protective efficiency of space particles.One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric.A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz,which exits from both sides of the magnet and makes the magnetic field expand on one side.The discharging belts phenomenon is similar to the Earth's radiation belt,but the mechanism has yet to be understood.A magnetic probe is used to measure the magnetic field expansion distributions,and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  6. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas

    Science.gov (United States)

    Chow, V. W.; Mendis, D. A.; Rosenberg, M.

    1993-01-01

    By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.

  7. Processing of bulk Al7075 alloy by spark plasma sintering

    Science.gov (United States)

    Málek, P.; Molnárová, O.; Cinert, J.; Lukáč, F.; Chráska, T.

    2017-02-01

    The main advantages of powder metallurgy processing route are the possibility to produce near-net-shape compacts and to minimize the finish machining and material loss. The main problem in particle consolidation process is to suppress porosity, to remove oxide layers, and to retain the microstructure of powder materials. Spark plasma sintering (SPS) combines concurrent uniaxial pressure and direct heating by a pulsed DC current. Sintering occurs at relatively low temperatures for a short time and does not influence significantly the microstructure in the interiors of original powder particles. The efficiency of SPS in producing compacts with low porosity might be dependent on the distribution of particle size in original powder material. The gas atomized Al7075 powder was sieved to several charges and then sintered by SPS. Microstructure of sintered compacts was studied by light and scanning electron microscopy. The phase composition was investigated using X-ray diffraction. The mechanical behaviour was tested by bending tests.

  8. Dusty plasma processes in Earth's polar summer mesosphere

    Science.gov (United States)

    Popel, S. I.; Dubinsky, A. Yu.; Dubinsky

    2013-08-01

    A self-consistent model for the description of dusty plasma structures, such as noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE), which are frequently grouped together under the common term polar mesospheric clouds, is presented. The model takes into account the processes of condensation of water vapor, ionization, recombination, action of solar radiation, sedimentation, dust particle growth, dust particle charging, electric fields, etc. Using the model, we explain the basic data of observations on the behavior of charged component in polar summer mesosphere. Furthermore, we show the influence of initial distributions of fine particles as well as that of the processes of condensation and water molecule absorption by fine particles on the formation of NLC and PMSE. We also illustrate the possibility of the formation of layered structure and sharp boundaries of NLC.

  9. Coupling and Strong Feller for Jump Processes on Banach Spaces

    CERN Document Server

    Wang, Feng-Yu

    2011-01-01

    By using lower bound conditions of the L\\'evy measure w.r.t. a nice reference measure, the coupling and strong Feller properties are investigated for the Markov semigroup associated with a class of linear SDEs driven by (non-cylindrical) L\\'evy processes on a Banach space. Unlike in the finite-dimensional case where these properties have also been confirmed for L\\'evy processes without drift, in the infinite-dimensional setting the appearance of a drift term is essential to ensure the quasi-invariance of the process by shifting the initial data. Gradient estimates and exponential convergence are also investigated. The main results are illustrated by specific models on the Wiener space and separable Hilbert spaces.

  10. Critical points in the 16-moment approximation. [plasma flow in laboratory and space plasmas study

    Science.gov (United States)

    Yasseen, F.; Retterer, J. M.

    1991-01-01

    The singular points in steady state, field-aligned plasma transport models based on velocity moment theory are examined. In particular, two separate singular points in the equations obtained from the 16-moment approximation are identified. These equations are presented in a form that makes the singularities apparent, and they are solved in a simple illustrative case. The singular points, one occurring at the sonic point and the other at a critical value of the parallel heat flux, give rise to different outflow regimes, characterized generically by different asymptotic behavior. The existence of the different outflow regimes separated by the heat flux critical point has been only hinted at in previous discussions of numerical simulation of the polar wind.

  11. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  12. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  13. Unified study of plasma-surface interactions for space power and propulsion

    Science.gov (United States)

    Turchi, P. J.; Davis, J. F., III; Norwood, J., Jr.; Boyer, C. N.

    1985-02-01

    The efficiency and lifetime of high specific power/high specific impulse space power and propulsion devices often depend on particle and energy transport at electrodes and insulators in low temperature plasma flows. Actual measurements of particle and field distributions near solid surfaces in controlled plasma flows were studied and used to develop models for particle and energy transport. A unique advantage in such model development is the ability to vary flow conditions, surface orientation, and material properties and to compare data within a unified experimental framework, thereby allowing complicated interactions to be delineated.

  14. Determination of albumin transport rate between plasma and peritoneal space in decompensated cirrhosis

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Henriksen, Jens Henrik Sahl

    1984-01-01

    the abdominal puncture may lead to overestimation of TERperit.space, whereas systematic understimation seems less likely. This may besides differences in patient selection and unsteady state, account for the discrepancy between the present relatively low value and earlier reports on much higher values.......10-0.59). The transport rate of albumin from ascitic fluid back to plasma was measured in eight patients by plasma sampling after intraperitoneal injection of 131I-labelled serum albumin. After correction for tracer re-extravasation this back transport (median 0.31, range 0.07-0.44% IVM/h-1) was not significantly...

  15. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  16. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  17. Development of a power electronics unit for the Space Station plasma contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-02-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  18. Empirical modeling of plasma clouds produced by the Metal Oxide Space Clouds experiment

    Science.gov (United States)

    Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel; Holmes, Jeffrey M.; Groves, Keith M.; Sutton, Eric

    2017-05-01

    The Advanced Research Project Agency (ARPA) Long-Range Tracking And Instrumentation Radar (ALTAIR) radar at Kwajalein Atoll was used in incoherent scatter mode to measure plasma densities within two artificial clouds created by the Air Force Research Laboratory (AFRL) Metal Oxide Space Clouds (MOSC) experiment in May 2013. Optical imager, ionosonde, and ALTAIR measurements were combined to create 3-D empirical descriptions of the plasma clouds as a function of time, which match the radar measurements to within 15%. The plasma clouds closely track the location of the optical clouds, and the best fit plasma cloud widths are generally consistent with isotropic neutral diffusion. Cloud plasma densities decreased as a power of time, with exponents between -0.5 and -1.0, or much more slowly than the -1.5 predicted by diffusion. These exponents and estimates of total ion number from integration through the model volume are consistent with a scenario of slow ionization and a gradually increasing total number of ions with time, reaching a net ionization fraction of 20% after approximately half an hour. These robust representations of the plasma density are being used to study impacts of the artificial clouds on the dynamics of the background ionosphere and on RF propagation.

  19. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  20. Derivation and Testing of Computer Algorithms for Automatic Real-Time Determination of Space Vehicle Potentials in Various Plasma Environments

    Science.gov (United States)

    1988-05-31

    COMPUTER ALGORITHMS FOR AUTOMATIC REAL-TIME DETERMINATION OF SPACE VEHICLE POTENTIALS IN VARIOUS PLASMA ENVIRONMENTS May 31, 1988 Stanley L. Spiegel...crrnaion DiviSiofl 838 12 2 DERIVATION AND TESTING OF COMPUTER ALGORITHMS FOR AUTOMATIC REAL-TIME DETERMINATION OF SPACE VEHICLE POTENTIALS IN VARIOUS...S.L., "Derivation and testing of computer algorithms for automatic real time determination of space vehicle poteuatials in various plasma

  1. Ionospheric plasma flow over large high-voltage space platforms. I - Ion-plasma-time scale interactions of a plate at zero angle of attack. II - The formation and structure of plasma wake

    Science.gov (United States)

    Wang, J.; Hastings, D. E.

    1992-01-01

    The paper presents the theory and particle simulation results for the ionospheric plasma flow over a large high-voltage space platform at a zero angle of attack and at a large angle of attack. Emphasis is placed on the structures in the large, high-voltage regime and the transient plasma response on the ion-plasma time scale. Special consideration is given to the transient formation of the space-charge wake and its steady-state structure.

  2. Analysis of suprathermal nuclear processes in the solar core plasma

    Science.gov (United States)

    Voronchev, Victor T.; Nakao, Yasuyuki; Watanabe, Yukinobu

    2017-04-01

    A consistent model for the description of suprathermal processes in the solar core plasma naturally triggered by fast particles generated in exoergic nuclear reactions is formulated. This model, based on the formalism of in-flight reaction probability, operates with different methods of treating particle slow-down in the plasma, and allows for the influence of electron degeneracy and electron screening on processes in the matter. The model is applied to examine slowing-down of 8.7 MeV α-particles produced in the {}7{Li}(p,α )α reaction of the pp chain, and to analyze suprathermal processes in the solar CNO cycle induced by them. Particular attention is paid to the suprathermal {}14{{N}}{(α ,{{p}})}17{{O}} reaction unappreciated in standard solar model simulations. It is found that an appreciable non-standard (α ,p) nuclear flow due to this reaction appears in the matter and modifies running of the CNO cycle in ∼95% of the solar core region. In this region at R> 0.1{R}ȯ , normal branching of nuclear flow {}14{{N}}≤ftarrow {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}} transforms to abnormal sequential flow {}14{{N}}\\to {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}}, altering some element abundances. In particular, nuclear network calculations reveal that in the outer core the abundances of 17O and 18O isotopes can increase by a factor of 20 as compared with standard estimates. A conjecture is made that other CNO suprathermal (α ,p) reactions may also affect abundances of CNO elements, including those generating solar neutrinos.

  3. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  4. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  5. Marshall Space Flight Center Materials and Processes Laboratory

    Science.gov (United States)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  6. Kinetic Space Weather: Toward a Global Hybrid Model of the Polar Ionosphere-Lower Magnetosphere Plasma Transport

    Science.gov (United States)

    Horwitz, James L.

    1996-01-01

    During the indicated period of performance, we had a number of publications concerned with kinetic polar ionosphere-lower magnetosphere plasma transport. For the IUGG 1991-4 Quadrennial Report, we reviewed aspects of U.S. accomplishments concerned with polar plasma transport, among other issues. In another review, we examined the computer simulations of multiple-scale processes in space plasmas, including polar plasma outflow and transport. We also examined specifically multiscale processes in ionospheric outflows. We developed a Generalized Semi-Kinetic(GSK) model for the topside-lower magnetosphere which explored the synergistic action of wave heating and electric potentials in the formation of auroral Ion conics, in particular the "pressure cooker" mechanism. We extended the GSK model all the way down to 120 km and applied this code to illustrate the response of the ionosphere- magnetosphere to soft-electron precipitation and convection-driven frictional ion heating, respectively. Later, the convection-driven heating work was extended to a paper for the Journal of Geophysical Research. In addition to the above full published papers, we also presented the first developments of the coupled fluid-semikinetic model for polar plasma transport during this period. The results from a steady-state treatment were presented, with the second presentation being concerned with the effects of photo-electrons on the polar wind, and the first garnering an outstanding student paper award from the American Geophysical Union. We presented the first results from a time-dependent version of this coupled fluid-semikinetic model.

  7. Spatial control of processing plasmas in a multicusp plasma source equipped with a movable magnetic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, O.; Naitou, H.; Sakiyama, S. (Yamaguchi Univ., Yamaguchi (Japan))

    1991-12-20

    The plasma chemical vapor deposition (p-CVD) method has been used in the preparation of various sorts of thin films such as hydrogenated amorphous silicon films and hydrogenated amorphous carbon films, etc. and the application feasibility of a magnetically filtered multicusp plasma source has been studied. In this paper, it is confirmed that plasma parameters (H {sub 2} - ch {sub 4} or Ar-CH {sub 4} plasmas) are spatially well controlled by using both a movable magnetic filter and a plasma grid. Plasma parameters change sharply across the magnetic filter at any filter position and the whole plasma is divided clearly into the region of source plasma with high-energy electrons and the region of diffused plasma without high-energy electrons. Concerning the role of the magnetic filter which reflects preferentially high-energy electrons, a study is made through computer simulation. 7 refs., 9 figs.

