WorldWideScience

Sample records for plasma physics modern

  1. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  2. Principles of modern physics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Principles of Modern Physics, divided into twenty one chapters, begins with quantum ideas followed by discussions on special relativity, atomic structure, basic quantum mechanics, hydrogen atom (and Schrodinger equation) and periodic table, the three statistical distributions, X-rays, physics of solids, imperfections in crystals, magnetic properties of materials, superconductivity, Zeeman-, Stark- and Paschen Back- effects, Lasers, Nuclear physics (Yukawa's meson theory and various nuclear models), radioactivity and nuclear reactions, nuclear fission, fusion and plasma, particle accelerators and detectors, the universe, Elementary particles (classification, eight fold way and quark model, standard model and fundamental interactions), cosmic rays, deuteron problem in nuclear physics, and cathode ray oscilloscope. NEW TO THE FOURTH EDITION: The CO2 Laser Theory of magnetic moments on the basis of shell model Geological dating Laser Induced fusion and laser fusion reactor. Hawking radiation The cosmological red ...

  3. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  4. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  5. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book.

  6. Modern physics for engineers

    CERN Document Server

    Singh, Jasprit

    1999-01-01

    Linking physics fundamentals to modern technology-a highly applied primer for students and engineersReminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing n

  7. Dialogues on modern physics

    CERN Document Server

    Sachs, Mendel

    1998-01-01

    In this book, important conceptual developments of the two major revolutions of modern physics - the quantum and relativity theories - are presented in a nonmathematical, dialectical form of dialogue. The implications of conflicting philosophical attitudes of these revolutions in physics and applications to topics such as cosmology/astrophysics and high energy physics are emphasized. It is argued that for any substantial progress in our understanding of 21st century physics, it will be necessary to resolve these 20th century conflicts. These richly rewarding dialogues provide a starting point

  8. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  9. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  10. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  11. Modern introductory physics

    CERN Document Server

    Holbrow, Charles H; Amato, Joseph C; Galvez, Enrique; Parks, M. Elizabeth

    2010-01-01

    Modern Introductory Physics, 2nd Edition, by Charles H. Holbrow, James N. Lloyd, Joseph C. Amato, Enrique Galvez, and Beth Parks, is a successful innovative text for teaching introductory college and university physics. It is thematically organized to emphasize the physics that answers the fundamental question: Why do we believe in atoms and their properties?  The book provides a sound introduction to basic physical concepts with particular attention to the nineteenth- and twentieth-century physics underlying our modern ideas of atoms and their structure.  After a review of basic Newtonian mechanics, the book discusses early physical evidence that matter is made of atoms.  With a simple model of the atom Newtonian mechanics can explain the ideal gas laws, temperature, and viscosity.  Basic concepts of electricity and magnetism are introduced along with a more complicated model of the atom to account for the observed electrical properties of atoms. The physics of waves---particularly light and x-rays---an...

  12. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  13. Methods of modern mathematical physics

    CERN Document Server

    Reed, Michael

    1980-01-01

    This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

  14. Modern Physics, 4th edition

    Science.gov (United States)

    Tipler, Paul A.; Llewellyn, Ralph

    The new edition of the classic text for the intermediate-level modern physics course, revised and updated to take students to the forefront of contemporary research and applications across the full spectrum of science and technology."

  15. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  16. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  17. Rational Reconstructions of Modern Physics

    CERN Document Server

    Mittelstaedt, Peter

    2011-01-01

    Newton’s classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of modern physics, such as the theory of relativity and quantum mechanics. This book shows that, on the basis of Newton’s classical physics and by rational reconstruction, the theory of relativity as well as quantum mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results.

  18. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  19. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  20. Constituting objectivity transcendental perspectives on modern physics

    CERN Document Server

    Bitbol, Michael; Petitot, Jean

    2009-01-01

    This book pins down the methodological core of transcendental epistemology that must be used in order to throw light on the foundations of modern physics. A renewed understanding of modern physics is offered by the concept of constitution of objectivity.

  1. Rational reconstructions of modern physics

    CERN Document Server

    Mittelstaedt, Peter

    2013-01-01

    Newton’s classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton’s classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of t...

  2. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  3. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  4. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  5. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  6. Solar Physics - Plasma Physics Workshop

    Science.gov (United States)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  7. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  8. Spacetime in modern physical theories

    Science.gov (United States)

    Klatt, Carrie

    In this thesis we examine the relationship between the gravitational field and spacetime in three modern physical theories: general relativity, the field theoretic approach, and geometrodynamics. Our analysis is based on two questions: first, is gravity best understood as a field in a spacetime background or is the gravitational field indistinguishable from spacetime? Here we compare the field theoretic approach to gravity presented by Feynman and Weinberg, where spacetime is at first taken to be a flat background, to general relativity, where we find that the equivalence principle in conjunction with the geodesic hypothesis allows us to consider the gravitational field as being indistinguishable from curved spacetime. Second, what does it mean to say that spacetime (or alternatively, matter) has a privileged status in a theory? That is, is it sensible to say that one object in a theory, such as spacetime, can be derived from another object in the theory, for example, matter? Here we compare general relativity, where matter and spacetime are considered to be primary notions in the theory, to Wheeler's geometrodynamics, where all objects in the universe, including matter, charge and electromagnetism, are to be explained as manifestations of curved spacetime. By considering these issues, it is hoped that we will be able to contribute to the analysis of similar topics in theories of quantum gravity such as string theory.

  9. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  10. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  11. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  12. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  13. Vocabulary of CPH Theory and Modern Physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Wherefore CPH theory was presented? There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. So, we should improve our understanding of physical phenomena and unify theories. There is a compare bri...... of CPH Theory (Creative Particles of Higgs Theory) and modern physics in this vocabulary....

  14. Vocabulary of CPH Theory and Modern Physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Wherefore CPH theory was presented? There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. So, we should improve our understanding of physical phenomena and unify theories. There is a compare brief...... of CPH Theory (Creative Particles of Higgs Theory) and modern physics in this vocabulary....

  15. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  16. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  17. Cold fusion reactors and new modern physics

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the cause of science and technology progress of mankind to contribute

  18. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  19. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  20. What happened to modern physics?

    CERN Document Server

    Shabajee, P

    2000-01-01

    Relativity, Quantum Mechanics and Chaos theory are three of the most significant scientific advances of the 20th Century - each fundamentally changing our understanding of the physical universe. The authors ask why the UK National Curriculum in science almost entirely ignores them. Children and young people regularly come into contact with the language, concepts and implications of these theories through the media and through new technologies, and they are the basis of many contemporary scientific and technological developments. There is surely, therefore, an urgent need to include the concepts of '20th Century physics' within the curriculum.

  1. Modern Physics In Brazilian Secondary Schools

    Science.gov (United States)

    Pietrocola, Mauricio

    2005-01-01

    The current work reports a research that aimed to update the curriculum for the teaching of Physics. Topics from modern and contemporaneous theories are generally put aside in secondary school classes, for both course programs and formal university background designed to teachers of Physics focus on classic topics. We present the results of some…

  2. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  3. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  4. Modern topics in theoretical nuclear physics

    OpenAIRE

    Jennings, B. K.; Schwenk, A.

    2005-01-01

    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as wel...

  5. Oersted Lecture 2014: Physics education research and teaching modern Modern Physics

    Science.gov (United States)

    Zollman, Dean

    2016-08-01

    Modern Physics has been used as a label for most of physics that was developed since the discovery of X-rays in 1895. Yet, we are teaching students who would not use the label "modern" for anything that happened before about 1995, when they were born. So, are we and our students in worlds that differ by a century? In addition to content, sometimes our students and we have differing views about methods and styles of teaching. A modern course in any topic of physics should include applications of contemporary research in physics education and the learning sciences as well as research and developments in methods of delivering the content. Thus, when we consider teaching Modern Physics, we are challenged with deciding what the content should be, how to adjust for the ever increasing information on how students learn physics, and the constantly changing tools that are available to us for teaching and learning. When we mix all of these together, we can teach modern Modern Physics or maybe teach Modern Physics modernly.

  6. Vocabulary of CPH Theory and Modern Physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Wherefore CPH theory was presented? There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. So, we should improve our understanding of physical phenomena and unify theories. There is a compare bri...... of CPH Theory (Creative Particles of Higgs Theory) and modern physics in this vocabulary.......Wherefore CPH theory was presented? There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. So, we should improve our understanding of physical phenomena and unify theories. There is a compare brief...

  7. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  8. Invisible World and Modern Physics: Modern Science and Theology

    Science.gov (United States)

    Theodossiou, E.; Manimanis, V. N.; Danezis, E.

    2010-07-01

    A characteristic of the Western thought is the effort to counter Christian theology through arguments based on scientific discoveries (antirrhetic theology). Two objections can be raised against this trait: a) Modern science considers as a fact the future expansions, corrections, even total abolishment of scientific knowledge in the face of new discoveries. Therefore, dogmatic positions must not be based on temporary scientific views. b) Antirrhetic theology is mostly based on out-of-date scientific views of the period 1650-1900, which are not valid any more. The example of modern physics and cosmology is prime among them; in these sciences, the prevailing theories are based on the existence of an imperceptible reality, or on apparently “illogical” (in the sense of classical logic) fundamental properties of matter and its particles in quantum mechanics.

  9. Interactive Modern Physics Worksheets Methodology and Assessment

    Science.gov (United States)

    Podolak, Ken; Danforth, Jordyn

    2013-01-01

    There are a variety of teaching tools available for use in introductory modern physics classrooms. Determining which teaching tool students support can help the teacher structure classroom instruction to include more effective teaching tools. Student participants were surveyed at the end of four separate semesters after using different teaching…

  10. Topics in modern physics theoretical foundations

    CERN Document Server

    Walecka, John Dirk

    2013-01-01

    While the two previous books entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations exposed the reader to the foundations and frontiers of today's physics, the goal of this third volume is to cover in some detail several topics omitted in the essentially linear progression of the first two. This book is divided into three parts. Part 1 is on quantum mechanics. Analytic solutions to the Schrödinger equation are developed for some basic systems. The analysis is then formalized, concluding with a set of postulates for the theory. Part 2 is on applications of quantum mechanics: approximation methods for bound states, scattering theory, time-dependent perturbation theory, and electromagnetic radiation and quantum electrodynamics. Part 3 covers some selected topics in relativistic quantum field theory: discrete symmetries, the Heisenberg picture, and the Feynman rules for quantum chromodynamics. The three volumes in this series taken together provide ...

  11. 1000 Solved Problems in Modern Physics

    CERN Document Server

    Kamal, Ahmad A

    2010-01-01

    This book basically caters to the needs of undergraduates and graduates physics students in the area of modern physics, specially particle and nuclear physics. Lecturers/tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in USA, U.K., and other countries. The book is divided into 10 chapters, each chapter beginning with a brief but adequate summary and necessary formulas, tables and line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  12. The gifts of physics to modern medicine.

    Science.gov (United States)

    Majumdar, Sisir K

    2004-01-01

    The advancement of medical science was, and is, and will always be dependent on the progress of fundamental sciences like mathematics, physics and chemistry. It is true that pure science is not rapidly converted to applied science. That has always to depend on further technological advancement and on craftsmen's innovation. The role of physics in the evolution of some modern medical equipment - both diagnostic and therapeutic, is simply unique. A chemical pathology laboratory comprises, overall physics (i.e. laboratory machinery, pressures, radioactivity, voltage,

  13. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  14. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  15. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  16. A modern course in statistical physics

    CERN Document Server

    Reichl, Linda E

    2016-01-01

    "A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...

  17. Nonconservative stability problems of modern physics

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics.The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics.

  18. Elements of modern X-ray physics

    CERN Document Server

    Als-Nielsen, Jens

    2011-01-01

    Eagerly awaited, this second edition of a best-selling text comprehensively describes from a modern perspective the basics of x-ray physics as well as the completely new opportunities offered by synchrotron radiation. Written by internationally acclaimed authors, the style of the book is to develop the basic physical principles without obscuring them with excessive mathematics. The second edition differs substantially from the first edition, with over 30% new material, including: A new chapter on non-crystalline diffraction - designed to appeal to the large community wh

  19. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  20. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  1. Modern Physics in a Global Society

    Science.gov (United States)

    Pavuna, Davor

    Successes of modern physics and consequent technologies have enabled humanity to create our global village. However, despite their thorough training and proven, useful knowledge, physicists are nowadays often treated as a relatively inexpensive 'commodity'. Encouraged by experience of several former students, and by using selected examples, I argue that as a community we should better 'market' our physics profession that, in addition to its primary role - rational understanding of nature - provides: i) the most versatile undergraduate degree, also for those who want to continue studies in management, economy or bio-medicine; ii) fascinating creative opportunities in advanced research and new interdisciplinary technologies and iii) often more relevant insight into workings of the global economy than the 'conventional' economic approach, and especially into smart venture-investments. All these themes are equally relevant for the Croatian society and its welfare in the early 21st century.

  2. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  3. Development of quantum perspectives in modern physics

    Directory of Open Access Journals (Sweden)

    Charles Baily

    2009-03-01

    Full Text Available Introductory undergraduate courses in classical physics stress a perspective that can be characterized as realist; from this perspective, all physical properties of a classical system can be simultaneously specified and thus determined at all future times. Such a perspective can be problematic for introductory quantum physics students, who must develop new perspectives in order to properly interpret what it means to have knowledge of quantum systems. We document this evolution in student thinking in part through pre- and post-instruction evaluations using the Colorado Learning Attitudes about Science Survey. We further characterize variations in student epistemic and ontological commitments by examining responses to two essay questions, coupled with responses to supplemental quantum attitude statements. We find that, after instruction in modern physics, many students are still exhibiting a realist perspective in contexts where a quantum-mechanical perspective is needed. We further find that this effect can be significantly influenced by instruction, where we observe variations for courses with differing learning goals. We also note that students generally do not employ either a realist or a quantum perspective in a consistent manner.

  4. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  5. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  6. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  7. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  8. Variational Integrators in Plasma Physics

    CERN Document Server

    Kraus, Michael

    2013-01-01

    Variational integrators are a special kind of geometric discretisation methods applicable to any system of differential equations that obeys a Lagrangian formulation. In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum. Most systems in plasma physics do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended towards nonvariational differential equations by linking it to Ibragimov's theory of integrating factors and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differential equations and systems thereof. Consequently, the applicability of variational integrators is extended to a much larger family of syst...

  9. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  10. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  11. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  12. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  13. Electromagnetic momentum in frontiers of modern physics

    Institute of Scientific and Technical Information of China (English)

    Gianfranco SPAVIERI; Jesús ERAZO; Arturo SANCHEZ; Felix AGUIRRE; George T.GILLIES; Miguel RODRIGUEZ

    2008-01-01

    We review the role of the momentum of the electromagnetic (EM) fields Pe in several areas of modern physics.Pe represents the EM interaction in equations for matter and light waves propagation. As an application of wave propagation properties,a first order optical experiment which tests the speed of light in moving rarefied gases is presented.Within a classical context,the momentum Pe appears also in proposed tests of EM interactions involving open currents and angular momentum conservation laws.Moreover,Pe is the link to the unitary vision of the quantum effects of the Aharonov-Bohm (AB) type and,for several of these effects,the strength of Pe is evaluated.These effects provide a quantum approach to evaluate the limit of the photon mass mph.A new effect of the AB type,together with the scalar AB effect,provides the basis f0r table-top experiments which yield the limit mph=9.4×10-52g,a value that improves the results achieved with recent classical and quantum approaches.

  14. Physical Education between the social project of solid modernity and the of liquid modernity

    Directory of Open Access Journals (Sweden)

    Sidinei Pithan da Silva

    2012-09-01

    Full Text Available Grounded on Bauman’s thought, the present paper focuses on the constitution of social legitimacy and identity of Physical Education in the context of transition from solid to liquid modernity. This thought favors the understanding of the nature of the crisis that has crossed the identity discourse of Physical Education. The text signals the limits and possibilities of both the modern and the post-modern educational discourses. In this context, it describes a modern scenario that is marked by two distinct moments, the one of modernity at its solid stage, and that of modernity at its liquid stage. The first one, of solid modernity, social condition of surveillance, rationalization and control, performs the functional / adaptive role of putting everyone under the same rigid order (managed society. The second one, of liquid modernity, of the social condition of insignificance and irrationalism, plays the functional role of putting and keeping everyone under the same flexible Market disorder. From the scientific, mechanic focus of both the body and the physical education in solid modernity we have moved to the relativist and esthetic focus of body and physical education in liquid modernity.

  15. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  16. PlasmaPy: beginning a community developed Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  17. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  18. Teaching and understanding of quantum interpretations in modern physics courses

    OpenAIRE

    Noah D. Finkelstein; Charles Baily

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics courses recently taught at the University of Colorado, and examine associated impacts on student perspectives regarding quantum physics. We find studen...

  19. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  20. Thoughts of Modern Women in Physics

    Science.gov (United States)

    Ainsbury, Liz; Heaney, Libby; Hodges, Vicki; Harkness, Laura; Russell, Laura

    2011-01-01

    In 2007, the Women in Physics Group of the Institute of Physics initiated the Very Early Career Woman Physicist of the Year Award. The award seeks to recognise the outstanding achievements of women physicists who are embarking on a career in physics and to promote the career opportunities open to people with physics qualifications. The prize is…

  1. Plasma physics via computer simulation

    CERN Document Server

    Birdsall, CK

    2004-01-01

    PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC

  2. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  3. School Physical Education in the Transition from Solid Modernity to Liquid Modernity: The Brazilian Case

    Science.gov (United States)

    Bracht, Valter; Gomes, Ivan Marcelo; de Almeida, Felipe Quintão

    2015-01-01

    This article discusses the implications of the contemporary transition from a solid modernity to a liquid modernity for school physical education, according to the metaphors adopted by the Polish sociologist and English resident Zygmunt Bauman. By leveraging Bauman's sociological theory, this article pursues two aims: (1) to examine how physical…

  4. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  5. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  6. Development of quantum perspectives in modern physics

    OpenAIRE

    Charles Baily; Noah D. Finkelstein

    2009-01-01

    Introductory undergraduate courses in classical physics stress a perspective that can be characterized as realist; from this perspective, all physical properties of a classical system can be simultaneously specified and thus determined at all future times. Such a perspective can be problematic for introductory quantum physics students, who must develop new perspectives in order to properly interpret what it means to have knowledge of quantum systems. We document this evolution in student thin...

  7. Modern String Theory and Particle Physics

    OpenAIRE

    Cvetic, M.

    2015-01-01

    String theory, as the prime candidate for quantum unification of particle physics and gravity, sheds light on important fundamental questions such as the microscopic structure of black holes and the geometric origin of particle physics. We review these developments such as the introduction of extended objects - Dirichlet branes - and highlight the important geometric role of these objects in deriving particle physics from string theory. We also highlight recent progress made in deriving partic...

  8. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  9. Modern Physics Buildings, Design and Function.

    Science.gov (United States)

    Palmer, R. Ronald; Rice, William Maxwell

    In order to serve college administrators, architects and physics educators, a collection was made of material reflecting the state-of-the-art of physics building design. This body of material, including drawings, diagrams, and photographs, resulted largely from extensive interviews with about 50 institutions who had recently built such facilities.…

  10. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    Science.gov (United States)

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  11. Modern Particle Physics Event Generation with WHIZARD

    CERN Document Server

    Reuter, J; Nejad, B Chokoufe; Kilian, W; Ohl, T; Sekulla, M; Weiss, C

    2014-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  12. Modern particle physics event generation with WHIZARD

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, J.; Bach, F.; Chokoufe, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Kilian, W.; Sekulla, M. [Siegen Univ. (Germany). Dept. of Physics; Ohl, T. [Wuerzburg Univ. (Germany). Dept. of Physics and Astronomy; Weiss, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Siegen Univ. (Germany). Dept. of Physics

    2014-10-16

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis is given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development are discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  13. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  14. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  15. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  16. Symmetry and Relativity : From Classical Mechanics to Modern Particle Physics

    OpenAIRE

    Ajaltouni, Ziad,

    2014-01-01

    to be published in "Natural Science"; The aim of this review is highlighting the common aspects between Symmetry in Physics and the Relativity Theory, particularly Special Relativity. After a brief historical introduction, emphasis is put on the physical foundations of Relativity Theory and its essential role in the clarification of many issues related to fundamental symmetries. Several examples from classical mechanics to modern particle physics will be given and some open questions will be ...

  17. 39 Questionable Assumptions in Modern Physics

    Science.gov (United States)

    Volk, Greg

    2009-03-01

    The growing body of anomalies in new energy, low energy nuclear reactions, astrophysics, atomic physics, and entanglement, combined with the failure of the Standard Model and string theory to predict many of the most basic fundamental phenomena, all point to a need for major new paradigms. Not Band-Aids, but revolutionary new ways of conceptualizing physics, in the spirit of Thomas Kuhn's The Structure of Scientific Revolutions. This paper identifies a number of long-held, but unproven assumptions currently being challenged by an increasing number of alternative scientists. Two common themes, both with venerable histories, keep recurring in the many alternative theories being proposed: (1) Mach's Principle, and (2) toroidal, vortex particles. Matter-based Mach's Principle differs from both space-based universal frames and observer-based Einsteinian relativity. Toroidal particles, in addition to explaining electron spin and the fundamental constants, satisfy the basic requirement of Gauss's misunderstood B Law, that motion itself circulates. Though a comprehensive theory is beyond the scope of this paper, it will suggest alternatives to the long list of assumptions in context.