  8. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    Science.gov (United States)

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  9. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  10. Nonlinear kinetic Alfvén waves with non-Maxwellian electron population in space plasmas

    Science.gov (United States)

    Masood, W.; Qureshi, M. N. S.; Yoon, P. H.; Shah, H. A.

    2015-01-01

    The present work discusses the effects of non-Maxwellian electron distributions on kinetic Alfvén waves in low-beta plasmas. Making use of the two-potential theory and employing the Sagdeev potential approach, the existence of solitary kinetic Alfvén waves having arbitrary amplitude is investigated. It is found that the use of non-Maxwellian population of electrons in the study of kinetic Alfvén waves leads to solutions corresponding to solitary structures that do not exist for Maxwellian electrons. The present investigation solves the riddle of plasma density fluctuations associated with strong electromagnetic perturbations observed by the Freja satellite. The present findings can also be applied to regions of space where various satellite missions have observed the presence of suprathermal populations of plasma species and where the low β assumption is valid.

  11. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  12. The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas

    CERN Document Server

    Lazar, M; Schlickeiser, R; Ibscher, D

    2013-01-01

    The selfgenerated wave fluctuations are particularly interesting in the solar wind and magnetospheric plasmas, where Coulomb collisions are rare and cannot explain the observed states of quasi-equilibrium. Linear theory predicts that the firehose and the ordinary-mode instabilities can develop under the same conditions, confusing the role of these instabilities in conditioning the space-plasma properties. The hierarchy of these two instabilities is reconsidered here for nonstreaming plasmas with an electron temperature anisotropy $T_\\parallel > T_\\perp$, where $\\parallel$ and $\\perp$ denote directions with respect to the local mean magnetic field. In addition to the previous comparative analysis, here the entire 3D wave-vector spectrum of the competing instabilities is investigated, paying particular attention to the oblique firehose instability and the relatively poorly known ordinary-mode instability. Results show a dominance of the oblique firehose instability with a threshold lower than the parallel fireh...

  13. Active probing of space plasmas. Final report, 25 October 1985-30 September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.; Silevitch, M.B.; Villalon, E.

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  14. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    NIU Chunping; DING Juwen; YANG Fei; DONG Delong; RONG Mingzhe; XU Dan

    2016-01-01

    In this paper,a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB).The distributions of pressure,temperature,gas flow and current density of the arc plasma in the arc region are calculated,and the factors influencing the commutation process are analyzed according to the calculated results.Based on the airflow in the arc chamber,the causes of arc commutation asynchrony and the back commutation are investigated.It indicates that a reasonable contact space design is crucial to a successful arc commutation process.To verify the simulation results,the influence of contact space on arc voltage and arc commutation is tested.This research can provide methods and references to the optimization of ACB design.

  15. Catalyst materials based on plasma-processed alumina nanopowder

    Directory of Open Access Journals (Sweden)

    Dubencovs Konstantins

    2012-01-01

    Full Text Available A platinum catalyst for glycerol oxidation by molecular oxygen has been developed applying the extractive-pyrolytic method and using, as a support, a fine alumina powder with an average particle size of 30-60 nm processed by plasma technology. The extractive-pyrolytic method (EPM allows affixing small amounts of catalytic metals (1-5% with the particle size ranging from several nanometers to several tens of nanometers onto the surface of the support. The prepared material - 4.8 wt. % platinum on nano-sized alumina - can be used as a catalyst for glycerol oxidation by oxygen with conversion up to 84%, in order to produce some organic acids (glyceric and lactic acid with a selectivity of about 60%.

  16. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    Science.gov (United States)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  17. Study of the plasma interference with high voltage electrode array for space power application

    OpenAIRE

    Iwasa, Minoru; TANAKA, KOJI; Sasaki, Susumu; ODAWARA, OSAMU; 岩佐 稔; 田中 孝治; 佐々木 進; 小田原 修

    2005-01-01

    We are studying the problems associated with high voltage power systems in space. Especially we are interested in the potential distribution of the solar array that is resistant to the electrical discharge. We have carried out experiments on the interaction between the high voltage solar array and the ambient plasma. In the experiment, an array of electrodes distributed on the insulation panel was used to simulate the inter-connectors of the solar array. An electrode array without the insulat...

  18. A model for ion-acoustic solitary waves with streaming non-Maxwellian electrons in space plasmas

    Science.gov (United States)

    Khalid Hussain, Shah; Nouman Sarwar, Qureshi Muhammad

    2016-04-01

    Solitons are nonlinear solitary structures and are integral part of space plasmas. Such nonlinear structures, accompanied by streaming electrons are frequently observed by various satellites in different regions of near Earth plasmas such as Earth's bow shock, magnetopause, auroral zone, etc. In this paper, we present a fluid model consisting streaming non-Maxwellian electrons along the magnetic field and derived the Sagdeev potential for fully nonlinear fluid equations. We found that compressive solitons can be developed in such a plasma. The results from our model can be used to interpret solitary structures in space plasmas when there is streaming electron obeying the non-Maxwellian distributions

  19. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  20. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Energy Technology Data Exchange (ETDEWEB)

    Compant La Fontaine, A. [Direction du Cycle du Combustible/Departement des Procedes d` Enrichissement, Service de Physique, d` Experimentation et d` Analyse, Commissariat a l` Energie Atomique, Centre d` Etudes de Saclay, 91191 Gif-sur-Yvette Cedex (France); Pashkovsky, V.G. [Molecular Physics Institute, RRC Kurchatov Institute 123182, Moscow (Russian Federation)

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, {ital Proceedings} {ital of} {ital the} 2{ital nd} {ital Workshop} {ital on} {ital Separation} {ital Phenomena} {ital in} {ital Liquids} {ital and} {ital Gases}, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d`Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii {ital et} {ital al}., Plasma Phys. Rep. {bold 19}, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number {ital k}{sub {ital z}} is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the {ital k}{sub {ital z}} spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field {ital B}{sub 0}, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope {sup 44}Ca heating measurements, made with an energy analyzer. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Space-Time Localization of Inner Heliospheric Plasma Turbulence Using Multiple Spacecraft Radio Links

    CERN Document Server

    Richie-Halford, Adam C; Tortora, Paolo; Armstrong, John W; Asmar, Sami W; Woo, Richard; Habbal, Shadia Rifai; Morgan, Huw; 10.1029/2009SW000499

    2010-01-01

    Radio remote sensing of the heliosphere using spacecraft radio signals has been used to study the near-sun plasma in and out of the ecliptic, close to the sun, and on spatial and temporal scales not accessible with other techniques. Studies of space-time variations in the inner solar wind are particularly timely because of the desire to understand and predict space weather, which can disturb satellites and systems at 1AU and affect human space exploration. Here we demonstrate proof-of-concept of a new radio science application for spacecraft radio science links. The differing transfer functions of plasma irregularities to spacecraft radio up- and downlinks can be exploited to localize plasma scattering along the line of sight. We demonstrate the utility of this idea using Cassini radio data taken in 2001-2002. Under favorable circumstances we demonstrate how this technique, unlike other remote sensing methods, can determine center-of-scattering position to within a few thousandths of an AU and thickness of sc...

  2. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    Science.gov (United States)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  3. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    VeronicaA.B.Almeida; AnaSofiaC.M.D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  4. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    Ver(o)nica A. B. Almeida; Ana Sofia C. M. D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  5. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  6. Direct data domain approach to space-time adaptive processing

    Institute of Scientific and Technical Information of China (English)

    Wen Xiaoqin; Han Chongzhao

    2006-01-01

    In non-homogeneous environment, traditional space-time adaptive processing doesn' t effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A novel methodology utilizing the direct data domain approach to space- time adaptive processing (STAP) in airborne radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to determine the adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range rell,which eliminates calculating the inverse of covariance, and can be implemented to operate in resl-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.

  7. Enhanced Software for Scheduling Space-Shuttle Processing

    Science.gov (United States)

    Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.; Nguyen, Tony K.; Peterson, Kenneth A.; Sargent, Susan; Shaw, Karma; Stoner, Mack D.; Stowell, Deborah S.; Young, Daniel A.; Tulley, James H., Jr.

    2004-01-01

    The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.

  8. Space Station Freedom pressurized element interior design process

    Science.gov (United States)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  9. Space Station Freedom pressurized element interior design process

    Science.gov (United States)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  10. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  11. Space in multi-agent systems modelling spatial processes

    Directory of Open Access Journals (Sweden)

    Petr Rapant

    2007-06-01

    Full Text Available Need for modelling of spatial processes arise in the spehere of geoinformation systems in the last time. Some processes (espetially natural ones can be modeled by means of using external tools, e. g. for modelling of contaminant transport in the environment. But in the case of socio-economic processes suitable tools interconnected with GIS are still in quest of reserch and development. One of the candidate technologies are so called multi-agent systems. Their theory is developed quite well, but they lack suitable means for dealing with space. This article deals with this problem and proposes solution for the field of a road transport modelling.

  12. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  13. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    Science.gov (United States)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  14. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  15. Thermal compression chip interconnection using organic solderability preservative etched substrate by plasma processing.

    Science.gov (United States)

    Cho, Sung-Won; Choi, JoonYoung; Chung, Chin-Wook

    2014-12-01

    The solderability of copper organic solderbility preservative (CuOSP) finished substrate was enhanced by the plasma etching. To improve the solderability of TC interconnection with the CuOSP finished substrate, the plasma etching process is used. An Oxygen-Hydrogen plasma treatment process is performed to remove OSP material. To prevent the oxidation by oxygen plasma treatment, hydrogen reducing process is also performed before TC interconnection process. The thickness of OSP material after plasma etching is measured by optical reflection method and the component analysis by Auger Electron Spectroscopy is performed. From the lowered thickness, the bonding force of TC interconnection after OSP etching process is lowered. Also the electrical open/short test was performed after assembling the completed semiconductor packaging. The improved yield due to the plasma etching process is achieved.

  16. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  17. Modulation of waves due to charge-exchange collisions in magnetized partially ionized space plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Dastgeer, E-mail: dastgeer.shaikh@uah.ed [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Zank, G.P. [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2010-10-04

    A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfvenic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.

  18. Modulation of waves due to charge-exchange collisions in magnetized partially ionized space plasma

    CERN Document Server

    Shaikh, Dastgeer

    2010-01-01

    A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfv\\'enic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.

  19. Nova tocha de plasma híbrida para o processamento de materiais New hybrid plasma torch for materials processing

    Directory of Open Access Journals (Sweden)

    Richard Thomas Lermen

    2012-12-01

    Full Text Available O principal objetivo deste artigo foi apresentar um novo dispositivo para o processamento de materiais. Ele consiste em uma tocha de plasma híbrida, a qual é caracterizada pela formação simultânea de dois arcos plasma em apenas um dispositivo, gerando jato (de plasma com elevada densidade de energia. A tocha foi submetida aos seguintes testes experimentais: de funcionamento para verificar possíveis problemas de projeto e seus limites de operação; de caracterização, consistindo em determinar o comprimento do jato de plasma; de sua viabilidade para processamento de materiais (soldagem e corte. Com base nestes testes iniciais, alguns problemas de isolamento elétrico e térmico foram encontrados e resolvidos. Quanto aos resultados dos testes de caracterização, os parâmetros de funcionamento da tocha de plasma híbrida apresentaram influência significativa sobre o comprimento do jato de plasma. Os resultados obtidos nos testes de processamento de materiais foram satisfatórios, ou seja, é possível realizar soldagem e corte com esta tocha de plasma híbrida.The main aim of this paper was to present a new device for materials processing. It consist of a hybrid plasma torch which is characterized by the simultaneous formation of two plasma arcs in one device only, generating a (plasma jet with high energy density. The torch was submitted to the following trials: of operation to identify possible design problems and its operational torch limits; of characterization, consisting in plasma jet length determination; and of viability for materials processing (welding and cutting. Based on these initial trials, some electrical and thermal insulation problems were found and solved. Concerning the results of the characterization trials, the hybrid plasma torch parameters had a significant influence over the plasma jet length. The results obtained in the materials processing trials were satisfactory, i.e., it is possible to carry out welding and

  20. Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet.

    Science.gov (United States)

    Takamatsu, Toshihiro; Kawano, Hiroaki; Sasaki, Yota; Uehara, Kodai; Miyahara, Hidekazu; Matsumura, Yuriko; Iwasawa, Atsuo; Azuma, Takeshi; Okino, Akitoshi

    2016-12-01

    To identify mechanisms underlying the bacterial inactivation process by atmospheric nonthermal plasma using a unique plasma jet that can generate various gas plasmas, Staphylococcus aureus were irradiated with carbon dioxide plasma, which produces a large amount of singlet oxygens, and nitrogen plasma, which produces a large amount of OH radicals. And damaged areas of plasma-treated bacteria were observed by field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. As a result, bacteria were damaged by both gas plasmas, but the site of damage differed according to gas species. Therefore, it suggests that singlet oxygen generated by carbon dioxide plasma or other reactive species caused by singlet oxygen contributes to the damage of internal structures of bacteria through the cell wall and membrane, and OH radicals generated by nitrogen plasma or other reactive species derived from OH radicals contribute to damage of the cell wall and membrane.

  1. Transferred plasma jet from a dielectric barrier discharge for processing of poly(dimethylsiloxane) surfaces

    CERN Document Server

    Nascimento, Fellype do; Canesqui, Mara A; Moshkalev, Stanislav

    2016-01-01

    In this work we studied processing of poly(dimethylsiloxane) (PDMS) surfaces using dielectric barrier discharge (DBD) plasma in two different assemblies, one using the primary plasma jet obtained from a conventional DBD and the other using a DBD plasma jet transfer. The evolution of water contact angle (WCA) in function of plasma processing time and in function of aging time as well as the changes in the surface roughness of PDMS samples for both plasma treatments have been studied. We also compared vibrational and rotational temperatures for both plasmas and for the first time the vibrational temperature (T_vib) for the transferred plasma jet has been shown to be higher as compared with the primary jet. The increment in the T_vib value seems to be the main reason for the improvements in adhesion properties and surface wettability for the transferred plasma jet. Possible explanations for the increase in the vibrational temperature are presented.

  2. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates......)category of cocongruences, which gives new insights about the real categorical nature of their results. As a corollary, we obtain sufficient conditions under which state and event bisimilarity coincide....

  3. Space Medicine in the Human System Integration Process

    Science.gov (United States)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  4. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    ring shape morphology of a beam with orbital angular momentum (OAM) is ideal for the observation of solar corona around the sun where the intensity of the beam is minimum at the center, in solar experiments, and Earth's ionosphere. The twisted plasma modes carrying OAM are mostly studied either by the fluid theory or Maxwellian distributed Kinetic Theory. But most of the space plasmas and some laboratory plasmas have non-thermal distributions due to super-thermal population of the plasma particles. Therefore the Kinetic Theory of twisted plasma modes carrying OAM are recently studied using non-thermal (kappa) distribution of the super-thermal particles in the presence of the helical electric field and significant change in the damping rates are observed by tuning appropriate parameters.

  5. Dimension reduction of multivariable optical emission spectrometer datasets for industrial plasma processes.

    Science.gov (United States)

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2013-12-19

    A new data dimension-reduction method, called Internal Information Redundancy Reduction (IIRR), is proposed for application to Optical Emission Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a semiconductor manufacturing environment, real-time spectral emission data is potentially very useful for inferring information about critical process parameters such as wafer etch rates, however, the relationship between the spectral sensor data gathered over the duration of an etching process step and the target process output parameters is complex. OES sensor data has high dimensionality (fine wavelength resolution is required in spectral emission measurements in order to capture data on all chemical species involved in plasma reactions) and full spectrum samples are taken at frequent time points, so that dynamic process changes can be captured. To maximise the utility of the gathered dataset, it is essential that information redundancy is minimised, but with the important requirement that the resulting reduced dataset remains in a form that is amenable to direct interpretation of the physical process. To meet this requirement and to achieve a high reduction in dimension with little information loss, the IIRR method proposed in this paper operates directly in the original variable space, identifying peak wavelength emissions and the correlative relationships between them. A new statistic, Mean Determination Ratio (MDR), is proposed to quantify the information loss after dimension reduction and the effectiveness of IIRR is demonstrated using an actual semiconductor manufacturing dataset. As an example of the application of IIRR in process monitoring/control, we also show how etch rates can be accurately predicted from IIRR dimension-reduced spectral data.

  6. Imploding process and x-ray emission of shotgun z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Ryusuke [Nihon University, College of Science and Technology, Tokyo (Japan); Takasugi, Keiichi; Miyamoto, Tetsu [Nihon University, Atomic Energy Research Institute, Tokyo (Japan)

    2001-09-01

    Rayleigh-Taylor instability was observed on the surface of a contracting z-pinch plasma. Wavelength of the instability was analyzed from the envelope of the profile, and it increased with implosion. Analysis with finite Larmor radius effect shows that there is some acceleration of ions during the contraction process. A suggestion to obtain macroscopically uniform plasma is to increase plasma current without heating the plasma. (author)

  7. Numerical simulation of chemical processes in helium plasmas in atmosphere environment

    Institute of Scientific and Technical Information of China (English)

    欧阳建明; 郭伟; 王龙; 邵福球

    2005-01-01

    A model is built to study chemical processes in plasmas generated in helium with trace amounts of air at atmospheric pressure or low pressures. The plasma lifetimes and the temporal evolutions of the main charged species are presented. The plasma lifetimes are longer than that in air plasma at atmospheric pressure, but this is not true at low pressures. The electron number density does not strictly obey the exponential damping law in a longer period.

  8. ISHIKAWA ITERATIVE PROCESS IN UNIFORMLY SMOOTH BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    黄震宇

    2001-01-01

    Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K → K is a continuous φ-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process { xn } converges strongly to the unique fixed point x * of the operator Twere proved. The paper generalizes and extends a lot of recent corresponding results.

  9. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  10. Recombination processes in a flowing magnetized plasma: Application to ionization energy recovery in the variable specific impulse magnetoplasma rocket (VASIMR)

    Science.gov (United States)

    Chavers, Donald Gregory

    Electric propulsion involves the acceleration of charged particles (ions and electrons) through electric and magnetic body forces. The collection of these charged particles, or plasma, cannot be stored but must be created in-situ. Therefore, energy must be supplied to a neutral gas to create the plasma that is accelerated by the body forces. The energy that is used to create the plasma, i.e., ionization energy, is typically lost, "frozen" in the exhaust of the thruster. When the kinetic energy in the plasma flow is much larger than the energy used to create the plasma, this frozen-flow loss is negligible. Conversely, if the frozen-flow loss is a major fraction of the total plasma energy, its recovery, even in a partial way, may improve the energy efficiency of the thruster while also providing a potential means for thrust augmentation. This dissertation investigates the underlying physics, which could enable the practical recovery of frozen-flow losses by processes such as surface and volume recombination. For surface recombination, the ions approach the surface of the metal and are neutralized by electrons from the metal via the Auger neutralization process. For volume recombination, the ions and electrons recombine, with energy released via line radiation or by transferring energy to a third body such as another electron. Since the total energy of the neutralized ion, an atom, is less than the total energy of the ion and electron pair before recombination, conservation of energy requires the release of energy as the ion and electron recombine. The measurements described in this dissertation were performed on the VX-10 experiment, a plasma device supporting the development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept and located at the Advanced Space Propulsion Laboratory of the Johnson Space Center. Results suggest that the recombination energy can be recovered. The available energy and power recovered depends on the local plasma

  11. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  12. Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC

    Science.gov (United States)

    Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin

    2015-04-01

    We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify

  13. Quantization as Asymptotics of Diffusion Processes in the Phase Space

    CERN Document Server

    Beniaminov, E M

    2008-01-01

    This work is an extended version of the paper arXiv:0803.2669v1[math-ph], in which the main results were announced. We consider certain classical diffusion process for a wave function on the phase space. It is shown that at the time of order $10^{-11}$ {\\it sec} this process converges to a process considered by quantum mechanics and described by the Schrodinger equation. This model studies the probability distributions in the phase space corresponding to the wave functions of quantum mechanics. We estimate the parameters of the model using the Lamb--Retherford experimental data on shift in the spectrum of hydrogen atom and the assumption on the heat reason of the considered diffusion process. In the paper it is shown that the quantum mechanical description of the processes can arise as an approximate description of more exact models. For the model considered in this paper, this approximation arises when the Hamilton function changes slowly under deviations of coordinates, momenta, and time on intervals whose ...

  14. Feedback loops from the Hubble Space Telescope data processing system

    Science.gov (United States)

    Fraquelli, Dorothy A.; Arquilla, Richard; Ellis, Tracy; Hamilton, Forrest C.; Holm, Albert; Kochte, Mark

    2002-12-01

    This paper presents an overview of the history and technology by which tools placed in the Hubble Space Telescope (HST) data processing pipeline were used to feedback information on observation execution to the scheduling system and observers. Because the HST is in a relatively low orbit, which imposes a number of constraints upon its observations, it operates in a carefully planned, fully automated mode. To substitute for direct observer involvement available at most ground-based observatories and to provide rapid feedback on failures that might affect future visits, the Space Telescope Science Institute (STScI) gradually evolved a system for screening science and engineering products during pipeline processing. The highly flexible HST data processing system (OPUS) allows tools to be introduced to use the content of FITS keywords to alert production staff to potential telescope and instrument performance failures. Staff members review the flagged data and, if appropriate, notify the observer and the scheduling staff so that they can resolve the problems and possibly repeat the failed observations. This kind of feedback loop represents a case study for other automated data collection systems where rapid response to certain quantifiable events in the data is required. Observatory operations staff can install processes to look for these events either in the production pipeline or in an associated pipeline into which the appropriate data are piped. That process can then be used to notify scientists to evaluate the data and decide upon a response or to automatically initiate a response.

  15. Concentrations of Monoamines and Their Metabolites in Blood Plasma and Some Brain Structures of Mice, Participated in a Space Flight on the Aircraft BION-M1

    Science.gov (United States)

    Shtemberg, Andrey; Kudrin, Vladimir

    The purpose of this work was to study the possible disturbances of monoamines concentration and their metabolites in some structures of mouse brain and blood plasma caused by the influence of space flight. The forty eight C57BL/6 mice were divided into the following groups : basal control - animals , which together with a group of space flight arrived at Baykonur and then were returned to Moscow; the first space flight group - animals who spent 30 days in space, BION-M1 - board and decapitated 12 hours after the landing; animal house control to the first space flight group; second space flight group - animals who spent 30 days in space, aboard the BION-M1, and then recovered at ground conditions for 7 days; animal house control to the second space flight group; space flight imitation group - spent 30 days on board at ground model of BION-M1; animal house control to the imitation group. In all animals concentration of HA, DA, 5 -HT and their metabolites DOPAC, HVA, 3 -MT, 5 - HIAA in plasma and in the prefrontal cortex, hypothalamus, striatum and hippocampus were studied. In the blood plasma of first space flight group the concentrations of DOPAC were significantly higher compared to animal house control. The most significant changes were observed in the second space flight group, in those animals which recovered after the flight. There was a significant increase in the concentration of HA and A in blood plasma relative to the basal control and increased concentration of HA and the DOPAC/DA ratio relative to the first space flight group. No significant changes were observed in the hippocampus. In the first space flight group there was observed an increase in concentration of HA and DOPAC in the hypothalamus relative to controls. Seven days after rest concentrations of monoamines and their metabolites were significantly enhanced relative to the control and the first space flight groups. In physiology and pharmacology there is a process called as withdrawal effect

  16. Plasma diagnostics in a pulsed accelerator used for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Zhukeshov, A [Science Research Institute of Experimental and Theoretical Physics, al-Farabi Kazakh National University, 96a Tole bi str., 050012 Almaty (Kazakhstan)

    2007-04-15

    Results of research work of a pulsed plasma accelerator, designed as diagnostic and material science stands in SRIETP are presented. We present results on the development of electric and magnetic probes used for measurement of plasma parameters. The physical properties and changes in structure of vanadium alloy, common quality carbon and stainless steels have been investigated as well.