  18. Nambu a foreteller of modern physics

    CERN Document Server

    Han, M Y

    2014-01-01

    Coming into the 21st century, developments in three major areas of elementary particle physics - the electroweak theory with the Higgs mechanism, quantum chromodynamics, and string theory began to yield more and more concrete and successful results. Seeds of all these developments in contemporary particle physics were sowed by Nambu in prophetic lectures and papers from the 1960s 70s. The discovery of the Higgs-like scalar particle at the Large Hadron Collider in July 2012 was the climax for the idea of spontaneous symmetry breaking that Nambu had laid down at the beginning of the 1960s. In this book, we collect what we consider to be the most prophetic of Nambu's papers for the benefit of current and future generations of particle physicists of the world and made them easily accessible for all. It also contains articles never published before in a book form. This text is not only of historical value but also provides a window to the mind of a man many refer to as "Nambu the seer." A must-have book for fu...

  19. Modern morphometry: new perspectives in physical anthropology.

    Science.gov (United States)

    Mantini, Simone; Ripani, Maurizio

    2009-06-01

    In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.

  20. Unifying physics of accelerators, lasers and plasma

    CERN Document Server

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  1. Finite machines, mental procedures, and modern physics.

    Science.gov (United States)

    Lupacchini, Rossella

    2007-01-01

    A Turing machine provides a mathematical definition of the natural process of calculating. It rests on trust that a procedure of reason can be reproduced mechanically. Turing's analysis of the concept of mechanical procedure in terms of a finite machine convinced Gödel of the validity of the Church thesis. And yet, Gödel's later concern was that, insofar as Turing's work shows that "mental procedure cannot go beyond mechanical procedures", it would imply the same kind of limitation on human mind. He therefore deems Turing's argument to be inconclusive. The question then arises as to which extent a computing machine operating by finite means could provide an adequate model of human intelligence. It is argued that a rigorous answer to this question can be given by developing Turing's considerations on the nature of mental processes. For Turing such processes are the consequence of physical processes and he seems to be led to the conclusion that quantum mechanics could help to find a more comprehensive explanation of them.

  2. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  3. Physics Buildings Today. A Supplement to Modern Physics Buildings: Design and Function.

    Science.gov (United States)

    American Inst. of Physics, New York, NY.

    This supplement to "Modern Physics Buildings: Design and Function" is intended as an aid to physics department faculties, administrators, and architects responsible for designing new science buildings. It provides descriptions of 26 new physics buildings and science buildings with physics facilities. Presented are (1) floor plans, (2)…

  4. Mechanical and physical properties of modern boron fibers

    Science.gov (United States)

    Dicarlo, J. A.

    1978-01-01

    Measurements of the Young's modulus, flexural modulus, shear modulus and Poisson's ratio for boron fibers prepared by modern deposition techniques are reported. Physical properties of the boron fibers, including density, thermal expansion and resistance, are also surveyed. In addition, prediction of the total deformation strain in an anelastic boron fiber subjected to tensile or flexural stress is discussed.

  5. Employing real experiments and modern viewpoints in the teaching of modern physics

    CERN Document Server

    Anwar, Muhammad Sabieh

    2013-01-01

    This is a report of a course on modern physics designed and taught to undergraduate science and engineering students in the Spring of 2013. The course, meant for freshmen, attempts to integrate statistical mechanics into non-classical physics and introduces some novel teaching ideas such as the field approach in contrast to typical wave and particle viewpoints traditionally covered in usual textbooks. The various modern applications of quantum theory in realizing practical devices are recounted in a way that is amenable to beginners. Especially, we describe the inclusion of visually appealing and carefully designed robust experiments inside the formal classroom environment. This collection of applications and demonstrations serves as a useful collection of teaching aids and can be easily transformed into active learning exercises. The impact of this teaching strategy on student learning and its role in exciting an interest in physics is assessed.

  6. Plasma Cathode Electron Sources Physics, Technology, Applications

    CERN Document Server

    Oks, Efim

    2006-01-01

    This book fills the gap for a textbook describing this kind of electron beam source in a systematic and thorough manner: from physical processes of electron emission to examples of real plasma electron sources and their applications.

  7. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  8. On the co-creation of classical and modern physics.

    Science.gov (United States)

    Staley, Richard

    2005-12-01

    While the concept of "classical physics" has long framed our understanding of the environment from which modern physics emerged, it has consistently been read back into a period in which the physicists concerned initially considered their work in quite other terms. This essay explores the shifting currency of the rich cultural image of the classical/ modern divide by tracing empirically different uses of "classical" within the physics community from the 1890s to 1911. A study of fin-de-siècle addresses shows that the earliest general uses of the concept proved controversial. Our present understanding of the term was in large part shaped by its incorporation (in different ways) within the emerging theories of relativity and quantum theory--where the content of "classical" physics was defined by proponents of the new. Studying the diverse ways in which Boltzmann, Larmor, Poincaré, Einstein, Minkowski, and Planck invoked the term "classical" will help clarify the critical relations between physicists' research programs and their use of worldview arguments in fashioning modern physics.

  9. Plasma Physics and Controlled Nuclear Fusion

    Science.gov (United States)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  10. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  11. Relativity: a pillar of modern physics or a stumbling block

    Science.gov (United States)

    Sandhu, Gurcharn S.

    2011-09-01

    Currently, the theory of Relativity is being regarded as one of the main pillars of Modern Physics, essentially due to its perceived role in high energy physics, particle accelerators, relativistic quantum mechanics, and cosmology. Since the founding assumptions or postulates of Relativity and some of the resulting consequences confound the logic and common sense, a growing number of scientists are now questioning the validity of Relativity. The advent of Relativity has also ruled out the existence of the 19th century notion of ether medium or physical space as the container of physical reality. Thereby, the Newtonian notions of absolute motion, absolute time, and absolute reference frame have been replaced with the Einsteinian notions of relative motion, relative time, and inertial reference frames in relative motion. This relativity dominated viewpoint has effectively abandoned any critical study or advanced research in the detailed properties and processes of physical space for advancement of Fundamental Physics. In this paper both special theory of relativity and general relativity have been critically examined for their current relevance and future potential. We find that even though Relativity appears to be a major stumbling block in the progress of Modern Physics, the issue needs to be finally settled by a viable experiment [Phys. Essays 23, 442 (2010)] that can detect absolute motion and establish a universal reference frame.

  12. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  13. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  14. Modern devices the simple physics of sophisticated technology

    CERN Document Server

    Joseph, Charles L

    2016-01-01

    This book discusses the principles of physics through applications of state-of-the-art technologies and advanced instruments. The authors use diagrams, sketches, and graphs coupled with equations and mathematical analysis to enhance the reader's understanding of modern devices. Readers will learn to identify common underlying physical principles that govern several types of devices, while gaining an understanding of the performance trade-off imposed by the physical limitations of various processing methods. The topics discussed in the book assume readers have taken an introductory physics course, college algebra, and have a basic understanding of calculus. * Describes the basic physics behind a large number of devices encountered in everyday life, from the air conditioner to Blu-ray discs * Covers state-of-the-art devices such as spectrographs, photoelectric image sensors, spacecraft systems, astronomical and planetary observatories, biomedical imaging instruments, particle accelerators, and jet engines * Inc...

  15. Report on the solar physics-plasma physics workshop

    Science.gov (United States)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  16. PREFACE: 1982 International Conference on Plasma Physics

    Science.gov (United States)

    Wilhelmsson, Hans

    1982-01-01

    Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are

  17. Physics of quark-gluon plasma

    CERN Document Server

    Smilga, A V

    1997-01-01

    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.

  18. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  19. Basic Studies in Plasma Physics

    Science.gov (United States)

    2013-01-31

    close to a Maxwellian parametrized by a temperature T and mean velocity u which satisfy certain non -linear equations, which are the macroscopic equations...Simulations with Particle-to-Grid Methods 17 E. Microscopic-Shock Profiles: Exact Solution of a Non -Equilibrium System 18 IV. List of Publications...Investigator ABSTRACT An improved understanding of equilibrium and non -equilibrium properties of plasmas is central to many areas of basic science as

  20. Inward bound/outward bound: Modern introductory physics at Colgate

    Science.gov (United States)

    Holbrow, C. H.; Amato, J. C.

    1997-03-01

    For the past ten years we have been modernizing our calculus-level introductory physics course. The first term is now organized around the theme of atoms: Why do we believe in them? How do we learn about them? The course traces the progress of our understanding of inner space, from the origins of the atomic hypothesis to present day quantum physics. The second term illustrates how physics extends our range of understanding to outer space by applying the principles of classical mechanics to large-scale structures such as stars, galaxies, and the entire Universe. In our approach the three conservation laws receive more emphasis than they do in the traditional course. We believe that this allows a simpler exposition of classical mechanics. Our goals are to convey the excitement and challenge of contemporary physics to our first year students, and at the same time, to build their mathematical skills.

  1. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    Science.gov (United States)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  2. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  3. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  4. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  5. Modern methodic of power cardio training in students’ physical education

    Directory of Open Access Journals (Sweden)

    Osipov A.Yu.

    2016-12-01

    Full Text Available Purpose: significant increase of students’ physical condition and health level at the account of application of modern power cardio training methodic. Material: 120 students (60 boys and 60 girls participated in the research. The age of the tested was 19 years. The research took one year. We used methodic of power and functional impact on trainees’ organism (HOT IRON. Such methodic is some systems of physical exercises with weights (mini-barbells, to be fulfilled under accompaniment of specially selected music. Results: we showed advantages of power-cardio and fitness trainings in students’ health improvement and in elimination obesity. Control tests showed experimental group students achieved confidently higher physical indicators. Boys demonstrated increase of physical strength and general endurance indicators. Girls had confidently better indicators of physical strength, flexibility and general endurance. Increase of control group students’ body mass can be explained by students’ insufficient physical activity at trainings, conducted as per traditional program. Conclusions: students’ trainings by power-cardio methodic with application HOT IRON exercises facilitate development the following physical qualities: strength and endurance in boys and strength, flexibility and endurance in girls. Besides, it was found that such systems of exercises facilitate normalization of boys’ body mass and correction of girls’ constitution.

  6. THE PHYSICS OF MELTING IN EARLY MODERN LOVE POETRY

    Directory of Open Access Journals (Sweden)

    Andrea Brady

    2014-12-01

    Full Text Available Melting is a familiar trope in early modern erotic poetry, where it can signify the desire to transform the beloved from icy chastity through the warmth of the lover’s passion. However, this Petrarchan convention can be defamiliarised by thinking about the experiences of freezing and melting in this period. Examining melting in the discourses of early modern meteorology, medicine, proverb, scientific experiments, and preservative technologies, as well as weather of the Little Ice Age and the exploration of frozen hinterlands, this essay shows that our understanding of seeming constants – whether they be the physical properties of water or the passions of love – can be modulated through attention to the specific histories of cognition and of embodiment.

  7. Handbook of Modern Sensors Physics, Designs, and Applications

    CERN Document Server

    Fraden, Jacob

    2010-01-01

    This book is about devices commonly called sensors. Digital systems, however complex and intelligent they might be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits who "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, this book is organized according to the measured variables (temperature, pressure, position, etc.) that make it much more practical and easier to read. In this new edition recent ideas and developments have been added while less important and non-essential designs were dropped. Sections on practical designs and use of the modern micro-machining technologies have been revised substantially. This book is a reference text that can be used by students, researchers interested in modern instrumentation (applied physicists and engineers), sensor designers, app...

  8. Modern physics letters A special issue on hadrontherapy

    CERN Document Server

    2015-01-01

    CERN Courier Review (Jul 8, 2016) : The applications of nuclear and particle physics to medicine have seen extraordinary development since the discovery of X-rays by Röntgen at the end of the 19th century. Medical imaging and oncologic therapy with photons and charged particles (specifically hadrons) are currently hot research topics. This special issue of Modern Physics Letters is dedicated to hadron therapy, which is the frontier of cancer radiation therapy, and aims at filling a gap in the current literature on medical physics. Through 10 invited review papers, the volume presents the basics of hadron therapy, along with the most recent scientific and technological developments in the field. The first part covers topics such as the history of hadron therapy, radiation biophysics, particle accelerators, dose-delivery systems and treatment planning. In the second part, more specific topics are treated, including dose and beam monitoring, proton computer tomography, innoacustics and microdosimetry. This vo...

  9. Plasma Physics Approximations in Ares

    Energy Technology Data Exchange (ETDEWEB)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  10. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  11. Actuality of transcendental æsthetics for modern physics

    Science.gov (United States)

    Petitot, Jean

    1. The more mathematics and physics unify themselves in the physico-mathematical modern theories, the more an objective epistemology becomes necessary. Only such a transcendental epistemology is able to thematize correctly the status of the mathematical determination of physical reality. 2. There exists a transcendental history of the synthetic a priori and of the construction of physical categories. 3. The transcendental approach allows to supersed Wittgenstein's and Carnap's antiplatonist thesis according to which pure mathematics are physically applicable only if they lack any descriptive, cognitive or objective, content and reduce to mere prescriptive and normative devices. In fact, pure mathematics are prescriptive-normative in physics because: (i) the categories of physical objectivity are prescriptive-normative, and (ii) their categorial content is mathematically “constructed” through a Transcendental Aesthetics. Only a transcendental approach make compatible, in the one hand, a grammatical conventionalism of Wittgensteinian or Carnapian type and, on the other hand, a platonist realism of Gödelian type. Mathematics are not a grammar of the world but a mathematical hermeneutics of the intuitive forms and of the categorial grammar of the world.

  12. The Tao of physics an exploration of the parallels between modern physics and Eastern mysticism

    CERN Document Server

    Capra, Fritjof

    1983-01-01

    Since its first publication, The Tao of Physics has become a cult book and international bestseller. Fritjof Capra was the first to explore in detail and with authority the connections between Eastern mysticism and modern physics. His book has contributed to the new awareness of a profound harmony between the world views of science and of mystical tradition. And recent developments in subatomic physics - the subject of a new chapter for this edition - have reinforced his thesis.

  13. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  14. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  15. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  16. Yoshio Nishina father of modern physics in Japan

    CERN Document Server

    Kim, Dong-Won

    2007-01-01

    Yoshio Nishina not only made a great contribution to the emergence of a research network that produced two Nobel prize winners, but he also raised the overall level of physics in Japan. Focusing on his roles as researcher, teacher, and statesman of science, Yoshio Nishina: Father of Modern Physics in Japan analyzes Nishina''s position in and his contributions to the Japanese physics community.After a concise biographical introduction, the book examines Nishina''s family, his early studies, the creation of RIKEN, and the greater Japanese physics community in the early twentieth century. It then focuses on Nishina''s work at the Cavendish Laboratory and at the University of Göttingen as well as his more fruitful research at Niels Bohr''s Institute of Theoretical Physics in Copenhagen. The book also describes the establishment of the Nishina Laboratory at RIKEN, the collaboration between its experimentalists and theoreticians, and the cosmic ray research of its scientists. The last two chapters discuss Nishina'...

  17. Mathematical physics a modern introduction to its foundations

    CERN Document Server

    Hassani, Sadri

    2013-01-01

    The goal of this book is to expose the reader to the indispensable role that mathematics---often very abstract---plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fiber bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision of the first one with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras and spinors, fiber bundles, and gauge theories. The spirit of the first edition, namely the balance between rigor and physical application, has been maintained, as is the abundance...

  18. Handbook of modern sensors physics, designs, and applications

    CERN Document Server

    Fraden, Jacob

    2016-01-01

    This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications. This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices. These new miniature sensors will be described, with an emphasis on smart sensors which have embedded processing systems. The chapter on chemical sensors has also been expanded to present the latest developments. Digital systems, however complex and intelligent they may be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits that "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, the Handbook of Modern Sensors is organized according to the measured variables...

  19. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  20. The plasma physics of shock acceleration

    Science.gov (United States)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  1. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  2. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  3. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics

  4. Paradigm transition in cosmic plasma physics

    Science.gov (United States)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  5. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  6. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  7. Physics of Tokamak Plasma Start-up

    Science.gov (United States)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  8. Physics issues in long pulse plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Toda, Shinichiro; Sanuki, Heiji [National Institute for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Department of Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2000-07-01

    Physics in the steady-state or long time discharge are illustrated from the view point of generic toroidal plasmas. Issues include physics process with very long time scale, dynamical phenomena of various time scales, transition nature under very slow temporal variations of parameters, statistical occurrence of transition and life time and identification of minimum circulating power. Nonlinear dependencies of transport properties of density, temperature, current, electric field and poloidal magnetic field cause self-organized dynamics. A picture of stationary oscillatory states is presented from a unified picture of nonlinear limit cycle dynamics. It is emphasized that the long time asymptotics are determined by the structure formation mechanisms. The sustainment needs a circulating power, and the circulating power in steady state plasma is also discussed. (author)

  9. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  10. Spinning the Innovation and Entrepreneurship Mindset: A Modern Physics Approach

    Science.gov (United States)

    Roughani, Bahram

    2010-04-01

    Topics in Modern Physics course from relativity to quantum mechanics were examined in the context of innovation as part of the recent Kettering University program on ``Entrepreneurship Across Curriculum-EAC.'' The main goals were (a) to introduce innovation and entrepreneurship without eliminating any topics from this course, (b) to use EAC as a vehicle for intentional education that produces graduates with innovative mindsets, (c) to enrich the students learning experience aligned with the desired educational outcomes, and (d) to highlight the impact of scientific innovation in the society, while encouraging students to re-think how entrepreneurship mindset could maximize their impact in the society through innovation. Ideas such as principles behind innovation and innovative ideas, disciplines of innovations, formation of innovation teams, and effective methods for analyzing innovative value propositions were introduced in this course. Most of the implementation were achieved through out of class activities, and communicated through in class presentations, papers or weekly laboratory reports.

  11. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  12. DEVELOPMENT OF MULTI-COORDINATE VOCABULARY, PLASMA PHYSICS.

    Science.gov (United States)

    LERNER, RITA G.

    DESCRIBED IS THE DEVELOPMENT OF A THESAURUS FOR THE FIELD OF PLASMA PHYSICS, SIMILAR TO THE ONE PREVIOUSLY DEVELOPED FOR CHEMICAL PHYSICS, FOR USE WITH COMPUTER-ORIENTED RETRIEVAL SYSTEMS. AN EXPERT IN THE FIELD OF PLASMA PHYSICS SELECTED TERMS IMPORTANT TO THE INFORMATION USER FROM THE PLASMA LITERATURE. THE HIERARCHY OF CLASSIFICATION UTILIZES…

  13. Statistical Physics Experiments Using Dusty Plasmas

    Science.gov (United States)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  14. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  15. Feyerabend's 'The concept of intelligibility in modern physics' (1948).

    Science.gov (United States)

    Kuby, Daniel

    2016-06-01

    This essay introduces the transcription and translation of Paul Feyerabend's Der Begriff der Verständlichkeit in der modernen Physik [The concept of intelligibility in modern physics] (1948), which is an early essay written by Paul Feyerabend in 1948 on the topic of intelligibility (Verständlichkeit) and visualizability (Anschaulichkeit) of physical theories. The existence of such essay was likely. It is listed in his bibliography as his first publication. Yet the content of the essay was unknown, as no original or copy is extant in Feyerabend's Nachlass and no known published version was available to the community-until now. The essay has both historical and philosophical interest: it is, as far as our current knowledge goes, Feyerabend's earliest extant publication. It documents Feyerabend's philosophical interest as a physicist-to-be, in what he himself called his "positivist" phase; and it gives a rare if fragmentary insight into the early discussions of the 'Third Vienna Circle' and, more generally, the philosophical culture of discussion in Vienna.

  16. Plasma Physics and Controlled Nuclear Fusion

    CERN Document Server

    Miyamoto, Kenro

    2005-01-01

    The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.

  17. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  18. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  19. Modern approaches of monitoring children's physical state in the process of physical education

    Directory of Open Access Journals (Sweden)

    Kashuba V.A.

    2010-01-01

    Full Text Available The questions of the use of the systems of estimation of bodily condition are considered in an educational process on physical education. Certain and grounded informing indexes of bodily condition of children of midchildhood. Indexes are fixed in basis of the checking system. The questions of possibility of the use of modern information technologies are exposed in an educational process on physical education. System of control of bodily condition is offered. The checking system is characterized moduleness. It is based on integral approach.