  17. Titanium Metal Powder Production by the Plasma Quench Process

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  18. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge%The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    杨旗; 胡辉; 陈卫鹏; 许杰; 张锦丽; 吴双

    2011-01-01

    By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.

  19. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas;

    2016-01-01

    We propose a diagnostic capable of measuring 2D fast-ion velocity distribution functions 푓2퐷푣 in the MeV-range in magnetized fusion plasmas. Today velocity-space tomography based on fast-ion D훼 spectroscopy is regularly used to measure 푓2퐷푣 for ion energies below 100 keV. Unfortunately, the signal......-tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  20. Magnetic turbulence in space plasmas: in and around the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano [Universita della Calabria, Dipartimento di Fisica, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)

    2006-12-15

    In collisionless space plasmas most phenomena are governed by wave particle interaction and by the interaction with the large scale fields. Low frequency magnetic turbulence in the solar wind is relatively well characterized and understood. The situation is more complicated for magnetic turbulence in and around the Earth's magnetosphere, where the turbulence feature can vary widely with the location. Recent spacecraft observations of magnetic turbulence in the magnetosheath, in the polar cusp regions and in the magnetotail are considered. Turbulence features like the fluctuation level, the spectral power law index, the turbulence drivers and the turbulence anisotropy and intermittency are addressed. The influence of such a turbulence on the plasma transport and dynamics is briefly described, also using the results of numerical simulations.

  1. Consensus shaping and safe space public participation processes

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karita Research AB, Taeaby (Sweden)

    2015-07-01

    map public participation - consultation, consensus shaping processes and safe space. In contrast to consensus shaping processes, in the safe space approach there is no intention to develop solutions together between the implementer and other stakeholders. In comparison with the ladder, the basic approaches offer advantages for the mapping of public participation processes: If you strive for consensus or ''only'' clarity and awareness is a crucial question to be answered before a process is launched as it determines which stakeholders can join and which goals are feasible to reach. It is easier to use in assigning properties to a process, as it more straight-forward to understand if a process is consensus shaping or a safe space than where it is on the ladder. It clarifies better the links between the participation processes and the actual political and/or legal decision-making process. A consensus shaping process should produce real advice (or even decisions) but a safe space is limited to improving the decision making base with enhanced clarity.

  2. Numerical Modeling and Analysis of Space-Based Electric Antennas via Plasma Particle Simulation

    Science.gov (United States)

    Miyake, Y.; Usui, H.; Kojima, H.

    2009-12-01

    Better understanding of electric antenna properties (e.g., impedance) in space plasma environment is necessitated, because calibration of electric field data obtained by scientific spacecraft should be done with precise knowledge about the properties. Particularly, a strong demand arises regarding a sophisticated method for evaluating modern electric field instrument properties toward future magnetospheric missions. However, due to complex behavior of surrounding plasmas, it is often difficult to apply theoretical approaches to the antenna analysis including the plasma kinetic effects and the complex structure of such instruments. For the self-consistent antenna analysis, we have developed a new electromagnetic (EM) particle simulation code named EMSES. The code is based on the particle-in-cell technique and also supports a treatment of inner boundaries describing spacecraft conductive surfaces. This enables us to naturally include the effects of the inhomogeneous plasma environment such as a plasma and photoelectron sheaths created around the antenna. The support of the full EM treatment is also important to apply our tool to antenna properties for not only electrostatic (ES) but also EM plasma waves. In the current study, we particularly focus on an electric field instrument MEFISTO, which is designed for BepiColombo/MMO to the Mercury orbit. For the practical analysis of MEFISTO electric properties, it is important to consider an ES environment affected by the instrument body potential and the photoelectron distribution. We present numerical simulations on an ES structure around MEFISTO as well as current-voltage characteristic of the instrument. We have also started numerical modeling of a photoelectron guard electrode, which is one of key technologies for producing an optimal condition of plasma environment around the instrument. We have modeled a pre-amplifier housing called “puck”, the surface of which functions as the electrode. The photoelectron guard

  3. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  4. To Boldly Go: America's Next Era in Space. The Plasma Universe

    Science.gov (United States)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, the eighth seminar in the Administrator's Seminar Series. She introduced the NASA Administrator, Daniel S. Goldin, who, in turn, introduced the subject of plasma. Plasma, an ionized gas, is a function of temperature and density. We ve learned that, at Jupiter, the radiation is dense. But, Goldin asked, what else do we know? Dr. Cordova then introduced Dr. James Van Allen, for whom the Van Allen radiation belt was named. Dr. Van Allen, a member of the University of Iowa faculty, discussed the growing interest in practical applications of space physics, including radiation fields and particles, plasmas and ionospheres. He listed a hierarchy of magnetic fields, beginning at the top, as pulsars, the Sun, planets, interplanetary medium, and interstellar medium. He pointed out that we have investigated eight of the nine known planets,. He listed three basic energy sources as 1) kinetic energy from flowing plasma such as constitutional solar wind or interstellar wind; 2) rotational energy of the planet, and 3) orbital energy of satellites. He believes there are seven sources of energetic particles and five potential places where particles may go. The next speaker, Dr. Ian Axford of New Zealand, has been associated with the Max Planck Institut fuer Aeronomie and plasma physics. He has studied solar and galactic winds and clusters of galaxies of which there are several thousand. He believes that the solar wind temperature is in the millions of degrees. The final speaker was Dr. Roger Blanford of the California Institute of Technology. He classified extreme plasmas as lab plasmas and cosmic plasmas. Cosmic plasmas are from supernovae remnants. These have supplied us with heavy elements and may come via a shock front of 10(sup 15) electron volts. To understand the physics of plasma, one must learn about x-rays, the maximum energy of acceleration by supernova remnants, particle acceleration and composition of cosmic

  5. The kinetic studies of direct methane oxidation to methanol in the plasma process

    Institute of Scientific and Technical Information of China (English)

    INDARTO Antonius; CHOI Jae-Wook; LEE Hwaung; SONG Hyung Keun

    2008-01-01

    The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to investigate thoroughly the possible intermediate species likely to be presented in the process. A set of plasma experiments was undertaken by using dielectric barrier discharge (DBD), classified as non-thermal plasma, done at atmospheric pressure and room temperature. Plasma proc-ess yields more methanol than thermal process at the same methane conversion rates and methane to oxygen feed ratios. Oxidation reaction of thermal process resulted CO and CO2 as the most dominant products and the selectivity reached 19% and 68%, respectively. Moreover, more CO and less CO2 were produced in plasma process than in thermal process. The selectivity of CO and CO2 by plasma was 47% and 20%, respectively. Ethane (C2H6) was detected as the only higher hydrocarbon with a signifi-cant concentration. The concentration of ethane reached 9% of the total products in plasma process and 17% in thermal process. The maximum selectivity of methanol, the target material of this research, was 12% obtained by plasma method and less than 5% by thermal process. In some certain points, the kinetic model closely matched with the experimental results.

  6. Applications and challenges of plasma processes in nanobiotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Colpo, P, E-mail: francois.rossi@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), I-21020, Ispra (Italy)

    2011-05-04

    We present an overview of the possibilities offered by plasma technologies, in particular the combination plasma polymers deposition, colloidal lithography, e-beam lithography and microcontact printing, to produce micro- and nanostructured surfaces with chemical and topographical contrast for applications in nanobiotechnology. It is shown that chemical and topographical patterns can be obtained on different substrates, with dimensions down to a few tenths of 10 nm. The applications of these nanostructured surfaces in biology, biochemistry and biodetection are presented and the advantages and limitation of the plasma techniques in this context underlined.

  7. Magnetic reconnection in turbulent space plasmas: null-points or pinches?

    Science.gov (United States)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    2014-05-01

    We report particle-in-cell simulations of magnetic reconnection in the configuration containing both null-points and pinches. All indicators suggest that secondary magnetic reconnection driven by kinking of the pinches plays a dominant role in the energetics of the system. While there is no substantial energy dissipation in the vicinity of X-type null-points. Such reconnection results in tremendous release of magnetic energy, generation of suprathermal particles and waves. Similar scenario may take place in turbulent space plasmas, where current channels and twisted magnetic fields are detected.

  8. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  9. Interference Cancellation Using Space-Time Processing and Precoding Design

    CERN Document Server

    Li, Feng

    2013-01-01

    Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available.   This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method.   Dr. Feng Li is a scientific researcher at Cornell University.

  10. Inflow process of pedestrians to a confined space

    CERN Document Server

    Ezaki, Takahiro; Chraibi, Mohcine; Boltes, Maik; Yanagisawa, Daichi; Seyfried, Armin; Schadschneider, Andreas; Nishinari, Katsuhiro

    2016-01-01

    To better design safe and comfortable urban spaces, understanding the nature of human crowd movement is important. However, precise interactions among pedestrians are difficult to measure in the presence of their complex decision-making processes and many related factors. While extensive studies on pedestrian flow through bottlenecks and corridors have been conducted, the dominant mode of interaction in these scenarios may not be relevant in different scenarios. Here, we attempt to decipher the factors that affect human reactions to other individuals from a different perspective. We conducted experiments employing the inflow process in which pedestrians successively enter a confined area (like an elevator) and look for a temporary position. In this process, pedestrians have a wider range of options regarding their motion than in the classical scenarios; therefore, other factors might become relevant. The preference of location is visualized by pedestrian density profiles obtained from recorded pedestrian traj...

  11. Preliminary feasibility study of pallet-only mode for magnetospheric and plasmas in space payloads, volume 4

    Science.gov (United States)

    1976-01-01

    Results of studies performed on the magnetospheric and plasma portion of the AMPS are presented. Magnetospheric and plasma in space experiments and instruments are described along with packaging (palletization) concepts. The described magnetospheric and plasma experiments were considered as separate entities. Instrumentation ospheric and plasma experiments were considered as separate entities. Instrumentation requirements and operations were formulated to provide sufficient data for unambiguous interpretation of results without relying upon other experiments of the series. Where ground observations are specified, an assumption was made that large-scale additions or modifications to existing facilities were not required.

  12. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  13. Recent progress on phase-space turbulence and dynamical response in collisionless plasmas

    CERN Document Server

    Lesur, Maxime

    2013-01-01

    In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics. Their dynamics can lead to a nonlinear continuous shifting of the wave frequency (chirping). This report summarizes my personal contribution to these topics in the fiscal year 2012. The effects of collisions on chirping characteristics were investigated, with a one-dimensional beam-plasma kinetic model. The long-time nonlinear evolution was systematically categorized as damped, steady-state, periodic, chaotic and chirping. The chirping regime was sub-categorized as periodic, chaotic, bursty, and intermittent. Existing analytic theory was extended to account for Krook-like collisions. Relaxation oscillations, associated with chirping bursts, were investigated in the presence of dynamical friction and velocity-diffusion. The period increases with decreasing drag, and weakly increases with decreasing diffusion. A new theory gives a simple relation between the growth of phase-space structures and that of the wave ener...

  14. Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation

    CERN Document Server

    Parker, Joseph Thomas

    2016-01-01

    Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision ope...

  15. Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR

    Directory of Open Access Journals (Sweden)

    S. V. Badman

    2009-09-01

    Full Text Available Space Plasma Exploration by Active Radar (SPEAR is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR.

  16. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Bulgakova

    2014-12-01

    Full Text Available In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a “plasma pipe”; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.

  17. Electric Propulsion Test & Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST) (Briefing Charts)

    Science.gov (United States)

    2015-04-01

    transitioned to FalconSat-6, NASA, industry, and academia • Correlated thruster plasma oscillations with transient ion flux impacting chamber...Research PAYOFF - Pervasive Space Capability for Increased Payload Transition Improved T&E Methods Cannot fully replicate space environment in ground

  18. Data Processing for the Space-Based Desis Hyperspectral Sensor

    Science.gov (United States)

    Carmona, E.; Avbelj, J.; Alonso, K.; Bachmann, M.; Cerra, D.; Eckardt, A.; Gerasch, B.; Graham, L.; Günther, B.; Heiden, U.; Kerr, G.; Knodt, U.; Krutz, D.; Krawcyk, H.; Makarau, A.; Miller, R.; Müller, R.; Perkins, R.; Walter, I.

    2017-05-01

    The German Aerospace Center (DLR) and Teledyne Brown Engineering (TBE) have established a collaboration to develop and operate a new space-based hyperspectral sensor, the DLR Earth Sensing Imaging Spectrometer (DESIS). DESIS will provide spacebased hyperspectral data in the VNIR with high spectral resolution and near-global coverage. While TBE provides the platform and infrastructure for operation of the DESIS instrument on the International Space Station, DLR is responsible for providing the instrument and the processing software. The DESIS instrument is equipped with novel characteristics for an imaging spectrometer such high spectral resolution (2.55 nm), a mirror pointing unit or a CMOS sensor operated in rolling shutter mode. We present here an overview of the DESIS instrument and its processing chain, emphasizing the effect of the novel characteristics of DESIS in the data processing and final data products. Furthermore, we analyse in more detail the effect of the rolling shutter on the DESIS data and possible mitigation/correction strategies.

  19. Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding

    Directory of Open Access Journals (Sweden)

    Silva Maria Margareth da

    2006-01-01

    Full Text Available Based on the fact that the Ti-6Al-4V alloy has good mechanical properties, excellent resistance to corrosion and also excellent biocompatibility, however with low wear resistance, this work aims to test plasma processes or combination of plasma and ion implantation processes to improve these characteristics. Two types of processing were used: two steps PIII (Plasma Immersion Ion Implantation combined with PN (Plasma Nitriding and single step PIII treatment. According to Auger Electron Spectroscopy (AES results, the best solution was obtained by PIII for 150 minutes resulting in ~ 65 nm of nitrogen implanted layer, while the sample treated with PIII (75 minutes and PN (75 minutes reached ~ 35 nm implanted layer. The improvement of surface properties could also be confirmed by the nanoindentation technique, with values of hardness increasing for both processes. AFM (Atomic Force Microscopy characterization showed that the single step PIII process presented greater efficiency than the duplex process (PIII + PN, probably due to the sputtering occurring during the second step (PN removing partially the implanted layer of first step (PIII.

  20. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  1. Physical simulation of the long-term dynamic action of a plasma beam on a space debris object

    Science.gov (United States)

    Shuvalov, Valentin A.; Gorev, Nikolai. B.; Tokmak, Nikolai A.; Kochubei, Galina S.

    2017-03-01

    A methodology is developed for physical (laboratory) simulation of the long-term dynamic action of plasma beam high-energy ions on a space debris object with the aim of removing it to a lower orbit followed by its burning in the Earth's atmosphere. The methodology is based on the use of a criterion for the equivalence of two plasma beam exposure regimes (in the Earth' ionosphere and in laboratory conditions) and an accelerated test procedure in what concerns space debris object material sputtering and space debris object erosion by a plasma beam in the Earth's ionosphere. The space debris coating material (blanket thermal insulation) sputtering yield and normal and tangential momentum transfer coefficients are determined experimentally as a function of the ion energy and the ion beam incidence angle.

  2. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  3. Magnetic nulls in three-dimensional kinetic simulations of space plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-04-01

    We present a survey of magnetic nulls and associated energy dissipation in different three-dimensional kinetic particle-in-cell simulations of space plasmas. The configurations under study include: a traditional Harris current sheet and current sheets with asymmetric density distribution, dipolar and quadrupolar planetary magnetospheres, lunar magnetic anomalies, and decaying turbulence. Nulls are detected in the simulation snapshots by the topological degree method. In all runs except the quadrupolar magnetospere the dominating majority of nulls are of spiral topological type. When supported by strong currents, these nulls indicate the regions of strong energy dissipation. Dissipation, often accompanied by the changes in magnetic topology, is caused by plasma instabilities in the current channels or on their interfaces. Radial nulls show less activity, they can be created or destroyed in pairs, via topological bifurcations. Although such events demonstrate energy release, they are rather rare and short-living. An important implication of our study to observations is that magnetic topology should not be considered independently of other plasma properties such as currents.

  4. Particle-In-Cell Simulation on the Characteristics of a Receiving Antenna in Space Plasma Environment

    Science.gov (United States)

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu; Omura, Yoshiharu

    2008-12-01

    We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.

  5. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  6. The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.

    2004-01-01

    A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.

  7. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  8. Expanding the Capabilities of the Pulsed Plasma Thruster for In-Space and Atmospheric Operation

    Science.gov (United States)

    Johnson, Ian Kronheim

    Of all in-space propulsion systems to date, the Pulsed Plasma Thruster (PPT) is unique in its simplicity and wide range of operational parameters. This study examined multiple uses of the thruster for in-space and atmospheric propulsion, as well as the creation of a CubeSat satellite and atmospheric airship as test beds for the thruster. The PPT was tested as a solid-propellant feed source for the High Power Helicon Thruster, a compact plasma source capable of generating order of magnitude higher plasma densities than comparable power level systems. Replacing the gaseous feed system reduced the thruster size and complexity, as well as allowing for extremely discrete discharges, minimizing the influence of wall effects. Teflon (C2F4) has been the traditional propellant for PPTs due to a high exhaust velocity and ability to ablate without surface modification over long durations. A number of alternative propellants, including minerals and metallics commonly found on asteroids, were tested for use with the PPT. Compounds with significant fractions of sulfur showed the highest performance increase, with specific thrusts double that of Teflon. A PPT with sulfur propellant designed for CubeSat operation, as well as the subsystems necessary for autonomous operation, was built and tested in the laboratory. The PPT was modified for use at atmospheric pressures where the impulse was well defined as a function of the discharge chamber volume, capacitor energy, and background pressure. To demonstrate that the air-breathing PPT was a viable concept the device was launched on two atmospheric balloon flights.

  9. Accelerated space object tracking via graphic processing unit

    Science.gov (United States)

    Jia, Bin; Liu, Kui; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this paper, a hybrid Monte Carlo Gauss mixture Kalman filter is proposed for the continuous orbit estimation problem. Specifically, the graphic processing unit (GPU) aided Monte Carlo method is used to propagate the uncertainty of the estimation when the observation is not available and the Gauss mixture Kalman filter is used to update the estimation when the observation sequences are available. A typical space object tracking problem using the ground radar is used to test the performance of the proposed algorithm. The performance of the proposed algorithm is compared with the popular cubature Kalman filter (CKF). The simulation results show that the ordinary CKF diverges in 5 observation periods. In contrast, the proposed hybrid Monte Carlo Gauss mixture Kalman filter achieves satisfactory performance in all observation periods. In addition, by using the GPU, the computational time is over 100 times less than that using the conventional central processing unit (CPU).

  10. Evidence of Space Weathering Processes Across the Surface of Vesta

    Science.gov (United States)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; hide

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  11. Reliability of plasma-sprayed coatings: monitoring the plasma spray process and improving the quality of coatings

    Science.gov (United States)

    Fauchais, P.; Vardelle, M.; Vardelle, A.

    2013-06-01

    As for every coating technology, the reliability and reproducibility of coatings are essential for the development of the plasma spraying technology in industrial manufacturing. They mainly depend on the process reliability, equipment and spray booth maintenance, operator training and certification, implementation and use of consistent production practices and standardization of coating testing. This paper deals with the first issue, that is the monitoring and control of the plasma spray process; it does not tackle the coating characterization and testing methods. It begins with a short history of coating quality improvement under plasma spray conditions over the last few decades, details the plasma spray torches used in the industry, the development of the measurements of in-flight and impacting particle parameters and then of sensors. It concludes with the process maps that describe the interrelations between the operating parameters of the spray process, in-flight particle characteristics and coating properties and with the potential of in situ monitoring of the process by artificial neural networks and fuzzy logic methods.

  12. Investigation of physical processes limiting plasma density in H-mode on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Jernigan, T.C. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-01

    A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmas was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.

  13. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  14. Pultrusion Process Development for Long Space Boom Model

    Science.gov (United States)

    Wilson, Maywood L.; Miserentino, Robert

    1988-01-01

    Long flexible-boom models were required to develop ground-vibration test methods for very-low-frequency space structures with applications to the proposed Space Station. Pultruded quasi-isotropic composite beams were selected as an option over extruded aluminum alloy structures because of the lower cost potential, the higher specific strength, the flexural properties, and the dynamic similarity considerations. The reinforcement material that was used was biaxial (0 deg/90 deg) fiberglass roving held in place with knitted polyester yarn such that equal fiber volume in 0 deg and 90 deg orientations provided nearly equal strength in both longitudinal and transverse directions. An isophthalic polyester resin system was used as the matrix. Continuous lengths up to 270 ft were easily pultruded with biaxial fabric. Tracking problems were encountered with similar unidirectional fabrics. Analyses of processing problems were conducted to determine causes for delamination, scaling, and sloughing. Ultrasonic C-scanning and scanning electron microscope examinations were conducted as well as mechanical testing to failure. Test results indicate that pultrusion processes can be used to produce quasi-isotropic composite structures.

  15. Plasma processes and applications in NanoBiotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Colpo, P, E-mail: francois.rossi@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), I-21020, Ispra (Italy)

    2010-11-01

    Nanostructured surfaces presenting chemical or topographical patterns are now being increasingly developed in nanobiotechnology. Major applications are related to cell culture models and biodetection. We show that plasma technologies, in particular the combination plasma polymers deposition and etching, together with colloidal lithography, e-beam lithography and microcontact printing, are essential tools to produce nanostructured surfaces. We show that chemical and topographical patterns can be obtained on different substrates, with dimensions down to some 10 nm. The applications of these nanostructured surfaces in biology and bio-detection are reviewed and the advantages and limitation of the techniques underlined.

  16. Plasma Surface Treatment of Powder Materials — Process and Application

    Directory of Open Access Journals (Sweden)

    Monika Pavlatová

    2012-01-01

    Full Text Available Polyolefin particles are hydrophobic, and this prevents their use for various applications. Plasma treatment is an environment-friendly polyolefin hydrophilisation method. We developed an industrial-scale plant for plasma treatment of particles as small as micrometers in diameter. Materials such as PE waxes, UHMWPE and powders for rotomolding production were tested to verify their new surface properties. We achieved significantly increased wettability of the particles, so that they are very easily dispersive in water without agglomeration, and their higher surface energy is retained even after sintering in the case of rotomolding powders.

  17. Research on the Plasma Spray Process Applying the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2015-03-01

    Full Text Available The article investigates the physical processes of plasma spraying. The application of the finite element method has assisted in establishing the distribution of the voltage of the plasma arc and current density in the plasma stream during numerical simulation. With reference to the results of experimental data, the real location of an anode spot of the electric arc in the plasma spray process has been evaluated. The paper has calculated the values of electromagnetic Lorentz forces and established their influence on plasma flow. With the help of the two-layer model for the semi-molten nickel particle, contact between the particle and substrate during plasma spraying has been simulated.

  18. Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

    Energy Technology Data Exchange (ETDEWEB)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Sherman, V. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2016-08-15

    The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  19. Influence of radiative processes on the ignition of deuterium-tritium plasma containing inactive impurities

    Science.gov (United States)

    Gus'kov, S. Yu.; Sherman, V. E.

    2016-08-01

    The degree of influence of radiative processes on the ignition of deuterium-tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  20. A family for miniature, easily reconfigurable particle sensors for space plasma measurements

    Science.gov (United States)

    Wieser, M.; Barabash, S.