  20. Fearful Symmetry: The Search for Beauty in Modern Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, W J [Department of Mathematical Sciences Science Laboratory, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2008-01-11

    It is easy to see beauty in symmetry when we look at buildings like the Taj Mahal or natural objects such as snowflakes; it is much harder to explain to a non-expert the beauty of equations or of symmetry concepts in relativity or in particle theory. Tony Zee achieves this in a remarkable way, while he also manages to make many complicated concepts accessible to a reader who is genuinely interested and who has some basic/school knowledge of physics. To do this he invents various ordinary world analogies and exploits them in a masterful way. I liked, in particular, his analogy for the colour of quarks and the associated SU(3) symmetry provided by adding colour to ice-cream, which does not change its cost. Of course, sometimes real beauty is associated with a small breakdown of symmetry. We are all familiar with this in music or in art. Tony shows that such a breakdown also has a role in physics and that it is often associated with unexpected and very deep and important concepts (parity, CP violation or baryon assymetry). The book is an amazing achievement; although the main focus is on symmetry and beauty the author manages to explain most of the new and relevant concepts of modern physics, from quantum mechanics and relativity to superstrings and superbranes. And he does this with no equations and almost no mathematical symbols. So who is this book intended for? Who will enjoy reading it? Clearly, it will be appreciated by all theoretical physicists, who probably will be primarily impressed by the way the book makes accessible so many very difficult concepts. I was particularly struck by Tony's ability to explain things in simple terms and to find relevant analogies. It will be also greatly enjoyed by the non-specialist but 'interested' reader; (s)he may find some concepts hard to follow but (s)he will get the general gist of the arguments. It will be also be enjoyed by sixth-formers studying physics and quite possibly will attract some of them to

  1. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  2. ``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics

    Science.gov (United States)

    Harter, William; Reimer, Tyle

    2015-05-01

    A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''

  3. "simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics

    Science.gov (United States)

    Reimer, T. C.; Harter, W. G.

    2014-06-01

    A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."

  4. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  5. Testing Plasma Physics in the Ionosphere

    Science.gov (United States)

    Papadopoulos, Konstantinos

    TESTING PLASMA PHYSICS IN THE IONOSPHERE K. Papadopoulos University of Maryland College Park, MD 20742 Ionospheric heaters supplemented by ground and space based diagnostic instruments, such as radars, optical cameras and photometers, HF/VLF/ELF/ULF receivers and magnetometers, radio beacons, riometers and ionosondes have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), was completed in February 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between .36 - 4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform within the regulatory allowed bandwidth in linear and circular polarization. These capabilities far exceed those of previous ionospheric heaters and allow for new frontier research in plasma physics, geophysics and radio science. Following a brief discussion of the relationship of the new capabilities of the facility with thresholds of physical processes that could not be achieved previously, the presentation will discuss recent results in the areas of ULF/ELF/VLF generation and propagation and wave-particle interactions in the magnetosphere acquired with the completed facility. The presentation will conclude with a detailed discussion of possible frontier science experiments in the areas of Langmuir turbulence, parametric instabilities, electron acceleration, optical emissions and field aligned striations and duct generation, made

  6. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  7. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  8. The technology of Plasma Spray Physical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The deposition of thermal barrier coatings is currently the most effective means of protecting the surface of aircraft engine turbine blades from the impact of aggressive environment of combustion gases. The new technologies of TBC depositions are required.Design/methodology/approach: The essential properties of the PS-PVD process have been outlined, as well as recent literature references. In addition, the influence of a set process condition on the properties of the deposited coatings has been described.Findings: The new plasma-spraying PS-PVD method is a promising technology for the deposition of modern thermal barrier coatings on aircraft engine turbine blades.Research limitations/implications: The constant progress of engine operating temperatures and increasing pollution restrictions determine the intensive development of heat-resistant coatings, which is directed to new deposition technologies and coating materials.Practical implications: The article presents a new technology of thermal barrier coating deposition - LPPS Thin Film and Plasma Spray - Physical Vapour Deposition.Originality/value: The completely new technologies was described in article.

  9. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  10. The analysis of modern approaches to physical fitness testing of military personnel

    Directory of Open Access Journals (Sweden)

    Glazunov Sergej Ivanovich

    2011-11-01

    Full Text Available The aim of research is to determine modern approaches to the physical fitness testing of service personnel. In the army with modern military experience, marked by a tendency to view the content of tests to determine the level of physical fitness of military personnel. Observed differentiation of unified systems tests to determine the general physical and military training military application. Summary of tests determined the nature of loads and motions of the structure inherent in the military during combat operations.

  11. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2016-01-01

    This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

  12. Physical processes associated with current collection by plasma contactors

    Science.gov (United States)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  13. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    Science.gov (United States)

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  14. The Concept of Temperature in the Modern Physics

    OpenAIRE

    Tayurskii, Dmitrii; Mehaute, Alain Le

    2011-01-01

    The physical quantity "temperature" is a cornerstone of thermodynamics and statistical physics. But it is necessary to mention that very frequently the scientists forget about the conditions to be satisfied in order to introduce "temperature" in macroscopic physics. In the present paper the short introduction to the classical concept of temperature for macroscopic equilibrium systems will be given. The concept of "spin temperature" in condensed matter physics will be reviewed and the advantag...

  15. Encountering Productive Forms of Complexity in Learning Modern Physics

    Science.gov (United States)

    Levrini, Olivia; Fantini, Paola

    2013-01-01

    This paper aims at supporting the claim that some forms of hyper-simplification, by making physics seem easy, are at risk of dangerously distorting the content as well as the process of learning physics. The paper presents examples of dangerous simplifications in the teaching of quantum physics. Then, examples of productive forms of complexity are…

  16. Fundamental Particles and Interactions. A Wall Chart of Modern Physics.

    Science.gov (United States)

    Achor, William T.; And Others

    1988-01-01

    Discusses a wall chart, "The Standard Model of Fundamental Particles and Interactions," for use in introductory physics courses at either high school or college level. Describes the chart development process, introduction and terminology of particle physics, components of the chart, and suggestions for using the chart, booklet, and…

  17. Transport Physics in Reversed Shear Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, F.M.; Batha, S.H. [Fusion Physics and Technology, Inc., Torrance, CA (United States); Beer, M.A.; Bell, M.G.; Budny, R.V.; Efthimion, P.C.; Mazzucato, E.; Nazikian, R.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Synakowski, E.J.; Taylor, G.; Von Goeler, S.; Zarnstorff, M.C. [Princeton University, NJ (United States). Plasma Physics Laboratory; Bush, C.E. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.

  18. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2001-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex elec

  19. Lectures on torah and modern physics (the lectures in kabbalah series)

    CERN Document Server

    Ginsburgh, Harav Yitzchak

    2013-01-01

    Modern physics has forever changed the way we view and understand physical reality. With a wide spectrum of theories, from general relativity to quantum mechanics, our conceptions of the very big and the very small are no longer intuitively obvious. Many philosophers, even scientists have expressed the opinion that the counterintuitive conclusions posited in modern physics are best understood using spiritual terminology. In the 11 lectures in this volume, Harav Ginsburgh, one of our generation's foremost scholars, innovators, and teachers of Kabbalah, reveals how modern physics reflects foundational concepts in the Torah's inner dimension. A wide range of topics from relativity (special and general), quantum mechanics, and string theory are addressed. Elegantly and gracefully, Harav Ginsburgh's exposition of the topics switches back and forth between the scientific and Torah perspectives. With his deep insight, Harav Ginsburgh gives even well-known physical concepts a refreshing and new treatment. Apart from ...

  20. Methodological bases of modern theory of physical preparation of sportsmen of high class

    Directory of Open Access Journals (Sweden)

    Osipov V.M.

    2012-08-01

    Full Text Available Modern presentations and walkthrough of theory of physical preparation of sportsmen of high class are considered. It is well-proven that the empiric way of development of theory of the sporting training lost the theoretical and practical meaningfulness already a long ago. Achievements of soviet and Russian scientific school are selected. Found out contradiction in the looks of modern specialists to the problem of method of the sporting training. It is set that development of modern theory of physical preparation must be interlinked with the design of the systems of organism. Marked on the necessity of creation of general model on the basis of combination of knowledges of biochemistry, physicists, biomechanics, physiology, psychology, sport theories. Directions of development of innovative technologies of control of physical preparedness, facilities and methods of physical development, plans of physical preparation of sportsmen of high class are recommended.

  1. Farewell to reality how modern physics has betrayed the search for scientific truth

    CERN Document Server

    Baggott, Jim

    2013-01-01

    From acclaimed science author Jim Baggott, a pointed critique of modern theoretical physics. In this stunning new volume, Jim Baggott argues that there is no observational or experimental evidence for many of the ideas of modern theoretical physics: super-symmetric particles,super strings, the multiverse, the holographic principle,or the anthropic cosmological principle. These theories are not only untrue, it is not even science. It is fairy-tale physics: fantastical, bizarre and often outrageous, perhaps even confidence-trickery. This book provides a much-needed antidote. Informed,comprehensive, and balanced, it offers lay readers the latest ideas about the nature of physical reality while clearly distinguishing between fact and fantasy. With its engaging portraits of many central figures of modern physics, including Paul Davies, John Barrow, Brian Greene, Stephen Hawking, and Leonard Susskind, it promises to be essential reading for all readers interested in what we know and don’t know about the nature of...

  2. Space plasma physics results from Spacelab 1

    Science.gov (United States)

    Burch, J. L.

    1985-01-01

    The Spacelab 1 payload carried several instrument systems which together investigated a number of space plasma phenomena. These experiments used the Space Shuttle Orbiter as a platform for making controlled particle-beam, plasma and neutral gas inputs to the ionosphere and magnetosphere and for observing the outputs produced. Spacelab 1 space-plasma investigations included the Space Experiments with Particle Accelerators (SEPAC), Phenomena Induced by Charged Particle Beams (PICPAB), Atmospheric Emissions Photometric Imaging (AEPI) and the Low Energy Electron Spectrometer and Magnetometer. Among the major phenomena investigated both singly and jointly by these experiments are vehicle charging and neutralization, beam-plasma and wave-particle interactions, anomalous ionization phenomena produced by neutral-gas and plasma injections and several phenomena induced by modulated particle beam injections.

  3. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  4. Regular physical activity influences plasma ghrelin concentration in adolescent girls.

    Science.gov (United States)

    Jürimäe, Jaak; Cicchella, Antonio; Jürimäe, Toivo; Lätt, Evelin; Haljaste, Kaja; Purge, Pritt; Hamra, Jena; von Duvillard, Serge P

    2007-10-01

    We examined the effect of regular physical activity on plasma ghrelin concentration after onset of puberty in girls. In addition, we also examined the association of fasting plasma ghrelin concentration with various plasma biochemical, body composition, and aerobic capacity variables in healthy adolescent girls. Fifty healthy schoolgirls ages 11 to 16 yr were divided either into a physically active (N = 25) or a physically inactive (N = 25) group. The physically active group consisted of swimmers who had trained on an average of 6.2 +/- 2.0 h.wk(-1) for the last 2 yr, whereas the inclusion criterion for the physically inactive group was the participation in physical education classes only. The subjects were matched for age (+/- 1 yr) and body mass index (BMI; +/- 2 kg.m(-2)). Maturation I group (14 matched pairs) included pubertal stages 2 and 3, and maturation II group (11 matched pairs) included pubertal stages 4 and 5. Physically active girls had significantly higher (P ghrelin levels than the physically inactive girls (maturation I: 1152.1 +/- 312.9 vs 877.7 +/- 114.8 pg.mL(-1); maturation II: 1084.0 +/- 252.5 vs 793.4 +/- 164.9 pg.mL(-1)). Plasma ghrelin concentration was negatively related to percent body fat, fat mass, peak oxygen consumption per kilogram of body mass, leptin, estradiol, insulin, and insulin-like growth factor-I (IGF-I) (r > -0.298; P ghrelin concentration using the variables that were significantly associated with ghrelin concentration demonstrated that plasma IGF-I was the most important predictor of plasma ghrelin concentration (beta = -0.396; P = 0.008). Regular physical activity influences plasma ghrelin concentrations in girls with different pubertal maturation levels. Plasma IGF-I concentration seems to be the main determinant of circulating ghrelin in healthy, normal-weight adolescent girls.

  5. Modern Fysics Phallacies: The Best Way Not to Unify Physics

    Science.gov (United States)

    Beichler, James E.

    Too many physicists believe the `phallacy' that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general `phallacies in fysics' that were spread during the second quarter of the twentieth century, although serious `phallacies' exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained - a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension - and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm.

  6. The concept of intelligibility in modern physics (1948).

    Science.gov (United States)

    Feyerabend, Paul K

    2016-06-01

    This is an English translation of Paul Feyerabend's earliest extant essay "Der Begriff der Verständlichkeit in der modernen Physik" (1948). In it, Feyerabend defends positivism as a progressive framework for scientific research in certain stages of scientific development. He argues that in physics visualizability (Anschaulichkeit) and intelligibility (Verständlichkeit) are time-conditioned concepts: what is deemed visualizable in the development of physical theories is relative to a specific historical context and changes over time. He concludes that from time to time the abandonment of visualizability is crucial for progress in physics, as it is conducive to major theory change, illustrating the point on the basis of advances in atomic theory.

  7. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  8. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  9. Physics of collapses in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1998-12-31

    Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)

  10. Master IDIFO for In-Service Teacher Training in Modern Physics

    Science.gov (United States)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    Within the context of a national project aimed to promote actions against disaffection for scientific studies in Italy, a Master in Didactic Innovation in Physics and Orientation was designed, as a result of researches carried out in this field by PERG of 9 Universities of Italy and aimed at the in-service training of teachers on modern physics.

  11. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  12. New gravitational formula as a bridge to join the modern physics and the classical physics

    Science.gov (United States)

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1), f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation and the nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91(2011)’ with the

  13. Yoichiro Nambu: Visionary theorist who shaped modern particle physics

    Science.gov (United States)

    Turner, Michael S.

    Yoichiro Nambu was one of the most influential theoretical physicists of the twentieth century. His deep and unexpected insights often took years for others to understand and fully appreciate. They include: spontaneous symmetry breaking, for which he was awarded half of the 2008 Nobel Prize in Physics; the theory of quarks and gluons; and string theory...

  14. Town Meeting on Plasma Physics at the National Science Foundation

    Science.gov (United States)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  15. Plasma Physics Issues in Gas Discharge Laser Development

    Science.gov (United States)

    1991-12-01

    WL-TR-92-2087 PLASMA PHYSICS ISSUES IN GAS DISCHARGE LASER DEVELOPMENT AD-A257 735 ALAN GARSCADDEN MARK J. KUSNER J. GARY EDEN WL/POOC-3 WRIGHT...LASERS INFRARED MOLECULAR jAS LASERS UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL Plasma Physics Issues in Gas Discharge Laser Development Alan Garscadden...the close coupling between body of work was not generally useful in laser development . vibrationally excited nitrogen and CO or CO2 . In fact. the First

  16. Applications of Symmetry Methods to the Theory of Plasma Physics

    OpenAIRE

    Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro

    2006-01-01

    The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...

  17. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  18. Jorge Luis Borges and the New Physics: the Literature of Modern Science and the Science of Modern Literature

    Science.gov (United States)

    Mosher, Mark Robert

    1992-01-01

    By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.

  19. Plasma separation: physical separation at the molecular level

    Science.gov (United States)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2016-09-01

    Separation techniques are usually divided in two categories depending on the nature of the discriminating property: chemical or physical. Further to this difference, physical and chemical techniques differ in that chemical separation typically occurs at the molecular level, while physical separation techniques commonly operate at the macroscopic scale. Separation based on physical properties can in principle be realized at the molecular or even atomic scale by ionizing the mixture. This is in essence plasma based separation. Due to this fundamental difference, plasma based separation stands out from other separation techniques, and features unique properties. In particular, plasma separation allows separating different elements or chemical compounds based on physical properties. This could prove extremely valuable to separate macroscopically homogeneous mixtures made of substances of similar chemical formulation. Yet, the realization of plasma separation techniques' full potential requires identifying and controlling basic mechanisms in complex plasmas which exhibit suitable separation properties. In this paper, we uncover the potential of plasma separation for various applications, and identify the key physics mechanisms upon which hinges the development of these techniques.

  20. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  1. Monte Carlo simulations for plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  2. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  3. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  4. Quantitative biology: where modern biology meets physical sciences.

    Science.gov (United States)

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

    2014-11-05

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. PREFACE: First International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  6. Cognition versus Constitution of Objects: From Kant to Modern Physics

    Science.gov (United States)

    Mittelstaedt, Peter

    2009-07-01

    Classical mechanics in phase space as well as quantum mechanics in Hilbert space lead to states and observables but not to objects that may be considered as carriers of observable quantities. However, in both cases objects can be constituted as new entities by means of invariance properties of the theories in question. We show, that this way of reasoning has a long history in physics and philosophy and that it can be traced back to the transcendental arguments in Kant’s critique of pure reason.

  7. Reaction-diffusion problems in the physics of hot plasmas

    CERN Document Server

    Wilhelmsson, H

    2000-01-01

    The physics of hot plasmas is of great importance for describing many phenomena in the universe and is fundamental for the prospect of future fusion energy production on Earth. Nontrivial results of nonlinear electromagnetic effects in plasmas include the self-organization and self-formation in the plasma of structures compact in time and space. These are the consequences of competing processes of nonlinear interactions and can be best described using reaction-diffusion equations. Reaction-Diffusion Problems in the Physics of Hot Plasmas is focused on paradigmatic problems of a reaction-diffusion type met in many branches of science, concerning in particular the nonlinear interaction of electromagnetic fields with plasmas.

  8. Physics of High Temperature, Dense Plasmas.

    Science.gov (United States)

    1984-01-01

    34Investigation of the High-Energy Acceleration Mode in the Coaxial Gun," Phys. Fluids, Suppl., S28, (1964). I. 9. Dattner, A. and Eninger J...34Studies of a Coaxial Plasma Gun," Phys. Fluids, Suppl., S41, (1964). II. 10. Wilcox, J. M., Pugh, E., Dattner, A. and Eninger , J., "Experimental Study of

  9. Research in Pulsed Power Plasma Physics

    Science.gov (United States)

    1993-11-01

    constraints will preclude the use of channels with much with a Tesla coil. Nor is uniformity improved by the use of larger wall radii. a 3 kA prepulse. Driving...Oliphant. 12C. Bruno, J. Delvaux. A. Nicolas . and M. Roche, IEEE Trans. Plasma and P. F. Ottinger. App!. Phys. Lett. 45. 1043 (1984).ISci. PS-IS, 686

  10. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  11. Psychological and Physical Stress in Surgeons Operating in a Standard or Modern Operating Room

    DEFF Research Database (Denmark)

    Klein, M.; Andersen, L.P.H.; Alamili, M.

    2010-01-01

    concerning physical and psychological wellbeing before and after surgery and had their heart rate variability registered during surgery. Results: Preoperative to postoperative physical strain and pain measurements revealed a systematical difference with 14 of 15 parameters favoring the modern OR. Two...... of these parameters reached statistical significance. We did not find any significant differences in the subjective parameters of surgeon satisfaction or the measured heart rate variability parameters. Conclusions: Physical strain on the surgeon was reduced when performing laparoscopic cholecystectomy in a modern......Purpose: There have been no studies examining the effect of optimized ergonomic and technical environment on the psychological and physiological stress of the surgeon. The aim of this study was to examine whether optimized ergonomics and technical aids within a modern operating room (OR) affect...

  12. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  13. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  14. Signposts to God how modern physics and astronomy point the way to belief

    CERN Document Server

    Bussey, Peter

    2016-01-01

    In Signposts to God particle physicist Peter Bussey introduces readers to the mysteries of modern physics and astronomy. Written in clear, accessible prose, Bussey provides a primer on topics such as the laws of nature, quantum physics, fine-tuning, and current cosmological models. He shows that despite the remarkable achievements of science, the latest research in these fields does not lead to simple physicalism in which physical processes are able to explain everything that exists. Bussey argues that, far from ruling out a divine Creator, modern physics and astronomy present us with compelling signposts to God. The more we know about the cosmos and our presence in it, the more plausible belief in God becomes. We can be intellectually satisfied in both science and the Christian faith. Written by someone who has worked for years in scientific research, Signposts to God is a timely and winsome response to a cultural stalemate.

  15. Discrete or continuous? the quest for fundamental length in modern physics

    CERN Document Server

    Hagar, Amit

    2014-01-01

    The idea of infinity plays a crucial role in our understanding of the universe, with the infinite spacetime continuum perhaps the best-known example - but is spacetime really continuous? Throughout the history of science, many have felt that the continuum model is an unphysical idealization, and that spacetime should be thought of as 'quantized' at the smallest of scales. Combining novel conceptual analysis, a fresh historical perspective, and concrete physical examples, this unique book tells the story of the search for the fundamental unit of length in modern physics, from early classical electrodynamics to current approaches to quantum gravity. Novel philosophical theses, with direct implications for theoretical physics research, are presented and defended in an accessible format that avoids complex mathematics. Blending history, philosophy, and theoretical physics, this refreshing outlook on the nature of spacetime sheds light on one of the most thought-provoking topics in modern physics.

  16. Plasma physics analysis of SERT-2 operation

    Science.gov (United States)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  17. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  18. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices

    Directory of Open Access Journals (Sweden)

    Napp, Judith

    2015-06-01

    Full Text Available Background: Cold atmospheric pressure plasma (CAP with its many bioactive properties has defined a new medical field: the plasma medicine. However, in the related form of high-frequency therapy, CAP was even used briefly a century ago. The aim of this study was to review historic CAP treatments and to obtain data regarding the antimicrobial efficacy of a historical high-frequency plasma device.Methods: First, historic literature regarding the history of CAP treatment was evaluated, because in the modern literature no data were available. Second, the susceptibility of 5 different bacterial wound isolates, cultured on agar, to a historic plasma source (violet wand [VW] and two modern devices (atmospheric pressure plasma jet [APPJ] and Dielectric Barrier Discharge [DBD] was analyzed . The obtained inhibition areas (IA were compared.Results: First, the most convenient popular historical electromedical treatments produced a so-called effluvia by using glass electrodes, related to today’s CAP. Second, all three tested plasma sources showed complete eradication of all tested microbial strains in the treated area. The “historical” cold VW plasma showed antimicrobial effects similar to those of modern APPJ and DBD regarding the diameter of the IA.Conclusion: Some retrograde evidence may be deducted from this, especially for treatment of infectious diseases with historical plasma devices. The underlying technology may serve as model for construction of modern sucessive devices.