    2016-12-01

    Over the last 15 years the Swedish Institute of Space Physics developed a line of miniaturized ion mass analyzers for space plasma studies with masses of 400-600 g and highly compact and dense design to minimize the volume. The sensors cover an energy range from few eV up to 15 keV and reach an angular coverage up to hemispherical and mass resolution up to 7, depending on application. The experience with this line of sensors demonstrates that a sensor mass of 400-600 g is a limit in the trade-off between scientifically valuable performance and the sensor mass. The Solar Wind Monitor (SWIM), part of the Sub-keV Atom Reflecting Analyzer (SARA) on board of the Indian Chandrayaan-1 mission to the Moon, was the first sensor in the line. A number of instruments derived from SWIM were built, each using the same basic architecture but adapted for the needs of the corresponding mission: the Miniature Ion Precipitation Analyzer (MIPA) on the European Space Agency's BepiColombo mission to Mercury, the Detector for Ions at Mars (DIM) for the Russian Phobos-Grunt mission and the Yinghuo Plasma Package Ion sensor (YPPi) for the Chinese Yinghuo-1 spacecraft (both to Mars), the Prisma Ion Mass Analyzer (PRIMA) for the Swedish PRISMA spacecraft to Earth orbit, the eXtra Small Analyzer of Neutrals (XASN) for the Russian Luna-Glob lander, and the Laboratory Ion Scattering Analyzer (LISA) used for laboratory studies. We review architecture, design, performance, and fields of application of the instruments in this family and give and outlook in future developments.

  1. Time and space correlated investigations of confinement effects due to static axial magnetic fields acting on laser produced carbon plasmas

    Science.gov (United States)

    Favre, Mario; Wyndham, Edmund; Veloso, Felipe; Bhuyan, Heman; Reyes, Sebastian; Ruiz, Hugo Marcelo; Caballero-Bendixsen, Luis Sebastian

    2016-10-01

    We present further detailed studies of the dynamics and plasma properties of a laser produced Carbon plasma expanding in a static axial magnetic field. The laser plasmas are produced in vacuum, 1 .10-6 Torr, using a graphite target, with a Nd:YAG laser, 3.5 ns, 340 mJ at 1.06 μm, focused at 2 .109 W/cm2, and propagate in static magnetic fields of maximum value 0.2 T. 15 ns time and spaced resolved OES is used to investigate plasma composition. 50 ns time resolved plasma imaging is used to visualize the plasma dynamics. A mm size B-dot probe is used, in combination with a Faraday cup, to characterize the interaction between the expanding plasma and the magnetic field. As a result of time and space correlated measurements, unique features of the laser plasma dynamics in the presence of the magnetic field are identified, which highlight the confinement effects of the static magnetic field Funded by project FONDECYT 1141119.

  2. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  3. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  4. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    Science.gov (United States)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  5. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  6. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  7. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology i

  8. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology i

  9. Thomson Scattering Process in Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    YU Quan-Zhi; JIANG Xiao-Hua; LI Wen-Hong; LIU Shen-Ye; ZHENG Zhi-Jian; ZHANG Jie; LI Yu-Tong; ZHENG Jun; YAN Fei; LU Xin; WANG Zhe-Bin; ZHENG Jian; YU Chang-Xuan

    2005-01-01

    @@ We present the evolutions of the electron temperature and plasma expansion velocity with Thomson scattering experiment. The observed time-resolved ion-acoustic image is reproduced by a numerical code which couples the Thomson scattering theory with the output parameters of the one-dimensional hydrocode MEDUSA.

  10. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology

  11. Characterization of DBD Plasma Actuators Performance without External Flow . Part I; Thrust-Voltage Quadratic Relationship in Logarithmic Space for Sinusoidal Excitation

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2016-01-01

    We present results of thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators. We have used a test setup, measurement, and data processing methodology that we developed in prior work. The tests were conducted with High Density Polyethylene (HDPE) actuators of three thicknesses. The applied voltage driving the actuators was a pure sinusoidal waveform. The test setup was suspended actuators with a partial liquid interface. The tests were conducted at low ambient humidity. The thrust was measured with an analytical balance and the results were corrected for anti-thrust to isolate the plasma generated thrust. Applying this approach resulted in smooth and repeatable data. It also enabled curve fitting that yielded quadratic relations between the plasma thrust and voltage in log-log space at constant frequencies. The results contrast power law relationships developed in literature that appear to be a rough approximation over a limited voltage range.

  12. Preparation of ion-exchange thin film using plasma processes. Plasma process wo mochiita ion kokansei usumaku no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Ogumi, Z.; Uchimoto, Y. (Kyoto University, Kyoto (Japan). Faculty of Engineering)

    1992-10-31

    The present report describes a study which aims at preparation of a new functional film by plasma polymerization. For this purpose, 4-vinylpyridine monomer is plasma-polymerized to obtain a thin film, which is quaternarized with 1-bromopropane to produce an anion exchange thin film, which is laminated on the surface of a cation-exchange film to make a mono-valent cation perm-selective film. In plasma-polymerization, the relations of polymerizing pressure, as parameter, to the deposition rate of the polymerizerd film and the characteristics of compound were clarified. In preparing the anion-exchange thin film, the preparation of uniform ultrathin films with no pinhole was attempted. For this purpose, the transference number of Cl[sup -] was measured so as to confirm that Cl[sup -] is uniformly distributed and fixed cation groups are distributed uniformly in the film. The perm-selective film exhibited a high mono-valent cation perm-selectivity while its film resistance was increased. This increase is found to be broken down to the resistance of the plasma-polymerization film layer and the resistance of the film interface. The latter arises from the implantation of nitrogen-cointaining species in the plasma onto the surface of the cation exchange film. 26 refs., 10 figs., 2 tabs.

  13. Electroacoustic Process Study of Plasma Sparker Under Different Water Depth

    KAUST Repository

    Huang, Yifan

    2015-01-05

    The plasma sparker has been applied in oceanic high-resolution seismic exploration for decades. Normally it is towed on the water surface. This is suitable for shallow water, but if the water depth is great, the resolution will decrease dramatically, especially in the horizontal direction. This paper proposes the concept of a deep-towed plasma sparker and presents an experimental study of plasma sparker performance in terms of electric parameters, bubble behavior, and acoustic characteristics. The results show that hydrostatic pressure at a source depth ranging from 1 to 2000 m has a negligible influence on the electric parameters but a strong influence on bubble behavior, wherein both the maximum bubble radius and oscillation period are decreased. The collapse pulse vanishes when the source depth reaches 1000 m or deeper, and no bubble oscillation can be distinguished. The source level (evaluated by the expansion pulse) is also decreased as the source depth increases; moreover, the greater the discharge energy, the smaller the source level loss. The discharge energy per electrode should be greater than 20 J for the deep-towed plasma sparker, which can make the source level loss induced by hydrostatic pressure smaller than the transmission loss. The fast Fourier transform (FFT) results show that the dominant energy is around 20 kHz, which is mainly induced by the expansion pulse and its oscillation. According to the simulation results, the fundamental frequency of the acoustic waveform increases with source depth in accord with a log linear trend, and also reaches tens of kilohertz in deep water. So, before the development of deep-towed plasma sparker, a new technical solution will need to be developed to solve this problem. © 1976-2012 IEEE.

  14. Nonlinear plasma processes and the formation of electron kappa distribution

    Science.gov (United States)

    Yoon, Peter

    2016-07-01

    The goal of nonequilibrium statistical mechanics is to establish fundamental relationship between the time irreversible macroscopic dynamics and the underlying time reversible behavior of microscopic system. The paradigm of achieving this seemingly paradoxical goal is through the concept of probability. For classical systems Boltzmann accomplished this through his H theorem and his kinetic equation for dilute gas. Boltzmann's H function is the same as classical extensive entropy aside from the minus sign, and his kinetic equation is applicable for short-range molecular interaction. For plasmas, the long-range electromagnetic force dictates the inter-particular interaction, and the underlying entropy is expected to exhibit non-extensive, or non-additive behavior. Among potential models for the non-additive entropy, the celebrated Tsallis entropy is the most well known. One of the most useful fundamental kinetic equations that governs the long-range plasma interaction is that of weak turbulence kinetic theory. At present, however, there is no clear-cut connection between the Tsallis entropy and the kinetic equations that govern plasma behavior. This can be contrasted to Boltzmann's H theorem, which is built upon his kinetic equation. The best one can do is to show that the consequences of Tsallis entropy and plasma kinetic equation are the same, that is, they both imply kappa distribution. This presentation will overview the physics of electron acceleration by beam-generated Langmuir turbulence, and discuss the asymptotic solution that rigorously can be shown to correspond to the kappa distribution. Such a finding is a strong evidence, if not water-tight proof, that there must be profound inter-relatioship between the Tsallis thermostatistical theory and the plasma kinetic theory.

  15. Achieving atomistic control in materials processing by plasma-surface interactions

    Science.gov (United States)

    Chang, Jeffrey; Chang, Jane P.

    2017-06-01

    The continuous down-scaling of electronic devices and the introduction of functionally improved novel materials require a greater atomic level controllability in the synthesis and patterning of thin film materials, especially with regards to deposition uniformity and conformality as well as etching selectivity and anisotropy. The richness of plasma chemistry and the corresponding plasma-surface interactions provide the much needed processing flexibility and efficacy. To achieve the integration of the novel materials into devices, plasma-enhanced atomic layer processing techniques are emerging as the enabling factors to obtain atomic scale control of complex materials and nanostructures. This review focuses on an overview of the role of respective plasma species involved in plasma-surface interactions, addressing their respective and synergistic effects, which is followed by two distinct applications: plasma-enhanced atomic layer deposition (ALD) and atomic layer etching (ALE). For plasma-enhanced ALD, this review emphasizes the use of plasma chemistry to enable alternative pathways to synthesize complex materials at low temperatures and the challenges associated with deposition conformality. For plasma enabled ALE processes, the review focuses on the surface-specific chemical reactions needed to achieve desirable selectivity and anisotropy.

  16. The magnetized dusty plasma discharge negative and positive space charge modes

    CERN Document Server

    Cramer, N F; Cramer, Neil F.; Vladimirov, Sergey

    2004-01-01

    The structure of a discharge across a magnetic field in a dusty plasma is analysed. The dust macroparticles are negatively charged, but are unmagnetized because of their high mass. The electrons are highly magnetized, and the ions have intermediate magnetization. This results in different transport rates of the different species across the magnetic field. Depending on the size of the magnetic field, and the relative charge on the different species, the dust grains can be the dominant current carrier. The space charge clouds near the electrodes will then be determined by the relative mobility of the different species. The discharge can operate in one of two modes, a positive space charge (PSC) mode, characterized by a strong cathode fall, and a negative space charge (NSC) mode, characterized by a broad anode fall. Features unique to the dust particles can also play a role in the structure of the discharge, such as the variable equilibrium charge on the grains, dependent on the local potential and species tempe...

  17. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  18. Amino acid composition of parturient plasma, the intervillous space of the placenta and the umbilical vein of term newborn infants

    Directory of Open Access Journals (Sweden)

    J.S. Camelo Jr.

    2004-05-01

    Full Text Available The objective of the present study was to determine the levels of amino acids in maternal plasma, placental intervillous space and fetal umbilical vein in order to identify the similarities and differences in amino acid levels in these compartments of 15 term newborns from normal pregnancies and deliveries. All amino acids, except tryptophan, were present in at least 186% higher concentrations in the intervillous space than in maternal venous blood, with the difference being statistically significant. This result contradicted the initial hypothesis of the study that the plasma amino acid levels in the placental intervillous space should be similar to those of maternal plasma. When the maternal venous compartment was compared with the umbilical vein, we observed values 103% higher on the fetal side which is compatible with currently accepted mechanisms of active amino acid transport. Amino acid levels of the placental intervillous space were similar to the values of the umbilical vein except for proline, glycine and aspartic acid, whose levels were significantly higher than fetal umbilical vein levels (average 107% higher. The elevated levels of the intervillous space are compatible with syncytiotrophoblast activity, which maintain high concentrations of free amino acids inside syncytiotrophoblast cells, permitting asymmetric efflux or active transport from the trophoblast cells to the blood in the intervillous space. The plasma amino acid levels in the umbilical vein of term newborns probably may be used as a standard of local normality for clinical studies of amino acid profiles.