  19. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  20. A Study of the Nature of Students' Models of Microscopic Processes in the Context of Modern Physics Experiments.

    Science.gov (United States)

    Thacker, Beth Ann

    2003-01-01

    Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…

  1. APS presents prizes in fluid dynamics and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation.

  2. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  3. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  4. Computerized tomographic imaging for space plasma physics

    Science.gov (United States)

    Zhang, Yuhong; Coplan, Michael A.; Moore, John H.; Berenstein, Carlos A.

    1990-01-01

    The measurement of plasma electron velocity distribution functions as a problem in imaging and image reconstruction is considered. A model instrument that measures the integral of the distribution function along lines in velocity space is presented. This allows the use of the powerful mathematical and numerical methods that have recently been so successful in other areas of imaging. It is found that this approach leads to classes of instruments that are qualitatively different from contemporary designs. An investigation of different methods of reconstruction of the distribution function from integral measurements reveals that the mathematical tools appropriate to one particular imaging problem may be very different from those required to deal with another.

  5. The role of self-dependence in modern health improvemental technologies of physical students' education.

    Directory of Open Access Journals (Sweden)

    Shumakov O.V.

    2010-07-01

    Full Text Available A normative base is considered on the problems of physical education, physical culture and independent work of students. An analysis is conducted scientifically-methodical and special literature on issue of research. Basic features and modern going are selected near independent work in health technologies of physical education of students. A concept «Independent work» is examined as activity of man and as a teaching method. A teaching method plugs in itself independent employments by physical exercises. During correct organization they can substantially increase motive activity of students.

  6. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  7. Proceedings of the symposium on the foundations of modern physics, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, P.; Mittelstaeclt, P.

    1987-01-01

    This book discusses the following subjects: The Quantum Postulate and atomic theory; modern mathematics in formulation of basic laws of physics; uncertainty principles, Quantum systems; Niels Bohr's concept of reality; Quantum theory; language and reality in Quantum physics; Wolfgang Pauli's conception of reality; interpretation of Quantum mechanics; varieties of realism; and many-Hilbert-spaces theory of Quantum measurements.

  8. A review on the “Modern and Contemporary Physics at High School” research area

    OpenAIRE

    2000-01-01

    This paper presents a review of the literature regarding the subject “Modern and Contemporary Physics (MCP) at secondary school level” based on research papers, textbooks, master’s and doctoral’s dissertations, curriculum projects, and internet papers, approaching this topic. This review focus on publications targeting the teaching of physics and includes the first studies in this line of research published in the late seventies. Six large categories of studies were identified. Among them, it...

  9. The world-line. Albert Einstein and modern physics; Die Weltlinie. Albert Einstein und die moderne Physik

    Energy Technology Data Exchange (ETDEWEB)

    Maalampi, Jukka [Jyvaeskylae Univ. (Finland). Dept. of Physics

    2008-07-01

    This book is an entertaining and formula-free presentation of modern physics from the 19th century to present. The life of Albert Einstein and his scientific works are drawn as red fathom through the text. The author explains central terms and results of modern physics in populary-scientific form from the historical perspective. To the reader in humorous form an imagination is mediated how modern physics has been developed. We learn from the exciting effects of the ether, we hear from faraday and magnetic needles, from Maxwell's prediction of the electromagnetic waves, from heinrich Hertz and from the photoelectric effect. Was the Michelson-Morley experiment a measurement success or an unsuccess? Why has Einstein abandoned the ether? How has Einstein in the miraculous year 1905 revolutionated physics and why he has begged Newton for excusement? Exist atoms? What is motion? What is light and what is to be understood under ''now'' and ''here''? Light deviation or non-deviation? How act the tidal forces? And above all: How has Einstein answered these questions. We meet Poincare, Lorentz and Hilbert, Boltzmann and Bohr, Minkowski, Planck, de Broglie, Hubble and Weyl, Gamow, Hahn and Meitner, Kapiza and Landau, Fermi and many other famous scientists. What had Eddington against Chandrasekhar and what had Einstein against black holes? Why should space tourists and dream tourists make holiday not on the Loch Ness but on the safe side of a black hole? Why inveighed Pauli against Einstein? Is the concern with the atomic-bomb formula right? Smeared matter, big bang and cosmic background radiation, gravitational waves and double pulsars, the cosmological constant and the expansion of the universe are further themes, which keep the reader in breath and let no mental vacuum arise. [German] Das Buch ist eine unterhaltsame und formelfreie Darstellung der modernen Physik vom 19. Jahrhundert bis zur Gegenwart. Das Leben Albert Einsteins

  10. Learners' Perceptions of Being Identified as Very Able: Insights from Modern Foreign Languages and Physical Education

    Science.gov (United States)

    Graham, Suzanne; Macfadyen, Tony; Richards, Brian

    2012-01-01

    While learners' attitudes to Modern Foreign Languages (MFL) and to Physical Education (PE) in the UK have been widely investigated in previous research, an under-explored area is learners' feelings about being highly able in these subjects. The present study explored this issue, among 78 learners (aged 12-13) from two schools in England, a…

  11. Investigation of the Reasons of Negative Perceptions of Undergraduate Students Regarding the Modern Physics Course

    Science.gov (United States)

    Aksakalli, Ayhan; Salar, Riza; Turgut, Umit

    2016-01-01

    In this research, the negative perceptions of undergraduate students regarding modern physics course and the causes of their negative perceptions have been investigated. For this investigation, a qualitative and quantitative method (mix method) was chosen for data collection and analysis. The study group of the research consists of a total of 169…

  12. Brief Introduction to the γ-DETECTOR Array at Institute of Modern Physics in Lanzhou

    Science.gov (United States)

    Hua, W.; Zhang, N. T.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Zhou, X. H.; Zhang, Y. H.; Lei, X. G.; Guo, Y. X.

    2013-11-01

    A new γ-detector array at Institute of modern physics in Lanzhou is now in construction. The spherical frame is designed using Solidworks, and is assembled by 4 kinds of irregular polygons. 32 detectors could be placed on this frame in maximum, which are arranged with 4-4-4-8-4-4-4 configuration.

  13. Structure and structure-preserving algorithms for plasma physics

    Science.gov (United States)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  14. Increased physical work loads in modern work--a necessity for better health and performance?

    Science.gov (United States)

    Straker, Leon; Mathiassen, Svend Erik

    2009-10-01

    Shifting workforce proportions to sedentary occupations and technology developments in traditionally physically demanding occupations have resulted in low physical workloads for many workers. Insufficient physical stress is known to have detrimental short- and long-term effects on health and physical capacity. It is argued herein that many modern workers are at risk of insufficient physical workload. Further, it is argued that the traditional physical ergonomics paradigm of reducing risk by reducing physical loads ('less is better') is not appropriate for many modern occupations. It is proposed that a new paradigm is required, where 'more can be better'. The potential for work to be seen as an arena for improving physical health and capability is discussed and the types of changes to work that may be required are outlined. The paper also discusses challenges and responsibilities presented by this new paradigm for ergonomists, employers, health and safety authorities and the community. The majority of workers in affluent communities now face the significant threat to health of insufficient physical workload. Ergonomics can design work to a prescription that can not only reduce injury risk but enhance health and capacity. However, this will require a change in paradigm.

  15. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  16. Science and society the history of modern physical science in the twentieth century

    CERN Document Server

    Gordin, Michael; Kaiser, David

    2001-01-01

    Modern science has changed every aspect of life in ways that cannot be compared to developments of previous eras. This four volume set presents key developments within modern physical science and the effects of these discoveries on modern global life. The first two volumes explore the history of the concept of relativity, the cultural roots of science, the concept of time and gravity before, during, and after Einstein's theory, and the cultural reception of relativity. Volume three explores the impact of modern science upon global politics and the creation of a new kind of war, and Volume four details the old and new efforts surrounding the elucidation of the quantum world, as well as the cultural impact of particle physics. The collection also presents the historical and cultural context that made these scientific innovations possible. The transformation of everyday concepts of time and space for the individual and for society, the conduct of warfare, and the modern sense of mastering nature are all issues d...

  17. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  18. Plasma Physics Research at an Undergraduate Institution

    Science.gov (United States)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  19. Physics considerations for laser-plasma linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  20. Modern Gyrokinetic Particle-In-Cell Simulation of Fusion Plasmas on Top Supercomputers

    CERN Document Server

    Wang, Bei; Tang, William; Ibrahim, Khaled; Madduri, Kamesh; Williams, Samuel; Oliker, Leonid

    2015-01-01

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability of the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon...

  1. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  2. Organization of health at physical training lessons in the modern school

    Directory of Open Access Journals (Sweden)

    Nikolai Gorodysky

    2016-06-01

    Full Text Available Purpose: to identify and outline the necessary conditions aimed at a healthy lifestyle, refusal of bad habits, providing health care of students at physical education classes. Material & Methods: theoretical and practical achievements of modern scientists, authors experience in conducting physical education classes; analysis of scientific literature on selected issues, systematization of received theoretical results and acquired sports and teaching experience, generalization of acquired scientific data to formulate conclusions of the article. Results: in solving the problem of defining the role of the designated teacher who seeks to convince students in healthy lifestyles. Conclusions: ensuring longevity in modern conditions of life requires public awareness about the need for healthy lifestyles and instilling in youth the love for the physical training and sports.

  3. Physics of High Performance Dueterium-Tritium Plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K. M.; White, R.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Batha, S.; Lamarche, P.; LeBlanc, B.; Levinton, F. M.; Beer, M.; Bell, M. G.; Bell, R. E.; Belov, A.; Fredrickson, E. D.; Fu, G. Y.; Furth, H. P.; Gorelenkov, N. N.; Krasilnikov, A. V.; Meade, D. M.; Medley, S. S.; Mika, R.; Mikkelsen, D. R.; Mirnov, S. V.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Semenov, I.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Dorland, W.; Phillips, P.; Bretz, N. L.; Budny, R.; Bush, C.E.; Grek, B.; Grisham, L. R.; Hammett, G. W.; Herrmann, H. W.; Herrmann, M.; Hill, K. W.; Hogan, G. R.; Hosea, J. C.

    1996-01-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production,isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high -li) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF-heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-li discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier.It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  4. Physics of high performance deuterium-tritium plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  5. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  6. Space and Time as Containers of the "Physical Material World" with some Conceptual and Epistemological Consequences in Modern Physics

    CERN Document Server

    Mondragon, Mauricio

    2012-01-01

    A particular science is not only defined by its object of study, but also by the point of view and method under which it considers that same object. Taking space and time as an illustrative example, our main aim here is to bring out an almost forgotten conception of science found in many doctrines that seek mainly-but not only-a qualitative and synthetic knowledge rather than, as in modern physics, for example, a quantitative and analytic knowledge. The latter point of view is found to be very limited and fragmented, leaving outside many scientific questions and answers, while the former opens up the way to valuable and interesting answers to those and many other questions. In particular, we argue that the conception of space and time as containers of, respectively, bodies and events, clarify many conceptual and epistemological issues of modern science related to the physical material world.

  7. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  8. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  9. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiationhydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of selfheating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  10. The modernization process of physical training of students-choreographers in the physical training

    Directory of Open Access Journals (Sweden)

    Kristina Pavinskaya

    2015-05-01

    Full Text Available The article presents an analysis of the level of physical fitness of students, choreographers and students of dance schools. The author as the innovations proposed orientation of health-physical training of future choreographers to engage in physical culture.

  11. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    Science.gov (United States)

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  12. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  13. 休谟思想与现代物理学%Hume's Idea and Modern Physics

    Institute of Scientific and Technical Information of China (English)

    吴次南; 任康廷

    2000-01-01

    Analysed Hume's inference about time space, causality, exist and let those inference compared with same result of modern physics. Indicate the closely relationship between Hume's idea and the conclusion of modem physics.%分析了休谟关于时空、因果关系、存在等几方面的论断,并且将它们与现代物理学的一些结论进行了比较.指出休谟思想与现代物理学结论的密切联系.

  14. Are the rules for Didactical Transposition applicable to the concepts of modern physics?

    Directory of Open Access Journals (Sweden)

    Guilherme Brockington

    2005-12-01

    Full Text Available This study is part of a program to update the teaching curriculum. The subject matter of Modern and Contemporary Physics is generally absent in teaching at the Middle School level. In the study we analyse the requirements for the insertion of elements of Quantum Mechanics in teaching at that level. The analysis is based on the theory of “Didactical Transposition" proposed by Yves Chevallard and from which we point out some elements of his rules which are of questionable relevance to the topics of this "new" Physics.

  15. EVALUATION OF PHYSICAL DEVELOPMENT DYNAMICS IN MODERN CHILDREN 7-8 YEARS OF AGE

    Directory of Open Access Journals (Sweden)

    Grebneva, N.N.

    2016-05-01

    Full Text Available The article contains the results of comparative evaluation of children’s physical development level (7-8 years old over a twelve-year period (1999-2012. The study revealed drastic decrease in the number of children with average (normal level of physical development and its disharmony, which is mainly caused by excessive body weight. Increase in body weight depends on the sex: the indicators among girls are twice as high as same indicators for boys. It is assumed that decrease in physical development level of modern children 7-8 years of age is caused by nutritional inferiority, irrational nutrition and decline in physical activity, particularly due to the start formal schooling.

  16. Modern view on the problem of physical rehabilitation of teenagers with short-sightedness

    Directory of Open Access Journals (Sweden)

    Redkovets T.G.

    2012-09-01

    Full Text Available Information is presented on determination of the most recommended nosotropic facilities of rehabilitation at myopia for teenagers. An analysis is conducted modern to scientifically-methodical literatures about the theories of development of myopia, about restoration therapy and physical rehabilitation of teenagers. The different going is presented near the decision of rehabilitation questions with including of the generally accepted facilities and methods of rehabilitation, observance of the accepted principles of their leadthrough. Information is generalized about the use of physical exercises in a physical rehabilitation. It is recommended in the program of physical rehabilitation to include: medical gymnastics, morning hygienical gymnastics, independent employments, reflection therapy and independent reflection therapy. Recommended the special exercises for eyes to combine with dynamic, static, weakening exercises of digit gymnastics for strengthening of efficiency of restoration measures.

  17. Physics Teachers Programme or how to bring modern physics to school

    CERN Document Server

    2002-01-01

    A new programme for teachers took place last weekend at CERN. Fifty high school teachers sacrificed their weekend and plunged into CERN physics to find new inspirations for exciting physics lessons.   The fifty participants in the Physics Teachers programme in the Microcosm garden. High school students are often convinced that physics is a boring and useless subject, and physics teachers have a hard time presenting interesting lessons. To help them, CERN has inaugurated the Physics Teachers Programme, whose goal is to present CERN and its activities, so that teachers can get an idea of what kind of physics research is going on at the frontier of science. 'Our philosophy is to show them today what they will read in textbooks of the future', says Antonella Del Rosso, responsible for this course, 'so that they can inspire their pupils'. This programme can be considered the younger brother of the High School Teachers Programme, since it has a similar aim, but instead of being three-weeks long, it las...

  18. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  19. Some physics and chemistry of Coblation® electrosurgical plasma devices

    Science.gov (United States)

    Stalder, Kenneth R.; Ryan, Thomas P.; Woloszko, Jean

    2013-02-01

    Electrosurgical devices employing plasmas to ablate, cut and otherwise treat tissues have been in widespread use for decades. Following d'Arsonval's 19th century work on the neuromuscular response from high-frequency excitation of tissue, Doyen treated skin blemishes with a spark-gap generator in 1909. In the late 1920's, physician Harvey Cushing and Harvard physicist William Bovie developed an electrosurgical device and power source that eventually became a standard of care for cutting, coagulating, desiccating, or fulgurating tissue. Beginning in the 1990's a new class of low-voltage electrosurgical devices employing electricallyconducting saline fluids were developed by ArthroCare Corp. These modern Coblation® devices are now widely used in many different surgical procedures, including those in arthroscopic surgery, otorhinolaryngology, spine surgery, urology, gynecological surgery, and others. This paper summarizes some of the research we have been doing over the last decade to elucidate the physics and chemistry underlying Coblation® electrosurgical devices. Electrical-, thermal-, fluid-, chemicaland plasma-physics all play important roles in these devices and give rise to a rich variety of observations. Experimental techniques employed include optical and mass spectroscopy, fast optical imaging, and electrical voltage and current measurements. Many of the features occur on fast time scales and small spatial scales, making laboratory measurements difficult, so coupled-physics, finite-element-modeling can also be employed to glean more information than has been acquired thus far through physical observation.

  20. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  1. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  2. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  3. The role of magnetohydrodynamics in heliospheric space plasma physics research

    Science.gov (United States)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  4. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  5. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.

    Science.gov (United States)

    Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-11-01

    Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.

  6. [Salutogenesis and pathogenesis--a paradigm change from the perspectives of modern physics].

    Science.gov (United States)

    Zeyer, A

    1997-01-01

    Early in the eighties Antonovsky stipulated a changeover from the pathogenetitto the salutogenetic paradigm in prevention. This article is meant to show that the necessity of such a changeover may also be derived from present-day physics. The pathogenetic paradigm is the characteristic of a time that bears the distinctive marks of the classical thermodynamics in equilibrium. The existence of the phenomenon life seemed in this context to be a physical paradox. Protection against wearing and death, the pathogenetic aspect, was inevitably the focus of interest. In the meantime modern physics have, however, developed a new understanding of life. It is based on the theory of self-organisation of non-linear systems far off the thermodynamic equilibrium. Today, life does no longer appear as a physical paradox but as the natural and fascinating expression of a structuring tendency inherent in matter. These new findings bring the salutogenetic question into the centre of attention. How can the natural tendency to self-organisation of biological systems be shouldered? Physical answers interpret the results of health research under a new aspect. Since self-organisation calls for a free and off-balance exchange of matter and energy with the environment it is no longer considered as a threat but as a source of health and vitality. Another outcome are physical arguments relating to well-known health strategies such as vegetarian food and physical exercise.

  7. Aspects Regarding the Role and the Importance of Physical Preparation in the Modern Football Game

    Directory of Open Access Journals (Sweden)

    Cărăbaş Ionică

    2013-06-01

    Full Text Available In order to achieve the great performance, the physical preparation represents one of the most important factors of the sports training. The development of speed, of force resistance and of skill at superior parameters should represent major objectives in the training of the football teams which aim to attain the top of the national and international hierarchies. The results of the assessments of the football games at high level, confirm this hypothesis that is why the physical preparation should be reconsidered and adapted to the requirements of the modern play. According to the opinion of the great specialists of the field, the physical qualities have a weight of 47% compared with the other qualities which a top football player should possess. For us the trainers, it is only about to find the most appropriate means in order to develop and exploit at maximum, those qualities.

  8. Reforming a large lecture modern physics course for engineering majors using a PER-based design

    CERN Document Server

    McKagan, S B; Wieman, C E

    2006-01-01

    We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared...

  9. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    Science.gov (United States)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  10. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  11. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  12. 6th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Lebovka, Nikolai

    2015-01-01

    These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.

  13. Diagnosis of weaknesses in modern error correction codes: a physics approach.

    Science.gov (United States)

    Stepanov, M G; Chernyak, V; Chertkov, M; Vasic, B

    2005-11-25

    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the bit-error-rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.

  14. The use of cold plasma generators in medicine

    National Research Council Canada - National Science Library

    Kolomiiets R.O; Nikitchuk T.M; Hrek O.V

    2017-01-01

    Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use...

  15. Programmable physical parameter optimization for particle plasma simulations

    Science.gov (United States)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  16. THE PROSPECT OF MODERN TECHNOLOGY IN PHYSICAL EDUCATION PROGRAM: THE WAY TO OVERCOME OVERWEIGHT PROBLEMS IN IRAQ

    OpenAIRE

    Fathil Bakir Allami; Mohdsofian Omar-Fauzee; Ishak Sin

    2016-01-01

    The overweight problem in Iraq has been a great issue that needs to be solved by government to ensure a better well-being. The purpose of this paper is to explore the need of the modern technology in physical education in order to overcome the issues of overweight in Iraq. The methodology used in this paper is through library research which focuses on issues of overweight and modern technology application in physical education programs. It can be concluded that the use of modern technology in...

  17. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  18. NASA/Marshall Space Flight Center's Contributions to Space Plasma Physics

    Science.gov (United States)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Since the mid-l970's, the Space Plasma Physics Group at NASA's Marshall Space Flight Center has contributed critical instrumentation to numerous satellite and sounding rocket missions exploring the plasmas of near-Earth space. This talk will review major discoveries in Earth's ionosphere, plasmasphere, and magnetosphere directly attributable to the researchers of the Space Plasma Physics Group and the significance of these discoveries to the field of plasma physics.

  19. Geodesics without differential equations: general relativistic calculations for introductory modern physics classes

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, D R [Student Support Services, University of Queensland, Brisbane QLD 4072 (Australia)

    2006-01-01

    Introductory courses covering modern physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics.

  20. A review on the “Modern and Contemporary Physics at High School” research area

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira

    2000-01-01

    Full Text Available This paper presents a review of the literature regarding the subject “Modern and Contemporary Physics (MCP at secondary school level” based on research papers, textbooks, master’s and doctoral’s dissertations, curriculum projects, and internet papers, approaching this topic. This review focus on publications targeting the teaching of physics and includes the first studies in this line of research published in the late seventies. Six large categories of studies were identified. Among them, it was possible to identify a clear concentration of studies presenting MCP topics as popularization of science or as bibliographical reference for high school teachers. Just a few studies were found concerning students’ misconceptions about MCP topics as well as regarding classroom proposals with actual learning outcomes.

  1. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  2. ITER-EDA physics design requirements and plasma performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Galambos, J. [Oak Ridge National Lab., TN (United States); Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S. [ITER San Diego Joint Work Site, CA (United States)

    1996-07-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R&D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of {approximately}1.6 that produces a nominal fusion power of {approximately}1.5 GW for an ignited burn pulse length of {ge}1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement ({tau}{sub E} = 0.85 {times} {tau}{sub ITER93H}), helium exhaust ({tau}*{sub He}/{tau}{sub E} = 10), representative plasma impurities (n{sub Be}/n{sub e} = 2%), and beta limit [{beta}{sub N} = {beta}(%)/(I/aB) {le} 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power ({approximately} 1--1.5 GW) and fluence ({approximately}1 MWa/m{sup 2}) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust ({tau}*{sub He}/{tau}{sub E} {le} 5) and potential operation in reverse-shear mode significantly improve ITER performance.

  3. Physical effects underlying the transition from primitive to modern cell membranes.

    Science.gov (United States)

    Budin, Itay; Szostak, Jack W

    2011-03-29

    To understand the emergence of Darwinian evolution, it is necessary to identify physical mechanisms that enabled primitive cells to compete with one another. Whereas all modern cell membranes are composed primarily of diacyl or dialkyl glycerol phospholipids, the first cell membranes are thought to have self-assembled from simple, single-chain lipids synthesized in the environment. We asked what selective advantage could have driven the transition from primitive to modern membranes, especially during early stages characterized by low levels of membrane phospholipid. Here we demonstrate that surprisingly low levels of phospholipids can drive protocell membrane growth during competition for single-chain lipids. Growth results from the decreasing fatty acid efflux from membranes with increasing phospholipid content. The ability to synthesize phospholipids from single-chain substrates would have therefore been highly advantageous for early cells competing for a limited supply of lipids. We show that the resulting increase in membrane phospholipid content would have led to a cascade of new selective pressures for the evolution of metabolic and transport machinery to overcome the reduced membrane permeability of diacyl lipid membranes. The evolution of phospholipid membranes could thus have been a deterministic outcome of intrinsic physical processes and a key driving force for early cellular evolution.

  4. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  5. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical. An investigation into student and expert perspectives on the physical interpretation of quantum mechanics, with implications for modern physics instruction

    CERN Document Server

    Baily, Charles

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wav...

  6. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  7. Brief Introduction to the Foundation of CAI Shidong Award for Plasma Physics

    Institute of Scientific and Technical Information of China (English)

    SHENG Zhengming

    2010-01-01

    @@ The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research.Professor CAI was also one of the pioneers in China's plasma physics research.In 1973,Professor CAI decided to leave U.S.and return to China in order to help pushing forward plasma physics research in China.Professor CAI formed a research group consisting of young scientists and carried out high-level works in this important physics discipline.He worked tirelessly,set examples by his own deeds,and made outstanding contributions in plasma physics research,educating younger generations of plasma physicists,as well as establishing collaborations with plasma scientists in other Asian-African developing nations.In short,Professor CAI devoted the best years of his life to China's plasma physics research.

  8. Computational Plasma Physics at the Bleeding Edge: Simulating Kinetic Turbulence Dynamics in Fusion Energy Sciences

    Science.gov (United States)

    Tang, William

    2013-04-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).

  9. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  10. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  11. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  12. Dynamical energy systems and modern physics: fostering the science and spirit of complementary and alternative medicine.

    Science.gov (United States)

    Schwartz, G E; Russek, L G

    1997-05-01

    When systems theory is carefully applied to the concept of energy, some novel and far-reaching implications for modern physics and complementary medicine emerge. The heart of systems theory is dynamic interactions: systems do not simply act on systems, they interact with them in complex ways. By definition, systems at any level (e.g., physical, biological, social, ecological) are open to information, energy, and matter to varying degrees, and therefore interact with other systems to varying degrees. We first show how resonance between two tuning forks, a classic demonstration in physics, can be seen to reflect synchronized dynamic interactions over time. We then derive how the dynamic interaction of systems in mutual recurrent feedback relationships naturally create dynamic "memories" for their interactions over time. The mystery of how a photon (or electron) "knows" ahead of time whether to function as a particle or wave in the single slit/double slit quantum physics paradigm is potentially solved when energetic interactions inherent in the experimental system are recognized. The observation that energy decreases with the square of distance is shown not to be immutable when viewed from a dynamical energy systems perspective. Implications for controversial claims in complementary and alternative medicine, such as memory for molecules retained in water (homeopathy), remote diagnosis, and prayer and healing, are considered. A dynamical energy systems framework can facilitate the development of what might be termed "relationship consciousness," which has the potential to nurture both the science and spirit of complementary medicine and might help to create integrated medicine.

  13. Earth's magnetosphere - Global problems in magnetospheric plasma physics

    Science.gov (United States)

    Roederer, J. G.

    1979-01-01

    Magnetospheric physics is presently in a transition from the exploratory stage to one in which satellite missions and ground-based observations are planned with the specific object of achieving a global understanding and self-consistent quantitative description of the cause-and-effect relationship among the principal dynamic processes involved. Measurements turn to lower and lower energies and to higher ion mass species, in order to encompass the entire particle population, and to a broader range of the frequency spectrum of magnetic and electric field variations. In the present paper, the current status of our knowledge on magnetospheric plasma physics is reviewed, with particular reference of such fundamental advances as the discovery of layers of streaming plasma in the magnetosphere beneath its boundary surface, the identification of the terrestrial magnetosphere as a celestial source of kilometric radiation and relativistic particles, the identification of parallel electric field regions within the magnetosphere and their role in auroral particle acceleration, and the discovery of large fluxes of energetic heavy ions trapped in the magnetosphere.

  14. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  15. Modern requirements to professional training of future teacher of physical culture in the conditions of informatization of teaching.

    Directory of Open Access Journals (Sweden)

    Naumenko O.I.

    2012-06-01

    Full Text Available Modern requirements to professional training of future teacher of physical culture in the conditions of informatization of teaching are examined. It is exposed, that in the conditions of introduction of the modern newest information technologies in teaching new requirements are put to training of future teacher of physical culture. Abilities which must characterize the modern teacher of physical culture are indicated. It is marked that application of information technologies in industry of physical education optimizes an educational process. However there are contradictions between growth of their role in studies and direct application of these technologies in the field of knowledges. It is certain that a future specialist must adhere to the certain requirements of information technologies. It is marked that to the basic measures on implementation of the program providing of high-quality level of preparation of future teachers belongs to professional activity.

  16. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  17. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  18. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    Science.gov (United States)

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  19. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  20. Planetary plasma data analysis and 3D visualisation at the French Plasma Physics Data Centre

    Science.gov (United States)

    Gangloff, Michel; Génot, Vincent; Cecconi, Baptiste; Andre, Nicolas; Budnik, Elena; Bouchemit, Myriam; Jourdane, Nathanaël; Dufourg, Nicolas; Beigbeider, Laurent; Toniutti, Jean-Philippe; Durand, Joelle

    2016-10-01

    The CDPP (the French plasma physics data center http://cdpp.eu/) is engaged for nearly two decades in the archiving and dissemination of plasma data products from space missions and ground-based observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) and 3DView (http://3dview.cdpp.eu/). AMDA enables in depth analysis of a large amount of data through dedicated functionalities such as: visualisation, data mining, cataloguing. 3DView provides immersive visualisations in planetary environments: spacecraft position and attitude, ephemerides. Magnetic field models (Cain, Tsyganenko), visualisation of cubes, 2D cuts as well as spectra or time series along spacecraft trajectories are possible in 3Dview. Both tools provide a joint access to outputs of simulations (MHD or Hybrid models) in planetary sciences as well as planetary plasma observational data (from AMDA, CDAWeb, Cluster Science Archive, ...). Some of these developments were funded by the EU IMPEx project, and some of the more recent ones are done in the frame of Europlanet 2020 RI project. The role of CDPP in the analysis and visualisation of planetary data and mission support increased after a collaboration with the NASA/PDS which resulted in the access in AMDA to several planetary datasets like those of GALILEO, MESSENGER, MAVEN, etc. In 2014, AMDA was chosen as the quicklook visualisation tool for the Rosetta Plasma Consortium through a collaboration with Imperial College, London. This presentation will include several use cases demonstrating recent and new capabilities of the tools.

  1. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  2. Physical and hydraulic properties of modern sinter deposits: El Tatio, Atacama

    Science.gov (United States)

    Munoz-Saez, Carolina; Saltiel, Seth; Manga, Michael; Nguyen, Chinh; Gonnermann, Helge

    2016-10-01

    Sinters are siliceous, sedimentary deposits that form in geothermal areas. Formation occurs in two steps. Hot water circulates in the subsurface and dissolves silica from the host rock, usually rhyolites. Silica then precipitates after hot water is discharged and cools. Extensive sinter formations are linked to up-flow areas of fluids originating from high temperature (> 175 °C) deep reservoirs. Fluid geochemistry, microbial communities, and environmental conditions of deposition determine the texture of sinter and pore framework. Porosity strongly influences physical and hydraulic properties of rocks. To better understand the properties controlling the transport of fluids, and interpret geophysical observations in geothermal systems, we studied 17 samples of modern geyserite sinter deposits (hydraulic, seismic, and electrical), and internal microstructure (using μX-Ray computed tomography). We find that the pore structure, and thus hydraulic and physical properties, is controlled by the distribution of microbial matter. Based on velocity-porosity relationships, permeability-porosity scaling, and image analysis of the 3D pore structure; we find that the physical and hydraulic properties of sinter more closely resemble those of vesicular volcanic rocks and other material formed by precipitation in geothermal settings (i.e., travertine) than clastic sedimentary rocks.

  3. Estimation of physical development of young sportsmen from traditional and modern positions

    Directory of Open Access Journals (Sweden)

    Khor'yakov V.A.

    2012-12-01

    Full Text Available The problem of evaluation of anthropometric status of young sportsmen is examined with the use of method of indexes and modern pictures of somatic health of man. In research young boxers took part 10-11 (n=41, 12-13 (n=48 and 14-16 years (n=39. Contradiction and ambiguousness of estimations of physical development of children and teenagers is rotined by means of traditional indexes of Erismana, Quetelet, Pin'e, sthenic and development of thorax. It is marked that an estimation of physical development of children and teenagers with the use of standard deviation of selection is not productive, because in most cases distributing of the studied signs falls short of a normal law. A concept «norm» is recommended to replace a concept «norm» as an obligatory requirement of the state to the level of somatic health of children and teenagers of different regions of country. It is marked that it is expedient to examine physical development of individuals as a structural element of bodily condition the major components of which are indexes of power and capacity of mechanisms of energy supply.

  4. Personal dose monitoring of employees at the institute of modern physics, China.

    Science.gov (United States)

    Wang, G; Li, S; Yao, N; Zhu, X; Li, Z; Zheng, H

    2001-01-01

    The radiation field at the accelerator facility consists of radiation produced immediately and of secondary radiation induced by activation etc. As the accelerator building and the experimental hall are closed and inaccessible during accelerator operation, the exposure received by the employees at the IMP (Institute of Modern Physics) comes almost totally from the induced radiation. The methods and the results of personal dose monitoring from 1986 to 1999 at the IMP are presented. During the period, the total number of monitored individuals was 1960, and the average annual effective dose was 0.10 mSv. The number recording less than 0.1 mSv of effective dose was 1471 individuals. amounting to 77% of the total. Only six individuals had received effective doses between 5.0 mSv and 10 mSv. The maximum effective dose of 10 mSv was received by workers repairing the accelerator.

  5. [Modern approaches to the use of neurotropic physical therapy in arterial hypertension].

    Science.gov (United States)

    Orekhova, E M; Konchugova, T V; Kul'chitskaya, D B; Korchazhkina, N B; Egorova, L A; Chuich, N G

    2016-01-01

    The development and introduction into clinical practice of non-pharmacological methods for the prevention and treatment of arterial hypertension is a primary objective of modern physical therapy, especially as regards the neurotropic influences. This article was designed to report the results of the investigation into the hypotensive effect of transcerebral magnetic therapy obtained during the treatment of 60 patients presenting with arterial hypertension. The study included the comparative examination of two randomly formed groups containing 30 patients each. The patients of the main group received transcerebral magnetic therapy (to the frontal region) while those in the group of comparison were given magnetotherapy at the collar region. The study has demonstrated that transcerebral magnetic therapy given to the patients of the main group was a more efficient treatment than magnetotherapy at the collar region since it produced a more pronounced hypotensive effect irrespective of the initial hemodynamic type.

  6. The gatekeepers of modern physics: periodicals and peer review in 1920s Britain.

    Science.gov (United States)

    Clarke, Imogen

    2015-03-01

    This essay analyzes the processes behind the publication of physics papers in two British journals in the 1920s: the Proceedings of the Royal Society of London: Series A and the Philosophical Magazine. On the surface, it looked as though the Philosophical Magazine was managed very informally, while the Proceedings had in place a seemingly rigid system of committee approval and peer review. This essay shows, however, that in practice the two journals were both influenced by networks of expertise that afforded small groups of physicists considerable control over the content of these prestigious scientific publications. This study explores the nature of peer review, suggesting how a historical approach can contribute to contemporary debates. In studying these relationships, the essay also considers the interplay of "classical" and "modern" ideas and physicists in 1920s Britain and cautions against an anachronistic approach to this classification.

  7. Detection of and protection against plasma charging damage in modern IC Technology

    NARCIS (Netherlands)

    Wang, Zhichun

    2004-01-01

    In this thesis, the ways to detect and reduce plasma charging damage in the context of back-end-of-line (BEOL) processes have been studied. First a general introduction of the inevitable role of plasma processes as well as the characterization of plasma charging damage in the semiconductor industry

  8. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    Science.gov (United States)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  9. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  10. EDITORIAL: The Third Nordic Symposium on Plasma Physics

    Science.gov (United States)

    Pecseli, Hans; Trulsen, Jan

    2006-02-01

    The Third Nordic Symposium on Plasma Physics was organized at Lysebu, Oslo, Norway on 4 7 October 2004, under the auspices of the Norwegian Centre for Advanced Study (CAS). The arrangement was preceded by two similar meetings organized at the Risø National Laboratory in Denmark by one of us (HP): Nonlinear Waves in Plasmas, 13 16 August 1985, and The Second Nordic Symposium on Nonlinear Phenomena in Plasmas and Related Topics, 8 12 August 1988. The proceedings from these two previous meetings were published as Physica Scripta Reprint Series No. 2, and RS 16 (with a few copies still being available). The idea of `Nordic' in the title of this latest meeting was interpreted somewhat liberally, by including also scientific organizations in northern Germany, where a collaboration facing Nordic countries comes naturally, and indeed has solid historical roots pointing also to ongoing activities. We hope that this series of meetings can continue, suggesting that the interval should be kept to a minimum of three years to ensure that all participants present new results. (We hope not to have to wait 16 years until next time, though!) The aim of our meetings is to stimulate collaboration among plasma physicists by creating a forum where the participants can exchange ideas and seek inspiration under relaxed conditions. We have the distinct impression that the meeting was very successful in this respect. Many Nordic institutes have widespread international collaborations, and we were happy to welcome also foreign representatives for some of these activities. Altogether 28 contributed talks were presented by 30 participants. The abstracts of all talks were distributed at the meeting. The present proceedings cover a selection of the contributions. One participant had to cancel, but the contribution is included in these proceedings. All the papers have been refereed according to the usual standards of the journal We, the organizers, thank CAS for the generous financial support

  11. Size counts: evolutionary perspectives on physical activity and body size from early hominids to modern humans.

    Science.gov (United States)

    Leonard, William R

    2010-11-01

    This paper examines the evolutionary origins of human dietary and activity patterns, and their implications for understanding modern health problems. Humans have evolved distinctive nutritional characteristics associated the high metabolic costs of our large brains. The evolution of larger hominid brain size necessitated the adoption of foraging strategies that both provided high quality foods, and required larger ranges and activity budgets. Over time, human subsistence strategies have become ever more efficient in obtaining energy with minimal time and effort. Today, populations of the industrialized world live in environments characterized by low levels of energy expenditure and abundant food supplies contributing to growing rates of obesity. Analyses of trends in dietary intake and body weight in the US over the last 50 years indicate that the dramatic rise in obesity cannot be explained solely by increased energy consumption. Rather, declines in activity are also important. Further, we find that recent recommendations on physical activity have the potential to bring daily energy expenditure levels of industrialized societies surprisingly close to those observed among subsistence-level populations. These findings highlight the importance of physical activity in promoting nutritional health and show the utility of evolutionary approaches for developing public health recommendations.

  12. The modern electron microscope: A cornucopia of chemico-physical insights

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John Meurig, E-mail: jmt2@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Midgley, Paul A., E-mail: pam33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2011-06-23

    Graphical abstract: The background shows an aberration-corrected STEM HAADF image of GaN, the centre a schematic of the STEM technique, top left a tomographic reconstruction of Pd/Ru nanoparticles on mesoporous silica, top right a PINEM image of an Escherichia coli cell. Display Omitted Highlights: {yields} We highlight the myriad array of structural and dynamic properties of materials retrievable using electron microscopy {yields} The recent technical advances made in electron microscopy are summarised {yields} The multiplicity of new chemico-physical insights gained through the application of modern electron microscopy is explored {yields} We ponder what further developments may soon become feasible. - Abstract: A myriad array of structural and dynamic properties and processes pertaining to biological, physical and engineering materials is now retrievable in unprecedented detail using electron microscopy, thanks to several key technical advances made in recent years. This is a summarising account of those advances and the multiplicity of new insights gained through their application. We also ponder what further developments may soon become feasible.

  13. Contemporary Aspects of Atomic Physics

    Science.gov (United States)

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  14. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  15. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    in hollow cathode dicharges is presented by R Djulgerova (Sofia, Boulgaria). Modelling and experimental results for surface plasmas with an aim to study the kinetics of dissociation are given by V Guerra (Lisboa, Portugal). L Campbell (Adelaide, Australia) describes modelling of a similar kinetics, albeit for a significantly larger ionized gas in his study of electron induced processes in the upper atmosphere. Atmospheric pressure discharges is also the topic of the work of T Gans (Belfast, Northern Ireland andBochum, Germany) but his experiments with atmospheric plasma jet are carried out at sea level and therefore the pressures are significantly higher than those for usual non-equilibrium plasmas. Higher still are the densities in plasmas generated in liquids (for medical purposes) as described in the paper of W Graham (Belfast, Northern Ireland). Another very applied aspect of non-equilibrium plasma is highlighted in a comprehensive review given by S Radovanov (Gloucester, USA) of the basic physics of the non-equilibrium plasma source for implantation of boron (for doping in the manufacture of integrated circuits) . A topical review of diagnostics of dusty particles in rf plasmas is given by I Stefanović, J Winter and colleagues (Bochum, Germany) and includes implications for plasma processing, nanotechnologies and all the way to astrophysics. Transport of particles of similar sizes in the atmosphere and its influence on the pollution of the human environment is presented in the paper by M Tasić (Belgrade, Serbia). Finally a paper that connects both aspects of the workshop, plasma physics and environment, is the review of M Radetić (Belgrade, Serbia) which covers application of low pressure non-equilibrium plasmas in treatment of textiles, not only to reduce the cost and environmental impact of the technology but also to produce filters to purify waters used in the process and in general. The broad range of topics indicates that modern plasma physics is driven

  16. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    Science.gov (United States)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  17. Asymptotic-Preserving methods and multiscale models for plasma physics

    CERN Document Server

    Degond, Pierre

    2016-01-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  18. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  19. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  20. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples

    Science.gov (United States)

    Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.

    2007-01-01

    Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly

  1. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics.

    Science.gov (United States)

    Sheng, Lina; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Song, Mingtao; Yuan, Youjin; Xiao, Guoqing

    2013-05-01

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of (12)C(6+) with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 μm × 5 μm on target in air. Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.

  2. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  3. Physics and optimization of plasma startup in the RFP

    Science.gov (United States)

    Mao, W.; Chapman, B. E.; Ding, W. X.; Lin, L.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S. T. A.; Morton, L.; Munaretto, S.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Brower, D. L.; Liu, W.

    2015-05-01

    In the tokamak and reversed-field pinch (RFP), inductively driven toroidal plasma current provides the confining poloidal magnetic field and ohmic heating power, but the magnitude and/or duration of this current is limited by the available flux swing in the poloidal field transformer. A portion of this flux is consumed during startup as the current is initiated and ramped to its final target value, and considerable effort has been devoted to understanding startup and minimizing the amount of flux consumed. Flux consumption can be reduced during startup in the RFP by increasing the toroidal magnetic field, Bti, applied to initiate the discharge, but the underlying physics is not yet entirely understood. Toward increasing this understanding, we have for the first time in the RFP employed advanced, non-invasive diagnostics on the Madison Symmetric Torus to measure the evolution of current, magnetic field, and kinetic profiles during startup. Flux consumption during startup is dominantly inductive, but we find that the inductive flux consumption drops as Bti increases. The resistive consumption of flux, while relatively small, apparently increases with Bti due to a smaller electron temperature. However, the ion temperature increases with Bti, exceeding the electron temperature and thus reflecting non-collisional heating. Magnetic fluctuations also increase with Bti, corresponding primarily to low-n modes that emerge sequentially as the safety factor profile evolves from tokamak-like to that of the RFP.

  4. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  5. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  6. 'Plasma Camp': A Different Approach to Professional Development for Physics Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Post-Zwicker and Nicholas R. Guilbert

    1998-12-01

    The Plasma Physics and Fusion Energy Institute ('Plasma Camp') was inaugurated in 1998 as a way to address two areas of concern in the professional development of high-school physics teachers: involving teachers in the theory and methods of a current area of research in physics and connecting the research experience back into the classroom. The Institute, run jointly by a scientist and a teacher, immersed high-school teachers from across the country in laboratory investigations and in pedagogical projects for two weeks at Princeton University's Plasma Physics Laboratory. The goals, structure, and initial outcomes of the Institute are discussed.

  7. Effect of Designed Materials According to 7E Learning Model on Success of High School Students in Modern Physics

    Directory of Open Access Journals (Sweden)

    Günay PALİÇ ŞADOĞLU

    2015-06-01

    Full Text Available In this study, it is intended to develop class material for students and teachers in accordance with the 7E learning model and investigate effects of the material on students’ achievement for Blackbody Radiation, Photoelectric Effect, and Compton Scattering subjects in Modern Physics Unit. In this study, it was used quasi-experimental design consisting of experimental and control groups. Subjects were taught according to 7E learning model in experimental group and traditional teaching was conducted in control group. The sample composed of 50 11th grade students from Anatolian High School and 1 physics teacher working at this school. Research data were collected by using Modern Physics Achievement Test consisting of seven open-ended questions. In this study, the results indicated that 7E learning model increased students’ achievement for Blackbody Radiation, Photoelectric Effect, and Compton Scattering subjects. It is determined that 7E learning model affected positively students’ conceptual and computational learning.

  8. WE-G-213-01: Roentgen and the Birth of Modern Medical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sprawls, P. [Sprawls Educational Foundation (United States)

    2015-06-15

    Roentgen and the Birth of Modern Medical Physics – Perry Sprawls Wilhelm Roentgen is well known for his discovery of x-radiation. What is less known and appreciated is his intensive research following the discovery to determine the characteristics of the “new kind of radiation” and demonstrate its great value for medical purposes. In this presentation we will imagine ourselves in Roentgen’s mind and follow his thinking, including questions and doubts, as he designs and conducts a series of innovative experiments that provided the foundation for the rapid growth of medical physics. Learning Objectives: Become familiar with the personal characteristics and work of Prof. Roentgen that establishes him as an inspiring model for the medical physics profession. Observe the thought process and experiments that determined and demonstrated the comprehensive characteristics of x-radiation. The AAPM Award Eponyms: William D. Coolidge, Edith H. Quimby, and Marvin M.D. Williams - Who were they and what did they do? – Lawrence N. Rothenberg William David Coolidge (1873–1975) William Coolidge was born in Hudson, NY in 1873. He obtained his BS at the Massacusetts Institute of Technology in 1896. Coolidge then went to the University of Leipzig, Germany for graduate study with physicists Paul Drude and Gustave Wiedemann and received a Ph.D. in 1899. While in Germany he met Wilhelm Roentgen. Coolidge returned to the US to teach at MIT where he was associated with Arthur A. Noyes of the Chemistry Department, working on the electrical conductivity of aqueous solutions. Willis R. Whitney, under whom Coolidge had worked before going to Germany, became head of the newly formed General Electric Research Laboratory and he invited Coolidge to work with him. In 1905, Coolidge joined the staff of the GE laboratory and was associated with it for the remainder of his life. He developed ductile tungsten filaments to replace fragile carbon filaments as the material for electric light

  9. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  10. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    Science.gov (United States)

    2014-06-30

    Riemann solver for the two-fluid plasma model. Journal of Computational Physics , 187(2):620–638, 2003. [23] Jeffrey P. Freidberg. Ideal...Computational Physics , 141(2):199–224, 1998. [52] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of...AFRL-OSR-VA-TR-2014-0310 PHYSICS -BASED COMPUTATIONAL ALGORITHM FOR THE MULTIFLUID PLASMA MODEL Uri Shumlak UNIVERSITY OF WASHINGTON Final Report 10

  11. Analysis of modern optimal control theory applied to plasma position and current control in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, M.A.

    1981-09-01

    The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.

  12. Role of magnetospheric plasma physics for understanding cosmic phenomena

    Science.gov (United States)

    Das, Indra M. L.

    Cosmic phenomena occur in the remote regions of space where in situ observations are not possible. For a proper understanding of these phenomena, laboratory experiments are essential, but in situ observations of magnetospheric plasma provide an even better background to test various hypothesis of cosmic interest. This is because the ionospheric-magnetospheric plasma and the solar wind are the only cosmic plasmas accessible to extensive in situ observations and experiments.

  13. Physical limitations in ferromagnetic inductively coupled plasma sources

    CERN Document Server

    Bliokh, Yury P; Slutsker, Yakov Z

    2012-01-01

    The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...

  14. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  15. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  16. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  17. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  18. Students’ attitude to the possibility of applying modern information and communication technologies in the educational process in physical education

    Directory of Open Access Journals (Sweden)

    Ilnitskaya A.S.

    2014-03-01

    Full Text Available Purpose: to analyze the problem of the formation of students’ attitudes toward physical education classes and the application of information and communication technologies in physical education in higher education institutions. Material: in the survey participated 245 students. Results: it was found that according to students in physical education classes with the use of modern technologies are more efficient than traditional occupations (52% are more emotional nature, help to improve mood (28%, helps to provide students the latest up to date information relative health (26 % contribute to increased power consumption of an organism (8%. Conclusion: the need for the development and application of information and communication technologies and non-traditional forms of physical education to improve the effectiveness of the educational process in physical education in higher education institutions.

  19. Physical investigation of a quad confinement plasma source

    Science.gov (United States)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  20. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  1. Children's Physic: Medical Perceptions and Treatment of Sick Children in Early Modern England, c. 1580-1720.

    Science.gov (United States)

    Newton, Hannah

    2010-12-01

    Historians of medicine, childhood and paediatrics have often assumed that early modern doctors neither treated children, nor adapted their medicines to suit the peculiar temperaments of the young. Through an examination of medical textbooks and doctors' casebooks, this article refutes these assumptions. It argues that medical authors and practising doctors regularly treated children, and were careful to tailor their remedies to complement the distinctive constitutions of children. Thus, this article proposes that a concept of 'children's physic' existed in early modern England. This term refers to the notion that children were physiologically distinct, requiring special medical care. Children's physic was rooted in the ancient traditions of Hippocratic and Galenic medicine: it was the child's humoral make-up that underpinned all medical ideas about children's bodies, minds, diseases and treatments. Children abounded in the humour blood, which made them humid and weak, and in need of medicines of a particularly gentle nature.

  2. Plasma Level of IL-4 Differs in Patients Infected with Different Modern Lineages of M. tuberculosis

    Directory of Open Access Journals (Sweden)

    Adane Mihret

    2012-01-01

    Full Text Available Epidemiological evidence from tuberculosis outbreaks revealed that some genotypes of M. tuberculosis are more transmissible and capable of causing disease than others. We analysed the plasma cytokine levels of pulmonary tuberculosis patients infected with different strains of M. tuberculosis to test the hypothesis that immune responses would be linked to the bacterial genotype. Spoligotyping was carried out for genotyping, and we used Luminex technology to measure 17 cytokines (EGF, fractalkine, GM-CSF, IFN-γ, IL-1, IL-10, IL-12, IL-17, IL-4, IL-7, IL-9, IP-10, MCP-1, MCP-3, MIP-1β, TNF, and VEGF from plasma samples of tuberculosis patients. The levels of IL-12 (p40, IL-4, IL-7, and MIP-1beta were higher in patients infected with lineage 3, however, it was only IL-4 which showed statistically significant difference (P<0.05 between lineage 3 and lineage 4. We further grouped the lineages into families (CAS, H and T families, and we found that the plasma level of IL-4 was significantly higher in patients infected with the CAS family (P<0.05 in comparison with T and H families. However, there was no difference between T and H families. Therefore, the higher level of IL-4 in lineage 3 families might indicate that possible differences in the response elicited from host depend on strain lineages in the studied population.

  3. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  4. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sec-25, Gandhinagar, 382016 Gujarat (India)

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  5. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  6. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  7. Role of the Plasma Membrane Transporter of Organic Cations OCT1 and Its Genetic Variants in Modern Liver Pharmacology

    Directory of Open Access Journals (Sweden)

    Elisa Lozano

    2013-01-01

    Full Text Available Changes in the uptake of many drugs by the target cells may dramatically affect the pharmacological response. Thus, downregulation of SLC22A1, which encodes the organic cation transporter type 1 (OCT1, may affect the response of healthy hepatocytes and liver cancer cells to cationic drugs, such as metformin and sorafenib, respectively. Moreover, the overall picture may be modified to a considerable extent by the preexistence or the appearance during the pathogenic process of genetic variants. Some rare OCT1 variants enhance transport activity, whereas other more frequent variants impair protein maturation, plasma membrane targeting or the function of this carrier, hence reducing intracellular active drug concentrations. Here, we review current knowledge of the role of OCT1 in modern liver pharmacology, which includes the use of cationic drugs to treat several diseases, some of them of great clinical relevance such as diabetes and primary liver cancer (cholangiocarcinoma and hepatocellular carcinoma. We conclude that modern pharmacology must consider the individual evaluation of OCT1 expression/function in the healthy liver and in the target tissue, particularly if this is a tumor, in order to predict the lack of response to cationic drugs and to be able to design individualized pharmacological treatments with the highest chances of success.

  8. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    Science.gov (United States)

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…

  9. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    Science.gov (United States)

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory students, and…

  10. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    Science.gov (United States)

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…

  11. Some problems of pulsar physics. [magnetospheric plasma model

    Science.gov (United States)

    Arons, J.

    1979-01-01

    The theories of particle acceleration along polar field lines are reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The application of these theories and plasma supply to pulsars is discussed, with attention given to the total amount of electron-positron plasma created and its momentum distribution. Various aspects of radiation emission and transport are analyzed, based on a polar current flow model with pair creation, and the phenomenon of marching subpulses is considered. The coronation beaming and the relativistically expanding current sheet models for pulsar emission are also outlined, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.

  12. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  13. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included

  14. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa; Sudhir Raniwala; T Awes; B Rai; R S Bhalerao; J G Contreras; R V Gavai; S K Ghosh; P Jaikumar; G C Mishra; A P Mishra; H Mishra; B Mohanty; J Nayak; J-Y Ollitrault; S C Phatak; L Ramello; R Ray; P K Sahu; A M Srivastava; D K Srivastava; V K Tiwari

    2006-11-01

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  15. Contributed papers presented at the 24. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    In the report thirteen papers are compiled which were presented by members of the Centre de Recherches en Physique des Plasma, Lausanne, at the 24th EPS conference on controlled fusion and plasma physics. They mainly deal with problems of the confinement and are based on studies performed in the TCV tokamak. figs., tabs., refs.

  16. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    Science.gov (United States)

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  17. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  18. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  19. François Delsarte and Modern Dance: an encounter in physical expression

    Directory of Open Access Journals (Sweden)

    Elisa Teixeira de Souza

    2012-11-01

    Full Text Available This study addresses François Delsarte’s system of expression, known as Applied Aesthetics. It presents data related to François Delsarte’s career, such as personal and professional life and his theoretical background. It discusses the laws of gestural expression formulated by Delsarte – Trinity Law, the Law of Correspondence and the Nine Laws of Motion – as well as their dissemination and utilization in modern dance; this discussion mentions some pioneers of modern dance, such as Isadora Duncan, Ruth Saint Denis, Ted Shawn, Vaslav Nijinsky, Rudolf Laban and Mary Wigman.

  20. Psychological and Physical Stress in Surgeons Operating in a Standard or Modern Operating Room

    DEFF Research Database (Denmark)

    Klein, M.; Andersen, L.P.H.; Gögenür, Ismayil

    2010-01-01

    Purpose: There have been no studies examining the effect of optimized ergonomic and technical environment on the psychological and physiological stress of the surgeon. The aim of this study was to examine whether optimized ergonomics and technical aids within a modern operating room (OR) affect...... psychological and physiological stress in experienced laparoscopic surgeons. Methods: This was a prospective case-controlled study including 10 experienced surgeons. Surgery was performed in 2 different ORs: a standard room and a modern room (OR1-suite, Karl Storz). The surgeons filled out questionnaires...

  1. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  2. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  3. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  4. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  5. Assessing the effect of manual physical activity on proximal hand phalanges using Hellenistic and modern skeletal samples from Greece.

    Science.gov (United States)

    Karakostis, F A; Le Quéré, E; Vanna, V; Moraitis, K

    2016-04-01

    In humans, physical activity is an important regulator of bone size. Furthermore, hand bones have been proposed as a potential avenue for assessing patterns of manual activity. However, there are very few studies presenting a metric comparison of proximal hand phalanges among different populations. Moreover, an osteoarchaeological approach to the manual activities performed by an ancient population is yet to be made. In this framework, this study aims at assessing and interpreting the metric variation in these bones between a documented modern Greek sample (20th century) and a Hellenistic sample from Demetrias (3rd-1st century BCE), in terms of size and sexual dimorphism. Ancient males were significantly larger than females for ten phalangeal measurements out of 35. Even though the degree of sexual dimorphism was lower in the Hellenistic material (the maximum sexual dimorphism observed - 12.46%) than in modern sample (the maximum observed - 21.19%), the ranking of rays and bone parts by sexual dimorphism was similar in both populations. No metric difference was observed between modern and ancient males, whereas ancient females were larger than modern females in seven dimensions (the maximum variation observed was 11.58%), which involved the bases and midshafts of phalanges. Given that these dimensions are affected by the degree of muscular recruitment for the formation of various hand grips, it is suggested that ancient females were involved in manual activities of greater grasping variance than modern females. Indeed, the historical and archaeological sources suggest that sexual distribution of labour in the Hellenistic society seems to explain the differences estimated between the sexes and the two populations under study.

  6. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  7. The facts that the physical-chemical properties of modern tablets distinguish them from natural food lumps

    Science.gov (United States)

    Urakov, A.; Urakova, N.; Reshetnikov, A.; Kopylov, M.; Kasatkin, A.; Baymurzin, D.; Gabdrafikov, R.

    2017-02-01

    It was found that pharmaceutical companies produce drugs in tablet form, physical or physical-chemical properties that are radically different from those of the properties of natural food lumps, in that adult converts food in our mouth before swallowing. It was shown that the conventional shape, color, size, volume, specific gravity, hardness, osmotic and acid activity of modern tablets impair the physical and physicochemical properties of the liquid contents of the stomach is much stronger than such “building” materials, such as chalk, clay, sand, river pebbles and gravel. The results showed, that the value of the specific hardness, deforming tablets, can distinguish modern tablets from each other by more than 5000 times. Therefore, introduction tablets inside without information of ability injuring their action leads to the fact that soft and “unsalted” tablets almost nothing damage, and too “salty” and solid tablets damage the gums, lips, tongue, teeth and dental structures. To reduce the traumatic action tablets offered standardize osmoticity, corrosion and hardness within the range of safe values for soft and hard tissues of the oral cavity and improve standard introduction of tablets in the mouth.

  8. Physical activity of Canadian and American children: a focus on youth in Amish, Mennonite, and modern cultures.

    Science.gov (United States)

    Bassett, David R

    2008-08-01

    Childhood obesity is an urgent public health problem in North America and throughout most of the industrialized world. Diminishing levels of physical activity and the growth of sedentary pursuits may be contributing to the obesity epidemic. The advent of modern technological societies has brought about dramatic changes in lifestyle over the past century. To gain insights into physical activity levels in pre-industrial era societies, researchers have turned to studying religious groups that have resisted the lure of technological change. Children in Old Order Amish and Old Order Mennonite communities of North America have a lifestyle that still involves walking to school and friends' homes, performing chores, caring for farm animals, and active play. Research has shown that Amish and Mennonite children have higher levels of physical activity than modern-living children, despite less participation in organized competitive sports. As a result, Amish and Mennonite children tend to be leaner than their counterparts in contemporary society. Studying non-mainstream cultures can provide a valuable perspective on human behaviors.

  9. The physics of plasma injection events. [during magnetospheric substorms

    Science.gov (United States)

    Kivelson, M. G.; Kaye, S. M.; Southwood, D. J.

    1980-01-01

    In this paper, plasma injection is defined as an increase of particle flux in a detector of finite bandwidth. Injection can result from dynamic processes or from spacecraft penetration of a quasi-static spatial structure produced by a steady magnetospheric convection pattern. ATS-5 particle spectrograms are found to provide examples of plasma injection events of both sorts. Dynamic injection occurs both with and without local magnetic signatures. For events not associated with clear local magnetic signatures, convection theory with a steady or a time-varying uniform electric field can account for the energy dispersion of injected particles with energy less than 50 keV. The paper concludes with a discussion of the way in which the convection boundaries are related to the substorm injection boundary of Mauk and McIlwain. Several alternative expressions for the local time and K(p) dependence of the injection boundary are given.

  10. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  11. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  12. Energy Efficient Transient: Plasma Ignition: Physics and Technology

    Science.gov (United States)

    2007-08-30

    Wang from the University of Southern California on modeling the TPI-assisted combustion. The ethylene data taken on the PDE is intended to assist this...production of said species will assist in the development of a model for transient plasma ignition greatly. The plan for a two week experiment is to...Back-Lighted Thyratron ," 27th International Power Modulator Conference 2006, Washington, D.C., 14-18 May 2006. P.I. - Martin A. Gundersen "Energy

  13. Innovative research of plasma physics for life sciences

    Science.gov (United States)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  14. The contribution of Nikola Tesla to plasma physics and current status of plasmas that he studied

    Directory of Open Access Journals (Sweden)

    Petrović Zoran Lj.

    2006-01-01

    Full Text Available One of the main Interests in science of Nikola Tesla were gas discharges plasmas, their application in lighting and in production of ozone as well as their role in conduction of electricity through the atmosphere. In particular Tesla is well known as the first person to produce rf plasmas. Such plasmas in the present day constitute the main technology required to produce integrated circuits (IC and have been essential in the revolution that resulted from IC technologies. In addition Tesla participated in studies of arcs especially arcs used as a source of light, corona discharges required to induce plasma chemical reactions and produce ozone and was involved in various aspects of gas breakdown and gaseous dielectrics. His ideas, level of his understanding and current status of these fields are discussed in this review.

  15. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  16. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    Science.gov (United States)

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  17. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  18. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  19. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices.

    Science.gov (United States)

    Napp, Judith; Daeschlein, Georg; Napp, Matthias; von Podewils, Sebastian; Gümbel, Denis; Spitzmueller, Romy; Fornaciari, Paolo; Hinz, Peter; Jünger, Michael

    2015-01-01

    Hintergrund: Kaltes Atmosphärendruckplasma (CAP) hat durch seine mannigfaltigen bioaktiven Eigenschaften ein neues medizinisches Feld definiert: die Plasmamedizin. Allerdings wurde vor etwa 100 Jahren CAP in verwandter Form in der Hochfrequenztherapie genutzt. Zielsetzung dieser Studie war eine Übersicht über die historischen Plasmabehandlungen zu gewinnen und Daten bezüglich der antimikrobiellen Wirkung eines historischen Hochfrequenzapparats zu gewinnen.Methode: Erstens wurde historische Literatur bezüglich CAP-Behandlungen ausgewertet, da aus dem heutigen Schrifttum keine Angaben gewonnen werden konnten. Zweitens wurde die Empfindlichkeit von fünf verschiedenen bakteriellen Wundisolaten auf Agar gegenüber einer historischen Plasmaquelle (violet wand [VW]) und zwei modernen Geräten (atmospheric pressure plasma jet [APPJ] und Dielectric Barrier Discharge [DBD]) ermittelt. Die erzielten Hemmhöfe wurde verglichen. Ergebnisse: Die seinerzeit populärsten elektromedizinischen Anwendungen erzeugten durch Glaselektroden sogenannte Effluvien, die mit modernem CAP verwandt sind. Alle drei untersuchten Plasmaquellen zeigten eine vollständige Eradikation aller behandelter Isolate im plasmabehandelten Bereich. Die historische Plasmaquelle (VW) war dabei ähnlich wirksam wie die modernen Plasmaquellen. Schlussfolgerung: In begrenztem Umfang kann retrograd ein Wirksamkeitsnachweis der historischen Plasmabehandlungen abgeleitet werden, insbesondere bei der Behandlung infektiöser Erkrankungen. Die zugrunde liegende Technologie könnte für die Entwicklung moderner Nachfolgegeräte genutzt werden.

  20. Modern technology of physical education of disabled students in conditions of inclusive education

    Directory of Open Access Journals (Sweden)

    Adyrkhaev S.G.

    2016-01-01

    Full Text Available There is a problem of physical education of disabled students during period of their study in higher educational establishments. Insufficiency of this problem’s studying conditioned fulfillment of research of perfection of physical education and sports system. Purpose: substantiation of physical education pedagogic technology for disabled students. Material: in experiment students with following nosologies participated: hearing, eyesight, muscular-skeletal apparatus, after effects of cerebral palsy, somatic diseases and diabetes. In total 664 students of 18-24 years’ age took part in experiment. They were 337 boys and 307 girls. Results: we have worked out organizational-methodic algorithm, which permits to combine theoretical, scientific-methodic and practical training. Its basis is current information about students’ psychic-physiological condition. We determined levels of health and physical condition, physical workability and physical fitness as well as psychic state of students. Demand in optimization of students’ motor functioning during all period of study was substantiated as well as effective means of physical education and pulse regimes, considering peculiarities of nosologies. Students’ orientation on sport style of life was formed. Conclusions: implementation of physical education pedagogic technology for students with different nosologies in the process of their studying stipulates solution of training, health-related and educational tasks. It is possible through creation of conditions for motor actions’ training and intensification of motor functioning during all period of study. Practical application of the technology and received results points at integration of disabled students in students’ medium.

  1. Innovative Ways to Use Modern Technology to Enhance, Rather than Hinder, Physical Activity among Youth

    Science.gov (United States)

    Martin, Nicole J.; Ameluxen-Coleman, Evan J.; Heinrichs, Derikk M.

    2015-01-01

    It is recommended that each day youth get 60 minutes or more of moderate-to-vigorous physical activity that includes aerobic, muscle, and bone strengthening activities. The majority of youth, however, do not meet these physical activity guidelines. Children and adolescents spend on average seven hours engaging in sedentary "screen-based"…

  2. The Conceptual Framework of the Eastern Approach in Physical Education: Ancient Wisdom for Modern Times

    Science.gov (United States)

    Francis, Nancy; Lu, Chunlei

    2009-01-01

    The Eastern approach has been identified as an alternative approach in Western physical education. The why and how to integrate the Eastern approach in physical education has been addressed in the literature, while the what deserves scholarly attention. The objective of this paper is to present four core concepts and key elements that construct…

  3. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics

    Science.gov (United States)

    Ellison, Charles Leland

    Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator

  4. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  5. Physics of hot hadronic matter and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p{sub t} and collective flow, the shape of p{sub t} distribution, strangeness production, J/{psi} suppression and {phi} enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ultrasoft'' phenomena. 56 refs., 6 figs.

  6. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  7. INDIVIDUALIZATION FACTORS OF STUDENTS’ PHYSICAL EDUCATION AT MODERN STAGE OF ITS REALIZATION

    Directory of Open Access Journals (Sweden)

    V.A. Druz

    2017-01-01

    Full Text Available Purpose: determination of main conditions for complying individual potentials of physical condition and students’ physical fitness for practicing appropriate kind of sports. Material: In the research students attending sport circles participated (n=960. Sport qualification of the participants was in the range from beginners to international masters of sports. The contingent of the tested consisted of different age groups and sport specializations. Results: for satisfaction of students’ individual interests to definite kinds of sports it is necessary to have professional graphs of motor functioning in sports and ergo-graphic characteristic of competition exercises. Students shall have information about their physical condition and physical fitness. Besides, it is necessary to have the data about students’ current physical condition, which determines students’ workability. Passport data about medium of motor functioning and individual’s physical potentials permit to find adequacy of combining and success of object-medium interaction. It results in enthusiasm in practicing certain kind of sports. Conclusions: The presence of adequate compliance between determined analytical links of physiological processes of individual’s adaptive behavior and requirements to the chosen medium of sport functioning permits to maximally effectively solve the problems of students’ physical education’s individualization.

  8. Physics and chemistry of plasma-assisted combustion.

    Science.gov (United States)

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications.

  9. Formation and Acceleration Physics on Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  10. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  11. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  12. Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon K. Park

    2008-02-22

    Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

  13. Modern aspects of physical rehabilitation after football injuries of the capsule-ligament knee

    Directory of Open Access Journals (Sweden)

    Parish Mokhammad Reza

    2011-11-01

    Full Text Available It is considered the most typical causes of damage to the musculoskeletal system in football. Showing contemporary approaches to physical rehabilitation, reconstruction of the capsule-ligament knee athletes after surgery by arthroscopy. It is shown the various recovery tools and terms of use. It is established that the widespread development of arthroscopy, requires a balanced complex of physical rehabilitation. Complexes should reduce postoperative complications and gradual adaptation to favor the player to the training load.

  14. Recent advances in numerical simulation of space-plasma-physics problems

    Science.gov (United States)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  15. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  16. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  17. The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.

    Science.gov (United States)

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis

    2010-07-01

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  18. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  19. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  20. Physical Metallurgy of Modern Creep-Resistant Steel for Steam Power Plants: Microstructure and Phase Transformations

    Directory of Open Access Journals (Sweden)

    V. C. Igwemezie

    2016-01-01

    Full Text Available The fact that the microstructure of steel depends on its composition and the heat treatment given to it has been heavily exploited in the design of steel for power plant applications. To obtain a steel that can function at the higher temperature where power plants operate without failure for extended life, heat treatment is needed to produce fine and highly stable dispersion of carbides, nitrides, and intermetallic compounds in the microstructure of the material. A significant contribution also comes from solid solution strengthening by substitutional solutes. We review here various types of phases, microstructures, functions, and interacting effects of the various alloying elements in the design of steel for modern power plant application.

  1. Modern geometry in not-so-high echelons of physics: Case studies

    CERN Document Server

    Fecko, Marian

    2014-01-01

    In this mostly pedagogical tutorial article a brief introduction to modern geometrical treatment of fluid dynamics and electrodynamics is provided. The main technical tool is standard theory of differential forms. In fluid dynamics, the approach is based on general theory of integral invariants (due to Poincare and Cartan). Since this stuff is still not considered common knowledge, the first chapter is devoted to an introductory and self-contained exposition of both Poincare version as well as Cartan's extension of the theory. The main emphasis in fluid dynamics part of the text is on explaining basic classical results on vorticity phenomenon (vortex lines, vortex filaments etc.) in ideal fluid. In electrodynamics part, we stress the aspect of how different (in particular, rotating) observers perceive the same space-time situation. Suitable $3+1$ decomposition technique of differential forms proves to be useful for that. As a representative (an simple) example we analyze Faraday's law of induction (and explic...

  2. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    Science.gov (United States)

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  3. Physical rehabilitation after achilles tendon ruptures: a review of modern approaches

    Directory of Open Access Journals (Sweden)

    Ra’ad Abdul Hadi Mohammad Alalwan

    2017-04-01

    Full Text Available Purpose: to conduct review methodological approaches to physical rehabilitation after Achilles tendon ruptures. Material & Methods: analysis and synthesis of the foreign and domestic special scientific and methodical literature on physical rehabilitation after surgical treatment of Achilles tendon rupture. Results: restore function lower limb and gait parameters is a long, complex and difficult process. Qualitative rehabilitation process should be accompanied by adequate motor mode and its extension, axial load and special exercise. The most significant differences are observed in the approach concerning types of immobilization, its term and necessity at all, timing axial load. Among the options of immobilization allocated gypsuming, a variety of cast, orthosis, splints and braces. In the later stages of rehabilitation recommendations are somewhat different of terms of basic loads such as the rise of the fingers, walking without assistive devices. Conclusion: problem of design protocol of physical rehabilitation after achilles tendon ruptures is not completely solved.

  4. The theoretical background of modernization of physical training content at institutions of higher education

    Directory of Open Access Journals (Sweden)

    Yury Vaskov

    2015-04-01

    Full Text Available Purpose: to study the problem of designing the content of unprofessional physical training at institutions of higher education. Material and Methods: analysis of regulatory documents and literature on the theory and methodology of physical education. Results: the article deals with the problems of determination the nomenclature of sources and factors that influence the selection and design of physical education’s content, the role and meaningful essence of them are proved, the new approaches to the detection of invariant and variable components of academic curriculum are suggested. Conclusion: the role and brief essence description of particular components of main sources and factors of non-professional sports education are detected, their particular hierarchy and importance are suggested. A variety of sources and design factors of unprofessional sports education is divided into two parts: non-teaching and teaching.

  5. Quantum non-locality and relativity metaphysical intimations of modern physics

    CERN Document Server

    Maudlin, Tim

    2011-01-01

    The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and timeDiscusses Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. Discusses the "Free Will Theorem" of John Conway and Simon KochenIntroduces philosophers to the relevant physics and demonstra

  6. Atomic physics of shocked plasma in winds of massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST/UMBC (United States); Swarthmore College, Swarthmore, PA 19081 (United States); Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  7. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  8. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  9. Physical culture in life of Eastern-European region students: modern state and prospects of development

    Directory of Open Access Journals (Sweden)

    Iermakov S.S.

    2015-12-01

    Full Text Available Purpose: analysis of researches on physical culture problems among students in countries of Easter-European region (2013-2015. Material: As sources of information we chose data base of Russia, Poland and Ukraine. Besides, we used sites of the most known journals of Easter-European region. When choosing journals we based on rating of Russia (RISC, Poland (Index Copernicus and Ukraine (bibliometryka of Ukrainian science data bases. Results: thematic focus of researches on different physical education, sports and students health aspects was determined. The promising directions of researches are as follows: re-organization of system of students’ physical education; interconnection of life quality and organism’s resistance to environmental impacts; dependence of students’ motor functioning on bad habits’ presence; determination of factors, facilitating motivation for sport games in system of students’ health related trainings; perceiving of life quality by disabled students; competence and professional skillfulness of specialists in physical culture and sports. Conclusions: it is recommended to use new, attractive forms of students’ motor functioning. It is necessary to regulate students’ motor functioning, considering motivation for success and for avoiding failures as well as to increase students’ psycho-physiological stresses’ resistance and to form students’ culture of health.

  10. Modern Teaching Methods in Physics with the Aid of Original Computer Codes and Graphical Representations

    Science.gov (United States)

    Ivanov, Anisoara; Neacsu, Andrei

    2011-01-01

    This study describes the possibility and advantages of utilizing simple computer codes to complement the teaching techniques for high school physics. The authors have begun working on a collection of open source programs which allow students to compare the results and graphics from classroom exercises with the correct solutions and further more to…

  11. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  12. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  13. PREFACE: 30th EPS Conference on Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Koch, R.; Lebedev, S.

    2003-12-01

    The 30th EPS Conference on Controlled Fusion and Plasma Physics took place in St Petersburg, Russian Federation, on 7th--11th July 2003. It was jointly organized by the Ioffe Physico-Technical Institute, the St Petersburg State Polytechnical University and Technical University Applied Physics Ltd, on behalf of the Plasma Physics Division of the European Physical Society (EPS). The members of the local organizing committee were drawn from these institutions: B Kuteev, Chair, Polytechnical University S Lebedev, Vice-Chair, Ioffe Institute A Lebedev, Scientific Secretary, Ioffe Institute V Bakharev, TUAP Ltd V Grigor'yants, Ioffe Institute V Sergeev, Polytechnical University N Zhubr, Ioffe Institute Over the years, the annual conference of the Plasma Physics Division of the European Physical Society has widened its scope. Contributions to the present conference covered widely diversified fields of plasma physics, ranging from magnetic and inertial fusion to low temperature plasmas. Plasma sizes under investigation ranged from tiny to astronomical. The topics covered during the conference were distributed over the following categories: tokamaks, stellarators, high intensity laser produced plasmas and inertial confinement, alternative magnetic confinement, plasma edge physics, plasma heating and current drive, diagnostics, basic plasma physics, astrophysical and geophysical plasmas and low temperature plasmas. The scientific programme and paper selection were the responsibility of the Programme Committee appointed by the Board of the EPS Plasma Physics Division. The committee was composed of: R Koch, Chairman, ERM/KMS Brussels, Belgium E Ascasibar, CIEMAT Madrid, Spain S Atzeni, Università di Roma, Italy G Bonhomme, LPMI Nancy, France C Chiuderi, Università di Firenze, Italy B Kuteev, St Petersburg State Polytechnical,University, Russian Federation M Mauel, Contact person APS-DPP, Columbia University New York, USA R A Pitts, EPFL/CRPP Lausanne, Switzerland R Salomaa

  14. Creative going near organization of work on physical education at modern general school

    Directory of Open Access Journals (Sweden)

    Sushchenko A.V.

    2012-01-01

    Full Text Available The parameters of stimulation independently of creative activity of future teachers of physical education are lighted up during development of pedagogical creation. Information of the questionnaire questioning of future teachers of physical education is utillized in research. It is set that of principle principles of activation of creative activity of future teachers are based on the followings conceptions: unity of cognitive and creative activity; self-value of method of activation of creative activity; socially pedagogical conditionality of process of creative activation and motive to the self-expression; pedagogical determination of creative actions and stimulation of their creative freedom; orientation on the individual methods of actions, direction to mastering of normative bases of creative activity. It is well-proven that the applied creative tasks stimulate students to active creative work, develop creative activity, professional orientation and personal personal interest.

  15. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  16. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures

    Science.gov (United States)

    Salcedo-Sanz, S.

    2016-10-01

    Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in

  17. Introduction to the special issue of Modern Physics Letters A "Indirect dark matter searches"

    CERN Document Server

    Khlopov, Maxim Yu

    2014-01-01

    The nature of cosmological dark matter finds its explanation in physics beyond the Standard model of elementary particles. The landscape of dark matter candidates contains a wide variety of species, either elusive or hardly detectable in direct experimental searches. Even in case, when such searches are possible the interpretation of their results implies additional sources of information, which provide indirect effects of dark matter. Some nontrivial probes for the nature of the dark matter are presented in the present issue.

  18. Modern Computational Physical Chemistry : An Introduction to Biomolecular Radiation Damage and Phototoxicity

    OpenAIRE

    2004-01-01

    The realm of molecular physical chemistry ranges from the structure of matter and the fundamental atomic and molecular interactions to the macroscopic properties and processes arising from the average microscopic behaviour. Herein, the conventional electrodic problem is recast into the simpler molecular problem of finding the electrochemical, real chemical, and chemical potentials of the species involved in redox half-reactions. This molecular approach is followed to define the three types of...

  19. Modern approaches to preservation of health at students in the course of physical education.

    Directory of Open Access Journals (Sweden)

    Kashuba V.A.

    2012-09-01

    Full Text Available The analysis of the special scientific literature is conducted on issue health of economy for students, approaches and features of forming for the students of requirement in the healthy physically active way of life in the process of physical education. It is set that creation of environment, cooperant the physical and moral making healthy of students must become the strategic purpose of higher education. Also - to maintenance of health level, strengthening of health, forming of skills of healthy way of life. It is marked that education of culture of health is reduced negative action of external and internal средовых factors. The theoretical going is generalized near research of problem health of economy for the participants of educational process. Possible directions activity are rotined on realization health of saving technologies in the institute of higher. Essence, components, criteria and directions of development, is certain health of saving technologies in the process of teaching in the system of trade education. It is well-proven that development and realization of ideology and policy of economy of health of students, overcoming of crisis demographic situation, must be fixed in basis of activity of all of public organs of power. Main strategies of decision of problems of national development and safety of Ukraine are rotined, further effective socio-economic development of country.

  20. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  1. Evolution of large-sclae plasma structures in comets: Kinematics and physics

    Science.gov (United States)

    Brandt, John C.

    1988-01-01

    Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.

  2. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available OBJECTIVE: To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations. METHODS: A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days. RESULTS: Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively. CONCLUSIONS: Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  3. Study of Local Reconnection Physics in a Laboratory Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-06-11

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory.

  4. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  5. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  6. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  7. Modern education of future teacher of physical culture in the conditions of informatization of educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-03-01

    Full Text Available The informatization of the educational space is determined by the organizational, scientific-technical, educational processes, which update the creation of the unified information and educational space for the comprehensive use of information technologies in educational process of a future teacher of physical culture at the higher school. Stated that the integration and expansion of the educational space of the orients the higher school not only in the preparation of the literate student on the issues of information culture, but also to help the younger generation in the mastery of basic social abilities and skills in conditions of informatization of the educational space.

  8. Mplications Of Establishing Location Physical Evidence And Customer Satisfaction Level Of Customer Loyalty In Ritel Modern In Makassar

    Directory of Open Access Journals (Sweden)

    Miah Said

    2015-08-01

    Full Text Available Currently retailing business in Makassar from time to time increasingly in demand by the whole society. They tend to combine marketing activities and households in the shop with a variety of other recreational activities or simply stroll. This phenomenon is at least encouraging marketers to reach and use the market opportunity to market the product in the achievement of the goals and objectives of the company. This study will examine about Implications Siting Physical Evidence and Consumer Satisfaction Level Of Customer Loyalty In Modern Retail Company In Makassar. Where the author chose a modern retail company minimarkets supermarket hypermarket who offer products such as food and beverage for the daily needs in the area of Makassar as the object which is currently growing so rapidly. The research approach used was survey research methods which is a method of collecting primary data obtained directly from the original source through oral and written questions. While this type of research is Explanatory Research which explains the causal relationship between the study variables with hypothesis testing. Collecting technique uses scale Lkert variables 1 to 5. The technique of collecting data through interviews with managers and employees in each of the modern retail companies to obtain information or documentation in the form of consumer data that is still active in the purchase of existing products through questionnaires containing a list of questions which was distributed to respondents to obtain the data directly Maholtra 20061. The population in this study is a modern retail enterprise customers who have 3 cards of customers minimarket supermarkets hypermarkets in the city of Makassar. Further sampling is done by using random sampling techniques. As for determining the number of samples is done by using Slovin opinion of the Umar Husein 2001 782. In this study the type of data is qualitative and quantitative data obtained in the form of

  9. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  10. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  11. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  12. Physics of Plasmas in Thermonuclear Regimes. Proceedings of the 1979 Workshop, International School of Plasma Physics, Varenna, Italy, 27 August - 8 September 1979. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B.; Sadowski, W. [eds.

    1979-08-27

    The workshop was run concurrently with the International School of Plasma Physics and was organized as a sequence of afternoon meetings concerning a set of topics that correspond to the individual chapters of these proceedings. The workshop consisted of both individual presentations and moderated discussions among the participants. A selected group of topics that were found to deserve a more in-depth analysis, such as the question of anomalous particle transport and the theory of collective modes induced by alpha-particles were discussed in separate Working Groups.

  13. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    CERN Document Server

    Told, Daniel; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  14. Overview of Some New Techniques for Inspection: Using 1950's Physics to Solve Modern Problems

    Science.gov (United States)

    Lanza, Richard

    2007-04-01

    The goal of any inspection technique is to non-intrusively determine the presence of such materials in a manner which is consistent with not interrupting the normal scheme of commerce and which, at the same time, exhibits a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron based techniques for the detection of explosives with by far the largest impetus coming from the requirements of the commercial aviation industry for the inspection of luggage and, to a lesser extent, cargo; for baggage, the major techniques are either x-ray based or are chemical trace detection methods which look for small traces of explosive residues. Nuclear techniques have been proposed for the detection of explosives and contraband for a number of years due to their ability to penetrate shielding and to identify the elemental composition of materials, thus leading to enhanced detection probability and lower false alarm rates. Nuclear techniques are virtually the only method which can both detect and identify the presence of fissile materials, either in the form of bulk material or assembled weapons. Some examples of current work in nuclear based systems currently under development will be discussed such as nuclear resonance radiography, nuclear resonance fluorescence, pulsed fast neutron analysis and pulsed photonuclear detection. The physical basis of these techniques is well known, the physics having been studied in the 1950's, but there remain limitations on current technology with respect to e.g. radiation sources and detectors and data acquisition methods. Accelerator-based systems often are large and are often not well suited for field use; radiation detectors often suffer from limited count rate ability, low sensitivity and poor energy resolution and data acquisition and analysis methods usually rely on analog techniques which are not always stable in field operation. Current research in basic

  15. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    Science.gov (United States)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation

  16. Modern approaches for the course of medical rehabilitation of physical culture in elderly patients with gonarthrosis

    Directory of Open Access Journals (Sweden)

    Shramko Y.I.

    2013-09-01

    Full Text Available The effect of the complex exercise using static stretching along the axis of voluntary rehabilitation for elderly patients with gonarthrosis. The study involved 20 elderly women suffering from bilateral gonarthrosis 1-2 stages. Noted a more pronounced beneficial effect of locomotor functions and physical performance patients compared with conventional methods. The main group indicator function improving lower extremity and the Leken index exceeded those of the control group by 50%. Also significantly increased quadriceps muscle force in patients on the basis of 33.3% on the right and 25% left. Indicators extension in the knee joints in the study group achieved a 12% larger values than those in the control group. In the main group was significantly increased exercise performance by 32.6% as compared to the control group and reached the lower limit of the age norm.

  17. Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics

    Science.gov (United States)

    Press, Carly; Kotler, Julia

    2016-09-01

    In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  18. Modern approaches of control of spatial organization of schoolchildren body in the process of physical education

    Directory of Open Access Journals (Sweden)

    Bondar O.M.

    2012-08-01

    Full Text Available Technology of control of spatial organization of body of schoolboys is developed. Technology includes the diagnostic, informative and practical stages. Research is oriented to the schoolchildren 7-16 years. The diagnostic stage is supposed by a complex inspection and express control of spatial organization of bodies. The informative stage includes computer treatment of research results. The practical stage consists of development of recommendations on the correction of indexes of spatial organization of body of schoolchildren. Logical component allows to expose the level of knowledge of parents and teachers of physical culture about control of spatial organization of body of schoolchildren. The developed technology allows to carry out timely diagnostics of violations of spatial organization of body of schoolchildren and estimate adequacy of pedagogical influences.

  19. Modern going near setting of medical physical culture taking into account etiology, type, form, degree and clinical displays of scoliotic illness for children

    Directory of Open Access Journals (Sweden)

    Olga Peshkova

    2015-12-01

    Full Text Available Authors in the article are consider the basic going near setting of medical physical culture at scoliostic illness of І–ІІ degree for children taking into account a type, form, etiology, degree and clinical displays. Purpose: to describe the modern going near setting of medical physical culture taking into account etiology, type, form, degree and clinical displays of scoliostic illness for children. Material and Methods: analysis of the modern special literature on issue of physical rehabilitation of children at scoliostic illness; analysis of medical cards. Results: description of scoliosis is given on an etiologic sign, form, type, degrees and clinical displays. The features of methods of medical physical culture are presented taking into account the afore-named signs of scoliotic illness. Conclusions: setting of facilities and forms of medical physical culture at scoliotic illness depends on etiology, form and type of scoliosis, degree and clinical displays of disease

  20. [Considerations on the concepts of nature, space, and morphology in Alexander von Humboldt and on the genesis of modern physical geography].

    Science.gov (United States)

    Vitte, Antonio Carlos; Silveira, Roberison Wittgenstein Dias da

    2010-01-01

    The article discusses how Alexander von Humboldt developed the concepts of nature, space, and morphology in his works and impacted the shaping of modern physical geography. Influenced by Kant's ideas in Critique of judgment and also by the writings of Goethe and Schelling, Humboldt devised a new interpretation and representation of nature on Earth's surface, wherein the concept of space is essential to explaining natural phenomena. Modern physical geography is grounded in a complex interweaving of aesthetic and instrumental influences fashioned by Humboldt, with the principle of connection playing an important role in the artistic and scientific development of the notion of a geographic landscape.

  1. AINSE Plasma Science and Technology Conference and Elizabeth and Frederick White Workshop on Fundamental Problems in the Physics of Magnetically Confined Plasmas: Conference handbook

    Science.gov (United States)

    The handbook contains abstracts of papers and posters presented at the conference. The main topics relate to plasma physics and fusion, plasma processing and uses as well as specific fusion devices and experiments. Eighty-four out of ninety-two presentations were considered to be in the INIS subject scope and have been separately indexed.

  2. Modernization of Physical Appearance and Solution Color Tests Using Quantitative Tristimulus Colorimetry: Advantages, Harmonization, and Validation Strategies.

    Science.gov (United States)

    Pack, Brian W; Montgomery, Laura L; Hetrick, Evan M

    2015-10-01

    Color measurements, including physical appearance, are important yet often misunderstood and underappreciated aspects of a control strategy for drug substances and drug products. From a patient safety perspective, color can be an important control point for detecting contamination, impurities, and degradation products, with human visual acuity often more sensitive for colored impurities than instrumental techniques such as HPLC. Physical appearance tests and solution color tests can also serve an important role in ensuring that appropriate steps are taken such that clinical trials do not become unblinded when the active material is compared with another product or a placebo. Despite the importance of color tests, compendial visual tests are not harmonized across the major pharmacopoeias, which results in ambiguous specifications of little value, difficult communication of true sample color, and significant extra work required for global registration. Some pharmacopoeias have not yet recognized or adopted technical advances in the instrumental measurement of color and appearance, whereas others begin to acknowledge the advantage of instrumental colorimetry, yet leave implementation of the technology ambiguous. This commentary will highlight the above-mentioned inconsistencies, provide an avenue toward harmonization and modernization, and outline a scientifically sound approach for implementing quantitative technologies for improved measurement, communication, and control of color and appearance for both solutions and solids. Importantly, this manuscript, for the first time, outlines a color method validation approach that is consistent with the International Conference on Harmonization's guidance on the topic of method validation.

  3. Fusion programs in applied plasma physics. Technical progress report, July 11, 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section.

  4. Aspetti Moderni della Fisica Greca : Modern Aspects of Ancient Greek Physics

    CERN Document Server

    Recami, Erasmo

    1970-01-01

    Plutarchus, circa 100 AD, in his early book on "astrophysics" --in which he exposed, in a sense, a general theory of gravitation-- wrote the noticeable passage: The Moon gets the guarantee of not falling down just from its motion and from the dash associated with its revolution, exactly as stones in slings cannot fall due to their circular whirling motion; in fact, each thing is dragged by its mere natural motion only if it isn't deviated by something else. The Moon, therefore, is not dragged down by its weight, because its natural tendency is frustrated by its revolution. And, on the contrary, it would be really amazing if it could remain at rest always at the same place, like the Earth. While Posidonius (circa 135-51 BC) had written: Matter is endowed with a cohesion that keeps it together and against which the surrounding vacuum has no power. Indeed, the material world is supported by an immense force, and alternately contracts and expands in the vacuum following its own physical processes, now consumed by...

  5. Base units of the SI, fundamental constants and modern quantum physics.

    Science.gov (United States)

    Bordé, Christian J

    2005-09-15

    Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.

  6. Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics

    Science.gov (United States)

    Chappell, C. R.

    1985-01-01

    A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.

  7. Global problems in magnetospheric plasma physics and prospects for their solution

    Science.gov (United States)

    Roederer, J. G.

    1977-01-01

    Selected problems in magnetospheric plasma physics are critically reviewed. The discussion is restricted to questions that are 'global' in nature (i.e., involve the magnetosphere as a whole) and that are beyond the stage of systematic survey or isolated study requirements. Only low-energy particle aspects are discussed. The article focuses on the following subjects: (1) the effect of the interplanetary magnetic field on the topography, topology, and stability of the magnetospheric boundary; (2) solar-wind plasma entry into the magnetosphere; (3) plasma storage and release mechanisms in the magnetospheric tail; and (4) magnetic-field-aligned currents and magnetosphere-ionosphere interactions. A brief discussion of the prospects for the solution of these problems during and after the International Magnetospheric Study is given.

  8. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  9. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  10. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  11. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  12. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    Science.gov (United States)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  13. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley, Editor

    2004-12-22

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  15. Study of higher excited states of some polyatomic molecules relevant for plasma physics and environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P, E-mail: bratislav.marinkovic@phy.bg.ac.y [Institute of Physics, Belgrade 11080, Pregrevica 118 (Serbia) and College for Electrical Engineering and Computing, Belgrade 11010, Vojvode Stepe 283 (Serbia)

    2009-04-01

    Studies of higher excited states of some polyatomic molecules relevant for plasma physics and environment have been presented. Spectra of chlorofluorocarbons are discussed together with their influence on ozone layer depletion and global warming. Tetrahydrofuran molecule was studied by photoabsorption and electron energy loss spectroscopy while the states are assigned following extensive ab initio calculations. Nitrous oxide and hydrogen sulphide spectra are discussed in terms of identifying valence and Rydberg character of excited states.

  16. TELEMATICS APPLICATIONS REMOT: Interfaces and Adaptations of the Plasma Physics Demonstrator

    OpenAIRE

    Kemmerling, G.; Van der Meer, E.

    1997-01-01

    In document D6.2, a textual description of the soft- and hardware components of the plasma physics demonstrator as well as a definition of remote and local site was given. In order to couple these components to a complete teleoperation system, interfaces between them have to be defined and existing soft- and hardware have to be adapted. This task will be described in this document.

  17. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  18. Modern Infinitesimal Analysis Applied to the Physical Metric dS and a Theoretical Verification of a Time-dilation Conjecture

    OpenAIRE

    Robert A. Herrmann

    2008-01-01

    In this paper, the modern theory of infinitesimals is applied to the General Relativity metric dS and its geometric and physical meanings are rigorously investigated. Employing results obtained via the time-dependent Schrodinger equation, gravitational time-dilation expressions are obtained and are shown to be caused by gravitationally altered photon interactions with atomic structures.

  19. The relationship of modern health worries to non-specific physical symptoms and perceived environmental sensitivity : A study combining self-reported and general practice data

    NARCIS (Netherlands)

    Baliatsas, Christos; van Kamp, Irene; Hooiveld, Mariëtte; Lebret, Erik; Yzermans, Joris

    2015-01-01

    Objective The present study investigates the association of modern health worries (MHW) with self-reported as well as general practitioner (GP)-registered non-specific physical symptoms (NSPS), medication use, alternative therapy consultations, sleep quality and quality of life. The interrelation be

  20. (Re)Constructions of Etymology of the Term "Electricity" in French German and Modern Greek Textbooks of Physics of 18th-19th Centuries

    Science.gov (United States)

    Patsopoulos, Dimitrios

    2005-01-01

    The different and contrasting versions of the etymology of the term "electricity" in Modern Greek textbooks of Physics of the 18th and 19th century, which are influenced by French and German textbooks, are not mere (re)constructions that serve the didactic purposes and objectives of their authors. They are (in)directly related to the social and…

  1. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  2. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  3. Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype.

    Science.gov (United States)

    Murakami, Haruka; Iemitsu, Motoyuki; Sanada, Kiyoshi; Gando, Yuko; Ohmori, Yumi; Kawakami, Ryoko; Sasaki, Satoshi; Tabata, Izumi; Miyachi, Motohiko

    2011-12-01

    Elevated fasting plasma homocysteine (Hcy) level is a vascular disease risk factor. Plasma Hcy is affected by 5,10-methylenetetrahydofolate reductase (MTHFR) genotype and dietary folate intake. This cross-sectional study in 434 Japanese adults examined the associations among objectively measured physical activity (PA), plasma Hcy adjusting for dietary folate intake, and MTHFR C677T genotype. Daily PA was measured by triaxial accelerometry and all subjects completed a questionnaire about their dietary habits. Plasma Hcy and MTHFR C677T genotype were determined. Plasma Hcy in subjects with the TT genotype was significantly higher than in those with CC or CT genotype (p < 0.001). Plasma Hcy was significantly different between ≥ 200 (7.6 ± 0.2 nmol/mL) and <200 µg/day (8.3 ± 0.3 nmol/mL) folate intake groups (p = 0.003). There were no differences in plasma Hcy adjusting for age, sex, and folate intake between groups according to PA category in all subjects. However, there were significant interactions between time spent in light PA (p = 0.003), vigorous PA (p = 0.001), or inactivity (p = 0.004), and MTHFR genotype. In only the TT genotype, shorter time spent in light PA was associated with higher plasma Hcy than a longer time spent in light PA (11.5 ± 3.3 nmol/mL vs. 8.5 ± 3.3 nmol/mL, p < 0.001), and longer time spent in vigorous PA and inactivity were associated with higher plasma Hcy (11.8 ± 3.3 nmol/mL vs. 8.4 ± 3.2 nmol/mL, 11.6 ± 3.3 nmol/mL vs. 8.4 ± 3.3 nmol/mL, respectively, p < 0.001). In conclusion, light and vigorous PA were associated with plasma Hcy only in the TT genotype, but there were no such associations in all genotypes.

  4. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  5. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  6. MODERN PHYSICS LETTERS B

    OpenAIRE

    Chang, LN; Lewis, Z.; Minic, D.; Takeuchi, T

    2013-01-01

    We construct a discrete quantum mechanics using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete quantum mechanics cannot be reproduced with any hidden variable theory.

  7. Tachyons And Modern Physics

    Directory of Open Access Journals (Sweden)

    Francisco Martnez Flores

    2015-08-01

    Full Text Available ABSTRACT We have carried out an exhaustive analysis of the scope of Relativity showing that it is possible to couple it with Quantum Theory but not with Classical Mechanics In order to do that we have introduced the concept of electromagnetic and virtual mass to all particles subjected to Quantum Field Theory radically different from the real or inertial mass included in Newtonian Dynamics which turns out the adequate status to understand quantum phenomena without resorting to explanations difficult to admit. In that line we have considered the particles so-called Tachyon for which we made a reformulation of the relativistic equation avoiding the space-like or negative interval non-causal thus it has been demonstrated its identification with antiparticles on account of the peculiar behavior of energy and momentum regarding the particles and photons.

  8. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  9. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  10. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  11. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  12. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    Science.gov (United States)

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  14. Modeling physical chemistry of the Io plasma torus in two dimensions

    Science.gov (United States)

    Copper, M.; Delamere, P. A.; Overcast-Howe, K.

    2016-07-01

    Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.

  15. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  16. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  17. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  18. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  19. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  20. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  1. Elementary particles. Modern physics from the atoms to the standard model; Elementare Teilchen. Moderne Physik von den Atomen bis zum Standard-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Bleck-Neuhaus, Joern [Bremen Univ. (Germany). FB 1 Physik

    2010-07-01

    The actual state of knowledge of nuclear and elementary-particle physics has a fluctuating history of origin, often characterized by shockingly new formations of terms, which until today are for studyings of physics often only under difficulties accessible. This books uses the controverse and at the same time instructive development processes themselves for the access to the difficult new concepts. It makes understandable, how the physical picture of the smallest particles looks today und why it has arised so and not otherwise: From the detection of the existence of the atoms up to the present standard model of elementary-particle physics, in a steady exchange between established theoretical models, confirming and contradicting experimental findings, sometimes controversial new formations of terms, improved experiments etc. - a process, which certainly continues in the future. Guidance of the presentation is an also in the detail reproducible argumentation. Studyings of physics before their B.Sc. examination will get knowledges about subatomar physics, which belong to the genralknowledge of their field. Also for teachings of physics at schools or universities this new presentation might be interesting. [German] Der aktuelle Wissensstand der Kern- und Elementarteilchenphysik hat eine wechselvolle Entstehungsgeschichte, oft gekennzeichnet durch schockierend neue Begriffsbildungen, die sich bis heute den Physik-Studierenden oft nur unter Muehen erschliessen. Dieses Buch nutzt die kontroversen und zugleich lehrreichen Entwicklungsprozesse selber fuer den Zugang zu den schwierigen neuen Konzepten. Es macht verstaendlich, wie das physikalische Bild von den kleinsten Teilchen heute aussieht und warum es so und nicht anders entstanden ist: Vom Nachweis der Existenz der Atome bis zum derzeitigen Standard-Modell der Elementarteilchenphysik, in einem staendigen Wechselspiel zwischen etablierten theoretischen Modellen, bestaetigenden oder widersprechenden experimentellen

  2. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  3. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children.

    Science.gov (United States)

    Cliff, Dylan P; Okely, Anthony D; Burrows, Tracy L; Jones, Rachel A; Morgan, Philip J; Collins, Clare E; Baur, Louise A

    2013-02-01

    This study examines the associations between objectively measured sedentary behavior, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA), and plasma lipids in overweight and obese children. Cross-sectional analyses were conducted among 126 children aged 5.5-9.9 years. Sedentary behavior, LPA, and MVPA were assessed using accelerometry. Fasting blood samples were analyzed for plasma lipids (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], total cholesterol [TC], and triglycerides [TG]). MVPA was not related to plasma lipids (P > 0.05). Independent of age, sex, energy intake, and waist circumference z-score, sedentary behavior and LPA were associated with HDL-C (β = -0.23, 95% CI -0.42 to -0.04, P = 0.020; β = 0.20, 95% CI 0.14 to 0.39, P = 0.036, respectively). The strength of the associations remained after additionally adjusting for MVPA (sedentary behavior: β = -0.22, 95% CI -0.44 to 0.006, P = 0.056; LPA: β = 0.19, 95% CI -0.005 to 0.38, P = 0.056, respectively). Substituting at least LPA for sedentary time may contribute to the development of healthy HDL-C levels among overweight and obese children, independent of their adiposity. Comprehensive prevention and treatment strategies to improve plasma HDL-C among overweight and obese children should target reductions in total sedentary time and promote the benefits of LPA, in addition to promoting healthy levels of adiposity, healthy dietary behaviors, and MVPA. Copyright © 2012 The Obesity Society.

  4. Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas

    Science.gov (United States)

    Daghan, D.; Donmez, O.

    2016-06-01

    Traveling wave solution of the Gardner equation is studied analytically by using the two dependent ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods and direct integration. The exact solutions of the Gardner equations are obtained. Our analytic solutions are applied to the unmagnetized four-component and dusty plasma systems consisting of hot protons and electrons to investigate dynamical features of the solitons and shock waves produced in these systems. A wide variety of parameters of the plasma is used, and the basic features of the Gardner solitons that are beyond the existing study in literature are found. It is observed that the analytic solutions from ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods only produce shock waves but the solitary waves are found from the analytic solutions derived from the direct integration. It is also noted that the superhot electrons and relative mass density of the electrons significantly effect the soliton's amplitude, width, and position. We have also numerically proved that the combination of every value of nomalized density μ 1 or temperature ratio σ 1 with the other sets of plasma parameters creates a region where the solutions have similar physical properties. The time-dependent behavior of the soliton is also studied, and a periodic motion of soliton along the phase variable η is found during the evolution. The investigations and the limits presented in this study may be helpful for studying and understanding the nonlinear properties of the solitary and shock waves seen in various physical and astrophysical plasma systems.

  5. Effect of pubertal development and physical activity on plasma ghrelin concentration in boys.

    Science.gov (United States)

    Jürimäe, J; Cicchella, A; Tillmann, V; Lätt, E; Haljaste, K; Purge, P; Pomerants, T; Jürimäe, T

    2009-01-01

    The aim of the present study was to assess the influence of regular physical activity on plasma ghrelin concentration in pre-pubertal and pubertal boys. In addition, the impact of ghrelin concentration on bone mineral density (BMD) was examined. In total, 56 healthy schoolboys aged between 10 and 16 yr were divided into the swimming (no.=28) and the control (no.=28) groups. The subjects were matched by age and body mass index (BMI), generating 9 matched pairs in pubertal group I (Tanner stage 1), 11 pairs in group II (Tanner stages 2 and 3), and 8 pairs in group III (Tanner stages 4 and 5). Swimmers in pubertal groups II and III had significantly (both pghrelin levels than the controls (group II: 1126.8+/-406.0 vs 868.3+/-411.2 pg/ml; group III: 1105.5+/-337.5 vs 850.8+/-306.0 pg/ml, respectively), whereas no difference was seen in the pubertal group I (1230.8+/-386.0 vs 1272.7+/-424.4 pg/ml). Ghrelin was the most important hormonal determinant for total BMD and lumbar apparent volumetric BMD (BMAD) (R2=27.2% and R2=19.8%, respectively) in swimmers, whereas in control boys, plasma IGF-I was the most important hormonal predictor accounting for 41.8% of the variability of total BMD and 20.4% of the variability of lumbar BMAD. In conclusion, ghrelin concentration decreased during puberty in physically inactive boys, while in regularly physically active boys it remained relatively unchanged. Ghrelin appears to be an important hormonal predictor for BMD in physically active boys, while BMD is mostly determined by IGF-I in physically inactive boys.

  6. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  7. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  8. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A. [eds.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.

  9. Electron-ion relaxation in a dense plasma. [supernovae core physics

    Science.gov (United States)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  10. The physics of positively biased conductors surrounded by dielectrics in contact with a plasma

    Science.gov (United States)

    Hastings, Daniel E.; Chang, Patrick

    1989-01-01

    The physics of a positively biased conductor surrounded by dielectrics in contact with plasma is investigated. It is shown that because of the presence of secondary emission from the surrounding dielectrics, the voltage of the surfaces near the conductor has three solutions. The high- and low-voltage solutions are stable, while the intermediate-voltage solution is unstable. This theory is applied to explain the snapover effect observed on high-voltage solar arrays that involve the use of highly biased surfaces in contact with the space environment.

  11. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  12. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  13. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  15. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  16. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  17. PREFACE: XII Latin American workshop on plasma physics (17-21 September 2007, Caracas, Venezuela)

    Science.gov (United States)

    Puerta, Julio

    2008-10-01

    Some years ago a group of Latin American physicists took the initiative to consult about the viability of organizing a meeting on plasma physics for researchers and students of the region. The result was that it was not only a good idea, but a necessity in order to show and share everyone's work, and to keep updated on latest advances and technologies on plasma physics. It was decided that for new researchers as well as students of Physics, it would prove to be the best way to keep them posted on such matters. This was the birth of a series of meetings known as Latin American workshops on plasma physics that take place every two years in a different Latin American country. In Venezuela we have had the opportunity to organize two editions of this interesting and important reunion of physicists. The first of these Latin American workshops on plasma physics was held in Cambuquira (Brazil) in 1982. After organizing the first six editions of the workshop, the VII LAWPP meeting was realized in Caracas in January 1997. It was designed with a structure similar to the first edition. It developed in two stages, a first week devoted to short courses with lecturers in different fields of plasma physics and a second week for contributed and invited presentations. Participants from sixteen different countries were present, half of them from this continent and the other half from overseas, demonstrating the international character of this meeting. There have been four more editions of the workshop and once again, we have had the opportunity to organize this latest edition of the series: the XII Latin American workshop on plasma physics, which took place in Caracas, Venezuela from the 17th to the 21st of September 2007. The structure was modified, because contributed and review papers were together during the first stage, with short courses realized during the second one, called mini-courses, and given by several high level contributors such as José Boedo, Leopoldo Soto, Claude

  18. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  19. Analytical approximations for a conservative nonlinear singular oscillator in plasma physics

    Directory of Open Access Journals (Sweden)

    A. Mirzabeigy

    2012-10-01

    Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.

  20. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...