  19. Nonlinear ion-acoustic solitary waves with warm ions and non-Maxwellian electrons in space plasmas

    Science.gov (United States)

    Hussain Shah, Khalid; Qureshi, Nouman

    2017-04-01

    Electrons velocity distributions are often observed with non-Maxwellian features such flat tops at low energies and/or superthermal tails at high energies from different regions of near Earth plasmas such as Earth's bow shock, auroral zone and magnetosphere by numerous satellites. Such non-Maxwellian distributions are well modelled by generalized (r,q) distribution or Cairns distribution. Solitons are nonlinear solitary structures and are integral part of space plasmas. In this paper, we present a fluid model containing Cairns (r,q) distributed non-Maxwellian electrons and derive the Sagdeev potential for fully nonlinear fluid equations. We found that compressive solitons can be developed in such a plasma. The results from our model can be used to interpret solitary structures in space plasmas when electrons are obeying the non-Maxwellian flat tops along with the high energy tails.

  20. The Effect of Polarization on the Stability of Current Sheaths in Space Plasma

    Science.gov (United States)

    Lyahov, Vladimir; Neshchadim, Vladimir

    2013-04-01

    The procedure of study of the stability of current sheath taking into account the effect of plasma polarization is proposed. The kinetic equation with self-consistent electromagnetic field for perturbation of distribution function is solved. On the basis of this solution the tensor of dielectric permeability of nonelectroneutral sharply-irregular current sheath plasma is calculated and the dispersion equation to study the possible instability modes of this sheath is obtained. Instability of the current sheath of magnetospheric tail with respect to the tearing-perturbations as well as influence of the effect of plasma polarization on the development of tearing instability is investigated. As a result of application of the offered procedure the existence of low-frequency tearing-like modes which essentially differ from the formerly known tiring-perturbations is revealed even for the case of an electroneutral current sheath. The increment of growth of those modes is positive within very wide interval of wave lengths and attains much bigger quantities than it was supposed earlier for the tearing-instability. Due to this polarization effect, the area of existence of those low-frequency tearing-like modes is displaced from the area of strong stationary electric field more close to the magnitoneutral (and electroneutral) plane at the center of symmetry of the current sheath. The problem of structural stability of the nonelectroneutral current sheath is explored. The equilibrium model represents a system of four connected non-linear first-order differential equations and hence it should manifest the property of structural instability - sensitivity to infinitesimal changes of the parameters and initial conditions. The solution for such current sheath is realized only in some areas of 7-dimensional space of model parameters. The phase volume of those areas is small in comparison with the entire phase volume in the interval on which the parameters are defined. The above is

  1. VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

    CERN Document Server

    Komppula, J

    2015-01-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\\Sigma^+_u \\rightarrow X^1\\Sigma^+_g$) and molecular continuum ($a^3\\Sigma^+_g \\rightarrow b^3\\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  2. A Life Space Perspective to Approach Individual Demographic Processes

    Directory of Open Access Journals (Sweden)

    Robette, Nicolas

    2010-01-01

    Full Text Available AbstractThe concept of life space refers to the different locations with which individualsinteract along their life course. In this article we present several methodologicalproposals to describe and measure various territories to which individualsrelate over time, taking advantage of a rich data source, the Biographies etentourage survey. We produce relevant indicators which can be used in thestudy of different demographic processes and demonstrate how this perspectiveelegantly formalizes the linked dynamics of interactive non-independenttrajectories in the case of the couples’ activity space.RésuméLe concept d’espace de vie désigne l’ensemble des lieux avec lesquels unindividu est en relation au cours de sa vie. Dans cet article, plusieurs méthodessont proposées pour décrire et mesurer les différents territoires auxquels lesindividus sont attachés au fil du temps, en mettant pour cela à profit la richessedes données de l’enquête Biographies et entourage. Plusieurs indicateurs sontconstruits, qui peuvent être utilisés pour l’étude de processus démographiquesvariés. La pertinence d’une perspective en termes d’espace de vie est enfinvalidée par l’analyse des interactions dynamiques entre trajectoires nonindépendantes,appliquée aux espaces d’activité des couples.

  3. Reinventing the International Space Station Payload Integration Processes and Capabilities

    Science.gov (United States)

    Jones, Rod; Price, Carmen; Copeland, Scott; Geiger, Wade; Geiger, Wade; Rice, Amanda; Lauchner, Adam

    2011-01-01

    The fundamental ISS payload integration philosophy, processes and capabilities were established in the context of how NASA science programs were conducted and executed in the early 1990 s. Today, with the designation of the United States (US) portion of ISS as a National Lab, the ISS payload customer base is growing to include other government agencies, private and commercial research. The fields of research are becoming more diverse expanding from the NASA centric physical, materials and human research sciences to test beds for exploration and technology demonstration, biology and biotechnology, and as an Earth and Space science platform. This new customer base has a broader more diverse set of expectations and requirements for payload design, verification, integration, test, training, and operations. One size fits all processes are not responsive to this broader customer base. To maintain an organization s effectiveness it must listen to its customers, understand their needs, learn from its mistakes, and foster an environment of continual process improvement. The ISS Payloads office is evolving to meet these new customer expectations.

  4. Space Environment Simulation for Material Processing by Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    解文军; 魏炳波

    2001-01-01

    Single-axis acoustic levitation of four polymer samples has been realized in air under the ground-based laboratory conditions for the purpose of space environment simulation of containerless processing. The levitation capabilities are investigated by numerical calculations based on a model of the boundary element method corresponding to our levitator and following Gor'kov and Barmatz's method. The calculated results, such as the resonant distance between the reflector and the vibrating source and the positions of levitated samples, agree well with experimental observation, and the effect of gravity on the time-averaged potential for levitation force is also revealed. As an application, the containerless melting and solidification of a liquid crystal, 4-Pentylphenyl-4'-methybenzoate, is successfully accomplished, in which undercooling up to 16 K is obtained and the rotation and oscillation of the sample during solidification may result in fragmentation of the usual radiating surface growth morphology.

  5. Unconventional processes for food regeneration in space - An overview

    Science.gov (United States)

    Stokes, B. O.; Petersen, G. R.; Schubert, W. W.; Mueller, W. A.

    1981-01-01

    Alternatives to conventional plant agriculture for the regeneration of food during space missions of extended duration are examined. The options considered, which may be used in combination with conventional agriculture, include the production of food from plant wastes, the chemical synthesis of food from carbon dioxide and other simple molecules or the substitution of edible chemicals, and the use of microrganisms for food and oxygen regeneration, with suitable processing. A comparison of solar energy conversion efficiencies is presented for nonphotosynthetic bacteria grown on hydrogen and algal systems photosynthetically, and it is shown that hydrogen bacteria are potentially more attractive than photosynthetic algae using artificial light. Weight-volume requirements for the conventional plant, algae and hydrogen bacteria systems are also compared to demonstrate the advantages of microbial systems.

  6. Numerical simulation of the coal combustion process initiated by a plasma source

    Science.gov (United States)

    Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Maksimov, V. Yu.

    2014-12-01

    Numerical experiments on the torch combustion of the coal dust prepared by a plasma-thermochemical treatment for combustion have been done using the method of three-dimensional simulation. It is shown that the plasma preparation of coal for combustion enables one to optimize the process, improve the conditions for inflammation and combustion and minimize the emissions of harmful substances.

  7. Data processing of absorption spectra from photoionized plasma experiments at Z

    Energy Technology Data Exchange (ETDEWEB)

    Hall, I. M.; Durmaz, T.; Mancini, R. C. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Bailey, J. E.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  8. Dynamics of electronegative plasmas for materials processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A.

    1996-12-31

    Purpose was to study equilibrium particle and energy balance and heating mechanisms in electronegative rf discharges. Attention is given to formation of non-Maxwellian electron distributions and their effect on macroscopic parameters. Research includes theory, particle- in-cell simulation, and experimental investigations. Sheath heating theory and simulation results for electropositive plasmas are used as guide. The investigation was centered on, but not limited to, study of oxygen feedstock gas in capacitively and inductively coupled rf discharges.

  9. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  10. Abrupt onset of tongue deformation and phase space response of ions in magnetically-confined plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Itoh, K.; Yoshinuma, M.; Tokuzawa, T.; Akiyama, T.; Moon, C.; Tsuchiya, H.; Inagaki, S.; Itoh, S.-I.

    2016-10-01

    An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time.

  11. Electrostatic Structures in Space Plasmas: Stability of Two-dimensional Magnetic Bernstein-Greene-Kruskal Modes

    CERN Document Server

    Ng, C S; Yasin, E

    2011-01-01

    Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region, and in association with shocks, turbulence, and magnetic reconnection. Due to potentially large amplitude of electric fields within these structures, their effects on particle heating, scattering, or acceleration can be important. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK modes have been studied extensively for many decades, predominately in one dimension (1D), although there have been observations showing that some of these structures have clear 3D features. While there have been approximate solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a finite magnetic field has not been found yet. Recently we have constructed exact solutions of 2D B...

  12. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  13. Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas

    CERN Document Server

    Zonca, Fulvio; Briguglio, Sergio; Fogaccia, Giuliana; Vlad, Gregorio; Wang, Xin

    2014-01-01

    A general theoretical framework for investigating nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that non-adiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv\\'en wave instabilities excited by non-perturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free electron lasers are also briefly discussed.

  14. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  15. Abrupt onset of tongue deformation and phase space response of ions in magnetically-confined plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Itoh, K.; Yoshinuma, M.; Tokuzawa, T.; Akiyama, T.; Moon, C.; Tsuchiya, H.; Inagaki, S.; Itoh, S.-I.

    2016-01-01

    An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time. PMID:27796370

  16. Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor - process, wettability improvement and ageing effects

    Energy Technology Data Exchange (ETDEWEB)

    Arpagaus, C. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland); Rossi, A. [ETH Swiss Federal Institute of Technology Zurich, Laboratory for Surface Science and Technology, Department of Materials, ETH Hoenggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland); Universita degli Studi di Cagliari, Dipartimento di Chimica Inorganica ed Analitica, UdR INSTM I-09100 Cagliari (Italy); Rudolf von Rohr, Ph. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)]. E-mail: vonrohr@ipe.mavt.ethz.ch

    2005-12-15

    The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O{sub 2}-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of C=O and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O{sub 2}-plasma treatment, a water contact angle reduction from >90{sup o} (no water penetration into the untreated PE powder) down to 65{sup o} was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.

  17. Relevant parameter space and stability of spherical tokamaks with a plasma center column

    Science.gov (United States)

    Lampugnani, L. G.; Garcia-Martinez, P. L.; Farengo, R.

    2017-02-01

    A spherical tokamak (ST) with a plasma center column (PCC) can be formed inside a simply connected chamber via driven magnetic relaxation. From a practical perspective, the ST-PCC could overcome many difficulties associated with the material center column of the standard ST reactor design. Besides, the ST-PCC concept can be regarded as an advanced helicity injected device that would enable novel experiments on the key physics of magnetic relaxation and reconnection. This is because the concept includes not only a PCC but also a coaxial helicity injector (CHI). This combination implies an improved level of flexibility in the helicity injection scheme required for the formation and sustainment phases. In this work, the parameter space determining the magnetic structure of the ST-PCC equilibria is studied under the assumption of fully relaxed plasmas. In particular, it is shown that the effect of the external bias field of the PCC and the CHI essentially depends on a single parameter that measures the relative amount of flux of these two entities. The effect of plasma elongation on the safety factor profile and the stability to the tilt mode are also analyzed. In the first part of this work, the stability of the system is explained in terms of the minimum energy principle, and relevant stability maps are constructed. While this picture provides an adequate insight into the underlying physics of the instability, it does not include the stabilizing effect of line-tying at the electrodes. In the second part, a dynamical stability analysis of the ST-PCC configurations, including the effect of line-tying, is performed by numerically solving the magnetohydrodynamic equations. A significant stability enhancement is observed when the PCC contains more than the 70% of the total external bias flux, and the elongation is not higher than two.

  18. Temperature of hydrogen radio frequency plasma under dechlorination process of polychlorinated biphenyls

    Science.gov (United States)

    Inada, Y.; Abe, K.; Kumada, A.; Hidaka, K.; Amano, K.; Itoh, K.; Oono, T.

    2014-10-01

    It has been reported that RF (radio frequency) hydrogen plasmas promote the dechlorination process of PCBs (polychlorinated biphenyls) under irradiation of MW (microwave). A relative emission intensity spectroscope system was used for single-shot imaging of two-dimensional temperature distributions of RF hydrogen plasmas generated in chemical solutions with several mixing ratios of isopropyl alcohol (IPA) and insulation oil under MW irradiation. Our experimental results showed that the plasma generation frequencies for the oil-contaminating solutions were higher than that for the pure IPA solution. In addition, the plasma temperature in the compound liquids including both oil and IPA was higher than that in the pure IPA and oil solutions. A combination of the plasma temperature measurements and plasma composition analysis indicated that the hydrogen radicals generated in a chemical solution containing the equal volumes of IPA and oil were almost the same amounts of H and H+, while those produced in the other solutions were mainly H.

  19. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  20. Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer

    Science.gov (United States)

    Bedington, R.; Kataria, D.; Walton, D.

    2012-01-01

    An E2V CCD64 back-illuminated, ion-implanted CCD (charge-coupled device) has been used as a direct electron imaging detector with CATS (Conceptual And Tiny Spectrometer), a highly miniaturised prototype plasma analyser head. This is in place of an MCP (microchannel plate) with a position sensing anode which would more conventionally be used as a detector in traditional low energy space plasma analyser instruments. The small size of CATS however makes it well matched to the size of the CCD, and the ion implants reduce the depth of the CCD backside electron potential well making it more sensitive to lower energy electrons than standard untreated silicon. Despite ionisation damage from prolonged exposure to excessively energetic electrons, the CCD has been able to detect electrons with energies above 500eV, at temperatures around room temperature. Using both a long integration 'current measuring' mode and a short integration `electron counting' mode it has been used to image the low energy electrons exiting the analyser, enhancing our understanding of the CATS electrostatic optics. The CCD has been selected as the detector for use with CATS for an instrument on a low-altitude student sounding rocket flight. Although it cannot detect the lowest energy electrons that an MCP can detect, and it is more sensitive to stray light, the low voltages required, the lack of vacuum requirements and its novelty and availability made it the most attractive candidate detector.

  1. A simple 3D plasma instrument with an electrically adjustable geometric factor for space research

    Science.gov (United States)

    Rohner, U.; Saul, L.; Wurz, P.; Allegrini, F.; Scheer, J.; McComas, D.

    2012-02-01

    We report on the design and experimental verification of a novel charged particle detector and an energy spectrometer with variable geometric factor functionality. Charged particle populations in the inner heliosphere create fluxes that can vary over many orders of magnitude in flux intensity. Space missions that plan to observe plasma fluxes, for example when travelling close to the Sun or to a planetary magnetosphere, require rapid particle measurements over the full three-dimensional velocity distribution. Traditionally, such measurements are carried out with plasma instrumentation with a fixed geometrical factor, which can only operate in a limited range of flux intensity. Here we report on the design and testing of a prototype sensor, which is capable of measuring particle flux with high angular and energy resolution, yet has a variable geometric factor that is controlled without moving parts. This prototype was designed in support of a proposal to make fast electron measurements on the Solar Probe Plus (SP+) mission planned by NASA. We simulated the ion optics inside the instrument and optimized the performance to design and build our prototype. This prototype was then tested in the MEFISTO facility at the University of Bern and its performance was verified over the full range of azimuth, elevation, energy and intensity.

  2. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas

    Science.gov (United States)

    Abid, A. A.; Khan, M. Z.; Lu, Quanming; Yap, S. L.

    2017-03-01

    A more generalized form of the non-Maxwellian distribution function, i.e., the AZ-distribution function is presented. Its fundamental properties are numerically observed by the variation of three parameters: α (rate of energetic particles on the shoulder), r (energetic particles on a broad shoulder), and q (superthermality on the tail of the velocity distribution curve of the plasma species). It has been observed that (i) the A Z - distribution function reduces to the ( r , q ) - distribution for α → 0 ; (ii) the A Z - distribution function reduces to the q - distribution for α → 0 , and r → 0 ; (iii) the A Z -distribution reduces to Cairns-distribution function for r → 0 , and q → ∞ ; (iv) the AZ-distribution reduces to Vasyliunas Cairns distribution for r → 0 , and q = κ + 1 ; (v) the AZ-distribution reduces to kappa distribution for α → 0 , r → 0 , and q = κ + 1 ; and (vi) finally, the AZ-distribution reduces to Maxwellian distribution for α → 0 , r → 0 , and q → ∞ . The uses of this more generalized A Z - distribution function in various space plasmas are briefly discussed.

  3. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  4. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Science.gov (United States)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.

    2017-02-01

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  5. An Accident Precursor Analysis Process Tailored for NASA Space Systems

    Science.gov (United States)

    Groen, Frank; Stamatelatos, Michael; Dezfuli, Homayoon; Maggio, Gaspare

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system and which may differ in frequency or type from those in the various models. These discrepancies between the models (perceived risk) and the system (actual risk) provide the leading indication of an underappreciated risk. This paper presents an APA process developed specifically for NASA Earth-to-Orbit space systems. The purpose of the process is to identify and characterize potential sources of system risk as evidenced by anomalous events which, although not necessarily presenting an immediate safety impact, may indicate that an unknown or insufficiently understood risk-significant condition exists in the system. Such anomalous events are considered accident precursors because they signal the potential for severe consequences that may occur in the future, due to causes that are discernible from their occurrence today. Their early identification allows them to be integrated into the overall system risk model used to intbrm decisions relating to safety.

  6. Feature profile evolution in plasma processing using on-wafer monitoring system

    CERN Document Server

    Samukawa, Seiji

    2014-01-01

    This book provides for the first time a good understanding of the etching profile technologies that do not disturb the plasma. Three types of sensors are introduced: on-wafer UV sensors, on-wafer charge-up sensors and on-wafer sheath-shape sensors in the plasma processing and prediction system of real etching profiles based on monitoring data. Readers are made familiar with these sensors, which can measure real plasma process surface conditions such as defect generations due to UV-irradiation, ion flight direction due to charge-up voltage in high-aspect ratio structures and ion sheath conditions at the plasma/surface interface. The plasma etching profile realistically predicted by a computer simulation based on output data from these sensors is described.

  7. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W.

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  8. An Instrument for Measuring the Near-Surface PlasmaTemperature and Concentration, and the Surface Charging of the International Space Station

    Science.gov (United States)

    Kirov, B.

    2010-12-01

    The Langmuir probe is one of the classical instruments for plasma diagnostics [1] and among the first space-borne instruments. Langmuir probes have been successfully used aboard a number of rockets and satellites for in situ measurements of thermal plasma parameters in the terrestrial ionosphere [2], at other planets [3] and comets [4], and recently it is an indispensable instrument for measuring the satellite surface potential. In the present paper we discuss some theoretical and practical aspects of the application of the Langmuir probe for ionospheric measurements. We show that the spherical probe cannot be used for measurements in the ionosphere, and for the cylindrical probe the experimental Volt-Ampere curves are not described by the formula for an infinite cylinder. A formula is proposed for processing of this region. We demonstrate that in the case of two prevailing ions, their concentration can be found from the ion saturation region. Finally, we describe the two Langmuir probes designed and manufactured in Bulgaria, a part of the Plasma Wave Complex PWC (Obstanovka experiment) aboard the Russian segment of the International Space Station, whose goal is to monitor the surface charging and the noises and disturbances in the surrounding plasma induced by the station and by the experiments conducted aboard it.

  9. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Science.gov (United States)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  10. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  11. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    Science.gov (United States)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  12. Dynamics of electronegative plasmas for materials processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A.

    1996-12-31

    The purpose of this project is to study the equilibrium particle and energy balance and the heating mechanisms in electronegative r.f. discharges. Particular attention is given to the formation of non-Maxwellian electron distributions and their effect on the macroscopic parameters. The research includes theory, particle-in-cell simulation, and experimental investigations. The sheath heating theory and the simulation results developed for electropositive plasmas are used to guide the investigations. The investigation was centered on, but is not limited to, the study of oxygen feedstock gas in capacitively and inductively coupled r.f. discharges. 15 refs.

  13. The International Space Station human life sciences experiment implementation process.

    Science.gov (United States)

    Miller, L J; Haven, C P; McCollum, S G; Lee, A M; Kamman, M R; Baumann, D K; Anderson, M E; Buderer, M C

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  14. The International Space Station human life sciences experiment implementation process

    Science.gov (United States)

    Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.

  15. The international space station human life sciences experiment implementation process

    Science.gov (United States)

    Miller, LadonnaJ.; Haven, CynthiaP.; McCollum, SuzanneG.; Lee, AngeleneM.; Kamman, MichelleR.; Baumann, DavidK.; Anderson, MarkE.; Buderer, MelvinC.

    2001-08-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and / or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include: hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life; baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  16. Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process

    Institute of Scientific and Technical Information of China (English)

    李智华; 张端明; 郁伯铭; 关丽

    2002-01-01

    We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.

  17. Numerical Simulation on Expansion Process of Ablation Plasma Induced by Intense Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    TAN Chang; LIU Yue; WANG Xiao-Gang; MA Teng-Cai

    2006-01-01

    We present a one-dimensional time-dependent numerical model for the expansion process of ablation plasmainduced by intense pulsed ion beam(IPIB).The evolutions of density,velocity,temperature,and pressure of theablation plasma of the aluminium target are obtained.The numerical results are well in agreement with therelative experimental data.It is shown that the expansion process of ablation plasma induced by IPIB includesstrongly nonlinear effects and that shock waves appear during the propagation of the ablation plasma.

  18. Recent developments in plasma spray processes for applications in energy technology

    Science.gov (United States)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  19. What can we learn about HiPIMS process from the multidimensional plasma modeling?

    Science.gov (United States)

    Minea, Tiberiu

    2016-09-01

    The modeling of PVD process and especially magnetron plasma is widely reported. The novel way to excite the plasma applying to the cathode very high power pulses brings the temporal dimension to the system together with new phenomena. From the kinetic model of the dense plasma region, so called Ionization Region - IR, one can quantify the global behavior of the plasma parameters during the pulse. The most significant are the plasma composition, especially in the case of reactive gases, the fraction of back-attracted sputtered ions, the rarefaction due to wind effect, but also the discharge heating mechanisms and contribution to the discharge current. From the 2D particle modeling of the plasma new insights are revealed concerning the shape of the dense plasma region, the time evolution of the sheath, the electron energy distribution function, but also the characteristics of the diffusion plasma facing the substrate. Adding the third dimension to the model, the results reveal the complex transport of electrons especially in the azimuthal direction (instabilities and drifts), the formation of spokes and flares, and the strong relation between the secondary emission of electrons from the target and the plasma structuring. Warm thanks to Peter Awakowicz and Ante Hecimovic for inviting me to this GEC edition.

  20. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr; Lane, Lynda D.; Shiavi, Richard; Gaffney, F. Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C. Gunnar; Eckberg, Dwain L.; Baisch, Friedhelm J.; Robertson, David

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic