WorldWideScience

Sample records for plasma phys controlled

  1. On the use of polarization modulation in combined interferometry and polarimetry. Corrigendum. 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

    International Nuclear Information System (INIS)

    Segre, S.E.

    1998-01-01

    Errors in the main text, the appendix and two curves are corrected in this corrigendum to the paper entitled ''On the use of polarization modulation in combined interferometry and polarimetry'', written by S.E. Segre and published in 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

  2. Comment on 'Nonlinear gyrokinetic theory with polarization drift' [Phys. Plasmas 17, 082304 (2010)

    International Nuclear Information System (INIS)

    Leerink, S.; Parra, F. I.; Heikkinen, J. A.

    2010-01-01

    In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating ExB velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].

  3. Comment on “Effects of damping solitary wave in a viscosity bounded plasma” [Phys. Plasmas 21, 022118 (2014)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Uday Narayan, E-mail: unghosh1@rediffmail.com; Chatterjee, Prasanta; Roychoudhury, Rajkumar [Department of Mathematics, Siksha Bhavana, Visva Bharati, Santiniketan 731235 (India)

    2015-07-15

    Recently Gun Li et al. discussed “Effects of damping solitary wave in a viscosity bounded plasma” [Phys. Plasmas 21, 022118 (2014)]. The paper contains some serious errors which have been pointed out in this Comment.

  4. Comment on 'On higher order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit' [Phys. Plasmas 16, 044506 (2009)

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2009-01-01

    A recent publication [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] warned against the use of the lower order gyrokinetic Poisson equation at long wavelengths because the long wavelength, radial electric field must remain undetermined to the order the equation is obtained. Another reference [W. W. Lee and R. A. Kolesnikov, Phys. Plasmas 16, 044506 (2009)] criticizes these results by arguing that the higher order terms neglected in the most common gyrokinetic Poisson equation are formally smaller than the terms that are retained. This argument is flawed and ignores that the lower order terms, although formally larger, must cancel without determining the long wavelength, radial electric field. The reason for this cancellation is discussed. In addition, the origin of a nonlinear term present in the gyrokinetic Poisson equation [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] is explained.

  5. Response to "Comment on `Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma'" [Phys. Plasmas 24, 094701 (2017)

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2018-02-01

    On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.

  6. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)

  7. Response to Comment on 'On Higher-Order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit [Phys. Plasmas 16,044506 (2009)]'

    International Nuclear Information System (INIS)

    Lee, W.W.; Kolesnikov, R.A.

    2009-01-01

    We show in this Response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin et al. (Phys. Fluids 26, 3524 (1983)). This nonlinear contribution in φ 2 is indeed of the order of k # perpendicular# 4 in the long wavelength limit and remains finite for zero ion temperature, in contrast to the nonlinear term by Parra and Catto (Plasma Phys. Control. Fusion 50, 065014 (2008)), which is of the order of k # perpendicular# 2 and diverges for T i → 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k # perpendicular# 2 φ.

  8. Comment on 'Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities' [Phys. Plasmas 11, 1732 (2004)] and 'New resonance and cut-off for low-frequency electromagnetic waves in dusty magnetoplasmas' [Phys. Plasmas 11, 2307 (2004)

    International Nuclear Information System (INIS)

    Rudakov, Leonid

    2004-01-01

    It is shown that the oscillation named by Shukla as the 'Shukla mode' is well known in the plasma physics literature as the magnetic drift wave. In addition, the instability of these modes in a cold plasma as claimed by Shukla et al. [Phys. Plasmas 11, 1732 (2004)] does not exist and is due to a mathematical error in their analysis. Also the 'new' resonance and new cutoff frequencies claimed by Shukla et al. and Mamum et al. [Phys Plasmas 11, 2307 (2004)] have been known in the published literature for decades

  9. Comment on open-quote open-quote Bohm criterion for the collisional sheath close-quote close-quote [Phys. Plasmas 3, 1459 (1996)

    International Nuclear Information System (INIS)

    Riemann, K.U.; Meyer, P.

    1996-01-01

    Recently, Valentini [Phys. Plasmas 3, 1459 (1996)] investigated the influence of collisions on the space charge formation and derived a modified Bohm criterion accounting for collisions in the sheath. It is shown that this derivation is wrong and is based on a misinterpretation of the plasma sheath concept. copyright 1996 American Institute of Physics

  10. Comment on 'Relation between space charge limited current and power loss in open drift tubes' [Phys. Plasmas 13, 073101 (2006)

    International Nuclear Information System (INIS)

    Swanekamp, S. B.; Schumer, J. W.

    2007-01-01

    In Phys Plasmas 13, 073101 (2006), the drop in the space-charge-limited (SCL) current for a beam injected into a space with an open boundary is analyzed with an electromagnetic particle-in-cell code. The authors explained the power loss observed at the open boundary as the loss of electromagnetic radiation created from the deceleration of electrons in the gap, and they developed an effective voltage theory to predict the drop in the SCL current observed in the simulations. In this Comment, we show that, provided the current remains below the SCL value, the electric and magnetic fields are constant in time so that power loss from the open boundary is a dc phenomenon with no rf power leaving through the boundary. We show that the electric and magnetic fields are static in time and static fields DO NOT RADIATE. Instead, the electron beam charges the collector plate, which causes a real electrostatic electric field to develop. The electron energy loss is not due to radiation but rather to the work done by this electrostatic field on the electrons as they move across the gap. This is precisely the energy dissipated in the matched resistance across the open boundary, which is a consequence of the boundary condition. Furthermore, since a real electrostatic potential develops, the voltage drop is real and there is no need to call the voltage drop an effective voltage

  11. Response to ''Comment on 'Acoustic solitons in inhomogenous pair-ion plasmas''' [Phys. Plasmas 18, 054701 (2011)

    International Nuclear Information System (INIS)

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-01-01

    The quantity n p0 (0) is different from n p0 (x) and same is true for v p0 (0), v p0 (x). Taking these differences into account and considering the mathematical relation v p0 (x)= 1/n p0 (x), it can easily be shown that derivatives of these space dependent densities and velocities are linked through the relation ∂v p0 (x)/∂η=-1/n p0 2 (x)∂n p0 (x)/∂η. We show that constraint (1) of the comment can also be transformed to derivative transformation relation. This derivative transformation relation can be used in the derivation of the KdV like equation and our model is valid for inhomogenous pair ion plasma. We mathematically and physically prove that the objections in the comment are false and baseless.

  12. Response to 'Comment on 'Pinch current limitation effect in plasma focus'' [Appl. Phys. Lett. 94, 076101 (2009)

    International Nuclear Information System (INIS)

    Lee, S.; Saw, S. H.

    2009-01-01

    The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I pinch /I peak ratio as the static inductance L 0 is reduced, lowering from 0.87 to 0.31 as L 0 is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I pinch /I peak due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by δ cap in Eq. (2). The comment does not deal with δ cap at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L 0 region when pinch current limitation begins to manifest, δ cap becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes

  13. Comment on “Two-dimensional positive column structure in a discharge tube with radius discontinuity” [Phys. Plasmas 21, 113503 (2014)

    Energy Technology Data Exchange (ETDEWEB)

    Demidova, M. V. [Department of Chemistry, Wright State University, Dayton, Ohio 45435 (United States); Division of NLP Technology, INTEPH Technology LLC, Dayton, Ohio 45066 (United States); Kudryavtsev, A. A. [Division of NLP Technology, INTEPH Technology LLC, Dayton, Ohio 45066 (United States); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Optics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Saifutdinov, A. I.; Stepanova, O. M. [Department of Optics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2015-09-15

    Zobnin et al. have published a paper [Phys. Plasmas, 21, 113503 (2014)] on a topic of discharge physics in the presence of a sharp change in cylindrical discharge geometry. In the comment it is pointed out that for untrapped electrons a full kinetic equation, which includes dependences on spatial coordinates and energies, has to be used for the electron velocity distribution function determination. It is also unclear what probe theories Zobnin et al. have used in their paper for the calculation of electron current to the discharge tube wall.

  14. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-01-01

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription

  15. Response to “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2014-01-01

    Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors

  16. Response to “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-05-15

    Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.

  17. Plasma position control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To conduct position control stably to various plasmas and reduce the burden on the control coil power source. Constitution: Among the proportional, integration and differentiation controls, a proportional-differentiation control section and an integration control section are connected in parallel. Then, a signal switching circuit is disposed to the control signal input section for the proportional-differentiation control section such that either a present position of plasmas or deviation between the present plasma position and an aimed value can be selected as a control signal depending on the control procedures or the state of the plasmas. For instance, if a rapid response is required for the control, the deviation between the present plasma position and the aimed value is selected as the input signal to conduct proportional, integration and differentiation controls. While on the other hand, if it is intended to reduce the burden on the control coil power source, it is adapted such that the control signal inputted to the proportional-differentiation control section itself can select the present plasma position. (Yoshihara, H.)

  18. Response to ''Comment on 'Interaction of two solitary waves in quantum electron-positron-ion plasma''' [Phys. Plasmas 18, 084701 (2011)

    International Nuclear Information System (INIS)

    Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming

    2011-01-01

    According to the comments of Akbari-Moghanjoughi that the electron-positron-ion(e-p-i) plasmas parameters σ representing the ratio of the positron to electron Fermi-temperature and p standing for the positron to electron number-density ratio are related by the equation of p σ 3/2 . Based on this conclusion, we have replaced the Figs. 1-6 (Ref. 1) in the present paper.

  19. Erratum: Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures [Chin. Phys. Lett. Vol. 32, No. 4, 043201(2015)

    International Nuclear Information System (INIS)

    Chaudhary, K.; Rosalan, S.; Aziz, M. S.; Bahadoran, M.; Ali, J; Bidin, N.; Saktioto; Yupapin, P. P.

    2015-01-01

    There is a typewriting mistake in our previous report [Chin. Phys. Lett. 32, 4 (2015) 043201], the name of the fourth author M. Bohadoran should be M. Bahadoran. We note that this mistake does not affect the conclusion of our report, and apologize for any inconvenience for readers caused by our oversight. (paper)

  20. Plasma control device

    International Nuclear Information System (INIS)

    Matsutomi, Akiyoshi.

    1995-01-01

    Plasma position and shape estimation values are outputted based on measured values of coil current. When the measured values of the position and the shape are judged to be abnormal, position and shape estimation values estimated by a plasma position and shape estimation means are outputted as position and shape feed back values to a plasma position and shape control means instead of the position and shape measured values. Since only a portion of the abnormal position and shape measured values may also be replaced with the position and shape estimation values, errors in the plasma position and shape feed back values can be reduced as a whole. In addition, even if the position and shape measured values are abnormal or if they can not be measured, plasma control can be continued by alternative position and shape estimation values, thereby enabling to avoid interruption of plasma control. Since the position and shape estimation values are obtained not only with the measured values of coil current but also with the position and shape estimation values, the accuracy is improved. Further, noises superposed on the position and shape measured values are filtered, and the device is stabilized compared with a prior art device. (N.H.)

  1. Plasma control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To obtain the optimum controllability for the plasmas and the thermonuclear device by selectively executing control operation for proportion, integration and differentiation (PID) by first and second controllers respectively based on selection instruction signals. Constitution: Deviation between a vertical direction equilibrium position: Zp as the plasma status amount measured in a measuring section and an aimed value Zref thereof is inputted to a first PID selection controller. The first controller selectively executes one of the PID control operations in accordance with the first selection signal instruction instructed by a PID control operation instruction circuit. Further, Zp is also inputted to a second PID selection controller, which selectively executes one of the PID control operations in accordance with the second selection instruction signal in the same manner as in the first controller. The deviation amount u between operations signals u1 and u2 from the first and second PID selection controllers is inputted to a power source to thereby supply a predetermined current value to control coils that generate equilibrium magnetic fields for making the vertical direction equilibrium position of plasmas constant. (Kamimura, M.)

  2. Response to „Comment on Avalanche proton-boron fusion based on elastic nuclear collisions” [Phys. Plasmas 23, 094703 (2016)

    Czech Academy of Sciences Publication Activity Database

    Eliezer, S.; Hora, H.; Korn, Georg; Nissim, N.; Val, J.M.M.

    2016-01-01

    Roč. 23, č. 9 (2016), s. 1-2, č. článku 094704. ISSN 1070-664X R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : laser-produced plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  3. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  4. The control of TCV plasmas

    International Nuclear Information System (INIS)

    Lister, J.B.; Hofmann, F.; Moret, J.M.

    1996-07-01

    The general control of tokamak plasmas has evolved considerably over the last few years with an increase in the plasma pulse length, an increase in the control of additional heating and fuelling and an increase in the degree to which the shape of the plasma can be varied. The TCV tokamak is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents which impose the desired shape. This paper deals with all aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via control algorithms and overall supervision. (author) 44 figs., tabs., 25 refs

  5. The control of TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J B; Hofmann, F; Moret, J M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); and others

    1996-07-01

    The general control of tokamak plasmas has evolved considerably over the last few years with an increase in the plasma pulse length, an increase in the control of additional heating and fuelling and an increase in the degree to which the shape of the plasma can be varied. The TCV tokamak is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents which impose the desired shape. This paper deals with all aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via control algorithms and overall supervision. (author) 44 figs., tabs., 25 refs.

  6. Plasma control and utilization

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1976-01-01

    A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma. 24 claims, 15 figures

  7. Plasma physics for controlled fusion

    International Nuclear Information System (INIS)

    Miyamoto, K.

    2010-01-01

    The primary objective of this lecture note is to present the theories and experiments of plasma physics for recent activities of controlled fusion research for graduate and senior undergraduate students. Chapters 1-6 describe the basic knowledge of plasma and magnetohydrodynamics (MHD). MHD instabilities limit the beta ratio (ratio of plasma pressure to magnetic pressure) of confined plasma. Chapters 7-9 provide the kinetic theory of hot plasma and discuss the wave heating and non-inductive current drive. The dispersion relation derived by the kinetic theory are used to discuss plasma waves and perturbed modes. Landau damping is the essential mechanism of plasma heating and the stabilization of perturbation. Landau inverse damping brings the amplification of waves and the destabilization of perturbed modes. Chapter 10 explains the plasma transport due to turbulence, which is the most important and challenging subject for plasma confinement. Theories and simulations including subject of zonal flow are introduced. Chapters 11, 12 and 13 describe the recent activities of tokamak including ITER as well as spherical tokamak, reversed field pinch (RFP) and stellarator including quasi-symmetric configurations. Emphasis has been given to tokamak research since it made the most remarkable progress and the construction phase of 'International Tokamak Experimental Reactor' called ITER has already started. (author)

  8. Plasma control concepts for ITER

    International Nuclear Information System (INIS)

    Lister, J.B.; Nieswand, C.

    1997-01-01

    This overview paper skims over a wide range of issues related to the control of ITER plasmas. Although operation of the ITER project will require extensive developmental work to achieve the degree of control required, there is no indication that any of the identified problems will present overwhelming difficulties compared with the operation of present tokamaks. However, the precision of control required and the degree of automation of the final ITER plasma control system will present a challenge which is somewhat greater than for present tokamaks. In order to operate ITER optimally, integrated use of a large amount of diagnostic information will be necessary, evaluated and interpreted automatically. This will challenge both the diagnostics themselves and their supporting interpretation codes. The intervening years will provide us with the opportunity to implement and evaluate most of the new features required for ITER on existing tokamaks, with the exception of the control of an ignited plasma. (author) 7 figs., 7 refs

  9. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  10. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  11. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  12. Comment on: Measurement of the force exerted on the surface of an object immersed in a plasma. Eur. Phys. J. D 69: 91 (2015), DOI: 10.1140/epjd/e2015-50743-2

    Science.gov (United States)

    Czarnetzki, Uwe; Tsankov, Tsanko V.

    2015-10-01

    Surfaces exposed to a plasma experience a certain pressure that pushes them away from the volume. This effect has been investigated experimentally in a recent article by Thomas Trottenberg, Thomas Richter, and Holger Kersten from Kiel University/Germany [Eur. Phys. J. D 69, 91 (2015)]. The experimental results are impressive and have actually drawn the attention of the community to an interesting question which so far has been largely ignored. In addition to their experimental results the Kiel group proposes also a rough concept in order to explain their findings which provides certainly a basic qualitative understanding of the physical processes involved. However, on a closer inspection the picture developed so far is not entirely satisfying and the problem seems to require a more fundamental approach. This comment shows that the effect of the wall pressure can be described exactly using only analytical methods. The physical situation is analyzed by three different approaches. First, the simple case of only one spatial dimension is presented in detail. Second, the case of spherical symmetry is analyzed by some simplifying assumptions in order to investigate the effect of higher dimensionality. Third, a formal derivation for arbitrary geometry is given. This general result includes the one-dimensional case but does not allow a convenient connection between the pressures at the wall and in the center. Finally, the results are summarized and some conclusions are drawn.

  13. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  14. Plasma position and shape control for ITER

    International Nuclear Information System (INIS)

    Portone, A.; Gribov, Y.; Huguet, M.

    1995-01-01

    Key features and main results about the control of the plasma shape in ITER are presented. A control algorithm is designed to control up to 6 gaps between the plasma separatrix and the plasma facing components during the reference burn phase. Nonlinear simulations show the performances of the controller in the presence of plasma vertical position offsets, beta drops and power supply voltage saturation

  15. Controlling marginally detached divertor plasmas

    Science.gov (United States)

    Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.

    2017-06-01

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e  =  5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B   ×  \

  16. Coherent control of plasma dynamics

    Science.gov (United States)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which

  17. Plasma and controlled thermonuclear reaction

    International Nuclear Information System (INIS)

    Kapitsa, P.

    1980-01-01

    The principle and prospects are given of three methods of achieving controlled thermonuclear reaction. The original and so far most promising TOKAMAK method is presented invented in the USSR. Another method is the heating of a sphere about 1 mm in diameter from a mixture of deuterium and tritium by focused laser light from all sides. The third method consists in continuous plasma heating. A rope-like plasma discharge at a temperature of more than a million K results in the gas from microwave oscillations. The discharge is placed in a magnetic field and the ion temperature is increased by magneto-acoustic waves. A reactor is proposed operating on this principle and problems are pointed out which will have to be resolved. (M.S.)

  18. Plasma and controlled thermonuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P

    1980-06-01

    The principle and prospects are given of three methods of achieving controlled thermonuclear reaction. The original and so far most promising TOKAMAK method is presented invented in the USSR. Another method is the heating of a sphere about 1 mm in diameter from a mixture of deuterium and tritium by focused laser light from all sides. The third method consists in continuous plasma heating. A rope-like plasma discharge at a temperature of more than a million K results in the gas from microwave oscillations. The discharge is placed in a magnetic field and the ion temperature is increased by magneto-acoustic waves. A reactor is proposed operating on this principle and problems are pointed out which will have to be resolved.

  19. The plasma position control of ITER EDA plasma

    International Nuclear Information System (INIS)

    Senda, Ikuo; Nishio, Satoshi; Tsunematsu, Toshihide; Nishino, Toru; Fujieda, Hirobumi.

    1994-09-01

    The study on the plasma position control of ITER EDA performed by Japan Home Team during the sensitivity study in 1994 is summarized. The controllabilities of plasmas in the Outline Design and elongated version are compared. The model used to describe the motion of the plasma is a rigid model. The PD feedback control is applied with respect to the displacements of the plasma from the equilibrium. Three types of fluctuations, which initiate the motion of the plasma, are examined, namely a finite horizontal fluctuation field, a small horizontal fluctuation field such that the motion of the plasma is governed by the passive structures and an abrupt change of the poloidal beta β p and internal inductance l i . In the simulations of finite horizontal fluctuation fields, controls depend on the strength of the fluctuations, for instance, 3-5V is needed for 5-10G of fluctuation fields in the Outline Design. When the fluctuation field is small and the plasma displacement grows in a characteristic time of the passive structures, a few volt of the control voltage is enough to obtain good controllability. It is shown that the control when (β p , l i ) changes simultaneously is demanding and a large control voltage is required to maintain satisfactory control. Comparing the elongated version with the Outline Design, the control voltage which is larger than the Outline Design by a factor of 2-3 is required to obtain the same controllability in the elongated version. (author)

  20. JT-60 plasma control system

    International Nuclear Information System (INIS)

    Kurihara, K.

    1988-01-01

    JT-60 plasma control can be performed by the supervisory controller, the measurement system and actuators such as the poloidal field coil power supplies, gas injectors, neutral beam injection (NBI) heating system and radio frequency (RF) heating system. One of the most important characteristics of this system is a perfect digital control one composed of mini-computers, fast array processors and CAMAC modules, and it has large flexibility and few troubles to adjust the system. This system started to be operated in April 1985, after the six-year-long design, construction and testing, and have been operated and improved many times for two years. In this paper, the final system specification and its performance are presented aiming at the technological aspect of hardware and software. In addition, and experienced troubles are also presented. (author)

  1. Automatic plasma control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Y.; Chuyanov, V.

    1984-01-01

    Hot plasma is essentially in thermodynamic non-steady state. Automatic plasma control basically means monitoring deviations from steady state and producing a suitable magnetic or electric field which brings the plasma back to its original state. Briefly described are two systems of automatic plasma control: control with a magnetic field using a negative impedance circuit, and control using an electric field. It appears that systems of automatic plasma stabilization will be an indispensable component of the fusion reactor and its possibilities will in many ways determine the reactor economy. (Ha)

  2. Initial operation of NSTX with plasma control

    International Nuclear Information System (INIS)

    Gates, D.; Bell, M.; Ferron, J.; Kaye, S.; Menard, J.; Mueller, D.; Neumeyer, C.; Sabbagh, S.

    2000-01-01

    First plasma, with a maximum current of 300kA, was achieved on NSTX in February 1999. These results were obtained using preprogrammed coil currents. The first controlled plasmas on NSTX were made starting in August 1999 with the full 1MA plasma current achieved in December 1999. The controlled quantities were plasma position (R, Z) and current (Ip). Variations in the plasma shape are achieved by adding preprogrammed currents to those determined by the control parameters. The control system is fully digital, with plasma position and current control, data acquisition, and power supply control all occurring in the same four-processor real time computer. The system uses the PCS (Plasma Control Software) system designed at General Atomics. Modular control algorithms, specific to NSTX, were written and incorporated into the PCS. The application algorithms do the actual control calculations, with the PCS handling data passing. The control system, including planned upgrades, will be described, along with results of the initial controlled plasma operations. Analysis of the performance of the control system will also be presented

  3. Plasma automatic control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Yu.I.; Chuyanov, V.A.

    1983-01-01

    Principles of constructing the systems providing a plasma equilibrium and stability in thermonuctear devices are laid down. Operation of the servo system to maintain a plasma equilibrium is described using the tokamak plasma filament as an example. Operation of the system to suppress a flute instability is also described. This system measures electric disturbances on the plasma body surface and controls charge distribution on external electrodes. It is pointed out that systems of automatic control of plasma equilibrium and stability become an essential element of a future thermonuclear reactor and the system potentialities would much determine the reactor economic efficiency

  4. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1991-01-01

    On JET results were presented on additional heating power, on a recently discovered regime of enhanced pellet performance (PEP), on low-density H-mode plasma confinement with hot ions, bounds on very high electric currents by material limiters, the first experiments on lower hybrid current drive, on the L-H transition threshold dependence on the direction of the gradient-B drift, and on alpha-particle physics issues. The TFTR presentations focused on transport. Particle loss ramifications of the toroidal Alfven eigenmodes were found to be small, while their threshold of excitation is lower than theoretically predicted. On DIII-D a scaling study of transport with gyroradius as the only variable was reported, with approximately Bohm scaling emerging; but the effective heat diffusivity scaling could not be established due to profile consistency effects. While beta-limit investigations with DIII-D generally confirm the ideal, MHD limit found by Troyon, evidence of a reduction of the accessible range for the internal inductance with the safety factor seems to favour current-density control in a steady-state D-T burner. Onset of strongly sheared poloidal rotation in a thin layer during the L-H mode transition was experimentally shown, while a new, so-called VH (''very high'') confinement mode was discovered by boronization of the wall. The JT-90 tokamak has recently been upgraded to JT-60-U. Presentations by the ASDEX team summarized the lack of agreement with theory of L-mode confinement. With TEXTOR, an improved mode (I-mode) of confinement was found by boronization. Finally, reviews are included on the status of impurity transport and helium removal in tokamaks, on stellarators, alternative magnetic confinement systems, inertial confinement, and non-fusion plasma physics. 2 tabs

  5. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  6. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  7. Plasma position control on Alcator C

    International Nuclear Information System (INIS)

    Pribyl, P.A.

    1981-05-01

    The Alcator C MHD equilibrium is investigated from the standpoint of determining the plasma position. A review of equilibrium theory is presented, indicating that the central flux surfaces of the plasma should be displaced about 1 to 2 cm from the outermost. Further, the plasma should have a slightly noncircular cross-section. A comparison is made between the observed and predicted profiles. Flux loops sensitive to plasma position generate the error signal for the feedback control circuit. This measurement agrees with other position-sensitive diagnostics, such as limiter heating, and centroids of density, soft x-ray, and electron cyclotron emission. A linear model is developed for the position control feedback system, including the vertical field SCR supply, plasma, and feedback electronics. Operation of the control system agrees well with that predicted by the model, with acceptable plasma position being maintained for the duration of the discharge. The feedback control system is in daily use for Alcator C runs

  8. Control method for thermonuclear plasma

    International Nuclear Information System (INIS)

    Azuma, Kingo; Oda, Yasushi.

    1997-01-01

    CT (Compact Troid) is a doughnut-like shaped plasmas having a toroidal current and a poloidal current at the inside and forming a poloidal magnetic fluxes and toroidal magnetic flux. The structure of the CT is collapsed at a time of stationary state, accordingly, when it is injected to thermonuclear plasmas, particles can be supplied locally, and the state of the plasmas to be supplied can be changed by changing the direction of the injection. If a CT which is reverse to the poloidal magnetic fields is injected, plasmas with excessive ions can be supplied locally thereby enabling to form magnetic field in the thermonuclear plasmas. If the magnetic fields are formed in the vicinity of the surface of the thermonuclear plasmas, fast ions which have come over the magnetic field structure can be returned to the central portion of the plasmas. Then, confining performance of thermonuclear plasmas can be greatly improved, the efficiency for fuel supply can be increased, and energy required for ignition can be suppressed. (N.H.)

  9. Sawtooth control in fusion plasmas

    International Nuclear Information System (INIS)

    Graves, J P; Angioni, C; Budny, R V; Buttery, R J; Coda, S; Eriksson, L-G; Gimblett, C G; Goodman, T P; Hastie, R J; Henderson, M A; Koslowski, H R; Mantsinen, M J; Martynov, An; Mayoral, M-L; Mueck, A; Nave, M F F; Sauter, O; Westerhof, E

    2005-01-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth

  10. Sawtooth control in fusion plasmas

    Science.gov (United States)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  11. Enhancement of EAST plasma control capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bingjia, E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Yuan, Qiping; Luo, Zhengping; Huang, Yao; Liu, Lei; Guo, Yong; Pei, Xiaofang; Chen, Shuliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Humphreys, D.A.; Hyatt, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mueller, Dennis [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Calabró, G.; Crisanti, F. [ENEA UnitàTecnicaFusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Albanese, R.; Ambrosino, R. [CREATE, Università di Napoli Federicao II, Università di Cassino and Università di Napoli Parthenope, Via Claudio 19, 80125 Napoli (Italy)

    2016-11-15

    Highlights: • Parallel plasma equilibrium reconstruction using GPU for real-time control on EAST. • Vertical control using Bang-bang + PID method to improve the response and minimize the oscillation caused by the latency. • Quasi-snow flake divertor plasma configuration has been demonstrated on EAST. - Abstract: In order to improve the plasma control performance and enhance the capability for advanced plasma control, new algorithms such as PEFIT/ISOFLUX plasma shape feedback control, quasi-snowflake plasma shape development and vertical control under new vertical control power supply, have been implemented and experimentally tested and verified in EAST 2014 campaign. P-EFIT is a rewritten version of EFIT aiming at fast real-time equilibrium reconstruction by using GPU for parallelized computation. Successful control using PEFIT/ISOFLUX was established in dedicated experiment. Snowfldivertor plasma shape has the advantage of spreading heat over the divertor target and a quasi-snowflake (QSF) configuration was achieved in discharges with I{sub p} = 0.25 MA and B{sub t} = 1.8T, κ∼1.9, by plasma position feedback control. The shape feedback control to achieve QSF shape has been preliminary implemented by using PEFIT and the initial experimental test has been done. For more robust vertical instability control, the inner coil (IC) and its power supply have been upgraded. A new control algorithm with the combination of Bang-bang and PID controllers has been developed. It is shown that new vertical control power supply together with the new control algorithms results in higher vertical controllability.

  12. Plasma position control in TCABR Tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu. K.; Nascimento, I.C.; Fonseca, A.M.M.; Silva, R.P. da; Ruchko, L.F.; Tuszel, A.G.; Reis, A.P. dos; Sanada, E.K.

    1998-01-01

    The plasma control position in the TCABR tokamak is described. The TCA tokamak was transferred from the Centre de Recherches en Physique des Plasmas, Lausanne, to the Institute of Physics of University of Sao Paulo, renamed TCABR (α=0.18 m, R = 0.62 m, B = 1 T,I p = 100 kA). The control system was reconstructed using mainly components obtained from the TCA tokamak. A new method of plasma position determination is used in TCABR to improve its accuracy. A more detailed theoretical analysis of the feed forward and feedback control is performed as compared with. (author)

  13. Recent plasma control progress on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yuan, Q.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Humphreys, D.A.; Walker, M.L.; Hyatt, A.W.; Leuer, J.A.; Jackson, G.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Penaflor, B.G.; Pigrowski, D.A.; Johnson, R.D.; Welander, A.S. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Zhang, R.R.; Luo, Z.P.; Guo, Y.; Xing, Z.; Zhang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2012-12-15

    In recent 2 years, various algorithms to control plasma shape, current and density have been implemented or improved for EAST tokamak. These plasma control performances have been verified by either simulated or actual experimental operation, and thus plasma control basis has been established for the long pulse operation and high performance H-mode plasma operation with low hybrid wave (LHW) and ion cyclotron resonance frequency (ICRF) heating. Startup simulation has been done by using TOKSYS code for the plasma breakdown in either 3.1 Wb or 4.5 Wb initial poloidal flux state and the scenarios proved to be robust and used for routine operation. Various shape configurations have been well feedback controlled by using ISOFLUX limited, double-null or single null algorithms based on RTEFIT equilibrium reconstruction. For the long pulse operation, strike point control and magnetics drift compensation have been implemented in the plasma control system (PCS). To improve the operation safety and efficiency, the verification of magnetic diagnostics before plasma breakdown has been demonstrated adequate to prevent a discharge in case of key sensor failure.

  14. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  15. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  16. Power supply controlled for plasma torch generation

    International Nuclear Information System (INIS)

    Diaz Z, S.

    1996-01-01

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named 'Destruction of hazard wastes by thermal plasma' actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR's; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author)

  17. Tip Clearance Control Using Plasma Actuators

    Science.gov (United States)

    2007-03-01

    Clearance Control Using Plasma Actuators 4 posed by Denton (1993). A number of investigators have used partial shrouds, or " winglet " designs to...SDBD actuator Plasma enhanced aerodynamics has been demonstrated in a range of applications involving sepa- ration control, lift enhancement, drag... aerodynamic benefits of a squealer tip geometry. Specifically, the squealer tip is known to reduce the discharge coefficient of the tip gap, thereby

  18. Validation of ISTTOK Plasma Position Controller

    International Nuclear Information System (INIS)

    Valcarcel, D. F.; Carvalho, I. S.; Carvalho, B. B.; Fernandes, H.; Silva, C.; Duarte, P.; Duarte, A.; Carvalho, P. J.; Pereira, T.

    2008-01-01

    Active control of plasma position on the ISTTOK tokamak is of extreme importance due to the inherent instability caused by an unfavourable curvature of the external equilibrium magnetic field. The consequences of this instability can be suppressed by applying a dynamic equilibrium field. A digital real-time plasma position control system for ISTTOK has been developed to perform this task. This system uses magnetic measurements to determine the plasma position and feeds the control signal to power supplies that generate the equilibrium fields. After commissioning, the results obtained have shown some discrepancies between the magnetic plasma position reconstruction and several other diagnostics, such as tomography. This discrepancy at some extent is due to the effect of the external magnetic fields on the poloidal magnetic measurements. This work presents a study that addresses this issue. In a future work it will lead to the development of a corrected plasma position algorithm, aiming at obtaining improved performance of plasma discharges and controlled plasma column displacements

  19. The COMPASS Tokamak Plasma Control Software Performance

    Science.gov (United States)

    Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir

    2011-08-01

    The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.

  20. ISTTOK plasma control with the tomography diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H.; Caralho, P.J.; Duarte, P.; Pereira, T.; Coelho, R.; Silva, C. [Association Euratom/IST, Institute of Plasmas and Nuclear Fusion, Technology Graduate Institute, P-1049-001 Lisbon (Portugal)

    2011-07-01

    A real-time plasma position control system is mandatory to achieve long duration (up to 250 ms), Alternating Current (AC) discharges on the ISTTOK tokamak. Such a system has been used for some time supported only on magnetic field diagnostic data. However, this system does not function accurately when the plasma current is low, rendering it inoperative during the plasma current reversal. A tomography diagnostic with 3 pinhole cameras and 8 silicone photodiode channels per camera was installed and customized to supply alternative plasma position to be used for plasma position control. As no filtering is applied, most of the radiation detected is in the visible/near-UV range. This system (i) executes a tomographic reconstruction, (ii) determines the average emissivity position from it, (iii) calculates the shift from the required position and (iv) supplies the vertical field power supply unit with the desired current value, all in less than 100 {mu}s. The horizontal magnetic field power supply unit is expected to be included in the system and will have no impact in the process time. This paper presents the tomography diagnostic architecture together with results of its scientific exploitation in ISTTOK AC discharges, where it has proven to be capable of supplying an accurate plasma position during the current reversal. The use of the tomography diagnostic for plasma position overcomes some limitations of the magnetic diagnostics, but poses challenges of its own such as blindness to plasma current direction. (authors)

  1. Chapter 8: Plasma operation and control

    Science.gov (United States)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as

  2. Status of DIII-D plasma control

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Penaflor, B.

    1995-10-01

    A key component of the DIII-D Advanced Tokamak and Radiative Divertor Programs is the development and implementation of methods to actively control a large number of plasma parameters. These parameters include plasma shape and position, total stored energy, density, rf loading resistance, radiated power and more detailed control of the current profile. To support this research goal, a flexible and easily expanded digital control system has been developed and implemented. We have made parallel progress in modeling of the plasma, poloidal coils, vacuum vessel, and power system dynamics and in ensuring the integrity of diagnostic and command circuits used in control. Recent activity has focused on exploiting the mature digital control platform through the implementation of simple feedback controls of more exotic plasma parameters such as enhanced divertor radiation, neutral pressure and Marfe creation and more sophisticated identification and digital feedback control algorithms for plasma shape, vertical position, and safety factor on axis (q 0 ). A summary of recent progress in each of these areas will be presented

  3. Tokamak plasma current disruption infrared control system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1987-01-01

    This patent describes a device for magnetically confining a plasma driven by a plasma current and contained within a toroidal vacuum chamber, the device having an inner toroidal limiter on an inside wall of the vacuum chamber and an arrangement for the rapid prediction and control in real time of a major plasma disruption. The arrangement is described which includes: scanning means sensitive to infrared radiation emanating from within the vacuum chamber, the infrared radiation indicating the temperature along a vertical profile of the inner toroidal limiter. The scanning means is arranged to observe the infrared radiation and to produce in response thereto an electrical scanning output signal representative of a time scan of temperature along the vertical profile; detection means for analyzing the scanning output signal to detect a first peaked temperature excursion occurring along the profile of the inner toroidal limiter, and to produce a detection output signal in repsonse thereto, the detection output signal indicating a real time prediction of a subsequent major plasma disruption; and plasma current reduction means for reducing the plasma current driving the plasma, in response to the detection output signal and in anticipation of a subsequent major plasma disruption

  4. Plasma control system upgrade and increased plasma stability in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Mastrovito, D., E-mail: dmastrovito@pppl.go [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States); Gates, D.; Gerhard, S.; Lawson, J.; Ludescher-Furth, C.; Marsala, R. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States)

    2010-07-15

    Plasma control on the National Spherical Torus Experiment (NSTX) was previously accomplished using eight 333 MHz G4 processors built by Sky computers. Several planned improvements and additional control algorithms required significant upgrades to our real-time control computers and real-time data acquisition infrastructure. Several in-house modules have been designed and implemented including: the digital time stamp module (DITS) and for digital/analog front panel data port (FPDP) output, the FPDP output module digital/analog (FOMD/A). Standard Linux based Intel computers perform the real-time control tasks and InfiniBand as been employed for communication between a user-accessible 'host' server and the real-time computer. In addition to several independent real-time processes the General Atomics developed PCS (Bell (2006) ) system infrastructure continues to be used on NSTX. While maintaining previous functionality, improvements in the control system software include: an RWM feedback algorithm, beta feedback NBI control, more comprehensive error logging and trapping, more user-friendly interface, more complete archiving and restoring functionality, and better status reporting and diagnostic tools. Once completed, we succeeded in increasing overall plasma stability and decreasing control system latency by several times.

  5. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  6. Magnetic Configuration Control of ITER Plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Artaserse, G.; Mattei, M.; Ambrosino, G.; Crisanti, F.; Tommasi, G. de; Fresa, R.; Portone, A.; Sartori, F.; Villone, F.

    2006-01-01

    The aim of this paper is to review the capability of the ITER Poloidal Field (PF) system of controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. The paper is broadly divided in two main sections devoted, respectively, to open loop (feed-forward) and closed loop (feedback) control. In the first part of the study the PF system is assessed with respect to the initiation, ramp-up, sustained burn, ramp-down phases of the main plasma inductive scenario. The limiter-to-divertor configuration transition phase is considered in detail with the aim of assessing the PF capability to form an X-point at the lowest possible current and, therefore, to relax the thermal load on the limiter surfaces. Moreover, during the sustained burn it is important to control plasmas with a broad range of current density profiles. In the second part of the study the plasma vertical feedback control requirements are assessed in details, in particular for the high elongation configurations achievable during the early limiter-to-X point transition phase. Non-rigid plasma displacement models are used to assess the control system voltage and current requirements of different radial field control circuits obtained, for example, by connecting the outermost PF coils, some CS coils, coils sub-sections etc. At last, the main 3D effects of the vessel ports are modeled and their impact of vertical stabilization evaluated. (author)

  7. Plasma position control in SST1 tokamak

    Indian Academy of Sciences (India)

    also placed inside the vessel, however the controller would ignore fast but insignificant changes in radius arising ... poloidal cross-sectional view of the SST1 plasma along with the stabilizers are shown in figure 1 and ... [1] model which has shown excellent agreement with control experiments in TCV tokamak and also with ...

  8. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    HUMPHREYS, D.A.; FERRON, J.R.; JOHNSON, R.D; LEUER, J.A.; PENAFLOR, B.G.; WALKER, M.L.; WELANDER, A.S.; KHAYRUTDINOV, R.R; DOKOUKA, V.; EDGELL, D.H.; FRANSSON, C.M.

    2004-03-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  9. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  10. Boundary plasma control with the ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Beyer, P.

    1999-01-01

    Ergodic divertor experiments on Tore Supra provide evidence of significant control of plasma-wall interaction. Theoretical investigation of the laminar region (i.e. governed by parallel transport) indicates that control of the plasma state at the target plate can be achieved with plasma states similar to that observed with the axisymmetric divertor. Analysis of the temperature field with a 2-D test particle code allows one to recover the observed spatial modulation and shows that an intrinsic barrier appears to develop at the separatrix. Energy deposition peaking, analysed with a 3-D code, is strongly reduced when moderate transverse transport is considered. Possible control of upstream parameters can thus be achieved in the ergodic region, for instance a lowering of the parallel energy flux by cross field transport. (author)

  11. Boundary plasma control with the ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Beyer, P.

    2001-01-01

    Ergodic divertor experiments on Tore Supra provide evidence of significant control of plasma-wall interaction. Theoretical investigation of the laminar region (i.e. governed by parallel transport) indicates that control of the plasma state at the target plate can be achieved with plasma states similar to that observed with the axisymmetric divertor. Analysis of the temperature field with a 2-D test particle code allows one to recover the observed spatial modulation and shows that an intrinsic barrier appears to develop at the separatrix. Energy deposition peaking, analysed with a 3-D code, is strongly reduced when moderate transverse transport is considered. Possible control of upstream parameters can thus be achieved in the ergodic region, for instance a lowering of the parallel energy flux by cross field transport. (author)

  12. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  13. Cold plasma: Quality control and regulatory considerations

    Science.gov (United States)

    In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut produce, nuts, spices, seeds, and other foods. Research has demonstrated effective control of human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and o...

  14. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  15. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  16. Novel magnetic controlled plasma sputtering method

    International Nuclear Information System (INIS)

    Axelevich, A.; Rabinovich, E.; Golan, G.

    1996-01-01

    A novel method to improve thin film vacuum sputtering is presented. This method is capable of controlling the sputtering plasma via an external set of magnets, in a similar fashion to the tetrode sputtering method. The main advantage of the Magnetic Controlled Plasma Sputtering (MCPS) is its ability to independently control all deposition parameters without any interference or cross-talk. Deposition rate, using the MCPS, is found to be almost twice the rate of triode and tetrode sputtering techniques. Experimental results using the MCPS to deposit Ni layers are described. It was demonstrated that using the MCPS method the ion beam intensity at the target is a result of the interaction of a homogeneous external magnetic field and the controlling magnetic fields. The MCPS method was therefore found to be beneficial for the production of pure stoichiometric thin solid films with high reproducibility. This method could be used for the production of compound thin films as well. (authors)

  17. The COMPASS Tokamak Plasma Control Software Performance

    Czech Academy of Sciences Publication Activity Database

    Valcárcel, D.F.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Janky, F.; Havlíček, Josef; Beňo, R.; Horáček, Jan; Hron, Martin; Pánek, Radomír

    2011-01-01

    Roč. 58, č. 4 (2011), s. 1490-1496 ISSN 0018-9499. [Real Time Conference, RT10/17th./. Lisboa, 24.05.2010-28.05.2010] R&D Projects: GA MŠk 7G09042; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Real-Time * ATCA * Data Acquisition * Plasma Control Software Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2011 http://dx.doi.org/10.1109/TNS.2011.2143726

  18. Plasma Edge Control in Tore Supra

    International Nuclear Information System (INIS)

    Evans, T.E.; Mioduszewski, P.K.; Foster, C.; Haste, G.; Horton, L.; Grosman, A.; Ghendrih, P.; Chatelier, M.; Capes, H.; Michelis, C. De; Fall, T.; Geraud, A.; Grisolia, C.; Guilhem, D.; Hutter, T.

    1990-01-01

    TORE SUPRA is a large superconducting tokamak designed for sustaining long inductive pulses (t∼ 30 s). In particular, all the first wall components have been designed for steady-state heat and particle exhaust, particle injection, and additional heating. In addition to these technological assets, a strict control of the plasma-wall interactions is required. This has been done at low power: experiments with ohmic heating have been mainly devoted to the pump limiter, ergodic divertor and pellet injection experiments. Some specific problems arising in large tokamaks are encountered; the pump limiter and the ergodic divertor yield the expected effects on the plasma edge. The effects on the bulk are discussed

  19. Plasma position control device for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Fujita, Jun-ya; Ioki, Kimihiro

    1995-10-03

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.).

  20. Plasma position control device for thermonuclear device

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Fujita, Jun-ya; Ioki, Kimihiro.

    1995-01-01

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.)

  1. Magnetic configuration control of ITER plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Mattei, M.; Portone, A.; Ambrosino, G.; Artaserse, G.; Crisanti, F.; De Tommasi, G.; Fresa, R.; Sartori, F.; Villone, F.

    2007-01-01

    The aim of this paper is to present some new tools used to review the capability of the ITER Poloidal Field (PF) system in controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. Some preliminary results obtained during ongoing activities in collaboration between ENEA/CREATE and EFDA are presented. The paper is divided in two main parts devoted, respectively, to the presentation of a procedure for the PF current optimisation during the scenario, and of a software environment for the study of the PF system capabilities using the plasma linearized response. The proposed PF current optimisation procedure is then used to assess Scenario 2 design, also taking into account the presence of axisymmetric eddy currents and possible variations of poloidal beta and internal inductance. The numerical linear model based tool derived from the JET oriented eXtreme Shape Controller (XSC) tools is finally used to obtain results on the strike point sweeping in ITER

  2. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  3. MATURING ECRF TECHNOLOGY FOR PLASMA CONTROL

    International Nuclear Information System (INIS)

    CALLIS, R.W.; CARY, W.P.; CHU, S.; LOANE, J.L.; ELLIS, R.A.; FELCH, K.; GORELOV, Y.A.; GRUNLOH, H.J.; HOSEA, J.; KAJIWARA, K.; LOHR, J.; LUCE, T.C.; PEAVY, J.J.; PINSKER, R.I.; PONCE, D.; PRATER, R.; SHAPIRO, M.; TEMKIN, R.J.; TOOKER, J.F.

    2002-01-01

    OAK A271 MUTURING ECRF TECHNOLOGY FOR PLASMA CONTROL. Understanding of the physics of internal transport barriers (ITBs) is being furthered by analysis and comparisons of experimental data from many different tokamaks worldwide. An international database consisting of scalar and 2-D profile data for ITB plasmas is being developed to determine the requirements for the formation and sustainment of ITBs and to perform tests of theory-based transport models in an effort to improve the predictive capability of the models. Analysis using the database indicates that: (a) the power required to form ITBs decreases with increased negative magnetic shear of the target plasma, and: (b) the E x B flow shear rate is close to the linear growth rate of the ITG modes at the time of barrier formation when compared for several fusion devices. Tests of several transport models (JETTO, Weiland model) using the 2-D profile data indicate that there is only limited agreement between the model predictions and the experimental results for the range of plasma conditions examined for the different devices (DIII-D, JET, JT-60U). Gyrokinetic stability analysis (using the GKS code) of the ITB discharges from these devices indicates that the ITG/TEM growth rates decrease with increased negative magnetic shear and that the E x B shear rate is comparable to the linear growth rates at the location of the ITB

  4. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  5. Ignition and burn control in tokamak plasmas

    International Nuclear Information System (INIS)

    Borrass, K.; Gruber, O.; Lackner, K.; Minardi, E.; Neuhauser, J.; Wilhelm, R.; Wunderlich, R.; Bromberg, L.; Cohn, D.R.

    1981-01-01

    Different schemes for the control of the thermal instability in an ignited fusion reactor are analysed by zero- and one-dimensional models. Passive stabilization methods considered are ripple-enhanced ion heat conduction, the effect of the major-radius variation of the plasma column in a time-independent vertical field, and the combination of both effects, including the spatial variation of the toroidal-ripple amplitude. Active control methods analysed are high-Q-driven operation and feedback-controlled major-radius variation following different scenarios. One-dimensional analyses taking into account only conductive losses show the existence of a single unstable mode in the energy balance, justifying, under these assumptions, the study of only global control. (author)

  6. Architecture of WEST plasma control system

    International Nuclear Information System (INIS)

    Ravenel, N.; Nouailletas, R.; Barana, O.; Brémond, S.; Moreau, P.; Guillerminet, B.; Balme, S.; Allegretti, L.; Mannori, S.

    2014-01-01

    To operate advanced plasma scenario (long pulse with high stored energy) in present and future tokamak devices under safe operation conditions, the control requirements of the plasma control system (PCS) leads to the development of advanced feedback control and real time handling exceptions. To develop these controllers and these exceptions handling strategies, a project aiming at setting up a flight simulator has started at CEA in 2009. Now, the new WEST (W Environment in Steady-state Tokamak) project deals with modifying Tore Supra into an ITER-like divertor tokamak. This upgrade impacts a lot of systems including Tore Supra PCS and is the opportunity to improve the current PCS architecture to implement the previous works and to fulfill the needs of modern tokamak operation. This paper is dealing with the description of the architecture of WEST PCS. Firstly, the requirements will be presented including the needs of new concepts (segments configuration, alternative (or backup) scenario, …). Then, the conceptual design of the PCS will be described including the main components and their functions. The third part will be dedicated to the proposal RT framework and to the technologies that we have to implement to reach the requirements

  7. Plasma actuators for bluff body flow control

    Science.gov (United States)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  8. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  9. An advanced plasma control system for Tore Supra

    International Nuclear Information System (INIS)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author)

  10. Numerical simulation and optimal control in plasma physics

    International Nuclear Information System (INIS)

    Blum, J.

    1989-01-01

    The topics covered in this book are: A free boundary problem: the axisymmetric equilibrium of the plasma in a Tokamak; Static control of the plasma boundary by external currents; Existence and control of a solution to the equilibrium problem in a simple case; Study of equilibrium solution branches and application to the stability of horizontal displacements; Identification of the plasma boundary and plasma current density from magnetic measurements; Evolution of the equilibrium at the diffusion time scale; Evolution of the equilibrium of a high aspect-ratio circular plasma; Stability and control of the horizontal displacement of the plasma

  11. The ITER Plasma Control System Simulation Platform

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W.; Welander, A.S.; Winter, A.

    2015-01-01

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  12. The ITER Plasma Control System Simulation Platform

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.L., E-mail: walker@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Ambrosino, G.; De Tommasi, G. [CREATE/Università di Napoli Federico II, Napoli (Italy); Humphreys, D.A. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Napoli (Italy); Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Welander, A.S. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France)

    2015-10-15

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  13. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  14. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  15. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  16. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  17. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  18. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  19. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    Science.gov (United States)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  20. Plasma control for efficient extreme ultra-violet source

    International Nuclear Information System (INIS)

    Takahashi, Kensaku; Nakajima, Mitsuo; Kawamura, Tohru; Shiho, Makoto; Hotta, Eiki; Horioka, Kazuhiko

    2008-01-01

    To generate a high efficiency extreme-ultraviolet (EUV) source, effects of plasma shape for controlling radiative plasmas based on xenon capillary discharge are experimentally investigated. The radiation characteristics observed via tapered capillary discharge are compared with those of straight one. From the comparison, the long emission period and different plasma behaviors of tapered capillary discharge are confirmed. This means that control of the plasma geometry is effective for prolonging the EUV emission period. This result also indicates that the plasma shape control seems to have a potential for enhancing the conversion efficiency. (author)

  1. Developments in plasma physics and controlled fusion

    International Nuclear Information System (INIS)

    Thompson, W.B.

    1980-01-01

    Some developments in plasma physics over the past twenty years are considered from the theoretical physics standpoint under the headings; oscillations, waves and instabilities, plasma turbulence, basic kinetic theory, and developments in fusion. (UK)

  2. Advances in integrated plasma control on DIII-D

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Hahn, S.H.; Humphreys, D.A.; In, Y.; Johnson, R.D.; Kim, J.S.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Welander, A.S.; Xiao, B.

    2007-01-01

    The DIII-D advanced tokamak physics program requires extremely high performance from the DIII-D plasma control system, including simultaneous accurate regulation of plasma shape, stored energy, density and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of new model-based plasma controllers on DIII-D. We also describe the development of the control software, hardware, and model-based control algorithms for the superconducting EAST and KSTAR tokamaks

  3. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  4. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    1993-05-01

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  5. Control of open end plasma flow utilizing orbital stochasticity

    International Nuclear Information System (INIS)

    Hojo, Hitoshi

    1995-01-01

    It has been known that the control of plasma outside the confinement region of diverter plasma and others in a magnetic field confinement device is very important for improveing the confinement of bulk plasma. The control of plasma outside a confinement region bears two roles, one is the reduction of the thermal load on a diverter plate and others due to the plasma particles lost from the confinement region, and another is the restriction of the back flow of cold plasma and impurities generated outside the confinement region to a bulk plasma region. In this study, the new method of controlling plasma outside a confinement region called magnetic diverter is considered. To the plasma particles advancing along magnetic force lines, the reflection and capture of the plasma particles occur in the region of orbital stochasticity, and the thermal load on an end plate and the reverse flow to a bulk plasma region are restricted. The numerical computation model used regarding the particle control utilizing the orbital stochasticity and the results of calculating the orbit of plasma particles in a magnetic field are reported. (K.I.)

  6. PhysLink Physics and Astronomy online education and reference

    CERN Document Server

    The PhysLink.com is a comprehensive physics and astronomy online education, research and reference web site. In addition to providing high-quality content, PhysLink.com is a meeting place for professionals, students and other curious minds.

  7. Control of plasma position in the CASTOR tokamak

    International Nuclear Information System (INIS)

    Valovic, M.

    1988-11-01

    A simple servo-system designed for plasma position control in the CASTOR tokamak is described. Both radial and vertical plasma displacements were minimized using two servo-loops consisting of detection coils, a conventional electric controller and an amplifier operated as an unipolar voltage-controlled current source. To ensure the optimum conditions in the start-up phase of the discharge, currents in the servo-systems were externally preprogrammed. The prescribed plasma position was maintained with the accuracy of 3 mm. The feedback control improves plasma parameters, e.g. it removes the positional disruption at the end of the tokamak discharge. (J.U.). 4 figs., 3 refs

  8. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    Science.gov (United States)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  9. Feedback control of plasma position in the HL-1 tokamak

    International Nuclear Information System (INIS)

    Yuan Baoshan; Jiao Boliang; Yang Kailing

    1991-01-01

    In the HL-1 tokamak with a thick copper shell, the control of plasma position is successfully performed by a feedback-feedforward system with dual mode regulator and the equilibrium field coils outside the shell. The plasma position can be controlled within ±2 mm in both vertical and horizontal directions under the condition that the iron core of transformer is not saturated

  10. Dynamic Stall Control Using Plasma Actuators

    Science.gov (United States)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste <0.5) results in oscillatory aerodynamic loads in the stalled stage of dynamic stall; (b) All excitation resulted in earlier flow reattachment; and (c) Excitation at progressively higher Ste weakened and eventually eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  11. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  12. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...

  13. Current control necessary for toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  14. Digital control of plasma position in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Emami, M.; Babazadeh, A.R.; Roshan, M.V.; Memarzadeh, M.; Habibi, H. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center. Plasma Physics Lab.

    2002-03-01

    Plasma position control is one of the important issues in the design and operation of tokamak fusion research device. Since a tokamak is basically an electrical system consisting of power supplies, coils, plasma and eddy currents, a model in which these components are treated as an electrical circuits is used in designing Damavand plasma position control system. This model is used for the simulation of the digital control system and its parameters have been verified experimentally. In this paper, the performance of a high-speed digital controller as well as a simulation study and its application to the Damavand tokamak is discussed. (author)

  15. Atto-second control of collective electron motion in plasmas

    International Nuclear Information System (INIS)

    Borot, Antonin; Malvache, Arnaud; Chen, Xiaowei; Jullien, Aurelie; Lopez-Martens, Rodrigo; Geindre, Jean-Paul; Audebert, Patrick; Mourou, Gerard; Quere, Fabien

    2012-01-01

    Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with atto-second precision. Here, we demonstrate atto-second control of collective electron motion in plasmas driven by extreme intensity (approximate to 10 18 W cm -2 ) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide sub-cycle motion of electrons from the plasma with characteristic energies in the multi-kilo-electron-volt range-two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards atto-second control of charge dynamics in laser-driven plasma experiments. (authors)

  16. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  17. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  18. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  19. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  20. Alushta-2012. International Conference-School on Plasma Physics and Controlled Fusion and the Adjoint Workshop 'Nano-and micro-sized structures in plasmas'. Book of Abstracts

    International Nuclear Information System (INIS)

    Makhlaj, V.A.

    2012-01-01

    The Conference was devoted to a new valuable information about the present status of plasma physics and controlled fusion research. The main topics was : magnetic confinement systems; plasma heating and current drive; ITER and fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics; formation of nano-and micro-sized structures in plasmas; properties of plasmas with nano- and micro- objects

  1. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  2. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  3. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  4. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  5. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  6. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Goutych, I F; Gresillon, D; Sitenko, A G

    1997-12-31

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas.

  7. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Goutych, I.F.; Gresillon, D.; Sitenko, A.G.

    1996-01-01

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  8. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  9. Improvement of confinement characteristics of tokamak plasma by controlling plasma-wall interactions

    International Nuclear Information System (INIS)

    Sengoku, Seio

    1985-08-01

    Relation between plasma-wall interactions and confinement characteristics of a tokamak plasma with respect to both impurity and fuel particle controls is discussed. Following results are obtained from impurity control studies: (1) Ion sputtering is the dominant mechanism of impurity release in a steady state tokamak discharge. (2) By applying carbon coating on entire first wall of DIVA tokamak, dominant radiative region is concentrated more in boundary plasma resulting a hot peripheral plasma with cold boundary plasma. (3) A physical model of divertor functions about impurity control is empilically obtained. By a computer simulation based on above model with respect to divertor functions for JT-60 tokamak, it is found that the allowable electron temperature of the divertor plasma is not restricted by a condition that the impurity release due to ion sputtering does not increase continuously. (4) Dense and cold divertor plasma accompanied with strong remote radiative cooling was diagnosed along the magnetic field line in the simple poloidal divertor of DOUBLET III tokamak. Strong particle recycling region is found to be localized near the divertor plate. by and from particle control studies: (1) The INTOR scaling on energy confinement time is applicable to high density region when a core plasma is fueled directly by solid deuterium pellet injection in DOUBLET III tokamak. (2) As remarkably demonstrated by direct fueling with pellet injection, energy confinement characteristics can be improved at high density range by decreasing particle deposition at peripheral plasma in order to reduce plasma-wall interaction. (3) If the particle deposition at boundary layer is necessarily reduced, the electron temperature at the boundary or divertor region increases due to decrease of the particle recycling and the electron density there. (J.P.N.)

  10. Static and dynamic control of plasma equilibrium in a Tokamak

    International Nuclear Information System (INIS)

    Blum, J.; Dei Cas, R.

    1979-01-01

    We are dealing here with the problem of controlling the plasma boundary and its displacements. Static control consists in determining the currents in the external coils of the Tokamak so that the plasma boundary has certain fixed characteristics: radial position, vertical elongation, desired shape. A self-consistent method is proposed here, considering a free plasma boundary, and using the techniques of optimal control of distributed parameter systems to solve the problem. The dynamic control problem considered in the second part of the paper is the control of the plasma radial displacements. An elaborate system of preprogramming and feedback control has been developed to ensure equilibrium and stability of the horizontal plasma motions. Optimal control techniques have been used to calculate the optimal primary coils configuration, the preprogramming voltages and the feedback gains. A new stability diagrams has been obtained which takes into account the erosion of the plasma by the limiter. All these calculations have been applied successfully to TFR 600 where thin liner and the presence of an iron core make the problem of stabilization of the radial displacements very difficult

  11. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  12. Real-time control of Tokamak plasmas: from control of physics to physics-based control

    International Nuclear Information System (INIS)

    Felici, F. A. A.

    2011-11-01

    Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in controller design. In this thesis, the two subjects have been merged, using control solutions as experimental tool for physics studies, and using physics knowledge for developing new advanced control solutions. The TCV tokamak at CRPP-EPFL is ideally placed to explore issues at the interface between plasma physics and plasma control, by combining a digital realtime control system with a flexible and powerful set of actuators, in particular the electron cyclotron heating and current drive system (ECRH/ECCD). This experimental platform has been used to develop and test new control strategies for three plasma physics instabilities: sawtooth, edge localized mode (ELM) and neoclassical tearing mode (NTM). The period of the sawtooth crash, a periodic MHD instability in the core of a tokamak plasma, can be varied by localized deposition of ECRH/ECCD near the q = 1 surface (q: safety factor). A sawtooth pacing controller was developed which is able to control the time of appearance of the next sawtooth crash. Each individual sawtooth period can be controlled in real-time. A similar scheme is applied to H-mode plasmas with type-I ELMs, where it is shown that pacing regularizes the ELM period. The regular, reproducible and therefore predictable sawtooth crashes have been used to study the relationship between sawteeth and NTMs. Postcrash MHD activity can provide the ‘seed’ island for an NTM, which then grows under its neoclassical bootstrap drive. The seeding of 3/2 NTMs by long sawtooth crashes can be avoided by preemptive, crash-synchronized EC power injection pulses at the q = 3/2 rational surface location. NTM stabilization experiments in which the ECRH deposition location is moved in real-time with steerable mirrors have

  13. Control of plasma column horizontal position in TBR-1

    International Nuclear Information System (INIS)

    Tuszel, A.G.; Rincoski, C.R.M.

    1990-01-01

    The TBR-1 is a small tokamak built at the Physics Institute of the University of Sao Paulo. It was originally designed with a simple vertical field power supply made of one fast capacitor bank for vertical current build-up and one slow capacitor bank for flat-top phase, without any control but the adjustable initial voltages of the capacitors. With such an elementary system, the plasma cannot be held in the center of the vacuum vessel for the whole duration of the plasma. This led to a suboptimal performance with easy disruptions. A control system was designed to hold the plasma centered in the radial coordinate. (Author)

  14. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis

    Science.gov (United States)

    Baranov, O.; Bazaka, K.; Kersten, H.; Keidar, M.; Cvelbar, U.; Xu, S.; Levchenko, I.

    2017-12-01

    Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification based on the incorporation of substrates into plasma-generating circuitry is also proposed and illustrated by its application to a wide variety of plasma reactors, where the effect of substrate incorporation on the plasma fluxes is emphasized. With the key process and material parameters, such as growth and modification rates, phase transitions, crystallinity, density of lattice defects, and others being linked to plasma and energy fluxes, this review offers direction to physicists, engineers, and materials scientists engaged in the design and development of instrumentation for plasma processing and diagnostics, where the selection of the correct tools is critical for the advancement of emerging and high-performance applications.

  15. Development of the 'JFT-2' tokamak plasma position control system

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Matsuzaki, Yoshimi; Suzuki, Norio; Murai, Katsuji; Suzuki, Satoshi.

    1980-01-01

    Digital control technique was applied to control the plasma position in the JFT-2 tokamak experiment device. The detail of the JFT-2 is described elsewhere. The plasma position control system consists of a Hitachi control computer, HIDIC 80, and a Hitachi micro-computer, HIDIC 08E. The plasma position is detected by the position control computer, and compared with a preset value. Then, a reference signal is supplied to the micro-computer controlling power source, and the phase control of the thyristor controlling power source is performed. Since the behavior of plasma is very fast, the fast control is required. The control of the thyristor controlling power source is made by direct digital control (DDC). The main component of the hardware of the present system is the micro-computer HIDIC 08E. The software is the direct task system without the operating system (OS). The results of experiments showed that the feedback control of the system worked well. (Kato, T.)

  16. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  17. Modelling and control of a tokamak plasma; Modelisation et commande d`un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bremond, S

    1995-10-18

    Vertically elongated tokamak plasmas, while attractive as regards Lawson criteria, are intrinsically instable. It is found that the open-loop instability dynamics is characterised by the relative value of two dimensionless parameters: the coefficient of inductive coupling between the vessel and the coils, and the coil damping efficiency on the plasma displacement relative to that of the vessel. Applications to Tore Supra -where the instability is due to the iron core attraction- and DIII-D are given. A counter-effect of the vessel, which temporarily reverses the effect of coil control on the plasma displacement, is seen when the inductive coupling is higher than the damping ratio. Precise control of the plasma boundary is necessary if plasma-wall interaction and/or coupling to heating antennas are to be monitored. A positional drift, of a few mm/s, which had been observed in the Tore Supra tokamak, is explained and corrected. A linear plasma shape response model is then derived from magnetohydrodynamic equilibrium calculation, and proved to be in good agreement with experimental data. An optimal control law is derived, which minimizes an integral quadratic criteria on tracking errors and energy expenditure. This scheme avoids compensating coil currents, and could render local plasma shaping more precise. (authors). 123 refs., 77 figs., 6 tabs., 4 annexes.

  18. Method of controlling plasma discharge in a thermonuclear device

    International Nuclear Information System (INIS)

    Kawasaki, Kozo; Ishida, Takayuki; Takemaru, Koichi; Kawasaki, Takahide.

    1982-01-01

    Purpose: To prolong the plasma discharging period by previously increasing the temperature at the thick portion of a vacuum container prior to the plasma discharge to thereby decrease the temperature difference caused by the plasma discharge between the thick portion and the bellows. Method: Temperature values at the outer surface of the thick portion and the bellows of a vacuum container detected by temperature sensors are applied to the input processing section of a temperature control device, and baking control is carried out by way of the output processing section so that each of the portions of the vacuum container may be maintained at the temperature set by the temperature setting section based on the calculation performed in the control processing section. By previously increasing the temperature β at the thick portion higher by about 100 0 C than the temperature α for the bellows in the baking treatment prior to the plasma discharge, the plasma discharge period during which the temperature levels at both of the portions are reversed after the plasma discharge and the temperature difference arrives at a predetermined level i.g., of 100 0 C can significantly be prolonged as compared with the case where the plasma discharge is started at the same temperature for both of the portions. (Yoshino, Y.)

  19. Reactive gas control of non-stable plasma conditions

    International Nuclear Information System (INIS)

    Bellido-Gonzalez, V.; Daniel, B.; Counsell, J.; Monaghan, D.

    2006-01-01

    Most industrial plasma processes are dependant upon the control of plasma properties for repeatable and reliable production. The speed of production and range of properties achieved depend on the degree of control. Process control involves all the aspects of the vacuum equipment, substrate preparation, plasma source condition, power supplies, process drift, valves (inputs/outputs), signal and data processing and the user's understanding and ability. In many cases, some of the processes which involve the manufacturing of interesting coating structures, require a precise control of the process in a reactive environment [S.J. Nadel, P. Greene, 'High rate sputtering technology for throughput and quality', International Glass Review, Issue 3, 2001, p. 45. ]. Commonly in these circumstances the plasma is not stable if all the inputs and outputs of the system were to remain constant. The ideal situation is to move a process from set-point A to B in zero time and maintain the monitored signal with a fluctuation equal to zero. In a 'real' process that's not possible but improvements in the time response and energy delivery could be achieved with an appropriate algorithm structure. In this paper an advanced multichannel reactive plasma gas control system is presented. The new controller offers both high-speed gas control combined with a very flexible control structure. The controller uses plasma emission monitoring, target voltage or any process sensor monitoring as the input into a high-speed control algorithm for gas input. The control algorithm and parameters can be tuned to different process requirements in order to optimize response times

  20. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  1. Advances in Integrated Plasma Control on DIII-D

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Humphreys, D.A.

    2006-01-01

    The DIII-D experimental program in advanced tokamak (AT) physics requires extremely high performance from the DIII-D plasma control system (PCS) [B.G.Penaflor, et al., 4 th IAEA Tech. Mtg on Control and Data Acq., San Diego, CA (2003)], including simultaneous and highly accurate regulation of plasma shape, stored energy, density, and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of several new model-based plasma controllers on DIII-D. We discuss experimental use of advanced shape control algorithms containing nonlinear techniques for improving control of steady state plasmas, model-based controllers for optimal rejection of edge localized mode disturbances during resistive wall mode stabilization, model-based controllers for neoclassical tearing mode stabilization, including methods for maximizing stabilization effectiveness with substantial constraints on available power, model-based integrated control of plasma rotation and beta, and initial experience in development of model-based controllers for advanced tokamak current profile modification. The experience gained from DIII-D has been applied to the development of control systems for the EAST and KSTAR tokamaks. We describe the development of the control software, hardware, and model-based control algorithms for these superconducting tokamaks, with emphasis on relevance of

  2. Plasma impurity-control studies in CTX

    International Nuclear Information System (INIS)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 μs and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 μs. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver

  3. Plasma impurity-control studies in CTX

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 ..mu..s and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 ..mu..s. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver.

  4. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  5. Strategies for the plasma position and shape control in IGNITOR

    International Nuclear Information System (INIS)

    Ramogida, G.; Alladio, F.; Albanese, R.

    2006-01-01

    The control of the plasma position and shape is a crucial issue in IGNITOR as in every compact, high field, elongated tokamak. The capability of the Poloidal Field Coil system, as presently designed, to provide an effective vertical stabilization of the plasma has been investigated using the CREATE L response model [R. Albanese, F. Villone, '' The Linearized CREATE L Plasma Response Model for the Control of Current, Position and Shape in Tokamaks '', Nucl. Fus., vol. 38, p. 723 (1998)]. This linearized MHD model assumes an axisymmetric deformable plasma described by few global parameters. An optimization of the vertical position control strategy has been carried out and the most effective coil combination has been selected to stabilize the plasma while fulfilling engineering constraints on the coils and minimizing the required power and voltage. The two pairs of coils selected for the vertical control will be fed up with up-down anti-symmetric currents provided by a dedicated supply and overlapped to the scenario currents. The growth rate of the vertical instability and the power required by the active stabilization system have been estimated with this model, indicating that it is possible to design a control system able to guarantee a stability region that includes the most interesting operation conditions. An assessment of the requirements for the plasma cross section shape control has been carried out considering independent perturbations of the plasma global parameters as disturbances and showing that the undesired shape modification rejection is possible with the present PFC and power supply system. The PF coils have been ranked with respect to their capability to restore the shape modifications due to different plasma disturbances and the most effective coil combination, that minimizes recovery time and voltage required, has been selected. In order to have additional means to monitor and control the centre of the plasma column, under demanding conditions

  6. Strategies for the plasma position and shape control in IGNITOR

    International Nuclear Information System (INIS)

    Villone, F.; Albanese, R.; Ambrosino, G.; Pironti, A.; Rubinacci, G.; Ramogida, G.; Alladio, F.; Bombarda, F.; Coletti, A.; Cucchiaro, A.; Maddaluno, G.; Pizzicaroli, G.; Pizzuto, A.; Roccella, M.; Santinelli, M.; Coppi, B.

    2007-01-01

    The capability of the poloidal field coil system, as presently designed, to provide an effective vertical stabilization of the plasma in the IGNITOR machine has been investigated using the CREATE L response model. An optimization of the vertical position control strategy has been carried out and the most effective coil combination has been selected to stabilize the plasma while fulfilling engineering constraints on the coils and minimizing the required power and voltage. The growth rate of the vertical instability and the power required by the active stabilization system has been estimated with this model. The possible failure of the relevant electromagnetic diagnostics has been taken into account, evaluating the robustness of the plasma position reconstruction strategy. A realistic description of the power supply system has permitted to carry out the optimization of the proportional-integrative-derivative (PID) controller, both with a voltage and a current loop control scheme. An assessment of the requirements for the plasma cross section shape control has been carried out considering perturbations of the plasma global parameters independent of each other and showing that the undesired shape modification rejection is possible with the present PFC and power supply system. The PF coils have been rated relative to their capability to restore shape modifications due to different plasma disturbances. The most effective coil combination, that minimizes recovery time and voltage required, has been identified

  7. Automation of Aditya tokamak plasma position control DC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Arambhadiya, Bharat, E-mail: bharat@ipr.res.in; Raj, Harshita; Tanna, R.L.; Edappala, Praveenlal; Rajpal, Rachana; Ghosh, Joydeep; Chattopadhyay, P.K.; Kalal, M.B.

    2016-11-15

    Highlights: • Plasma position control is very essential for obtaining repeatable high temperature, high-density discharges of longer durations in tokomak. • The present capacitor bank has limitations of maximum current capacity and position control beyond 200 ms. • The installation of a separate set of coils and a DC power supply can control the plasma position beyond 200 ms. • A high power thyristor (T588N1200) triggers for DC current pulse of 300 A fires precisely at required positions to modify plasma position. • The commissioning is done for the automated in-house, quick and reliable solution. - Abstract: Plasma position control is essential for obtaining repeatable high temperature, high-density discharges of longer duration in tokamaks. Recently, a set of external coils is installed in the vertical field mode configuration to control the radial plasma position in ADITYA tokamak. The existing capacitor bank cannot provide the required current pulse beyond 200 ms for position control. This motivated to have a DC power supply of 500 A to provide current pulse beyond 200 ms for the position control. The automatization of the DC power supply mandated interfaces with the plasma control system, Aditya Pulse Power supply, and Data acquisition system for coordinated discharge operation. A high current thyristor circuit and a timer circuit have been developed for controlling the power supply automatically for charging vertical field coils of Aditya tokamak. Key protection interlocks implemented in the development ensure machine and occupational safety. Fiber-optic trans-receiver isolates the power supply with other subsystems, while analog channel is optically isolated. Commissioning and testing established proper synchronization of the power supply with tokamak operation. The paper discusses the automation of the DC power supply with main circuit components, timing control, and testing results.

  8. Progress and plan of KSTAR plasma control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Sang-hee, E-mail: hahn76@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Y.J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Penaflor, B.G. [General Atomics, San Diego, CA (United States); Bak, J.G.; Han, H.; Hong, J.S.; Jeon, Y.M.; Jeong, J.H.; Joung, M.; Juhn, J.W.; Kim, J.S.; Kim, H.S.; Lee, W.R.; Woo, M.H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Eidietis, N.W.; Ferron, J.R.; Humphreys, D.A.; Hyatt, A.; Johnson, R.D.; Piglowski, D.A. [General Atomics, San Diego, CA (United States); and others

    2016-11-15

    Highlights: • Recent achievements of the KSTAR plasma control system are described. • Requirements and results of the testbed system for the future upgrade of the KSTAR plasma control system are presented. • An overview of the upgrade layout based is given. - Abstract: The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve ∼48 s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable during the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics.

  9. The design of remote participation platform for EAST plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science & Technology of China, Hefei (China); Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chai, W.T.; Liu, J.; Xiao, R.; Zhou, Z.C.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science & Technology of China, Hefei (China)

    2016-11-15

    Highlights: • The remote participation platform for EAST plasma control is composed of real time control service and scenario management. • The web based interface has been developed for supporting remote participation. • The functionality module has been designed and assistant tools have been developed. - Abstract: EAST has become a physics experimental platform for high parameter and steady-state long-pulse plasma operation. A new remote participation platform for EAST plasma control is designed, which is composed of gatekeeper system, web-based user interface system, discharge scenario management system, online simulation system and data interface with on-site plasma control system (PCS). The identification and access privilege of remote participator is validated by the gatekeeper system. Only authorized users can set control parameters for next shot plasma control or making discharge scenario for future shot through WebPCS which is a web-based user interface and designed based on B/S structure. The systematic architecture design and preliminary deployment of such remote platform will be presented in this paper.

  10. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  11. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  12. Controlling the emission current from a plasma cathode

    International Nuclear Information System (INIS)

    Bagaev, S.P.; Gushenets, V.I.; Schanin, P.M.

    1993-01-01

    The processes determining the time and amplitude characteristics of the grid-controlled electron emission from the plasma of an arc discharge have been analyzed. It has been shown that by applying to the grid confining the plasma emission boundary of a modulated voltage it is possible to form current pulse of up to 1 kA with nanosecond risetimes and falltimes and a pulse repetitive rate of 100 kHz

  13. Implementation strategy for the ITER plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Ambrosino, G.; Bauvir, B.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neto, A.; Raupp, G.; Snipes, J.A.; Stephen, A.V.; Treutterer, W.; Walker, M.L.; Zabeo, L.

    2015-01-01

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  14. Implementation strategy for the ITER plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A., E-mail: axel.winter@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Ambrosino, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Bauvir, B. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Tommasi, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Humphreys, D.A. [General Atomics, San Diego, CA (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Dip. Ingegneria Industriale e dell’Informazione (Italy); Neto, A. [Fusion for Energy, Barcelona (Spain); Raupp, G. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Snipes, J.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Stephen, A.V. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Treutterer, W. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Walker, M.L. [General Atomics, San Diego, CA (United States); Zabeo, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  15. An experimental study of icing control using DBD plasma actuator

    Science.gov (United States)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  16. Real time control of plasmas and ECRH systems on TCV

    NARCIS (Netherlands)

    Paley, J.I.; Felici, F.; Berrino, J.; Coda, S.; Cruz, N.; Duval, B.P.; Goodman, T.P.; Martin, Y.; Moret, J.-M.; Piras, F.; Rodrigues, A.P.; Santos, B.; Varandas, C.A.F.

    2008-01-01

    Developments in the real time control hardware on TCV paired with the flexibility of plasma shaping and ECRH actuators are opening many opportunities to perform real time experiments and develop algorithms and methods for fusion applications. The ability to control MHD instabilities is particularly

  17. Control of radial electric field in torus plasma

    International Nuclear Information System (INIS)

    Ida, K.; Idei, H.; Sanuki, H.

    1994-09-01

    The radial electric fields is controlled by changing the direction of neutral beam from co to counter to plasma current in tokamak, while it is controlled by the 2nd harmonic ECH and NBI and pellet injection in heliotron/torsatron. (author)

  18. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-08-01

    Dynamic control of the plasma position within the torus of a TOKAMAK fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. (auth)

  19. Exploring Physics with Computer Animation and PhysGL

    Science.gov (United States)

    Bensky, T. J.

    2016-10-01

    This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.

  20. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  1. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Thomas, Flint; Kozlov, Alexey

    2008-11-01

    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  2. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  3. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  4. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  5. New DIII-D tokamak plasma control system

    International Nuclear Information System (INIS)

    Campbell, G.L.; Ferron, J.R.; McKee, E.; Nerem, A.; Smith, T.; Greenfield, C.M.; Pinsker, R.I.; Lazarus, E.A.

    1992-09-01

    A state-of-the-art plasma control system has been constructed for use on the DIII-D tokamak to provide high speed real time data acquisition and feedback control of DIII-D plasma parameters. This new system has increased the precision to which discharge shape and position parameters can be maintained and has provided the means to rapidly change from one plasma configuration to another. The capability to control the plasma total energy and the ICRF antenna loading resistance has been demonstrated. The speed and accuracy of this digital system will allow control of the current drive and heating systems in order to regulate the current and pressure profiles and diverter power deposition in the DIII-D machine. Use of this system will allow the machine and power supplies to be better protected from undesirable operating regimes. The advanced control system is also suitable for control algorithm development for future machines in these areas and others such as disruption avoidance. The DIII-D tokamak facility is operated for the US Department of Energy by General Atomics Company (GA) in San Diego, California. The DIII-D experimental program will increase emphasis on rf heating and current drive in the near future and is installing a cryopumped divertor ring during the fall of 1992. To improve the flexibility of this machine for these experiments, the new shape control system was implemented. The new advanced plasma control system has enhanced the capabilities of the DIII-D machine and provides a data acquisition and control platform that promises to be useful far beyond its original charter

  6. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)

    2016-10-15

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  7. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    International Nuclear Information System (INIS)

    Mitrishkin, Yuri V.; Pavlova, Evgeniia A.; Kuznetsov, Evgenii A.; Gaydamaka, Kirill I.

    2016-01-01

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  8. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  9. Structure of the automatic system for plasma equilibrium position control

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Krivonos, Yu.G.; Samojlenko, Yu.I.; Snegur, A.A.

    1978-01-01

    Considered are the principles of construction of the automatic system for plasma filament equilibrium position control inside the discharge chamber for the installation of a tokamak type. The combined current control system in control winding is suggested. The most powerful subsystem creates current in the control winding according to the program calculated beforehand. This system provides plasma rough equilibrium along the ''big radius''. The subsystem performing the current change in small limits according to the principle of feed-back coupling is provided simultaneously. The stabilization of plasma position is achieved in the discharge chamber. The advantage of construction of such system is in decreasing of the automatic requlator power without lowering the requirements to the accuracy of equilibrium preservation. The subsystem of automatic control of plasma position over the vertical is put into the system. Such an approach to the construction of the automatic control system proves to be correct; it is based on the experience of application of similar devices for some existing thermonuclear plants

  10. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  11. FPGA based Fuzzy Logic Controller for plasma position control in ADITYA Tokamak

    International Nuclear Information System (INIS)

    Suratia, Pooja; Patel, Jigneshkumar; Rajpal, Rachana; Kotia, Sorum; Govindarajan, J.

    2012-01-01

    Highlights: ► Evaluation and comparison of the working performance of FLC is done with that of PID Controller. ► FLC is designed using MATLAB Fuzzy Logic Toolbox, and validated on ADITYA RZIP model. ► FLC was implemented on a FPGA. The close-loop testing is done by interfacing FPGA to MATLAB/Simulink. ► Developed FLC controller is able to maintain the plasma column within required range of ±0.05 m and was found to give robust control against various disturbances and faster and smoother response compared to PID Controller. - Abstract: Tokamaks are the most promising devices for obtaining nuclear fusion energy from high-temperature, ionized gas termed as Plasma. The successful operation of tokamak depends on its ability to confine plasma at the geometric center of vacuum vessel with sufficient stability. The quality of plasma discharge in ADITYA Tokamak is strongly related to the radial position of the plasma column in the vacuum vessel. If the plasma column approaches too near to the wall of vacuum vessel, it leads to minor or complete disruption of plasma. Hence the control of plasma position throughout the entire plasma discharge duration is a fundamental requirement. This paper describes Fuzzy Logic Controller (FLC) which is designed for radial plasma position control. This controller is tested and evaluated on the ADITYA RZIP control model. The performance of this FLC was compared with that of Proportional–Integral–Derivative (PID) Controller and the response was found to be faster and smoother. FLC was implemented on a Field Programmable Gate Array (FPGA) chip with the use of a Very High-Speed Integrated-Circuits Hardware Description-Language (VHDL).

  12. Plasma control using neural network and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-01-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF 3 /CF 4 magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model

  13. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  14. Maturing ECRF technology for plasma control

    International Nuclear Information System (INIS)

    Callis, R.W.; .; Cary, W.P.; Chu, S.

    2003-01-01

    The availability of high power, (∼1 MW) long pulse length (effectively cw), high frequency, (>100 GHz) gyrotrons has opened the opportunity for enhanced scientific results on magnetic confinement devices for fusion research worldwide. This has led to successful experiments on electron cyclotron heating, electron cyclotron current drive, non-inductive tokamak operation, tokamak energy transport, suppression of instabilities and advanced profile control leading to enhanced performance. The key development in the gyrotron community that has led to the realization of high power long pulse gyrotrons is the availability of edge cooled synthetic diamond gyrotron output windows, which have low loss and excellent thermal and mechanical properties. In addition to the emergence of reliable high power gyrotrons, ancillary equipment for efficient microwave transmission over distances of hundreds of meters, polarization control, diagnostics, and flexible launch geometry have all been developed and proven in regular service. (author)

  15. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  16. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

    International Nuclear Information System (INIS)

    Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

    1999-01-01

    This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

  17. Edge plasma control using an LID configuration on CHS

    Energy Technology Data Exchange (ETDEWEB)

    Masuzaki, S.; Komori, A.; Morisaki, T. [National Inst. for Fusion Science, Oroshi, Toki (Japan)] [and others

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  18. Ignition and burn control characteristics of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Chaniotakis, E.A.

    1990-01-01

    Achieving the long sought goal of fusion energy requires the attainment of an ignited and controlled thermonuclear plasma. Obtaining an ignited plasma in a tokamak device requires consideration of both the physics of the plasma and the engineering of the machine. With the aide of completely analytical procedure optimized and ignited tokamaks are obtained under various physics assumptions. These designs show the possible advantage of tokamaks characterized by high (∼4.5) aspect ratio, and high (∼15 T) toroidal magnetic field. The control of an ignited plasma is investigated by using auxiliary power modulation. With auxiliary power stable operating points can be created with Q ∼50. Recognizing the need for a fast 1 1/2-D transport model for studying profile effects the plasma transport equations are solved using variational methods. A computer model based on the variational method has been developed. This model solves the 1 1/2-D transport equation very fast with little loss of accuracy. 74 refs., 70 figs., 8 tabs

  19. Real time control of plasmas and ECRH systems on TCV

    NARCIS (Netherlands)

    Paley, J.I.; Berrino, J.; Coda, S.; Cruz, N.; Duval, B.P.; Felici, F.; Goodman, T.P.; Martin, Y.; Moret, J.-M.; Piras, F.; Rodriques, A.P.; Santos, B.; Varandas, C.A.F.

    2009-01-01

    Developments in the real time control hardware on Tokamak Configuration Variable (TCV) coupled with the flexibility of plasma shaping and electron cyclotron (EC) heating and current drive actuators are opening many opportunities to perform real time experiments and develop algorithms and methods for

  20. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-01-01

    The dynamic control of the plasma position within the torus of a Tokamak fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. The model considers eddy currents in the conducting shell surrounding the torus and the classical Shafranov equilibrium equation. The equations necessary to characterize the operating conditions of a TOKAMAK are cast in state variable form. Two control variables are selected, the vertical field current and the plasma temperature. The figure of merit chosen minimizes the shift of the plasma within the torus and considers position perturbations necessary to maintain the dense and hotter portions of the plasma profile in the center of the torus, i.e., overcome uneven poloidal fields due to the toroidal geometry. The model uses a Kalman filter to estimate unmeasured state variables, and uses the second variation of the calculus of variations to maintain an optimal control path. (Diss. Abstr. Int., B)

  1. Control and metrology of high harmonic generation on plasma mirrors

    International Nuclear Information System (INIS)

    Monchoce, Sylvain

    2014-01-01

    When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh

  2. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    Science.gov (United States)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  3. Real time control of plasmas and ECRH systems on TCV

    International Nuclear Information System (INIS)

    Paley, J.I.; Berrino, J.; Coda, S.; Duval, B.P.; Felici, F.; Goodman, T.P.; Martin, Y.; Moret, J.M.; Piras, F.; Cruz, N.; Rodriques, A.P.; Santos, B.; Varandas, C.A.F.

    2009-01-01

    Developments in the real time control hardware on Tokamak a Configuration Variable (TCV) coupled with the flexibility of plasma shaping and electron cyclotron (EC) heating and current drive actuators are opening many opportunities to perform real time experiments and develop algorithms and methods for fusion applications. The ability to control magnetohydrodynamic instabilities is particularly important for achieving high performance fusion plasmas and EC is envisaged as a key actuator in maintaining high performance. We have successfully demonstrated control of the sawtooth instability using the EC launcher injection angle to modify the current profile around the q =1 surface. This paper presents an overview of recent real time control experiments on TCV, developments in the hardware and algorithms together with plans for the future.

  4. New achievements in the EAST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.c [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Penaflor, B.G.; Piglowski, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States); Liu, L.Z. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Johnson, R.D.; Walker, M.L.; Humphreys, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2010-07-15

    In order to realize the low latency and distortion-free signal transmission between the plasma control system (PCS) and servo systems, the digital output structure configured with reflective memory board (RFM) was adopted in EAST PCS. And the enhanced performances are reported. Another achievement made in the latest EAST PCS was the implementation of density control algorithm, which controlled the line average density in either voltage or width modulation mode. The new integrated algorithm improved the precision of density calculation and control performance greatly. The details and experiment results are presented in this paper.

  5. Software development for the PBX-M plasma control system

    International Nuclear Information System (INIS)

    Lagin, L.; Bell, R.; Chu, J.; Hatcher, R.; Hirsch, J.; Okabayashi, M.; Sichta, P.

    1995-01-01

    This paper describes the software development effort for the PBX-M plasma control system. The algorithms being developed for the system will serve to test advanced control concepts for TPX and ITER. This will include real-time algorithms for shaping control, vertical position control, current and density profile control and MHD avoidance. The control system consists of an interactive Host Processor (SPARC-10) interfaced through VME with four real-time Computer Processors (i860) which run at a maximum computational speed of 320 MFLOPs. Plasma shaping programs are being tested to duplicate the present PBX-M analog control system. Advanced algorithms for vertical control and x-point control will then be developed. Interactive graphical user interface programs running on the Host Processor will allow operators to control and monitor shot parameters. A waveform edit program will be used to download pre-programmed waveforms into the Compute Processor memory. Post-shot display programs will be used to interactively display data after the shot. Automatic pre-shot arming and data acquisition programs will run on the Host Processor. Event system programs will process interrupts and activate programs on the Host and Compute Processors. These programs are being written in C and Fortran and use system service routines to communicate with the Compute Processors and its memory. IDL and IDL widgets are being used to build the graphical user interfaces

  6. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  7. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  8. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  9. Remote network control plasma diagnostic system for Tokamak T-10

    International Nuclear Information System (INIS)

    Troynov, V I; Zimin, A M; Krupin, V A; Notkin, G E; Nurgaliev, M R

    2016-01-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet. (paper)

  10. Optimal control of tokamak and stellarator plasma behaviour

    International Nuclear Information System (INIS)

    Rastovic, Danilo

    2007-01-01

    The control of plasma transport, laminar and turbulent, is investigated, using the methods of scaling, optimal control and adaptive Monte Carlo simulations. For this purpose, the asymptotic behaviour of kinetic equation is considered in order to obtain finite-dimensional invariant manifolds, and in this way the finite-dimensional theory of control can be applied. We imagine the labyrinth of open doors and after applying self-similarity, the motion moved through all the desired doors in repeatable ways as Brownian motions. We take local actions for each piece of contractive ergodic motion, and, after self-organization in adaptive invariant measures, the optimum movement of particles is obtained according to the principle of maximum entropy. This is true for deterministic and stochastic cases that serve as models for plasma dynamics

  11. Real-time communication for distributed plasma control systems

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  12. Design and Architecture of SST-1 basic plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kirit, E-mail: kpatel@ipr.res.in; Raju, D.; Dhongde, J.; Mahajan, K.; Chudasama, H.; Gulati, H.; Chauhan, A.; Masand, H.; Bhandarkar, M.; Pradhan, S.

    2016-11-15

    Highlights: • Reflective Memory network. • FPAG based Timing system for trigger distribution. • IRIG-B network for GPS time synchronization. • PMC based Digital Signal Processors and VME. • Simultaneous sampling ADC. - Abstract: Primary objective of SST-1 Plasma control system is to achieve Plasma position, shape and current profile control. Architecture of control system for SST-1 is distributed in nature. Fastest control loop time requirement of 100 μs is achieved using VME based simultaneous sampling ADCs, PMC based quad core DSP, Reflective Memory [RFM] based real-time network, VME based real-time trigger distribution network and Ethernet network. All the control loops for shape control, position control and current profile control share common signals from Magnetic diagnostic so it is planned to accommodate all the algorithms on the same PMC based quad core DSP module TS C-43. RFM based real-time data network replicate data from one node to next node in a ring network topology at sustained throughput rate of 13.4 MBps. Real-time Timing System network provides guaranteed trigger distribution in 3.8 μs from one node to all node of the network. Monitoring and configuration of different systems participating in the operation of SST-1 is done by Ethernet network. Magnetic sensors data is acquired using Pentek 6802 simultaneously sampling ADC card at the rate of 10KSPS. All the real-time raw data along with the control data will be archived using RFM network and SCSI HDD for the experiment duration of 1000 s. RFM network is also planned for real-time plotting of key parameter of Plasma during long experiment. After experiment this data is transferred to central storage server for archival purpose. This paper discusses the architecture and hardware implementation of the control system by describing all the involved hardware and software along with future plans for up-gradations.

  13. Augmentation and Control of Burn Rates in Plasma Devices

    National Research Council Canada - National Science Library

    Bourham, Mohamed

    1999-01-01

    Interaction of electrothermal plasmas with solid propellants necessitates thorough understanding of plasma-propellant interface physics, momentum and energy transfer, plasma flow regimes, and mixing processes...

  14. Interprocess communication within the DIII-D plasma control system

    International Nuclear Information System (INIS)

    Piglowski, D.A.; Penaflor, B.G.; Ferron, J.R.

    1999-06-01

    The DIII-D tokamak fusion research experiment's real-time digital plasma control system (PCS) is a complex and ever evolving system. During a plasma experiment, it is tasked with some of the most crucial functions at DIII-D. Key responsibilities of the PCS involve sub-system control, data acquisition/storage, and user interface. To accomplish these functions, the PCS is broken down into individual components (both software and hardware), each capable of handling a specific duty set. Constant interaction between these components is necessary prior, during and after a standard plasma cycle. Complicating the matter even more is that some components, mostly those which deal with user interaction, may exist remotely, that is to say they are not part of the immediate hardware which makes up the bulk of the PCS. The four main objectives of this paper are to (1) present a brief outline of the PCS hardware/software and how they relate to each other; (2) present a brief overview of a standard DIII-D plasma cycle (a shot); (3) using three sets of PCS sub-systems, describe in more detail the communication processes; and (4) evaluate the benefits and drawbacks of said systems

  15. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  16. Control of ITBs in Magnetically Confined Burning Plasmas

    Science.gov (United States)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  17. The JET PCU project: An international plasma control project

    International Nuclear Information System (INIS)

    Sartori, F.; Crisanti, F.; Albanese, R.; Ambrosino, G.; Toigo, V.; Hay, J.; Lomas, P.; Rimini, F.; Shaw, S.R.; Luchetta, A.; Sousa, J.; Portone, A.; Bonicelli, T.; Ariola, M.; Artaserse, G.; Bigi, M.; Card, P.; Cavinato, M.; De Tommasi, G.; Gaio, E.

    2008-01-01

    This paper describes the new JET enhancement project 'Plasma Control Upgrade' (PCU). Initially aimed at an overhaul of JET plasma control capabilities it was eventually focused on improving the vertical stabilisation (VS) system ability to recover from large ELM (edge localised mode) perturbations. The paper describes the results of the first two years where the activity was aimed principally at researching a solution that could be implemented within the timing and budget constraints. A very important task was that of improving the modelling of JET plasma, iron core and passive structures. Using dedicated experiments, the models were progressively refined until it was possible not just to explain the experimental data but predict the VS system behaviour. At the same time the project team studied the best options for power supply (PS) and control system upgrades and evaluated whether a change of turns in the stabilisation coil was desirable and possible. A new fast radial field power supply is now being ordered and the VS control system is being upgraded

  18. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  19. Robust control design for the plasma horizontal position control on J-TEXT Tokamak

    International Nuclear Information System (INIS)

    Yu, W.Z.; Chen, Z.P.; Zhuang, G.; Wang, Z.J.

    2013-01-01

    It is extremely important for tokamak to control the plasma position during routine discharge. However, the model of plasma in tokamak usually contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. Compared with the traditional PID control approach, robust control theory is more suitable to handle this problem. In the paper, we propose a H ∞ robust control scheme to control the horizontal position of plasma during the flat-top phase of discharge on Joint Texas Experimental Tokamak (J-TEXT) tokamak. First, the model of our plant for plasma horizontal position control is obtained from the position equilibrium equations. Then the H ∞ robust control framework is used to synthesize the controller. Based on this, an H ∞ controller is designed to minimize the regulation/tracking error. Finally, a comparison study is conducted between the optimized H ∞ robust controller and the traditional PID controller in simulations. The simulation results of the H ∞ robust controller show a significant improvement of the performance with respect to those obtained with traditional PID controller, which is currently used on our machine

  20. Plasma control techniques of the ASDEX feedback system

    International Nuclear Information System (INIS)

    Schneider, F.

    1981-01-01

    In the ASDEX tokamak the shots are exactly preprogrammed and most of the disturbances are reproducible. So a computer can learn from one shot how to correct the next one. With this sort of disturbance feedforward one can also introduce a 'negative delay' in the program to compensate even fast and strong disturbances withous unwanted overswing or oscillations. The feedforward in conjunction with feedback control allows production of a magnetically limited plasma from the very beginning without any wall or limiter contact. This is a reason why in ASDEX the loop voltage on breakdown can be as low as 5 V/sup 2/. The plasma column can be controlled in the vacuum vessel even after disruptions have occurred

  1. Real-time software for the COMPASS tokamak plasma control

    Czech Academy of Sciences Publication Activity Database

    Valcárcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, Filip; Cahyna, Pavel; Hron, Martin; Pánek, Radomír

    2010-01-01

    Roč. 85, 3-4 (2010), s. 470-473 ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research/7th./. Aix – en – Provence, 15.06.2009-19.06.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Real-time * ATCA * Data acquisition * Plasma control software Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.143, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3C-4YXMP1Y-3&_user=6542793&_coverDate=07%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000070123&_version=1&_urlVersion=0&_userid=6542793&md5=9005df0735c0dbb3a93a9c154b0d09c1&searchtype=a

  2. Positron Plasma Control Techniques Applied to Studies of Cold Antihydrogen

    CERN Document Server

    Funakoshi, Ryo

    2003-01-01

    In the year 2002, two experiments at CERN succeeded in producing cold antihydrogen atoms, first ATHENA and subsequently ATRAP. Following on these results, it is now feasible to use antihydrogen to study the properties of antimatter. In the ATHENA experiment, the cold antihydrogen atoms are produced by mixing large amounts of antiprotons and positrons in a nested Penning trap. The complicated behaviors of the charged particles are controlled and monitored by plasma manipulation techniques. The antihydrogen events are studied using position sensitive detectors and the evidence of production of antihydrogen atoms is separated out with the help of analysis software. This thesis covers the first production of cold antihydrogen in the first section as well as the further studies of cold antihydrogen performed by using the plasma control techniques in the second section.

  3. User Control Interface for W7-X Plasma Operation

    International Nuclear Information System (INIS)

    Spring, A.; Laqua, H.; Schacht, J.

    2006-01-01

    The WENDELSTEIN 7-X fusion experiment will be a highly complex device operated by a likewise complex control system. The fundamental configuration of the W7-X control system follows two major design principles: It reflects the strict hierarchy of the machine set-up with a set of subordinated components, which in turn can be run autonomously during commissioning and testing. Secondly, it links the basic machine operation (mainly given by the infrastructure status and the components readiness) and the physics program execution (i.e. plasma operation) on each hierarchy level and on different time scales. The complexity of the control system implies great demands on appropriate user interfaces: specialized tools for specific control tasks allowing a dedicated view on the subject to be controlled, hiding complexity wherever possible and reasonable, providing similar operation methods on each hierarchy level and both manual interaction possibilities and a high degree of intelligent automation. The contribution will describe the operation interface for experiment control including the necessary links to the machine operation. The users of ' Xcontrol ' will be both the W7-X session leaders during plasma discharge experiments and the components' or diagnostics' operators during autonomous mode or even laboratory experiments. The main ' Xcontrol ' features, such as program composition and validation, manual and automatic control instruments, resource survey, and process monitoring, will be presented. The implementation principles and the underlying communication will be discussed. (author)

  4. Control of exogenous factors affecting plasma homovanillic acid concentration.

    Science.gov (United States)

    Davidson, M; Giordani, A B; Mohs, R C; Mykytyn, V V; Platt, S; Aryan, Z S; Davis, K L

    1987-04-01

    Measurements of plasma homovanillic acid (pHVA) concentrations appear to be a valid research strategy in psychiatric disorders in which a central dopamine (DA) abnormality has been implicated. This study provides guidance about the control of some of the exogenous factors affecting pHVA concentrations. Fasting for 14 hours eliminates the dietary effects on pHVA in healthy human subjects. Changing position, walking for 30 minutes, or smoking two cigarettes has no effect on pHVA concentrations.

  5. Fundamentals of plasma physics and controlled fusion. The third edition

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2011-06-01

    Primary objective of this lecture note is to provide a basic text for the students to study plasma physics and controlled fusion researches. Secondary objective is to offer a reference book describing analytical methods of plasma physics for the researchers. This was written based on lecture notes for a graduate course and an advanced undergraduate course those have been offered at Department of Physics, Faculty of Science, University of Tokyo. In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits of ion and electron are described in several magnetic field configurations. Chapter 4 formulates Boltzmann equation of velocity space distribution function, which is the basic relation of plasma physics. From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equation of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic MHD equation of motion can be derived by taking an appropriate average of Boltzmann equation. This mathematical process is described in appendix A. The derivation of useful energy integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are described in app. B. From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity, the dielectric tensor of cold plasma can be easily derived and the properties of various wave can be discussed in the case of cold plasma. If the refractive index becomes large and the phase velocity of the

  6. Progress and improvement of KSTAR plasma control using model-based control simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Sang-hee, E-mail: hahn76@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Welander, A.S. [General Atomics, San Diego, CA (United States); Yoon, S.W.; Bak, J.G. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Eidietis, N.W. [General Atomics, San Diego, CA (United States); Han, H.S. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Humphreys, D.A.; Hyatt, A. [General Atomics, San Diego, CA (United States); Jeon, Y.M. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Johnson, R.D. [General Atomics, San Diego, CA (United States); Kim, H.S.; Kim, J. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Kolemen, E.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Penaflor, B.G.; Piglowski, D.A. [General Atomics, San Diego, CA (United States); Shin, G.W. [University of Science and Technology, Daejeon (Korea, Republic of); Walker, M.L. [General Atomics, San Diego, CA (United States); Woo, M.H. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of)

    2014-05-15

    Superconducting tokamaks like KSTAR, EAST and ITER need elaborate magnetic controls mainly due to either the demanding experiment schedule or tighter hardware limitations caused by the superconducting coils. In order to reduce the operation runtime requirements, two types of plasma simulators for the KSTAR plasma control system (PCS) have been developed for improving axisymmetric magnetic controls. The first one is an open-loop type, which can reproduce the control done in an old shot by loading the corresponding diagnostics data and PCS setup. The other one, a closed-loop simulator based on a linear nonrigid plasma model, is designed to simulate dynamic responses of the plasma equilibrium and plasma current (I{sub p}) due to changes of the axisymmetric poloidal field (PF) coil currents, poloidal beta, and internal inductance. The closed-loop simulator is the one that actually can test and enable alteration of the feedback control setup for the next shot. The simulators have been used routinely in 2012 plasma campaign, and the experimental performances of the axisymmetric shape control algorithm are enhanced. Quality of the real-time EFIT has been enhanced by utilizations of the open-loop type. Using the closed-loop type, the decoupling scheme of the plasma current control and axisymmetric shape controls are verified through both the simulations and experiments. By combining with the relay feedback tuning algorithm, the improved controls helped to maintain the shape suitable for longer H-mode (10–16 s) with the number of required commissioning shots largely reduced.

  7. Plasma position control in a tokamak reactor around ignition

    International Nuclear Information System (INIS)

    Carretta, U.; Minardi, E.; Bacelli, N.

    1986-01-01

    Plasma position control in a tokamak reactor in the phase approaching ignition is closely related to burn control. If ignited burn corresponds to a thermally unstable situation the plasma becomes sensitive to the thermal instability already in the phase when ignition is approached so that the trajectory in the position-pressure (R,p) space becomes effectively unpredictable. For example, schemes involving closed cycles around ignition can be unstable in the heating-cooling phases, and the deviations may be cumulative in time. Reliable plasma control in pressure-position (p, R) space is achieved by beforehand constraining the p, R trajectory rigidly with suitable feedback vertical field stabilization, which is to be established already below ignition. A scheme in which ignition is approached in a stable and automatic way by feedback stabilization on the vertical field is proposed and studied in detail. The values of the gain coefficient ensuring stabilization and the associated p and R excursions are discussed both analytically, with a 0-D approximation including non-linear effects, and numerically with a 1-D code in cylindrical geometry. Profile effects increase the excursions, in particular above ignition. (author)

  8. Plasma shape control calculations for BPX divertor design

    International Nuclear Information System (INIS)

    Strickler, D.J.; Neilson, G.H.; Jardin, S.C.; Pomphrey, N.

    1991-01-01

    The Burning Plasma Experiment (BPX) divertor is to be capable of withstanding heat loads corresponding to ignited operation and 500 MW of fusion power for a current rise time and flattop lasting several seconds. The poloidal field (PF), diagnostic, and feedback equilibrium control systems must provide precise X-point position control in order to sweep the separatrices across the divertor target surface and optimally distribute the heat loads. A control matrix MHD equilibrium code, BEQ, and the Tokamak Simulation Code (TSC) are used to compute preprogrammed double-null (DN) divertor sweep trajectories that maximize sweep distance while simultaneously satisfying a set of strict constraints: minimum lengths of the field lines between the X-point and strike points, minimum spacing between the inboard plasma edge and the limiter, maximum spacing between the outboard plasma edge and the ICRF antennas, minimum safety factor, and linked poloidal flux. A sequence of DN diverted equilibria and a consistent TSC fiducial discharge simulation are used in evaluating the performance of the BPX divertor shape and possible modifications. 5 refs., 10 figs

  9. Interpreting Disruption Prediction Models to Improve Plasma Control

    Science.gov (United States)

    Parsons, Matthew

    2017-10-01

    In order for the tokamak to be a feasible design for a fusion reactor, it is necessary to minimize damage to the machine caused by plasma disruptions. Accurately predicting disruptions is a critical capability for triggering any mitigative actions, and a modest amount of attention has been given to efforts that employ machine learning techniques to make these predictions. By monitoring diagnostic signals during a discharge, such predictive models look for signs that the plasma is about to disrupt. Typically these predictive models are interpreted simply to give a `yes' or `no' response as to whether a disruption is approaching. However, it is possible to extract further information from these models to indicate which input signals are more strongly correlated with the plasma approaching a disruption. If highly accurate predictive models can be developed, this information could be used in plasma control schemes to make better decisions about disruption avoidance. This work was supported by a Grant from the 2016-2017 Fulbright U.S. Student Program, administered by the Franco-American Fulbright Commission in France.

  10. Chapter 8: Plasma operation and control [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E.A.; Lister, J.B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A.C.C.; Wesley, J.C.

    2007-01-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m -1 ), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape-the plasma magnetic control, as well as control of other plasma global parameters or their profiles-the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  11. XSC plasma control: Tool development for the session leader

    International Nuclear Information System (INIS)

    Ambrosino, G.; Albanese, R.; Ariola, M.; Cenedese, A.; Crisanti, F.; Tommasi, G. De; Mattei, M.; Piccolo, F.; Pironti, A.; Sartori, F.; Villone, F.

    2005-01-01

    A new model-based shape controller (XSC, i.e., eXtreme Shape Controller) able to operate with high elongation and triangularity plasmas has been designed and implemented at JET in 2003. The use of the XSC needs a number of steps, which at present are not automated and therefore imply the involvement of several experts. To help the session leader in preparing an experiment, a number of software tools are needed. The paper describes the SW tools that are currently in the developing phase, and describes the new framework for the preparation of a JET experiment

  12. Real-Time Software for the Compass Tokamak Plasma Control

    Energy Technology Data Exchange (ETDEWEB)

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM / IPP.CR, Prague (Costa Rica)

    2009-07-01

    This poster presents the flexible and high-performance real time system that guarantees the desired time cycles for plasma control on the COMPASS tokamak: 500 {mu}s for toroidal field, current, equilibrium and shaping; 50 {mu}s for fast control of the equilibrium and vertical instability. This system was developed on top of a high-performance processor and a software framework (MARTe) tailored for real-time. The preliminary measurements indicate that the time constraints will be met on the final solution. The system allows the making of modifications in the future to improve software components. (A.C.)

  13. Status of the new WEST plasma control system

    International Nuclear Information System (INIS)

    Ravene, Nathalie; Nouailletas, Rémy; Signoret, Jacqueline; Guillerminet, Bernard; Treutterrer, Wolfgang; Spring, Anett; Masand, Harish; Dhongde, Jasraj; Bhandarkar, Manisha; Rapson, Chris; Laqua, Heike; Lewerentz, Marc; Moreau, Philippe; Brémond, Sylvain; Allegretti, Ludovic; Raupp, Gerhard; Werner, Andreas; Laurent, François Saint; Nardon, Eric

    2016-01-01

    The WEST (W – for Tungsten – Environment in Steady state Tokamak) project is aiming at minimizing technology and operational risks of a full tungsten actively cooled divertor on ITER. It was started in 2013 and consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. To operate the next coming operations of WEST, new controllers are required. These developments are an opportunity to develop a new Plasma Control System (PCS) architecture featuring build-in real time handling of both plasma and plants events, thus addressing key ITER needs. The Tore Supra PCS will be refurbished including a new Pulse Schedule Editor (PSE). The main idea is to use a time segmented approach to describe the pulse schedule with a full integration of event handling both on PCS and PSE. Further to detailed requirement specifications and architecture design, two software tools were selected to define and execute a whole plasma discharge defined as a set of time segments. The PCS real-time framework (RTF) is based on an upgraded version of the AUG framework, called DCS (Discharge Control System). The PSE is the Xedit application used on WEGA and under further development for W7-X facility. This paper reports on the status of the new WEST PCS developments. The on-going developments to adapt DCS to the Tore Supra Control infrastructure networks (new real-time network, chronology system and pulse supervision) will be reported. The required preparations for the use of Xedit will be presented, mainly the appropriate formal description of the WEST control system and the implementation of the mapping between the Xedit experiment configuration and DCS configuration files.

  14. Status of the new WEST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Ravene, Nathalie, E-mail: nathalie.ravenel@gmail.com [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Nouailletas, Rémy; Signoret, Jacqueline; Guillerminet, Bernard [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Treutterrer, Wolfgang [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Spring, Anett [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Masand, Harish; Dhongde, Jasraj; Bhandarkar, Manisha [Institute for Plasma Research (IPR), Near Indira Bridge, Bhat, Gandhinagar, 382 428 Gujarat (India); Rapson, Chris [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Laqua, Heike; Lewerentz, Marc [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Philippe; Brémond, Sylvain; Allegretti, Ludovic [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Raupp, Gerhard [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Werner, Andreas [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Laurent, François Saint; Nardon, Eric [IRFM, CEA, F-13108 Saint Paul lez Durance (France)

    2016-11-15

    The WEST (W – for Tungsten – Environment in Steady state Tokamak) project is aiming at minimizing technology and operational risks of a full tungsten actively cooled divertor on ITER. It was started in 2013 and consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. To operate the next coming operations of WEST, new controllers are required. These developments are an opportunity to develop a new Plasma Control System (PCS) architecture featuring build-in real time handling of both plasma and plants events, thus addressing key ITER needs. The Tore Supra PCS will be refurbished including a new Pulse Schedule Editor (PSE). The main idea is to use a time segmented approach to describe the pulse schedule with a full integration of event handling both on PCS and PSE. Further to detailed requirement specifications and architecture design, two software tools were selected to define and execute a whole plasma discharge defined as a set of time segments. The PCS real-time framework (RTF) is based on an upgraded version of the AUG framework, called DCS (Discharge Control System). The PSE is the Xedit application used on WEGA and under further development for W7-X facility. This paper reports on the status of the new WEST PCS developments. The on-going developments to adapt DCS to the Tore Supra Control infrastructure networks (new real-time network, chronology system and pulse supervision) will be reported. The required preparations for the use of Xedit will be presented, mainly the appropriate formal description of the WEST control system and the implementation of the mapping between the Xedit experiment configuration and DCS configuration files.

  15. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...... of the chemical surface was obtained using pulsed AC plasma, as shown by ToF-SIMS. It is demonstrated how the experimental conditions to some extent control the chemical structure of the plasma-polymerized film, e.g., film thickness, density of post-plasma-polymerized oligomeric chains, and the density of intact...

  16. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  17. 28. Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Theses of reports, presented at the 28th Conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 19-23 February 2001) are published. 246 reports were heard at the following sections: magnetic confinement, theory and experiments; inertial thermonuclear synthesis; plasma processes and physics of gas-discharge plasma; physical bases of plasma technologies. 17 reports had the summarizing character [ru

  18. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  19. On the maximum Q in feedback controlled subignited plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    High Q operation in feedback controlled subignited fusion plasma requires the operating temperature to be close to the ignition temperature. In the present work we discuss technological and physical effects which may restrict this temperature difference. The investigation is based on a simplified, but still accurate, 0=D analytical analysis of the maximum Q of a subignited system. Particular emphasis is given to sawtooth ocsillations which complicate the interpretation of diagnostic neutron emission data into plasma temperatures and may imply an inherent lower bound on the temperature deviation from the ignition point. The estimated maximum Q is found to be marginal (Q = 10-20) from the point of view of a fusion reactor. (authors)

  20. Formation and control of plasma potentials in TMX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-05-06

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning.

  1. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    Science.gov (United States)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  2. Formation and control of plasma potentials in TMX upgrade

    International Nuclear Information System (INIS)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-01-01

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning

  3. Separation control of NACA0015 airfoil using plasma actuators

    Science.gov (United States)

    Harada, Daisuke; Sakakibara, Jun

    2017-11-01

    Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.

  4. Plasma density remote control system of experimental advanced superconductive tokamak

    International Nuclear Information System (INIS)

    Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Zhao Dazheng; Xu Congdong

    2007-01-01

    In Tokamak experiments, experimental data and information on the density control are stored in the local computer system. Therefore, the researchers have to be in the control room for getting the data. Plasma Density Remote Control System (DRCS), which is implemented by encapsulating the business logic on the client in the B/S module, conducts the complicated science computation and realizes the synchronization with the experimental process on the client. At the same time, Web Services and Data File Services are deployed for the data exchange. It is proved in the experiments that DRCS not only meets the requirements for the remote control, but also shows an enhanced capability on the data transmission. (authors)

  5. Plasma position and shape control device for thermonuclear device

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhiro; Abe, Mitsushi; Kinoshita, Shigemi.

    1993-01-01

    A plasma position and shape control system is constituted with a measuring device, a quenching probability calculation section and a control calculation section. A quenching probability is calculated in the quenching probability calculation section by using a measuring data on temperature, electric current and magnetic field of superconductive coils, based on a margin upto a limit value. The control calculation section selects a control method which decreases applied voltage or current instruction value as the quenching probability of the coils is higher. Since the quenching probability of the superconductive coils can be forecast and a state of low quenching danger can be selected, the safety of the device is improved. When the quenching danger is allowed to a predetermined value, a wide operation region can be provided. (N.H.)

  6. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  7. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  8. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  9. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.

    1999-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  10. Creation and control of variably shaped plasmas in TCV

    International Nuclear Information System (INIS)

    Hofmann, F.; Lister, J.B.; Anton, M.

    1994-01-01

    During the first year of operation, the TCV tokamak has produced a large variety of plasma shapes and magnetic configurations, with 1.0≤B tor ≤1.46T, I p ≤800kA, k≤2.05, -0.7≤δ ≤0.7. A new shape control algorithm, based on a finite element reconstruction of the plasma current in real time, has been implemented. Vertical growth rates of 800 sec -1 , corresponding to a stability margin f=1.15, have been stabilized. Ohmic H-modes, with energy confinement times reaching 80ms, normalized beta (β tor aB/I p ) of 1.9 and τ E /ITER89-P of 2.4 have been obtained in single-null X-point deuterium discharges with the ion grad B drift towards the X-point. Limiter H-modes with maximum line averaged electron densities of 1.7x10 20 m -3 have been observed in D-shaped plasmas with 360kA≤I p ≤600kA. (Author)

  11. To the problem of electron temperature control in plasma

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Anna, P.R.

    1995-01-01

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO 2 laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall

  12. To the problem of electron temperature control in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Galechyan, G.A. [Institute of Applied Problem of Physics, Yerevan (Armenia); Anna, P.R. [Raritan Valley Community College, Somerville, NJ (United States)

    1995-12-31

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2} laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.

  13. Improving plasma shaping accuracy through consolidation of control model maintenance, diagnostic calibration, and hardware change control

    International Nuclear Information System (INIS)

    Baggest, D.S.; Rothweil, D.A.; Pang, S.

    1995-12-01

    With the advent of more sophisticated techniques for control of tokamak plasmas comes the requirement for increasingly more accurate models of plasma processes and tokamak systems. Development of accurate models for DIII-D power systems, vessel, and poloidal coils is already complete, while work continues in development of general plasma response modeling techniques. Increased accuracy in estimates of parameters to be controlled is also required. It is important to ensure that errors in supporting systems such as diagnostic and command circuits do not limit the accuracy of plasma parameter estimates or inhibit the ability to derive accurate plasma/tokamak system models. To address this issue, we have developed more formal power systems change control and power system/magnetic diagnostics calibration procedures. This paper discusses our approach to consolidating the tasks in these closely related areas. This includes, for example, defining criteria for when diagnostics should be re-calibrated along with required calibration tolerances, and implementing methods for tracking power systems hardware modifications and the resultant changes to control models

  14. Simulation of slag control for the Plasma Hearth Project

    International Nuclear Information System (INIS)

    Power, M.A.; Carney, K.P.; Peters. G.G.

    1996-01-01

    The goal of the Plasma Hearth Project is to stabilize alpha-emitting radionuclides in a vitreous slag and to reduce the effective storage volume of actinide-containing waste for long-term burial. The actinides have been shown to partition into the vitreous slag phase of the melt. The slag composition may be changed by adding glass-former elements to ensure that this removable slag has the most desired physical and chemical properties for long-term burial. A data acquisition and control system has been designed to regulate the composition of five elements in the slag

  15. Power supplies for plasma column control in COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Havlíček, Josef; Hauptmann, R.; Peroutka, Oldřich; Tadros, Momtaz; Hron, Martin; Janky, Filip; Vondráček, Petr; Cahyna, Pavel; Mikulín, Ondřej; Šesták, David; Junek, Pavel; Pánek, Radomír

    2013-01-01

    Roč. 88, 9-10 (2013), s. 1640-1645 ISSN 0920-3796. [Symposium on Fusion Technology (SOFT-27)/27./. Liège, 24.09.2012-28.09.2012] R&D Projects: GA ČR GAP205/11/2470; GA MŠk 7G10072; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * Power supplies * Feedback control * Vertical displacement * Vertical kicks Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.149, year: 2013 http://www.sciencedirect.com/science/article/pii/S0920379613001543#

  16. Alternatives for contaminant control during MFTF plasma buildup

    International Nuclear Information System (INIS)

    Khan, J.M.; Valby, L.E.

    1979-01-01

    The MFTF mirror device considers all low-energy species to be contaminants, since their primary effect is to erode the plasma boundary by charge-exchange reactions. Confinement for other than hydrogen isotypes is far from complete and confinement time is hardly more than transit time from the source to the end wall. The brevity of the confinement time makes it all the more necessary to prevent any contamination which might further reduce it. At Livermore, the historical solution to contaminant control has been to evaporate titanium onto cold surfaces. An alternative to this approach and its implications are considered

  17. Control of plasma layer in a fusion reactor correlated to DC motor control using PSO-ANFIS

    International Nuclear Information System (INIS)

    Mahapatra, Sakuntala; Daniel, Raju; Dey, Deep Narayan

    2013-01-01

    Plasma position and shape control is very crucial for the overall performance of the fusion reactor such as Tokamak. The quality of the discharge in the Saskatchewan TORus-Modified (STOR-M) tokamak is strongly related to the position of the plasma column within the discharge vessel. If the plasma column approaches too near the wall, then either minor or complete disruption occurs. Consequently it is necessary to be able to control dynamically the position of the plasma column throughout the entire discharge. Now a day's most fusion reactor employs the traditional PID controller for the confinement of plasma layer. Fuzzy logic is used for the control of Plasma layer. In this paper we have used the hybrid of PSO-ANFIS technique to control the speed of a DC motor. We have used two input parameters like speed, torque and output is firing angle. In our work first order Sugeno fuzzy model is taken with three rules and the parameters of Gaussian membership function is controlled by the PSO technique. PSO-ANFIS speed controller obtains better dynamic behavior and superior performance of the DC motor speed control. Similar approach can be correlated to the control of plasma layer. For the plasma control two inputs can be taken as plasma position ΔH and the plasma current and the single output, the control decision u(t). (author)

  18. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  19. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  20. Power supply controlled for plasma torch generation; Fuente de alimentacion controlada para la generacion de un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Z, S

    1997-12-31

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named `Destruction of hazard wastes by thermal plasma` actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR`s; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author).

  1. Determination of the plasma position for its real-time control in the COMPASS tokamak

    International Nuclear Information System (INIS)

    Janky, F.; Havlicek, J.; Valcarcel, D.; Hron, M.; Horacek, J.; Kudlacek, O.; Panek, R.; Carvalho, B.B.

    2011-01-01

    An efficient horizontal and vertical stabilization of the plasma column position are essential for a reliable tokamak operation. Plasma position is generally determined by plasma current, plasma pressure and external vertical and horizontal magnetic fields. Such fields are generated by poloidal field coils and proper algorithm for the current control have to by applied, namely, in case of fast feedback loops. This paper presents a real-time plasma position reconstruction algorithms developed for the COMPASS tokamak. Further, its implementation in the MARTe (Multithreaded Application Real-Time executor) is described and the first results from test of the algorithm for real-time control of horizontal plasma positions are presented.

  2. Determination of the plasma position for its real-time control in the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: jankyf@ipp.cas.cz [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-18000 Prague (Czech Republic); Havlicek, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-18000 Prague (Czech Republic); Valcarcel, D. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P1049-001 Lisboa (Portugal); Hron, M.; Horacek, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic); Kudlacek, O. [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Technicka 2, 166 27 Prague (Czech Republic); Panek, R. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic); Carvalho, B.B. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P1049-001 Lisboa (Portugal)

    2011-10-15

    An efficient horizontal and vertical stabilization of the plasma column position are essential for a reliable tokamak operation. Plasma position is generally determined by plasma current, plasma pressure and external vertical and horizontal magnetic fields. Such fields are generated by poloidal field coils and proper algorithm for the current control have to by applied, namely, in case of fast feedback loops. This paper presents a real-time plasma position reconstruction algorithms developed for the COMPASS tokamak. Further, its implementation in the MARTe (Multithreaded Application Real-Time executor) is described and the first results from test of the algorithm for real-time control of horizontal plasma positions are presented.

  3. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  4. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  5. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  6. [Automatic adjustment control system for DC glow discharge plasma source].

    Science.gov (United States)

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  7. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, M. E-mail: matsukaw@naka.jaeri.go.jp; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T

    2003-09-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control.

  8. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    International Nuclear Information System (INIS)

    Matsukawa, M.; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T.

    2003-01-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control

  9. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  10. Physics of the conceptual design of the ITER plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, J.A., E-mail: Joseph.Snipes@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bremond, S. [CEA-IRFM, 13108 St Paul-lez-Durance (France); Campbell, D.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Casper, T. [1166 Bordeaux St, Pleasanton, CA 94566 (United States); Douai, D. [CEA-IRFM, 13108 St Paul-lez-Durance (France); Gribov, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Humphreys, D. [General Atomics, San Diego, CA 92186 (United States); Lister, J. [Association EURATOM-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne (EPFL), CRPP, Lausanne CH-1015 (Switzerland); Loarte, A.; Pitts, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sugihara, M., E-mail: Sugihara_ma@yahoo.co.jp [Japan (Japan); Winter, A.; Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2014-05-15

    Highlights: • ITER plasma control system conceptual design has been finalized. • ITER's plasma control system will evolve with the ITER research plan. • A sophisticated actuator sharing scheme is being developed to apply multiple coupled control actions simultaneously with a limited set of actuators. - Abstract: The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints. In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma

  11. Physics of the conceptual design of the ITER plasma control system

    International Nuclear Information System (INIS)

    Snipes, J.A.; Bremond, S.; Campbell, D.J.; Casper, T.; Douai, D.; Gribov, Y.; Humphreys, D.; Lister, J.; Loarte, A.; Pitts, R.; Sugihara, M.; Winter, A.; Zabeo, L.

    2014-01-01

    Highlights: • ITER plasma control system conceptual design has been finalized. • ITER's plasma control system will evolve with the ITER research plan. • A sophisticated actuator sharing scheme is being developed to apply multiple coupled control actions simultaneously with a limited set of actuators. - Abstract: The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints. In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma

  12. Study of Globus-M Tokamak Poloidal System and Plasma Position Control

    Science.gov (United States)

    Dokuka, V. N.; Korenev, P. S.; Mitrishkin, Yu. V.; Pavlova, E. A.; Patrov, M. I.; Khayrutdinov, R. R.

    2017-12-01

    In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.

  13. Comment on Dynamic plasma screening effects on semiclassical inelastic electron ion collisions in dense plasmas [Phys. Plasmas 4, 21 (1997)

    International Nuclear Information System (INIS)

    Murillo, M.S.

    1997-01-01

    Jung's analysis of dynamics screening appears to be flawed by attempting to patch many-body effects into a single-body theory and a more rigorous foundation is necessary. Jung's result and dynamical screening have been previously analyzed many times

  14. Cold Plasmas for Biofilm Control: Opportunities and Challenges.

    Science.gov (United States)

    Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula

    2018-06-01

    Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.

  15. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  16. Studies on performances of the control system of plasma position and shape

    International Nuclear Information System (INIS)

    Aikawa, Hiroshi; Tsuzuki, Naohisa; Kimura, Toyoaki; Ogata, Atsushi; Ninomiya, Hiromasa

    1978-09-01

    Performance in the control system of plasma position and shape is determined by estimating the disturbing field, system functions and load variation of the controlled object. Various stray fields are considered as disturbing field. Plasma internal inductance and poloidal beta are taken into consideration as load variation of the controlled object. The required performance is obtained through considerations of plasma equilibrium, stability, impurity concentration and sensors accuracy. The results are described as requests to the poloidal power supply system. (author)

  17. Preface: phys. stat. sol. (a) 202/12

    Science.gov (United States)

    Neumann, Wolfgang; Stutzmann, Martin; Hildebrandt, Stefan

    2005-09-01

    The present special issue contains a collection of Original Papers dedicated to Professor Johannes Heydenreich on the occasion of his 75th birthday.Johannes Heydenreich, born on 20 June 1930 in Plauen/Vogtland near Dresden, studied physics at the Pädagogische Hochschule Potsdam, where he obtained his first academic degree Dipl. Phys. in 1958. He received his doctoral degree at the Martin Luther University in Halle in 1961 and the Habilitation degree in 1969. Already during his studies in Potsdam, he showed an interest in electron microscopy due to the influence of his teacher and supervisor Prof. Picht, one of the pioneers in electron optics. His interests were strengthened when Johannes Heydenreich did the experimental work for his Diploma degree at the Institute for Experimental Physics of the University of Halle, where he met Prof. Heinz Bethge for the first time. This was the beginning of a fruitful and longstanding collaboration. In 1962 Johannes Heydenreich joined the team of the later Institute for Solid State Physics and Electron Microscopy of the Academy of Sciences of the GDR, in Halle, for which the basis was laid by Prof. Bethge in 1960.Heydenreich has been working as Assistant Director for many years and played a decisive role in introducing and organising the various techniques of electron microscopy in the institute.The research activities of Prof. Heydenreich covered a broad spectrum over the years. At the beginning of his career he made significant contributions in the field of electron mirror microscopy. After that, his main interests were focused on transmission electron microscopy, ranging from diffraction contrast analysis of crystal defects to high-resolution electron microscopy and image processing. His favourite field was studies of defect-induced phenomena in advanced materials. The so-called Bethge-Heydenreich, the book Electron Microscopy in Solid State Physics, published at first in a German edition in 1982 and later in a revised

  18. A microfluidic chip for blood plasma separation using electro-osmotic flow control

    International Nuclear Information System (INIS)

    Jiang, Hai; Weng, Xuan; Chon, Chan Hee; Wu, Xudong; Li, Dongqing

    2011-01-01

    In this paper, a microfluidic-based chip with two straight microchannels and five branch microchannels was designed and tested to separate blood plasma from a small sample of fresh human blood. The electro-osmotic flow method was used to control the separation of blood plasma. Blood cell removal and blood plasma extraction were realized in experiments. The efficiency of extracting blood plasma can be as high as 26%

  19. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  20. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  1. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    International Nuclear Information System (INIS)

    Counsell, G F

    2002-01-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV e e >10 19 m -3 ) but weakly ionized (n 0 >10 20 m -3 , n e /n 0 <0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues

  2. Conceptual design of plasma position control of SST-1 tokamak using vertical field coil

    International Nuclear Information System (INIS)

    Gulati, Hitesh Kumar; Patel, Kiritkumar B.; Dhongde, Jasraj

    2015-01-01

    SST-1 (Steady State Superconducting Tokamak) is a plasma confinement device in Institute for Plasma Research (IPR) India. SST-1 has been commissioned successfully and has been carrying out plasma experiments since the beginning of 2014 achieved a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼ 500 ms. SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1s. Based on the solution of Grad-Shafranov equation the shift of plasma column center from geometrical centre of vacuum chamber is measured using various magnetic probes and flux loops installed in the machine. The closed feedback loop uses plasma current (Ip), Delta R as feedback signal and manipulate the vertical field current (Ivf). The discharge starts with feed forward loop using initially provided reference then the active feedback starts after discharge by few msec once plasma column is completely formed. The feedback loop time is of the order of 10 msec. The primary objective is to acquire plasma position control related signals, compute plasma position and generate position correction signal for VF coil power supply, communicate correction to VF coil power supply and modify VF power supply output in a deterministic time span. In this we present the methodology used for plasma horizontal displacement control using vertical field and discuss the preliminary results. (author)

  3. Worldwide collaborative efforts in plasma control software development

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.; Humphreys, D.A.; Leuer, J.A.; Piglowski, D.A.; Johnson, R.D.; Xiao, B.J.; Hahn, S.H.; Gates, D.A.

    2008-01-01

    This presentation will describe the DIII-D collaborations with various tokamak experiments throughout the world which have adapted custom versions of the DIII-D plasma control system (PCS) software for their own use. Originally developed by General Atomics for use on the DIII-D tokamak, the PCS has been successfully installed and used for the NSTX experiment in Princeton, the MAST experiment in Culham UK, the EAST experiment in China, and the Pegasus experiment in the University of Wisconsin. In addition to these sites, a version of the PCS is currently being developed for use by the KSTAR tokamak in Korea. A well-defined and robust PCS software infrastructure has been developed to provide a common foundation for implementing the real-time data acquisition and feedback control codes. The PCS infrastructure provides a flexible framework that has allowed the PCS to be easily adapted to fulfill the unique needs of each site. The software has also demonstrated great flexibility in allowing for different computing, data acquisition and real-time networking hardware to be used. A description of the current PCS software architecture will be given along with experiences in developing and supporting the various PCS installations throughout the world

  4. Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Neal, R.D.

    1975-01-01

    Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable

  5. Reconfigurable ATCA hardware for plasma control and data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.p [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Batista, A.J.N.; Correia, M.; Neto, A.; Fernandes, H.; Goncalves, B.; Sousa, J. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-07-15

    The IST/EURATOM Association is developing a new generation of control and data acquisition hardware for fusion experiments based on the ATCA architecture. This emerging open standard offers a significantly higher data throughput over a reliable High Availability (HA) mechanical and electrical platform. One of this ATCA boards has 32 galvanically isolated ADC channels (18 bit) each mounted on a swappable plug-in card, 8 DAC channels (16 bit), 8 digital I/O channels and embeds a high performance XILINX Virtex 4 family field programmable gate array (FPGA). The specific modular and configurable hardware design enables adaptable utilization of the board in dissimilar applications. The first configuration, specially developed for tokamak plasma Vertical Stabilization, consists of a Multiple-Input-Multiple-Output (MIMO) controller that is capable of feedback loops faster than 1 ms using a multitude of input signals fed from different boards communicating through the Aurora{sup TM} point-to-point protocol. Massive parallel algorithms can be implemented on the FPGA either with programmed digital logic, using a HDL hardware description language, or within its internal silicon PowerPC{sup TM} running a full fledged real-time operating system. The second board configuration is dedicated for transient recording of the entire 32 channels at 2 MSamples/s to the on-board 512 MB DDR2 memory. Signal data retrieval is accelerated by a DMA-driven PCI Express{sup TM} x1 Interface to the ATCA system controller, providing an overall throughput in excess of 100 MB/s. This paper illustrates these developments and discusses possible configurations for foreseen applications.

  6. Control oriented modeling and simulation of the sawtooth instability in nuclear fusion tokamak plasmas

    NARCIS (Netherlands)

    Witvoet, G.; Westerhof, E.; Steinbuch, M.; Doelman, N.J.; Baar, de M.R.

    2009-01-01

    Tokamak plasmas in nuclear fusion are subject to various instabilities. A clear example is the sawtooth instability, which has both positive and negative effects on the plasma. To optimize between these effects control of the sawtooth period is necessary. This paper presents a simple control

  7. VME multiprocessor system for plasma control at the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Kimura, T.; Kurihara, K.; Takahashi, M.; Kawamata, Y.; Akasaka, H.; Matsukawa, M.

    1989-01-01

    In this paper design and preliminary tests are reported of a VME multiprocessor system for the JT-60 Upgrade plasma control utilizing three MC88100 based RISC computers and VME buses. The design of the VME system was stimulated by faster and more accurate computation requirements for the plasma position and shape control

  8. Controlling laser ablation plasma with external electrodes. Application to sheath dynamics study and beam physics

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2013-01-01

    The potential of laser ablation plasma was controlled successfully by using external ring electrodes. We found that an electron sheath is formed at the plasma boundary, which plays an important role in the potential formation. When the positively biased plasma reaches a grounded grid, electrons in the plasma are turned away and ions are accelerated, which leads to the formation of a virtual anode between the grid and an ion probe. We think that this device which can raise the plasma potential up to order of kV can be applied to the study of sheath dynamics and to a new type of ion beam extraction. (author)

  9. Feedback control of plasma equilibrium with control system aided by personal computer on the JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Tsuzuki, T.; Toi, K.; Matsuura, K.

    1991-04-01

    A feedback control system aided by a personal computer is developed to maintain plasma position on the required position in the JIPP T-IIU tokamak. The personal computer enables to adjust various control parameters easily. In this control system, a control demand for driving the power supply of feedback controlled vertical field coils is composed to be proportional to a total plasma current. This system has been successfully employed throughout the discharge where the plasma current substantially changes from zero to hundreds of kiloamperes, because the feedback control can be done, being independent of the plasma current. The analysis of this feedback control system taken into account of digital sampling agrees well with the experimental results. (author)

  10. Intelligent plasma operation and control system for HL-2M

    International Nuclear Information System (INIS)

    Xia, F.; Chen, L.Y.; Wang, C.; Zhang, G.; Song, X.M.; Song, X.; Pan, L.; Zhao, L.; Pan, W.; Lan, J.T.

    2015-01-01

    Full text of publication follows. The Intelligent Plasma Operation and Control System (IPOCS) for HL-2M is under construction based on the current actual situation of HL-2A control system in SWIP. The purpose of IPOCS is to replace the routine processes before, during and post discharge with the automatic process algorithms and give various information, for example, status, warning, reason, instruction, suggestion, physics phenomenon etc. to staff who can access the intranet. In this case, the core research objectives can be focused on and the related operations can be carried out referring to the information. The ultimate goal of IPOCS is to improve the efficiency of plant operation and control and physics research for HL-2M and for the fusion reactor in the future. There are three layers in IPOCS, which are named the information collection layer, the data processing layer and the presentation layer respectively. Information collection layer consists of data acquisition system, EPICS system, Audio and Video system, discharge scheduling system, data storage system etc. All raw data are collected and stored in this layer. The data processing layer is the core of IPOCS. Most algorithms are executed here. The basic computation platform is based on cluster (56 cores at present) and Parallel Computing Toolbox provided by Matlab. The physics database for SWIP based on HDF5 and offline EFIT also locate at this layer. All the operations can be finished during the time interval between two shots. The last layer is to present the information from the former two layers. The typical hardware including the large display screen system in the control room, the voice broadcasting system, personal monitors and smart phones, etc.. Several applications has being developed such as Control System Studio (CSS) in SWIP version, WebOPI, Automatic Alarm Display system and so on. IPOCS for HL-2M is at the very beginning phase at present. With more and more systems and algorithms got

  11. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  12. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    International Nuclear Information System (INIS)

    Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng

    2014-01-01

    Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance

  13. Overview of the preliminary design of the ITER plasma control system

    Science.gov (United States)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  14. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  15. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  16. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  17. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    International Nuclear Information System (INIS)

    Ruzic, David N.

    2013-01-01

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o-normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas

  18. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    Science.gov (United States)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  19. Control of plasma poloidal shape and position in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walker, M.L.; Humphreys, D.A.; Ferron, J.R.

    1997-11-01

    Historically, tokamak control design has been a combination of theory driving an initial control design and empirical tuning of controllers to achieve satisfactory performance. This approach was in line with the focus of past experiments on simply obtaining sufficient control to study many of the basic physics issues of plasma behavior. However, in recent years existing experimental devices have required increasingly accurate control. New tokamaks such as ITER or the eventual fusion power plant must achieve and confine burning fusion plasmas, placing unprecedented demands on regulation of plasma shape and position, heat flux, and burn characteristics. Control designs for such tokamaks must also function well during initial device operation with minimal empirical optimization required. All of these design requirements imply a heavy reliance on plasma modeling and simulation. Thus, plasma control design has begun to use increasingly modern and sophisticated control design methods. This paper describes some of the history of plasma control for the DIII-D tokamak as well as the recent effort to implement modern controllers. This effort improves the control so that one may obtain better physics experiments and simultaneously develop the technology for designing controllers for next-generation tokamaks

  20. Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design

    International Nuclear Information System (INIS)

    Welander, A.S.; Deranian, R.D.; Humphreys, D.A.; Leuer, J.A.; Walker, M.L.

    2005-01-01

    Tokamak control design relies on an accurate linear model of the plasma response, which can often dominate the local field variations in regions under active feedback control. For example, when fluxes at selected points on the plasma boundary are regulated in DIII-D, the plasma response to a change in a coil current gives rise to a flux change which can be larger than and opposite to the flux change caused by the coil alone.In the past, rigid plasma models have been used for linear stability and shape control design. In a rigid model, the plasma current profile is considered fixed and moves rigidly in response to control coils to maintain radial and vertical force balance. In a nonrigid model, however, changes in the plasma shape and current profile are taken into account. Such models are expected to be important for future advanced tokamak control design. The present work describes development of a nonrigid plasma response model for high-accuracy multivariable control design and provides comparisons of model predictions against DIII-D experimental data. The linear perturbed plasma response model is calculated rapidly from an existing equilibrium solution

  1. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  2. Transition of RF internal antenna plasma by gas control

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori [Advanced Institute of Industrial Technology, 1-10-40 HigashiOhi, Shinagawa-ku, Tokyo, 140-0011 (Japan); Japan Atomic Energy Agency, 2-4 Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  3. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  4. Plasma control system for 'Day-One' operation of KSTAR tokamak

    International Nuclear Information System (INIS)

    Hahn, Sang-hee; Walker, M.L.; Kim, Kukhee; Ahn, H.S.; Penaflor, B.G.; Piglowski, D.A.; Johnson, R.D.; Choi, Jaehoon; Lee, Dong-keun; Kim, Jayhyun; Yoon, S.W.; Seo, Seong-Heon; Kim, H.T.; Kim, K.P.; Lee, T.G.; Park, M.K.; Bak, J.G.; Lee, S.G.; Nam, Y.U.; Eidietis, N.W.

    2009-01-01

    A complete plasma control system (PCS) has been developed for KSTAR's first plasma campaign as a collaborative project with the DIII-D team. The KSTAR real time plasma control system is based on a conceptual design by Jhang and Choi [Hogun Jhang, I.S. Choi, Fusion Engineering and Design 73 (2005) 35-49] and consists of a fast real-time computer/communication cluster and software derived from the GA-PCS [Penaflor, B.G., et.al., Fusion Engineering and Design, 83 (2) (2008) 176]. The system has been used for simulation testing, poloidal field (PF) coil power supply commissioning and first plasma control. The seven sets of up-down symmetric, superconducting PF coil/power supply systems have been successfully tested. Reflective memory (RFM) is utilized as the primary actuator/PCS real-time communication layer and PCS synchronization with KSTAR timing system and slower control devices is achieved through an EPICS implementation. Consistent feedback loop times of 100 microseconds has been achieved during PF coil power supply testing and first plasma commissioning. Here we present the 'Day-One' plasma control system in its final form for the first plasma experimental campaign of KSTAR and describe how the system has been utilized during magnet commissioning and plasma startup experiments.

  5. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    HUMPHREYS, DA; FERRON, JR; GAROFALO, AM; HYATT, AW; JERNIGAN, TC; JOHNSON, RD; LAHAYE, RJ; LEUER, JA; OKABAYASHI, M; PENAFLOR, BG; SCOVILLE, JT; STRAIT, EJ; WALKER, ML; WHYTE, DG

    2002-01-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response

  6. Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Baumel, S.

    2003-01-01

    Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper,...

  7. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  8. A plasma amplifier to combine multiple beams at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.

    2018-05-01

    Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].

  9. Feedback control modeling of plasma position and current during intense heating in ISX-B

    International Nuclear Information System (INIS)

    Charlton, L.A.; Swain, D.W.; Neilson, G.H.

    1979-08-01

    The ISX-B Tokamak at ORNL is designed to have 1.8 MW (and eventually 3 MW) of neutral beam power injected to heat the plasma. This power may raise the anti β of the plasma to over 5% in less than 50 msec if the plasma is MHD stable. The results of a numerical simulation of the feedback control system and poloidal coil power supplies necessary to control the resulting noncircular (D-shaped or elliptical) plasma are presented. The resulting feedback control system is shown to be straightforward, although nonlinear voltage-current dependence is assumed in the power supplies. The required power supplied to the poloidal coils in order to contain the plasma under the high heating rates is estimated

  10. Use of plasma waves to create in Tokamaks quasi-stationary conditions required for controlled fusion

    International Nuclear Information System (INIS)

    Moreau, D.

    1993-04-01

    In this thesis are studied the coupling of hybrid waves to the plasma, multijunction antennas, hybrid wave stochastic propagation, fast wave current drive and lower-hybrid current drive experiments in Tore Supra and Jet. The possibility of decoupling current density profile and temperature give one more degree of freedom for the control of plasma in a configuration which is not very flexible

  11. Plasma density control in real-time on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: filip.janky.work@gmail.com [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Havlicek, J. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Varavin, M.; Zacek, F.; Seidl, J.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic)

    2015-10-15

    Highlights: • We fitted length of the chord of the interferometry crossing plasma in the different plasma scenarios. • We add correction to the actual length of the chord of the interferometry according to plasma shape and position in real-time code. • We used this correction to control plasma density in real-time. - Abstract: The electron density on COMPASS is measured using 2 mm microwave interferometer. Interferometer signal is used as an input for the feedback control loop, running under the MARTe real-time framework. Two different threads are used to calculate (fast 50 μs thread) and to control (slow 500 μs thread) the electron density. The interferometer measures a line averaged density along a measurement chord. This paper describes an approach to control the line-averaged electron density in a real-time loop, using a correction to the real plasma shape, the plasma position, and non-linear effects of the electron density measurement at high densities. Newly developed real-time electron density control give COMPASS the chance to control the electron density more accurately which is essential for parametric scans for diagnosticians, for physics experiments and also for achieving plasma scenarios with H-mode.

  12. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  13. Divertor heat flux control and plasma-material interaction

    International Nuclear Information System (INIS)

    Kikuchi, Yusuke; Nagata, Masayoshi; Sawada, Keiji; Takamura, Shuichi; Ueda, Yoshio

    2014-01-01

    Development of reliable radiative-cooling divertors is essential in DEMO reactor because it uses low-activation materials with low heat removal and the plasma heat flux exhausted from the confined region is 5 times as large as in ITER. It is important to predict precisely the heat and particle flux toward the divertor plate by simulation. In this present article, theoretical and experimental data of the reflection, secondary emission and surface recombination coefficients of the divertor plate by ion bombardment are given and their effects on the power transmission coefficient are discussed. In addition, some topics such as the erosion process of the divertor plate by ELM and the plasma disruption, the thermal shielding due to the vapor layer on the divertor plate and the formation of fuzz structure on W by helium plasma irradiation, are described. (author)

  14. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  15. Feedback control of horizontal position and plasma surface shape in a non-circular tokamak

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Nakamura, Kazuo; Nakamura, Yukio; Itoh, Satoshi

    1986-01-01

    The linear model for the coupled horizontal position and plasma surface shape control in the non-circular tokamak device was described. It enables us to estimate easily the displacement and the distortion due to the changes in plasma pressure and current density distribution. The PI-controller and the optimal regulator were designed with the linear model. Transient-response analysis of the control system in the TRIAM-1M tokamak showed that the optimal regulator is superior to the PI-controller with regard to the mutual-interference between the position control system and the elongation control system. (author)

  16. Dynamics and feedback control of plasma equilibrium position in a tokamak

    International Nuclear Information System (INIS)

    Burenko, O.

    1983-01-01

    A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems

  17. Real time determination and control of the plasma localisation and internal inductance in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Laurent, F. E-mail: stlauren@drfc.cad.cea.fr; Martin, G

    2001-10-01

    The study of long-duration high-power discharges need an efficient real time control of the plasma parameters, especially the plasma position when RF heating systems are used. On Tore Supra, recent improvements have been carried out (i) for the poloidal interpolation and the radial extrapolation of the magnetic measurements, (ii) for a better feedback matrix converting the radial errors of the plasma position to voltage values for the poloidal generators, and (iii) for a very fast solution to find the plasma parameters from the knowledge of its surface. The plasma edge localisation is now controlled with a precision better than 1 cm and controlled within a few millimetres uncertainty for several tenths of seconds. Moreover, for advanced tokamak scenarios, a precise real time determination of safety factor, poloidal beta, internal inductance, Shafranov shift as well as the online computation of the electron density and current density profiles are now available on Tore Supra. These quantities compare well with results from batch calculations using an equilibrium code. To fulfil the new requirements of plasma control for the CIEL project, a local control of the plasma edge position and curvature is planned for the near future.

  18. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2002-01-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic

  19. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  20. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  1. High speed and high functional inverter power supplies for plasma generation and control, and their performance

    International Nuclear Information System (INIS)

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    2003-01-01

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak. (author)

  2. Impact of bumpiness control on edge plasma in a helical-axis heliotron device

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Watanabe, S.; Fujikawa, S.; Okada, H.; Kobayashi, S.; Yabutani, H.; Nagasaki, K.; Nakamura, H.; Torii, Y.; Yamamoto, S.; Kaneko, M.; Arimoto, H.; Motojima, G.; Kitagawa, H.; Tsuji, T.; Uno, M.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Nakamura, Y.; Hanatani, K.; Kondo, K.; Sano, F.

    2007-01-01

    In the helical-axis heliotron configuration, bumpiness of the confinement field ε b is introduced to control the plasma transport. The plasma performance were experimentally investigated in Heliotron J for three configurations with ε b = 0.01, 0.06 and 0.15 at ρ = 2/3. The obtained volume-averaged stored energy depends on the configuration. To understand the observed difference in global energy confinement, the ε b -control effects on the edge plasma is discussed. For ε b = 0.01, the plasma density and temperature in the peripheral region is low compared to other cases. This poor plasma edge relates to the observed low stored energy or poor energy confinement for ε b = 0.01

  3. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used

  4. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  5. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  6. Control of plasma profile in microwave discharges via inverse-problem approach

    Directory of Open Access Journals (Sweden)

    Yasuyoshi Yasaka

    2013-12-01

    Full Text Available In the manufacturing process of semiconductors, plasma processing is an essential technology, and the plasma used in the process is required to be of high density, low temperature, large diameter, and high uniformity. This research focuses on the microwave-excited plasma that meets these needs, and the research target is a spatial profile control. Two novel techniques are introduced to control the uniformity; one is a segmented slot antenna that can change radial distribution of the radiated field during operation, and the other is a hyper simulator that can predict microwave power distribution necessary for a desired radial density profile. The control system including these techniques provides a method of controlling radial profiles of the microwave plasma via inverse-problem approach, and is investigated numerically and experimentally.

  7. Toward a design for the ITER plasma shape and stability control system

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Leuer, J.A.; Kellman, A.G.; Haney, S.W.; Bulmer, R.H.; Pearlstein, L.D.; Portone, A.

    1994-07-01

    A design strategy for an integrated shaping and stability control algorithm for ITER is described. This strategy exploits the natural multivariable nature of the system so that all poloidal field coils are used to simultaneously control all regulated plasma shape and position parameters. A nonrigid, flux-conserving linearized plasma response model is derived using a variational procedure analogous to the ideal MHD Extended Energy Principle. Initial results are presented for the non-rigid plasma response model approach applied to an example DIII-D equilibrium. For this example, the nonrigid model is found to yield a higher passive growth rate than a rigid current-conserving plasma response model. Multivariable robust controller design methods are discussed and shown to be appropriate for the ITER shape control problem

  8. Manufacturing of central control system of 'JT-60' a plasma feasibility experiment device

    International Nuclear Information System (INIS)

    Kondo, Ikuo; Kimura, Toyoaki; Murai, Katsuji; Iba, Daizo; Takemaru, Koichi.

    1984-01-01

    For constructing a critical-plasma-experiment apparatus JT-60, it was necessary to develop a new control system which enables to operate safely and smoothly a large scale nuclear fusion apparatus and to carry out efficient experiment. For the purpose, the total system control facility composed of such controllers as CAMAC system, timing system and protective interlock panel with multi-computer system as the core was developed. This system generalizes, keeps watch on and controls the total facilities as the key point of the control system of JT-60, and allows flexible operation control corresponding to the diversified experimental projects. At the same time, it carries out the fast real-time control of high temperature, high density plasma. In this paper, the system constitution, function and the main contents of development of the total system control facility are reported. JT-60 is constructed to attain the critical plasma condition as the premise of nuclear fusion reactors and to scientifically verify controlled nuclear fusion. Plasma expe riment will be started in April, 1985. The real-time control of plasma for carrying out high beta operation is planned, intending to develop future economical practical reactors. (Kako, I.)

  9. Simultaneous Feedback Control of Plasma Rotation and Stored Energy on the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Scoville, J.T.; Ferron, J.R.; Humphreys, D.A.; Walker, M.L.

    2006-01-01

    One of the major modifications made to the DIII-D tokamak during the 2005 Long Torus Opening was the rotation of one of the four two-source neutral beam injection systems. Prior to this modification, all beams injected power with a component in the same direction as the usual plasma current ('' co-injection ''). Starting in early 2006, two of the seven beams inject with a component in the opposite direction ('' counter-injection ''). This new capability allows, for the first time, a partial decoupling of the injected energy and momentum during neutral beam heating experiments. An immediate advantage of mixed co- and counter-injection beams is the capability to control the plasma rotation velocity. High beta plasmas can now be studied over a wide range of the plasma rotation velocity. The stabilizing effect of rotation on the resistive wall mode (RWM), for example, can be directly compared to the stabilization achieved by external feedback coils. This is an advantage over previous techniques to control plasma rotation, such as magnetic braking, which have had only limited success. We describe development and implementation of a model-based control algorithm for simultaneous regulation of plasma rotation and beta. The model includes the two relevant plasma states (plasma rotation and stored energy), and describes the dynamic effects of the relevant actuators on those states. The actuators include the applied beam torque and beam power, which depend on the amount of co and counter-injected beams. Implementation of the model-based control within the plasma control system (PCS) [B.G. Penaflor, et al, '' Current Status of DIII-D Plasma Control System Computer Upgrades,'' Fusion Eng. and Design 71 (2004) 47] requires real-time measurements of the plasma rotation, obtained from the charge exchange recombination (CER) diagnostic, and stored energy calculated by the real-time EFIT equilibrium reconstruction. Details of this model and its development, and a comparison with

  10. Active control of internal transport barrier and confinement database in JT-60U reversed shear plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Takizuka, Tomonori; Shirai, Hiroshi; Fujita, Takaaki; Kamada, Yutaka; Ide, Shunsuke; Fukuda, Takeshi; Koide, Yoshihiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-07-01

    Active control of internal transport barrier (ITB) and confinement properties of plasma with ITB have been studied in reversed shear plasmas. Modifications of the radial electric field (E{sub r}) profile by changing the combination of tangential neutral beams can control the ITB strength, where the contribution to E{sub r} from the toroidal rotation plays an important role. The ITB confinement database of reversed shear plasmas has been constructed. Stored energy is strongly correlated with poloidal magnetic field at the ITB foot. (author)

  11. Computer-controlled system for plasma ion energy auto-analyzer

    International Nuclear Information System (INIS)

    Wu Xianqiu; Chen Junfang; Jiang Zhenmei; Zhong Qinghua; Xiong Yuying; Wu Kaihua

    2003-01-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by LabVIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provide important parameters of plasma process techniques based on semiconductor devices and microelectronics

  12. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Moon, S. Y.; Choe, W.

    2006-01-01

    Controllability of small size atmospheric pressure plasma generated at low frequency in a pin to dielectric plane electrode configuration was studied. It was shown that the plasma characteristics could be controlled by geometrical and operational parameters of the experiment. Under most circumstances, continuous glow discharges were observed, but both the corona and/or the dielectric barrier discharge characteristics were observed depending on the position of the pin electrode. The plasma size and the rotational temperature were also varied by the parameters. The rotational temperature was between 300 and 490 K, being low enough to treat thermally sensitive materials

  13. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  14. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  15. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  16. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  17. The renewed HT-7 plasma control system based on real-time Linux cluster

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J.; Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Walker, M.L.; Penaflor, B.G.; Piglowski, D.A.; Johnson, R.D. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The hardware and software structure of the new HT-7 plasma control system (HT-7 PCS) is reported. Black-Right-Pointing-Pointer All original systems were integrated in the new HT-7 PCS. And the implementation details of the control algorithms are given in the paper. Black-Right-Pointing-Pointer Different from EAST PCS, the AC operation mode is realized in HT-7 PCS. Black-Right-Pointing-Pointer The experiment results are discussed. Good control performance has been obtained. - Abstract: In order to improve the synchronization, flexibility and expansibility of the plasma control on HT-7, a new plasma control system (HT-7 PCS) was constructed. The HT-7 PCS was based on a real-time Linux cluster with a well-defined, robust and flexible software infrastructure which was adapted from DIII-D PCS. In this paper, the hardware structure and system customization details for HT-7 PCS are reported. The plasma position and current control, plasma density control and off-normal event detection, which were realized in separated systems originally, have been integrated and implemented in such HT-7 PCS. All these control algorithms have been successfully validated in the last several HT-7 experiment campaigns. Good control performance has been achieved and the experiment results are discussed in the paper.

  18. Current status and prospect of plasma control system for steady-state operation on QUEST

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    2016-01-01

    Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.

  19. Current status and prospect of plasma control system for steady-state operation on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto, E-mail: hasegawa@triam.kyushu-u.ac.jp; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    2016-11-15

    Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.

  20. Erratum: 'Double layer in an expanding plasma: Simultaneous upstream and downstream measurements' [Phys. Plasmas 15, 102113 (2008)

    International Nuclear Information System (INIS)

    Byhring, H. S.; Fredriksen, A.; Charles, C.; Boswell, R. W.

    2009-01-01

    As a result of the discovery of an error in the calibration of the simulated versus the measured magnetic field, a thorough mapping of the axial magnetic field has been carried out. The measurements show that the magnetic field is higher than what was believed to be the case, however, this does not affect the conclusions made in the article.

  1. Comment on 'Ion collection by a sphere in a flowing collisional plasma' [Phys. Plasmas 14, 034502 (2007)

    International Nuclear Information System (INIS)

    Hutchinson, I. H.

    2007-01-01

    It is shown that the numerical solutions presented in a recent paper discussing a highly simplified model of collisional particle collection are unnecessary because simple analytic solutions of the quantities presented are available

  2. Chemistry of plasma-polymerized vinyltriethoxysilane controlled by deposition conditions

    Czech Academy of Sciences Publication Activity Database

    Čech, V.; Zemek, Josef; Peřina, Vratislav

    2008-01-01

    Roč. 5, č. 8 (2008), s. 745-752 ISSN 1612-8850 Grant - others:GAČR(CZ) GA104/06/0437 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : ESCA/XPS * FTIR * plasma-enhanced chemical vapor deposition (PECVD) * Rutherford back-scattering (RBS) * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.921, year: 2008

  3. Phase Formation Control in Plasma Sprayed Alumina–Chromia Coatings

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Pavel; Kolman, Blahoslav Jan; Stahr, C.Ch.; Berger, L.-M.

    2011-01-01

    Roč. 55, č. 3 (2011), s. 294-300 ISSN 0862-5468 R&D Projects: GA ČR GA106/08/1240 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * Chromia * Plasma spraying * Phase stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.382, year: 2011 http://www.ceramics-silikaty.cz/2011/2011_03_294.htm

  4. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  5. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.

    2018-01-08

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  6. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    Science.gov (United States)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  7. Study of intelligent system for control of the tokamak-ETE plasma positioning

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe de Faria Pereira Wiltgen

    2003-01-01

    The development of an intelligent neural control system of the neural type, capable to perform real time control of the plasma displacement in the experiment tokamak spheric - ETE (spherical tokamak experiment ) is presented. The ETE machine is in operation since Nov 2000, in the LAP - Plasma Associated Laboratory of the Brazilian Institute on Spatial Research (INPE) in Sao Jose dos Campos, S P, Brazil. The experiment is dedicated to study the magnetic confinement of a fusion plasma in a configuration favorable for the construction of future reactors. Nuclear fusion constitutes a renewable energy source with low environmental impact, which uses atomic energy in pacific applications for the sustainable development of humanity. One of the important questions for the attainment of fusion relates to the stability of the plasma and control of its position during the reactor operation. Therefore, the development of systems to control the plasma in tokamaks constitutes a necessary technological advance for the feasibility of nuclear fusion. In particular, the research carried out in this thesis concerns the proposal of a system to control the vertical displacement of the plasma in the ETE tokamak, aiming to obtain steady pulses in this machine. A Magnetic Levitation system (Mag Lev) was developed as part of this work, allowing to study the nonlinear behavior of a device that, from the aspect of position control, is similar (analogous) to the plasma in the ETE tokamak, This magnetic levitation system was designed, mathematically modeled and built in order to test both classical and intelligent type controllers. The results of this comparison are very promising for the use of intelligent controllers in the ETE tokamak as well as other control applications. (author)

  8. Participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    This is a report concerning the participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion. The report lists all the personnel enroled in research activities, both theoretical and experimental. The research subjects are the following: relativistic electron beams; plasma produced by laser; plasma theory; quiescent plasma; plasma centrifugal; ionic propulsion. (A.C.A.S.) [pt

  9. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  10. Real-time control of current and pressure profiles in tokamak plasmas

    International Nuclear Information System (INIS)

    Laborde, L.

    2005-12-01

    Recent progress in the field of 'advanced tokamak scenarios' prefigure the operation regime of a future thermonuclear fusion power plant. Compared to the reference regime, these scenarios offer a longer plasma confinement time thanks to increased magnetohydrodynamic stability and to a better particle and energy confinement through a reduction of plasma turbulence. This should give access to comparable fusion performances at reduced plasma current and could lead to a steady state fusion reactor since the plasma current could be entirely generated non-inductively. Access to this kind of regime is provided by the existence of an internal transport barrier, linked to the current profile evolution in the plasma, which leads to steep temperature and pressure profiles. The comparison between heat transport simulations and experiments allowed the nature of the barriers to be better understood as a region of strongly reduced turbulence. Thus, the control of this barrier in a stationary manner would be a remarkable progress, in particular in view of the experimental reactor ITER. The Tore Supra and JET tokamaks, based in France and in the United Kingdom, constitute ideal instruments for such experiments: the first one allows stationary plasmas to be maintained during several minutes whereas the second one provides unique fusion performances. In Tore Supra, real-time control experiments have been accomplished where the current profile width and the pressure profile gradient were controlled in a stationary manner using heating and current drive systems as actuators. In the JET tokamak, the determination of an empirical static model of the plasma allowed the current and pressure profiles to be simultaneously controlled and so an internal transport barrier to be sustained. Finally, the identification of a dynamic model of the plasma led to the definition of a new controller capable, in principle, of a more efficient control. (author)

  11. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  12. ITER safety studies: The effect of two simultaneous perturbations during a loss of plasma control transient

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.

    2014-01-01

    Highlights: •We have re-examined the methodology employed in the analysis of the “Loss of plasma transients in ITER” safety reference events. •We show the possible transient effects of a combined malfunction in external heating system and change in plasma confinement. •We show the possible transient effects of a combined malfunction in fuelling system and change in plasma confinement. •We have shown that new steady-states can be achieved that are potentially dangerous for the wall integrity. -- Abstract: The loss of plasma control events in ITER are safety cases investigated to give an upper bound of the worse effects foreseeable from a total failure of the plasma control function. Conservative analyses based on simple 0D models for plasma balance equations and 1D models for wall heat transfer are used to determine the effects of such transients on wall integrity from a thermal point of view. In this contribution, progress in a “two simultaneous perturbations over plasma” approach to the analysis of the loss of plasma control transients in ITER is presented. The effect of variation in confinement time is now considered, and the consequences of this variation are shown over a n–T diagram. The study has been done with the aid of AINA 3.0 code. This code implements the same 0D plasma-1D wall scheme used in previous LOPC studies. The rationale of this study is that, once the occurrence of a loss of plasma transient has been assumed, and due to the uncertainties in plasma physics, it does not seem so unlikely to assume the possibility of finding a new confinement mode during the transient. The cases selected are intended to answer to the question “what would happen if an unexpected change in plasma confinement conditions takes place during a loss of plasma control transient due to a simultaneous malfunction of heating, or fuelling systems?” Even taking into account the simple models used and the uncertainties in plasma physics and design data, the

  13. Self-tuning control studies of the plasma vertical position problem

    International Nuclear Information System (INIS)

    Zheng, Guang Lin; Wellstead, P.E.; Browne, M.L.

    1993-01-01

    The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma positions system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated. 26 refs., 16 figs., 1 tab

  14. Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor

    Science.gov (United States)

    Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.

    2010-11-01

    The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.

  15. Plasma density control with ergodic divertor on Tore Supra; Controle de la densite du plasma en presence du divertor ergodique dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Meslin, B

    1998-04-30

    Plasma density control on the tokamak Tore Supra is important for the optimization of every experimental scenario dealing with the improvement of plasma performances. Specific conditions are required both in the plasma bulk and at the edge. Within the framework of the present study, a magnetic configuration is used in the e plasma edge of Tore Supra: the ergodic divertor configuration. A magnetic perturbation which is resonant with the permanent field destroys the plasma confinement locally, opening the field lines onto the material components. They aim of the study is the characterization of the edge density in every relevant scenario for Tore Supra. The first part of this work is dedicated to density and temperature measurements by a series of fixed Langmuir probes located at the very edge of the plasma. Thanks to them, density regimes have been put in evidence during experiments where the volume averaged density , an usual control parameter of the plasma, was varied. The analysis of heat and particle transport through the plasma edge region explains the mechanisms leading to those regimes. The essential factor in our analysis is the dependence of the electron conductivity and ionization depth on temperature. While heat conduction governs the heat transport, the edge density varies linearly according to . Below a critical temperature, reached when the ion flux amplification at constant power density is large enough, a parallel temperature gradient appears leading to a density gradient in the opposite direction in order to maintain the pressure constant along the field lines. A high recycling regime is obtained and the edge density varies like {sup 3}. The pressure conservation is no more satisfied during the detachment of the plasma, which is characterized by a high neutral density at low temperatures leading to a ion momentum loss by friction against the neutrals. The edge density drops in those conditions. These regimes are similar

  16. Transforming the ASDEX Upgrade discharge control system to a general-purpose plasma control platform

    International Nuclear Information System (INIS)

    Treutterer, Wolfgang; Cole, Richard; Gräter, Alexander; Lüddecke, Klaus; Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas

    2015-01-01

    Highlights: • Control framework split in core and custom part. • Core framework deployable in other fusion device environments. • Adaptible through customizable modules, plug-in support and generic interfaces. - Abstract: The ASDEX Upgrade Discharge Control System DCS is a modern and mature product, originally designed to regulate and supervise ASDEX Upgrade Tokamak plasma operation. In its core DCS is based on a generic, versatile real-time software framework with a plugin architecture that allows to easily combine, modify and extend control function modules in order to tailor the system to required features and let it continuously evolve with the progress of an experimental fusion device. Due to these properties other fusion experiments like the WEST project have expressed interest in adopting DCS. For this purpose, essential parts of DCS must be unpinned from the ASDEX Upgrade environment by exposure or introduction of generalised interfaces. Re-organisation of DCS modules allows distinguishing between intrinsic framework core functions and device-specific applications. In particular, DCS must be prepared for deployment in different system environments with their own realisations for user interface, pulse schedule preparation, parameter server, time and event distribution, diagnostic and actuator systems, network communication and data archiving. The article explains the principles of the revised DCS structure, derives the necessary interface definitions and describes major steps to achieve the separation between general-purpose framework and fusion device specific components.

  17. Transforming the ASDEX Upgrade discharge control system to a general-purpose plasma control platform

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • Control framework split in core and custom part. • Core framework deployable in other fusion device environments. • Adaptible through customizable modules, plug-in support and generic interfaces. - Abstract: The ASDEX Upgrade Discharge Control System DCS is a modern and mature product, originally designed to regulate and supervise ASDEX Upgrade Tokamak plasma operation. In its core DCS is based on a generic, versatile real-time software framework with a plugin architecture that allows to easily combine, modify and extend control function modules in order to tailor the system to required features and let it continuously evolve with the progress of an experimental fusion device. Due to these properties other fusion experiments like the WEST project have expressed interest in adopting DCS. For this purpose, essential parts of DCS must be unpinned from the ASDEX Upgrade environment by exposure or introduction of generalised interfaces. Re-organisation of DCS modules allows distinguishing between intrinsic framework core functions and device-specific applications. In particular, DCS must be prepared for deployment in different system environments with their own realisations for user interface, pulse schedule preparation, parameter server, time and event distribution, diagnostic and actuator systems, network communication and data archiving. The article explains the principles of the revised DCS structure, derives the necessary interface definitions and describes major steps to achieve the separation between general-purpose framework and fusion device specific components.

  18. ACTIVE FILTER HARDWARE DESIGN and PERFORMANCE FOR THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    SELLERS, D.; FERRON, J.R; WALKER, M.L; BROESCH, J.D

    2004-03-01

    OAK-B135 The digital plasma control system (PCS), currently in operation on the DIII-D tokamak, requires inputs from a large number of sensors. Due to the nature of the digitizers and the relative noisy environment from which these signals are derived, each of the 32 signals must be conditioned via an active filter. Two different types of filters, Chebyshev and Bessel with fixed frequencies: 100 Hz Bessel was used for filtering the motional Stark effect diagnostic data. 800 Hz Bessel was designed to filter plasma control data and 1200 Hz Chebyshev is used with closed loop control of choppers. The performance of the plasma control system is greatly influenced by how well the actual filter responses match the software model used in the control system algorithms. This paper addresses the various issues facing the designer in matching the electrical design with the theoretical

  19. Plasma Control of Turbine Secondary Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose Phase I and II efforts that will focus on turbomachinery flow control. Specifically, the present work will investigate active control in a high speed...

  20. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. Remote automatic control scheme for plasma arc cutting of contaminated waste

    International Nuclear Information System (INIS)

    Dudar, A.M.; Ward, C.R.; Kriikku, E.M.

    1993-01-01

    Plasma arc cutting is a popular technique used for size reduction of radioactively contaminated metallic waste such as glove boxes, vessels, and ducts. It is a very aggressive process and is capable of cutting metal objects up to 3 in. thick. The crucial control criteria in plasma cutting is maintaining a open-quotes stand-offclose quotes distance between the plasma torch tip and the material being cut. Manual plasma cutting techniques in radioactive environments require the operator to wear a plastic suit covered by a metallic suit. This is very cumbersome, time-consuming, and also generates additional waste (plastic and metallic suits). Teleoperated remote cutting is preferable to manual cutting, but our experience has shown that remote control of the stand-off distance is particularly difficult because of the brightness of the plasma arc and inadequate viewing angles. Also, the heat generated by the torch causes the sheet metal to deform and warp during plasma cutting, creating a dynamically changing metal surface. The aforementioned factors make it extremely difficult, if not impossible, to perform plasma cuts of waste with a variety of shapes and sizes in a teleoperated fashion with an operator in the loop. Automating the process is clearly desirable

  2. Remote automatic control scheme for plasma arc cutting of contaminated waste

    International Nuclear Information System (INIS)

    Dudar, A.M.; Ward, C.R.; Kriikku, E.M.

    1993-01-01

    The Robotics Development Group at the Savannah River Technology Center has developed and implemented a scheme to perform automatic cutting of metallic contaminated waste. The scheme employs a plasma arc cutter in conjunction with a laser ranging sensor attached to a robotic manipulator called the Telerobot. A software algorithm using proportional control is then used to perturb the robot's trajectory in such a way as to regulate the plasma arc standoff and the robot's speed in order to achieve automatic plasma arc cuts. The scheme has been successfully tested on simulated waste materials and the results have been very favorable. This report details the development and testing of the scheme

  3. ITER-FEAT magnetic configuration and plasma position/shape control in the nominal PF scenario

    International Nuclear Information System (INIS)

    Gribov, Y.V.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The capability of the ITER-FEAT poloidal field system to support the four 'design' scenarios and the high current 'assessed' scenario have been studied. To operate with highly elongated plasma, the system has segmentation of the central solenoid and a separate fast feedback loop for plasma vertical stabilisation. Within the limits imposed on the coil currents, voltages and power, the poloidal field system provides the required plasma scenario and control capabilities. The separatrix deviation from the required position, in scenarios with minor disruptions is within less than about 100 mm. (author)

  4. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  5. Real-time monitoring and control of the plasma hearth process

    International Nuclear Information System (INIS)

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-01-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface

  6. Statistical analysis of trace metals in the plasma of cancer patients versus controls

    International Nuclear Information System (INIS)

    Pasha, Qaisara; Malik, Salman A.; Shah, Munir H.

    2008-01-01

    The plasma of cancer patients (n = 112) and controls (n = 118) were analysed for selected trace metals (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sr and Zn) by flame atomic absorption spectroscopy. In the plasma of cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe and Zn were 3971, 178, 44.1, 7.59, 4.38 and 3.90 ppm, respectively, while the mean metal levels in the plasma of controls were 3844, 151, 74.2, 18.0, 6.60 and 2.50 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr and Zn were noted to be significantly higher in the plasma of cancer patients compared with controls. Very strong mutual correlations (r > 0.70) in the plasma of cancer patients were observed between Fe-Mn, Ca-Mn, Ca-Ni, Ca-Co, Cd-Pb, Co-Ni, Mn-Ni, Mn-Zn, Cr-Li, Ca-Zn and Fe-Ni, whereas, Ca-Mn, Ca-Mg, Fe-Zn, Ca-Zn, Mg-Mn, Mg-Zn, Cd-Sb, Cd-Co, Cd-Zn, Co-Sb and Sb-Zn exhibited strong relationships (r > 0.50) in the plasma of controls, all were significant at p < 0.01. Principal component analysis (PCA) of the data extracted five PCs, both for cancer patients and controls, but with considerably different loadings. The average metals levels in male and female donors of the two groups were also evaluated and in addition, the general role of trace metals in the carcinogenesis was discussed. The study indicated appreciably different pattern of metal distribution and mutual relationships in the plasma of cancer patients in comparison with controls

  7. Statistical analysis of trace metals in the plasma of cancer patients versus controls

    Energy Technology Data Exchange (ETDEWEB)

    Pasha, Qaisara; Malik, Salman A. [Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Munir H. [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: munir_qau@yahoo.com

    2008-05-30

    The plasma of cancer patients (n = 112) and controls (n = 118) were analysed for selected trace metals (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sr and Zn) by flame atomic absorption spectroscopy. In the plasma of cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe and Zn were 3971, 178, 44.1, 7.59, 4.38 and 3.90 ppm, respectively, while the mean metal levels in the plasma of controls were 3844, 151, 74.2, 18.0, 6.60 and 2.50 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr and Zn were noted to be significantly higher in the plasma of cancer patients compared with controls. Very strong mutual correlations (r > 0.70) in the plasma of cancer patients were observed between Fe-Mn, Ca-Mn, Ca-Ni, Ca-Co, Cd-Pb, Co-Ni, Mn-Ni, Mn-Zn, Cr-Li, Ca-Zn and Fe-Ni, whereas, Ca-Mn, Ca-Mg, Fe-Zn, Ca-Zn, Mg-Mn, Mg-Zn, Cd-Sb, Cd-Co, Cd-Zn, Co-Sb and Sb-Zn exhibited strong relationships (r > 0.50) in the plasma of controls, all were significant at p < 0.01. Principal component analysis (PCA) of the data extracted five PCs, both for cancer patients and controls, but with considerably different loadings. The average metals levels in male and female donors of the two groups were also evaluated and in addition, the general role of trace metals in the carcinogenesis was discussed. The study indicated appreciably different pattern of metal distribution and mutual relationships in the plasma of cancer patients in comparison with controls.

  8. Progress in Development of the ITER Plasma Control System Simulation Platform

    Science.gov (United States)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  9. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  10. Immobilization and controlled release of drug using plasma polymerized thin film

    International Nuclear Information System (INIS)

    Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release

  11. Real-time digital control of plasma position and shape on the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Mitri, Mikhael

    2009-01-01

    Beside the objective of contributing to the controlled thermonuclear fusion research and ultimately the development of a fusion based power plant, the main objectives of the thesis are a substantial improvement of plasma vertical position control and plasma shape control as well as a better understanding of formerly unexplained effects, e.g. disturbance fields. As for the vertical position control, a deep analysis has to be undertaken to identify the problem sources. Accurate control of the plasma position is very difficult to achieve. This is mainly due to the complexity of the tokamak and the difficulty in measuring or modelling all relevant discharge variables. Any models would be highly nonlinear and time varying. Thus, for simulation and controller design, a simplified, but nevertheless accurate model has to be developed, based on physics and measured data of the process. Furthermore, the quality of the measured position has to be improved by using new inductive sensors, integrators, and hardware. The integration drift problem has to be analysed and resolved by developing a drift-free integration method. Concerning the shape control, a better understanding of the relation between the stray fields and the iron core saturation is required. Furthermore, the influence on the plasma elongation has to be determined. Upon this, a shape compensation algorithm has to be developed accordingly. The accuracy of the shape control has to be better than 1%. (orig.)

  12. Results of using the NSTX-U Plasma Control System for scenario development

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  13. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea)

    Science.gov (United States)

    Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.

    2011-05-01

    The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.

  14. ASDEX Upgrade Discharge Control System—A real-time plasma control framework

    International Nuclear Information System (INIS)

    Treutterer, W.; Cole, R.; Lüddecke, K.; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2014-01-01

    -process communication, generic feedback control and pulse supervision. In each of these domains, DCS has contributed important ideas and methods to the on-going design of the ITER plasma control system. We will identify and describe these essential features and illustrate them with examples from ASDEX Upgrade operation

  15. ASDEX Upgrade Discharge Control System—A real-time plasma control framework

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany); Cole, R.; Lüddecke, K. [Unlimited Computer Systems GmbH, Iffeldorf (Germany); Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany)

    2014-03-15

    -process communication, generic feedback control and pulse supervision. In each of these domains, DCS has contributed important ideas and methods to the on-going design of the ITER plasma control system. We will identify and describe these essential features and illustrate them with examples from ASDEX Upgrade operation.

  16. From the conceptual design to the first simulation of the new WEST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Nouailletas, R., E-mail: remy.nouailletas@cea.fr [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Ravenel, N.; Signoret, J. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Spring, A.; Lewerentz, M. [Max Planck Institute for Plasma Physics, Wendeksteinstr. 1, 17491 Greifswald (Germany); Rapson, C.J. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Masand, H.; Dhongde, J. [Institute for Plasma Research (IPR), Near Indira Bridge, Bhat, Gandhinagar 382 428, Gujarat (India); Moreau, P.; Guillerminet, B.; Brémond, S.; Allegretti, L. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Raupp, G. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Werner, A. [Max Planck Institute for Plasma Physics, Wendeksteinstr. 1, 17491 Greifswald (Germany); Saint Laurent, F.; Nardon, E. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Bhandarkar, M. [Institute for Plasma Research (IPR), Near Indira Bridge, Bhat, Gandhinagar 382 428, Gujarat (India)

    2015-10-15

    Highlights: • We propose an overview of the future control system of the Tore Supra in WEST configuration. • The control system will be based on DCS (Discharge Control System) of ASDEX Upgrade. • The Pulse Schedule Editor will be based on the experiment program editor of the future W7X facility. • The operation of this new system is illustrated by an example based on a simple plasma current/loop voltage control. - Abstract: The configuration of the Tore Supra WEST project leads to control challenges and event handling close to those of ITER from a plasma scenario point of view (X-point configuration, H mode, long duration pulse) and from a machine protection point of view (metallic environment). Based on previous conceptual studies and to meet the WEST requirements, a sub-project will implement a new plasma control system (PCS) and a new pulse schedule editor (PSE). The main idea is to use a segment approach to describe the pulse scheduling with a full integration of event handling both on the PCS and on the PSE. After detailed specification work, it has been shown that the real-time framework called DCS (Discharge Control System) which is currently used on ASDEX upgrade fulfills the requirements and could be integrated into the WEST global control infrastructure. For the PSE, the Xedit tool, developed for the future W7X facility, has been chosen. This contribution will begin by a short explanation of the concepts proposed for the control of the plasma and the handling of events during the plasma discharge. Then it will focus on the new centralized architecture of the new Tore Supra PCS and an operating principle example showing the efficiency of the approach to handle normal and off-normal events. This later point will illustrate the required modifications of DCS and Xedit to fit with the Tore Supra Control infrastructure.

  17. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  18. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  19. Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yao, E-mail: yaohuang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science & Technology, University of Science & Technology of China (China); Luo, Z.P.; Yuan, Q.P.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yue, X.N. [School of Nuclear Science & Technology, University of Science & Technology of China (China)

    2016-11-15

    Highlights: • We described parallel equilibrium reconstruction code P-EFIT running on GPU was integrated with EAST plasma control system. • Compared with RT-EFIT used in EAST, P-EFIT has better spatial resolution and full algorithm of EFIT per iteration. • With the data interface through RFM, 65 × 65 spatial grids P-EFIT can satisfy the accuracy and time feasibility requirements for plasma control. • Successful control using ISOFLUX/P-EFIT was established in the dedicated experiment during the EAST 2014 campaign. • This work is a stepping-stone towards versatile ISOFLUX/P-EFIT control, such as real-time equilibrium reconstruction with more diagnostics. - Abstract: Implementation of P-EFIT code for plasma control in EAST is described. P-EFIT is based on the EFIT framework, but built with the CUDA™ architecture to take advantage of massively parallel Graphical Processing Unit (GPU) cores to significantly accelerate the computation. 65 × 65 grid size P-EFIT can complete one reconstruction iteration in 300 μs, with one iteration strategy, it can satisfy the needs of real-time plasma shape control. Data interface between P-EFIT and PCS is realized and developed by transferring data through RFM. First application of P-EFIT to discharge control in EAST is described.

  20. Diagnostics for real-time plasma control in PBX-M

    Science.gov (United States)

    Kaita, R.; Batha, S.; Bell, R. E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; von Goeler, S.; Zolfaghari, A.; PBX-M Group

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of βp from li, hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications.

  1. Diagnostics for real-time plasma control in PBX-M

    International Nuclear Information System (INIS)

    Kaita, R.; Batha, S.; Bell, R.E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; Goeler, S. von; Zolfaghari, A.

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of β p from l i , hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications

  2. Plasma guns for controlled fussion at megagauss energy-densities

    International Nuclear Information System (INIS)

    Turchi, Peter J.; Roderick, Norman F.; Degnan, James H.; Frese, Michael H.

    2008-01-01

    Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.

  3. Optimization and Control of Burning Plasmas Through High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei [Tech-X Corporation, Boulder, CO (United States)

    2017-12-18

    This project has revived the FACETS code, that has been developed under SciDAC fund- ing in 2008-2012. The code has been dormant for a number of years after the SciDAC funding stopped. FACETS depends on external packages. The external packages and libraries such as PETSc, FFTW, HDF5 and NETCDF that are included in FACETS have evolved during these years. Some packages in FACETS are also parts of other codes such as PlasmaState, NUBEAM, GACODES, and UEDGE. These packages have been also evolved together with their host codes which include TRANSP, TGYRO and XPTOR. Finally, there is also a set of packages in FACETS that are being developed and maintained by Tech-X. These packages include BILDER, SciMake, and FcioWrappers. Many of these packages evolved significantly during the last several years and FACETS had to be updated to synchronize with the re- cent progress in the external packages. The PI has introduced new changes to the BILDER package to support the updated interfaces to the external modules. During the last year of the project, the FACETS version of the UEDGE code has been extracted from FACETS as a standalone package. The PI collaborates with the scientists from LLNL on the updated UEDGE model in FACETS. Drs. T. Rognlien, M. Umansky and A. Dimits from LLNL are contributing to this task.

  4. Experience with feedback and feedforward for plasma control in ASDEX

    International Nuclear Information System (INIS)

    Schneider, F.

    1983-01-01

    Experimental results of vertical and radial position feedback are shown and discussed. In particular, stability problems of vertical position control are studied in detail. A feedforward procedure for the process computer is described and proved by measurements. (author)

  5. Dielectric Barrier Discharge Plasma Actuators for Aerodynamic Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow control is critical to the effective operation of space vehicles where high velocities must be achieved with minimum power consumption. Recent studies at...

  6. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  7. Using plasma waves to create in tokamaks the necessary quasi-stationary conditions for controlled fusion

    International Nuclear Information System (INIS)

    Moreau, D.

    1993-04-01

    It is studied, on the one hand, how using hybrid waves with frequency near from lower hybrid frequency in fusion plasma. Works about coupling waves in plasma (chap.I), their propagation and response of the plasma to the absorption of the waves (chap.II). This method is the most effective until today. Because of limits, it has been investigated, on the other hand, fast magnetosonic wave to control current density in the centre of the discharge in a reactor or a very hot plasma. Theoretical study (chap.III) and experimental results (chap.IV) are presented. Experiments are in progress or planned in following tokamaks: D3-D (USA), JET (Europe), TORE SUPRA (France), JT-60 (Japan). figs. refs. tabs

  8. Effect of dairy fat on plasma phytanic acid in healthy volunteers - a randomized controlled study

    DEFF Research Database (Denmark)

    Werner, Louise B.; Hellgren, Lars; Raff, Marianne

    2011-01-01

    BACKGROUND: Phytanic acid produced in ruminants from chlorophyll may have preventive effects on the metabolic syndrome, partly due to its reported RXR and PPAR- α agonist activity. Milk from cows fed increased levels of green plant material, contains increased phytanic acid concentrations......, but it is unknown to what extent minor increases in phytanic acid content in dairy fat leads to higher circulating levels of phytanic acid in plasma of the consumers. OBJECTIVE: To investigate if cow feeding regimes affects concentration of plasma phytanic acid and risk markers of the metabolic syndrome in human...... or high content of chlorophyll. RESULTS: There tended to be a difference in plasma phytanic acid (P = 0.0730) concentration after the dietary intervention. Plasma phytanic acid increased significantly within both groups with the highest increase in control group (24%) compared to phytanic acid group (15...

  9. Theses of the reports of the XXXI Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Ivanov, V.A.; Nagaeva, M.L.; Aleksandrov, A.F.; Vorob'ev, V.S.; Ivanenkov, G.V.; Meshcheryakov, A.I.

    2004-01-01

    Theses of the reports of the 31th Zvenigorod Conference on the physics and controlled thermonuclear synthesis, presented by Russian and foreign scientists, are published. The total number of reports is 258, namely, summarizing ones 16, magnetic confinement of high temperature plasma - 98, inertial thermonuclear synthesis - 44, physical processes in low temperature plasma - 58, physical bases of plasma and beam technologies - 42 [ru

  10. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2004-01-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic

  11. JACoW Safety instrumented systems and the AWAKE plasma control as a use case

    CERN Document Server

    Blanco Viñuela, Enrique; Fernández Adiego, Borja; Speroni, Roberto

    2018-01-01

    Safety is likely the most critical concern in many process industries, yet there is a general uncertainty on the proper engineering to reduce the risks and ensure the safety of persons or material at the same time as providing the process control system. Some of the reasons for this misperception are unclear requirements, lack of functional safety engineering knowledge or incorrect protection functionalities attributed to the BPCS (Basic Process Control System). Occasionally the control engineers are not aware of the hazards inherent to an industrial process and this causes an incorrect design of the overall controls. This paper illustrates the engineering of the SIS (Safety Instrumented System) and the BPCS of the plasma vapour controls of the AWAKE R&D; project, the first proton-driven plasma wakefield acceleration experiment in the world. The controls design and implementation refers to the IEC61511/ISA84 standard, including technological choices, design, operation and maintenance. Finally, the publica...

  12. Current status of DIII-D real-time digital plasma control

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Piglowski, D.A.; Ferron, J.R.; Walker, M.L.

    1999-06-01

    This paper describes the current status of real-time digital plasma control for the DIII-D tokamak. The digital plasma control system (PCS) has been in place at DIII-D since the early 1990s and continues to expand and improve in its capabilities to monitor and control plasma parameters for DIII-D fusion science experiments. The PCs monitors over 200 tokamak parameters from the DIII-D experiment using a real-time data acquisition system that acquires a new set of samples once every 60 micros. This information is then used in a number of feedback control algorithms to compute and control a variety of parameters including those affecting plasma shape and position. A number of system related improvements has improved the usability and flexibility of the DIII-D PCS. These include more graphical user interfaces to assist in entering and viewing the large and ever growing number of parameters controlled by the PCS, increased interaction and accessibility from other DIII-D applications, and upgrades to the computer hardware and vended software. Future plans for the system include possible upgrades of the real-time computers, further links to other DIII-D diagnostic measurements such as real-time Thomson scattering analysis, and joint collaborations with other tokamak experiments including the NSTX at Princeton

  13. Sawtooth Pacing by Real-Time Auxiliary Power Control in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Goodman, T. P.; Felici, F.; Sauter, O.; Graves, J. P.

    2011-01-01

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  14. Magnetic sensorless control of plasma position and shape in a tokamak

    International Nuclear Information System (INIS)

    Nakamura, K.; Luo, J.R.; Wang, H.Z.

    2005-01-01

    Magnetic sensorless sensing and control experiments of the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made focusing on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem of integrator of magnetic sensors. Two kinds of control experiments were carried out, to keep the position constant and swing the position in a triangular waveform. And magnetic sensorless sensing of plasma shape is discussed. (author)

  15. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  16. D324-1 ITER design task on plasma control. 1995 - 1996

    International Nuclear Information System (INIS)

    Lister, J.B.; Ward, D.J.; Llobet, X.; Martin, Y.; Bosshard, P.

    1996-07-01

    The report deals with the following topics: - work carried out under phase I and proposition for work which could be carried out under phase II, -linearity of the plasma response of the TSC code, - shape control considering voltage and current saturation, - non-linear simulations without feedback, -model of errors on the estimators of the control parameters, - protective and corrective strategy control modes. (author) figs., tabs., refs

  17. Controls to validate plasma samples for cell free DNA quantification

    DEFF Research Database (Denmark)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund

    2015-01-01

    , are diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample...... preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values...

  18. Real-Time Plasma Control Tools for Advanced Tokamak Operation

    International Nuclear Information System (INIS)

    Varandas, C. A. F.; Sousa, J.; Rodrigues, A. P.; Carvalho, B. B.; Fernandes, H.; Batista, A. J.; Cruz, N.; Combo, A.; Pereira, R. C.

    2006-01-01

    Real-time control will play an important role in the operation and scientific exploitation of the new generation fusion devices. This paper summarizes the real-time systems and diagnostics developed by the Portuguese Fusion Euratom Association based on digital signal processors and field programmable gate arrays

  19. Real-time software for the COMPASS tokamak plasma control

    International Nuclear Information System (INIS)

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, F.; Cahyna, P.; Hron, M.; Panek, R.

    2010-01-01

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 μs. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  20. Real-time software for the COMPASS tokamak plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Valcarcel, D.F., E-mail: danielv@ipfn.ist.utl.p [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2010-07-15

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 {mu}s. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  1. Design and operation of the RFX-mod plasma shape control system

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, G., E-mail: giuseppe.marchiori@igi.cnr.it [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Finotti, C. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Kudlacek, O. [Università di Padova, Padova (Italy); Villone, F. [Dipartimento di Ingegneria Elettrica e dell’Informazione (DIEI), Università di Cassino (Italy); Zanca, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Abate, D. [Dipartimento di Ingegneria Elettrica e dell’Informazione (DIEI), Università di Cassino (Italy); Cavazzana, R. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Jackson, G.L.; Luce, T.C. [General Atomics, San Diego, CA (United States); Marrelli, L. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-10-15

    Highlights: • Linearized plasma response model of RFX-mod Tokamak Double/Single Null discharges. • Model based design of a vertical stability control system. • Model based design of a plasma shape LQG control system with Kalman state estimator. • Real time plasma boundary reconstruction algorithm. • Tracking and disturbance rejection experimental tests. - Abstract: The aim of executing Single Null discharges in RFX-mod operating as a Tokamak led to the design and implementation of a plasma shape feedback control system. A fully model-based approach was followed which allowed dealing with critical issues such as the presence of a conducting shell, the strong coupling of the poloidal field coils and the voltage limits of the power supplies. A Linear Quadratic regulator and a Kalman state estimator were designed and implemented in the real time MARTe framework together with an algorithm for the real-time plasma boundary reconstruction. The problem of a number of sensors along the poloidal direction adequate only for circular discharges was also successfully tackled. The development of the system and its performances in terms of tracking and disturbance rejection capability are presented in the paper.

  2. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Science.gov (United States)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  3. Plasma antibodies to Abeta40 and Abeta42 in patients with Alzheimer's disease and normal controls.

    Science.gov (United States)

    Xu, Wuhua; Kawarabayashi, Takeshi; Matsubara, Etsuro; Deguchi, Kentaro; Murakami, Tetsuro; Harigaya, Yasuo; Ikeda, Masaki; Amari, Masakuni; Kuwano, Ryozo; Abe, Koji; Shoji, Mikio

    2008-07-11

    Antibodies to amyloid beta protein (Abeta) are present naturally or after Abeta vaccine therapy in human plasma. To clarify their clinical role, we examined plasma samples from 113 patients with Alzheimer's disease (AD) and 205 normal controls using the tissue amyloid plaque immunoreactivity (TAPIR) assay. A high positive rate of TAPIR was revealed in AD (45.1%) and age-matched controls (41.2%), however, no significance was observed. No significant difference was observed in the MMS score or disease duration between TAPIR-positive and negative samples. TAPIR-positive plasma reacted with the Abeta40 monomer and dimer, and the Abeta42 monomer weakly, but not with the Abeta42 dimer. TAPIR was even detected in samples from young normal subjects and young Tg2576 transgenic mice. Although the Abeta40 level and Abeta40/42 ratio increased, and Abeta42 was significantly decreased in plasma from AD groups when compared to controls, no significant correlations were revealed between plasma Abeta levels and TAPIR grading. Thus an immune response to Abeta40 and immune tolerance to Abeta42 occurred naturally in humans without a close relationship to the Abeta burden in the brain. Clarification of the mechanism of the immune response to Abeta42 is necessary for realization of an immunotherapy for AD.

  4. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    Science.gov (United States)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  5. Plasma and salivary total antioxidant capacity in healthy controls compared with aggressive and chronic periodontitis patients.

    Science.gov (United States)

    Baser, Ulku; Gamsiz-Isik, Hikmet; Cifcibasi, Emine; Ademoglu, Evin; Yalcin, Funda

    2015-07-01

    To evaluate the plasma and salivary total antioxidant capacity (TAOC) in patients with generalized chronic periodontitis (CP), generalized aggressive periodontitis (AgP), and periodontally healthy controls. This cross-sectional study includes of 88 individuals seeking dental treatment at the Faculty of Dentistry, Istanbul University, Istanbul, Turkey between January 2011 and March 2012. Fifteen AgP patients were compared with 21 healthy controls (C1), while 36 CP patients were compared with 16 healthy controls (C2). Clinical periodontal measurements were recorded, and plasma and saliva samples were collected. The TAOC of the plasma and saliva samples were determined using a commercially available colorimetric kit. The plasma TAOC of both AgP and CP patients was significantly lower for C1 and C2. The salivary TAOC of CP patients was significantly lower for C2, but there was no significant difference between AgP patients and C1. Our results demonstrate that severe periodontitis may be associated with a lower plasma antioxidant capacity. The reduced antioxidant capacity in patients with severe periodontitis, especially with aggressive forms may be an important contributing factor to severe tissue destruction.

  6. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  7. Impact of gas puffing location on density control and plasma parameters in TJ-II

    International Nuclear Information System (INIS)

    Tabares, F.L.; Garcia-Cortes, I.; Estrada, T.; Tafalla, D.; Hidalgo, A.; Ferreira, J.A.; Pastor, I.; Herranz, J.; Ascasibar, E.

    2005-01-01

    Under pure Electron Cyclotron Resonance Heating (ECRH) conditions in TJ-II plasmas (P<300 kW, 53.2 GHz, 2nd harmonic X-mode, power density < 25 W/m''3), plasma start-up and good density control are obtained only by the proper combination of wall conditions and gas puffing characteristics. Such a control is particularly critical for the optimisation of the NBI power transfer to the target plasmas. The relatively low cut-off limit is easily reached due not only to the unfavourable wall/puffing-fuelling ratio but also due to the steep density profiles developed during the Enhanced Particle Confinement (EPC) modes. These modes are triggered by the gas puffing waveform, and they cannot be achieved for high iota magnetic configurations in TJ-II. Comparative experiments under metallic and boronised wall conditions have shown that the sensitivity of the EPC modes to the puffing rate is at least partially related to the energy balance at the plasma periphery under central heating scenarios. In this work, the impact of gas-fuelling location on the plasma parameters and density control is described. For that purpose, three different fuelling locations have been investigated; broad distribution from a side ports, localized injection from long tubes at different poloidal positions and highly localized injection through a movable limiter. Edge density and temperature profiles from a broad set of diagnostics (atomic beams, reflectometry, Thompson Scattering ECE, etc...) are analysed and compared. It has been found that preventing from transition to the EPC mode is achieved by using slow puffing rates, while neutral penetration into the plasma core can be enhanced for highly localized gas sources. Wall inventory, however, has been found to pl ay a dominant role in the fuelling of the plasma under most conditions. (author)

  8. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  9. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  10. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  11. X-ray lasing in colliding plasmas

    International Nuclear Information System (INIS)

    Clark, R.W.; Davis, J.; Velikovich, A.L.; Whitney, K.G.

    1997-01-01

    Conditions favorable for the achievement of population inversion and large gains in short-pulse laser-heated selenium have been reported on previously [K. G. Whitney et al., Phys. Rev. E 50, 468 (1994)]. However, the required density profiles to minimize refraction and amplification losses can be difficult to achieve in conventional laser heated blowoff plasmas. The feasibility of accelerating plasma with a laser, and letting it collide with a solid density wall plasma has been explored. The density of the resulting shocked plasma can be controlled and refraction can be reduced in this design. A radiation hydrodynamics model is used to simulate the collision of the laser produced selenium plasma with the wall plasma. The heating of the stagnated plasma with a short-pulse laser is then simulated, providing the hydrodynamic response of the selenium plasma and detailed configuration nonequilibrium atomic populations. From the results of these calculations, it appears feasible to create an x-ray lasing selenium plasma with gains in the J=0 endash 1 line at 182 Angstrom in excess of 100cm -1 . copyright 1997 American Institute of Physics

  12. Triangularity effects on the collisional diffusion for elliptic tokamak plasma

    International Nuclear Information System (INIS)

    Martin, P.; Castro, E.

    2007-01-01

    In this conference the effect of ellipticity and triangularity will be analyzed for axisymmetric tokamak in the collisional regime. Analytic forms for the magnetic field cross sections are taken from those derived recently by other authors [1,2]. Analytical results can be obtained in elliptic plasmas with triangularity by using an special system of tokamak coordinates recently published [3-5]. Our results show that triangularities smaller than 0.6, increases confinement for ellipticities in the range 1.2 to 2. This behavior happens for negative and positive triangularities; however this effect is stronger for positive than for negative triangularities. The maximum diffusion velocity is not obtained for zero triangularity, but for small negative triangularities. Ellipticity is also very important in confinement, but the effect of triangularity seems to be more important. High electric inductive field increases confinement, though this field is difficult to modify once the tokamak has been built. The analytic form of the current produced by this field is like that of a weak Ware pinch with an additional factor, which weakens the effect by an order of magnitude. The dependence of the triangularity effect with the Shafranov shift is also analyzed. References 1. - L. L. Lao, S. P. Hirshman, and R. M. Wieland, Phys. Fluids 24, 1431 (1981) 2. - G. O. Ludwig, Plasma Physics Controlled Fusion 37, 633 (1995) 3. - P. Martin, Phys. Plasmas 7, 2915 (2000) 4. - P. Martin, M. G. Haines and E. Castro, Phys. Plasmas 12, 082506 (2005) 5. - P. Martin, E. Castro and M. G. Haines, Phys. Plasmas 12, 102505 (2005)

  13. Vertical position control of the elongated INTOR plasma

    International Nuclear Information System (INIS)

    Ueda, Kojyu; Nishio, Satoshi; Fujisawa, Noboru; Sugihara, Masayoshi; Saito, Seiji; Miyamoto, Kenro.

    1983-01-01

    A newly devised rectangular shell, which has the sufficient shell effect for the stabilization of the fast mode, is presented, along with the studies of various kinds of shell-structures described on this paper. It can be expected that the rectangular shells have negligibly small effect on the breeding ratio by locating them separately on both of the front and rear surfaces of blanket. Some properties with the modelled feedback control system are elucidated under a disturbance field, B sub(d) = B sub(infinity).[1-exp(-t/tau sub(d))] (B sub(infinity): field strength at t = infinity, tau sub(d): time constant). They are studied for two kinds of decay indices, that is, -1.0 for the pump limiter and -1.3 for the divertor. Conclusively, the control system is found to have good characteristics. The PID controller seems to provide the stable control of vertical position better than the PI controller. The maximum of vertical displacement, Z sub(p)sup(max) under the disturbance field, B sub(d), are in proportion to B sub(infinity). The power required for its stabilization, P, are also in proportion to B sub(infinity)sup(2), and then to (Z sub(P)sup(MAX))sup(2), too. Therefore, some common basis for B sub(infinity) or Z sub(P)sup(MAX) is required for its estimation. Moreover, the power is found to be independent of selection of the PI or PID controller, and to have approximately the same relation with Z sub(P)sup(MAX). The difference of P between -1.0 and -1.3 in the decay index is very large when Z sub(P)sup(MAX) is more than -1.0 cm. For example, in the vicinity of Z sub(P)sup(MAX) = 1.0 cm, the power in the case of n = -1.0 is about one half of that in the case of n = -1.3. But it decreases abruptly when Z sub(P)sup(MAX) is less than 0.5 cm. (J.P.N.)

  14. Identification and control of plasma vertical position using neural network in Damavand tokamak

    International Nuclear Information System (INIS)

    Rasouli, H.; Rasouli, C.; Koohi, A.

    2013-01-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg–Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  15. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  16. Plasma Shape Control on the National Spherical Torus Experiment using Real-time Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Gates, D.A.; Ferron, J.R.; Bell, M.; Gibney, T.; Johnson, R.; Marsala, R.J.; Mastrovito, D.; Menard, J.E.; Mueller, D.; Penaflor, B.; Sabbagh, S.A.; Stevenson, T.

    2005-01-01

    Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented

  17. Method of plasma impurity control without magnetic divertor

    International Nuclear Information System (INIS)

    Schivell, J.F.

    1977-06-01

    A method is proposed for controlling impurity generation in a tokomak by skimming and pumping the scrape-off. This method avoids many of the complications of a magnetic divertor, such as specially configured magnetic fields, toroidal symmetry, and inefficient use of toroidal field volume. Estimates are given for operating parameters. Impurity reductions of as much as a factor of 10 should be achievable. The necessary high-capacity pump would employ either titanium gettering or cryocondensation

  18. Electrically controlled wire-channel GaN/AlGaN transistor for terahertz plasma applications

    Science.gov (United States)

    Cywiński, G.; Yahniuk, I.; Kruszewski, P.; Grabowski, M.; Nowakowski-Szkudlarek, K.; Prystawko, P.; Sai, P.; Knap, W.; Simin, G. S.; Rumyantsev, S. L.

    2018-03-01

    We report on a design of fin-shaped channel GaN/AlGaN field-effect transistors developed for studying resonant terahertz plasma oscillations. Unlike common two dimensional FinFET transistor design, the gates were deposited only to the sides of the two dimensional electron gas channel, i.e., metal layers were not deposited on the top of the AlGaN. This side gate configuration allowed us to electrically control the conductivity of the channel by changing its width while keeping the carrier density and mobility virtually unchanged. Computer simulations and analytical model describe well the general shape of the characteristics. The side gate control of the channel width of these transistors allowed us to eliminate the so-called oblique plasma wave modes and paves the way towards future terahertz detectors and emitters using high quality factor plasma wave resonances.

  19. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  20. Effect of density control and impurity transport on internal transport barrier formation in tokamak plasma

    International Nuclear Information System (INIS)

    Yamakami, Tomoyuki; Fujita, Takaaki; Arimoto, Hideki; Yamazaki, Kozo

    2014-01-01

    In future fusion reactors, density control, such as fueling by pellet injection, is an effective method to control the formation of the internal transport barrier (ITB) in reversed magnetic shear plasma, which can improve plasma performance. On the other hand, an operation with ITB can cause accumulation of impurities inside the core ITB region. We studied the relation between pellet injection and ITB formation and the effect of impurity transport on the core of ITB for tokamak plasmas by using the toroidal transport analysis linkage. For ITB formation, we showed that the pellet has to be injected beyond the position where the safety factor q takes the minimum value. We confirmed that the accumulation of impurities causes the attenuation of ITB owing to radiation loss inside the ITB region. Moreover, in terms of the divertor heat flux reduction by impurity gas, the line radiation loss is high for high-Z noble gas impurities, such as Kr, whereas factor Q decreases slightly. (author)

  1. Real time plasma feedback control: An overview of Tore-Supra achievements

    International Nuclear Information System (INIS)

    Martin, G.; Bucalossi, J.; Ekedahl, A.; Gil, C.; Grisolia, C.; Guilhem, D.; Gunn, J.; Kazarian, F.; Moulin, D.; Pascal, J.Y.; Saint-Laurent, F.

    2001-01-01

    Stable and reliable fusion plasma operation requires increasingly advanced control systems. This is especially true for steady-state operation in advanced modes, when several parameters are to be simultaneously optimised: e.g. the current profile, which has been related to the formation of internal transport barrier, and the density, which plays a crucial role both in the fusion power and in the plasma wall interactions. At a more technological level, good management of the power entering and leaving the plasma is required, by efficient additional heating coupling, and with a full control of radiation and convection losses and distribution to the first wall elements. For these goals, several feed-back mechanisms have been developed with success on Tore-Supra, in the past four years. Most of them are based on software, implemented in a set of micro-computers connected through a VME network. (author)

  2. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    International Nuclear Information System (INIS)

    R.J. Marsala; J. Schneider

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans

  3. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  4. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  5. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  6. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  7. Control of ITBs in Fusion Self-Heated Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  8. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    Directory of Open Access Journals (Sweden)

    Jeong J. H.

    2015-01-01

    Full Text Available The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization, and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5 plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  9. Control plasma renin activity and changes in sympathetic tone as determinants of minoxidil-induced increase in plasma renin activity.

    Science.gov (United States)

    O'Malley, K; Velasco, M; Wells, J; McNay, J L

    1975-01-01

    A study was made of the possible mechanism(s) underlying minoxidil-induced increase in plasma renin activity (PRA). 10 patients with essential hypertension were treated with minoxidil and subsequently with a combination of minoxidil plus propranolol. Minoxidil lowered mean arterial pressure 31.6 plus or minus 3.3 mm Hg, mean plus or minus SEM. There was an associated increase in both PRA, 6.26 plus or minus 2.43 NG/ML/H, and heart rate, 21.4 plus or minus 2.7 beats/min. The changes in PRA and heart rate were positively correlated, r, 0.79. Addition of propranolol reduced mean arterial pressure by a further 10.1 plus or minus 1.5 mm Hg and returned heart rate to control levels. Propranolol reduced PRA significantly but not to control levels. Control PRA positively correlated with PRA on minoxidil, r, 0.97, and with PRA on minoxidil plus propranolol, r, 0.98. We conclude that control PRA is a major determinant of change in PRA with minoxidil. Minoxidil increased PRA by at least two mechanisms: (a) an adrenergic mechanism closely related to change in heart rate and blocked by propranolol, and (b) a mechanism(s) not sensitive to propranolol and possibly related to decrease in renal perfusion pressure. PMID:1127099

  10. Confinement control mechanism for two-electron Hulthen quantum dots in plasmas

    Science.gov (United States)

    Bahar, M. K.; Soylu, A.

    2018-05-01

    In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.

  11. EURATOM-CEA Association Contributions to the 16. European Conference on Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The contributions to the 16th European Conference on controlled fusion and Plasma Physics are presented. The following subjects, concerning Tore Supra, are discussed: runaway electrons dynamics and confinement; spectroscopic studies of plasma surface interactions; ergodic divertor experiments; magnetic field structure and transport induced by the ergodic divertor; fast ions losses during neutral beam injection; current profile control by electron-cyclotron and lower-hybrid waves; and electromagnetic analysis of the lower hybrid system. The report also includes studies on: a possible explanation for the runaway energy limit (resonant interaction with the ripple field); thermal equilibrium of the edge plasma with an ergodic divertor; neutral confinement in pump limiter with a throat; microtearing turbulence and heat transport; toroidal coupling and frequency spectrum of tearing modes; collisionless fast ion dynamics in tokamaks; variational description of lower hybrid wave propagation and absorption in tokamaks; magnetodrift turbulence and disruptions; specific turbulence associated with sawtooth relaxations in TFR plasmas; detailed structure of the q profile around q = 1 in JET; turbulence propagation during pellet injection; tokamak reactor concept with 100% bootstrap current; optimization of a steady state tokamak driven by lower hybrid waves; and thermodesorption of graphite exposed to a deuterium plasma

  12. Plasma physics and controlled nuclear fusion research 1994. V. 3. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    1996-01-01

    This is the third volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained in it are 29 papers on inertial confinement and 46 papers on magnetic confinement. Refs, figs, tabs

  13. Plasma edge control by chaotic magnetic field structures. Book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The following topics were dealt with: Formation of stochastic magnetic layers and plasma response to external, non-axisymmetric magnetic perturbations, energy and particle transport in stochastic magnetic fields and 3D equilibria, application of resonant magnetic perturbations for ELM control and implications for ITER, transport and exhaust in helical and island divertors. (HSI)

  14. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification

  15. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  16. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Bueno-Ferrer, Carmen; Cullen, P J; Bourke, Paula

    2017-09-01

    Brochothrix thermosphacta is the predominant spoilage microorganism in meat and its control in processing environments is important to maintain meat product quality. Atmospheric cold plasma is of interest for control of pathogenic and spoilage microorganisms in foods. This study ascertained the potential of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for control of B. thermosphacta, taking microbial and food environment factors into consideration, and investigated the shelf-life of lamb chop after in-package plasma treatment in modified atmosphere. Community profiling was used to assess the treatment effects on the lamb microflora. ACP treatment (80 kV) for 30s inactivated B. thermosphacta populations below detection levels in PBS, while 5 min treatment achieved a 2 Log cycle reduction using a complex meat model medium and attached cells. The antimicrobial efficacy of plasma was reduced but still apparent on lamb chop surface-inoculated with high concentrations of B. thermosphacta. Lamb chop treated under modified atmosphere exhibited reduced microbial growth over the product shelf-life and community profiling showed no evident changes to the microbial populations after the treatment. The overall results indicated potential of ACP to enhance microbial control leading to meat storage life extension through adjusting the modality of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Beam--plasma instabilities and the beam--plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Boswell, R.W.

    1986-01-01

    Using a new electron gun, a number of measurements bearing on the generation of beam--plasma discharge (BPD) in WOMBAT (waves on magnetized beams and turbulence) [R. W. Boswell and P. J. Kellogg, Geophys. Res. Lett. 10, 565 (1983)] have been made. A beam--plasma discharge is an rf discharge in which the rf fields are provided by instabilities [W. D. Getty and L. D. Smullin, J. Appl. Phys. 34, 3421 (1963)]. The new gun has a narrower divergence angle than the old, and comparison of the BPD thresholds for the two guns verifies that the BPD ignition current is proportional to the cross-sectional area of the plasma. The high-frequency instabilities, precursors to the BPD, are identified with the two Trivelpiece--Gould modes [A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)]. Which frequency appears depends on the neutral pressure. The measured frequencies are not consistent with the simple interpretation of the lower frequency as a Cerenkov resonance with the low-Trivelpiece--Gould mode; it must be a cyclotron resonance. As is generally true in such beam--plasma interaction experiments, strong low-frequency waves appear at currents far below those necessary for BPD ignition. These low-frequency waves are shown to control the onset of the high-frequency precursors to the BPD. A mechanism for this control is suggested, which involves the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves. This process greatly reduces the current necessary for BPD ignition

  18. The influence of impurity and particle control on TMX-U [Tandem Mirror Experiment Upgrade] plasma operation

    International Nuclear Information System (INIS)

    Allen, S.L.; Yu, T.L.; Foote, J.H.; Pickles, W.L.

    1985-11-01

    A variety of techniques are used in TMX-U to control impurities and reflux: repeated plasma pulses, glow discharge cleaning (GDC), and gettering. A series of experiments under three different plasma-wall conditions was performed: no wall conditioning after a machine maintenance cycle, a glow-discharge-cleaned wall, and a gettered wall. Several plasma diagnostics to determine the effect of these procedures on TMX-U plasma parameters were used. Spectroscopic measurements indicated that GDC reduced impurities and increased the electron temperature, enabling full-duration beam-sustained plasma operation without a large number of repeated plasma pulses. Gettering further reduced the impurities and the neutral pressure, and this improved condition persisted for several shots after gettering was stopped. Measurements from residual gas analyzers and an end-loss ion spectrometer indicated that hydrogen is present in the plasma during the initial deuterium operation after pumpdown; the hydrogen level decreased after plasma operation with gettering, indicating reduced wall recycling

  19. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  20. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  1. Current means for plasma diagnostics and their application for materials and environment control. Materials of IV Russian seminar

    International Nuclear Information System (INIS)

    2003-01-01

    The collection contains reports made at the Fourth Russian seminar Current means of plasma diagnostics and their application for materials and environment control. The seminar took place in Moscow, November 12-14, 2003. The content of the collection covers both questions of plasma diagnostics in thermonuclear reactors and problems of diagnostics of pulsed and stationary gas discharges in research and technological installations. The reports on plasma diagnostics applied for some tasks of medicine and environment control are presented [ru

  2. Stability and Control of Burning Tokamak Plasmas with Resistive Walls: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, George [Univ. of Tulsa, OK (United States); Brennan, Dylan [Princeton Univ., NJ (United States); Cole, Andrew [Columbia Univ., New York, NY (United States); Finn, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    This project is focused on theoretical and computational development for quantitative prediction of the stability and control of the equilibrium state evolution in toroidal burning plasmas, including its interaction with the surrounding resistive wall. The stability of long pulse burning plasmas is highly sensitive to the physics of resonant layers in the plasma, sources of momentum and flow, kinetic effects of energetic particles, and boundary conditions at the wall, including feedback control and error fields. In ITER in particular, the low toroidal flow equilibrium state, sustained primarily by energetic alpha particles from fusion reactions, will require the consideration of all of these key elements to predict quantitatively the stability and evolution. The principal investigators on this project have performed theoretical and computational analyses, guided by analytic modeling, to address this physics in realistic configurations. The overall goal has been to understand the key physics mechanisms that describe stable toroidal burning plasmas under active feedback control. Several relevant achievements have occurred during this project, leading to publications and invited conference presentations. In theoretical efforts, with the physics of the resonant layers, resistive wall, and toroidal momentum transport included, this study has extended from cylindrical resistive plasma - resistive wall models with feedback control to toroidal geometry with strong shaping to study mode coupling effects on the stability. These results have given insight into combined tearing and resistive wall mode behavior in simulations and experiment, while enabling a rapid exploration of plasma parameter space, to identify possible domains of interest for large plasma codes to investigate in more detail. Resonant field amplification and quasilinear torques in the presence of error fields and velocity shear have also been investigated. Here it was found, surprisingly, that the Maxwell

  3. Nanoscale control of energy and matter: challenges and opportunities for plasma science

    International Nuclear Information System (INIS)

    Ostrikov, Kostya

    2013-01-01

    Multidisciplinary challenges and opportunities in the ultimate ability to achieve nanoscale control of energy and matter are discussed using an example of the Plasma Nanoscience. This is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. The origin, progress and future perspectives of this research field driven by the global scientific and societal challenges, is examined. The future potential of the Plasma Nanoscience to remain as a highly topical area in the global research and technological agenda in the Age of Fundamental-Level Control for a Sustainable Future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to control energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for the Plasma Nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health

  4. Effect of plasma actuator control parameters on a transitional flow

    Science.gov (United States)

    Das Gupta, Arnob; Roy, Subrata

    2018-04-01

    This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.

  5. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller

    International Nuclear Information System (INIS)

    Cheng Yufeng; Nie Wansheng

    2012-01-01

    Based on the body force aerodynamic actuation mechanism of dielectric barrier discharge (DBD) plasma, the effect of plasma flow control on enhancing the aerodynamic characteristics of ten blade elements equably along the stratospheric screw propeller blade was numerical studied. Then the effect of plasma flow control enhancing the aerodynamic characteristics of stratospheric screw propeller was compared that by the blade element theory method. The results show that the flow separate phenomena will easily happen in the root region and top end region of screw propeller, and the blade elements in the root region of screw propeller may work on the negative attack angle condition. DBD plasma flow control can entirely restrain the faintish flow separate phenomena in middle region of screw propeller. Although DBD plasma flow control can not entirely restrain the badly flow separate phenomena in top end region of screw propeller, it also can enhance the aerodynamic characteristics of blade elements in these regions in same degree. But effect of DBD plasma flow control on enhancing the aerodynamic characteristics of the blade elements working on the negative attack angle condition is ineffectively. It can be concluded that DBD plasma flow control can enhance the aerodynamic characteristics of stratospheric screw propeller, the thrust of the whole propeller and the propeller efficiency in the case of plasma on will increases by a factor of 28.27% and 12.3% respectively compared with that in the case of plasma off studied. (authors)

  6. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  7. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  8. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    International Nuclear Information System (INIS)

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  9. Towards the conceptual design of the ITER real-time plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Makijarvi, P.; Simrock, S.; Snipes, J.A.; Wallander, A.; Zabeo, L.

    2014-01-01

    Highlights: • We describe the main control areas and interfaces for the ITER real-time plasma control system and the current state of their design. • An overview is given for the implementation strategy for the plasma control system as part of the ITER control, data access and communication system. • Current efforts on the creation of simulation and development tools are presented. - Abstract: ITER will be the world's largest magnetic confinement tokamak fusion device and is currently under construction in southern France. The ITER Plasma Control System (PCS) is a fundamental component of the ITER Control, Data Access and Communication system (CODAC). It will control the evolution of all plasma parameters that are necessary to operate ITER throughout all phases of the discharge. The design and implementation of the PCS poses a number of unique challenges. The timescales of phenomena to be controlled spans three orders of magnitude, ranging from a few milliseconds to seconds. Novel control schemes, which have not been implemented at present-day machines need to be developed, and control schemes that are only done as demonstration experiments today will have to become routine. In addition, advances in computing technology and available physics models make the implementation of real-time or faster-than-real-time predictive calculations to forecast and subsequently to avoid disruptions or undesired plasma regimes feasible. This requires the PCS design to be adaptable in real-time to the results of these forecasting algorithms. A further novel feature is a sophisticated event handling system, which provides a means to deal with plasma related events (such as MHD instabilities or L-H transitions) or component failure. Finally, the schedule for design and implementation poses another challenge. The beginning of ITER operation will be in late 2020, but the conceptual design activity of the PCS has already commenced as required by the on-going development of

  10. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  11. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  12. On-line system for control of plasma filament position in the Tokamak-10

    International Nuclear Information System (INIS)

    Britousov, N.N.; Valuev, S.F.; Sychev, G.I.; Shchedrov, V.M.

    1982-01-01

    The plasma filament position on-line control system (OCS) in the T-10 tokamak is described. Results of adjustment and operation of the system are given. The OCS is a structure of a direct negative feedback (DNF) versus deflection and a local DNF circuit. The OCS experimental studying is carried out under the following conditions: 200 kA plasma current, 32 cm diaphragm radius, 2.2-2.5 stability margin, 440 V anode voltage. The response time for 2 cm deflection jumps is 15-20 ns. The OCS demonstrated a particular efficiency while operating in parallel with the plasma current stabilizer providing a high discharge repetition and considerably reducing the number of substandard pulses

  13. Controlled elaboration of large-area plasmonic substrates by plasma process

    International Nuclear Information System (INIS)

    Pugliara, A; Despax, B; Makasheva, K; Bonafos, C; Carles, R

    2015-01-01

    Elaboration in a controlled way of large-area and efficient plasmonic substrates is achieved by combining sputtering of silver nanoparticles (AgNPs) and plasma polymerization of the embedding dielectric matrix in an axially asymmetric, capacitively coupled RF discharge maintained at low gas pressure. The plasma parameters and deposition conditions were optimized according to the optical response of these substrates. Structural and optical characterizations of the samples confirm the process efficiency. The obtained results indicate that to deposit a single layer of large and closely situated AgNPs, a high injected power and short sputtering times must be privileged. The plasma-elaborated plasmonic substrates appear to be very sensitive to any stimuli that affect their plasmonic response. (paper)

  14. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  15. Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Jackson, G.L.; Haye, R.J. La; Okabayashi, M.; Reimerdes, H.; Strait, E.J.; Ferron, J.R.; Groebner, R.J.; In, Y.; Lanctot, M.J.; Matsunaga, G.; Navratil, G.A.; Solomon, W.M.; Takahashi, H.; Takechi, M.; Turnbull, A.D.

    2007-01-01

    Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated q min for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios

  16. Comparative investigation of ELM control based on toroidal modelling of plasma response to RMP fields

    Science.gov (United States)

    Liu, Yueqiang

    2016-10-01

    The type-I edge localized mode (ELM), bursting at low frequency and with large amplitude, can channel a substantial amount of the plasma thermal energy into the surrounding plasma-facing components in tokamak devices operating at the high-confinement mode, potentially causing severe material damages. Learning effective ways of controlling this instability is thus an urgent issue in fusion research, in particular in view of the next generation large devices such as ITER and DEMO. Among other means, externally applied, three-dimensional resonant magnetic perturbation (RMP) fields have been experimentally demonstrated to be successful in mitigating or suppressing the type-I ELM, in multiple existing devices. In this work, we shall report results of a comparative study of ELM control using RMPs. Comparison is made between the modelled plasma response to the 3D external fields and the observed change of the ELM behaviour on multiple devices, including MAST, ASDEX Upgrade, EAST, DIII-D, JET, and KSTAR. We show that toroidal modelling of the plasma response, based on linear and quasi-linear magnetohydrodynamic (MHD) models, provides essential insights that are useful in interpreting and guiding the ELM control experiments. In particular, linear toroidal modelling results, using the MARS-F code, reveal the crucial role of the edge localized peeling-tearing mode response during ELM mitigation/suppression on all these devices. Such response often leads to strong peaking of the plasma surface displacement near the region of weak equilibrium poloidal field (e.g. the X-point), and this provides an alternative practical criterion for ELM control, as opposed to the vacuum field based Chirikov criteria. Quasi-linear modelling using MARS-Q provides quantitative interpretation of the side effects due to the ELM control coils, on the plasma toroidal momentum and particle confinements. The particular role of the momentum and particle fluxes, associated with the neoclassical toroidal

  17. Controlling plasma distributions as driving forces for ion migration during fs laser writing

    International Nuclear Information System (INIS)

    Fernandez, Toney Teddy; Siegel, Jan; Hoyo, Jesus; Solis, Javier; Sotillo, Belen; Fernandez, Paloma

    2015-01-01

    The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. Even subtle changes in the writing conditions, such as an inversion of the writing direction (quill writing effect), show up in the form of a modified plasma distribution, which manifests as a modified index distribution. Finally, it is shown that the superior control over the waveguide properties employing the slit shaping technique is caused by the more confined plasma distribution produced. The underlying reasons for this unexpected result are discussed in terms of non-linear propagation and heat accumulation. (paper)

  18. Controlling plasma distributions as driving forces for ion migration during fs laser writing

    Science.gov (United States)

    Teddy Fernandez, Toney; Siegel, Jan; Hoyo, Jesus; Sotillo, Belen; Fernandez, Paloma; Solis, Javier

    2015-04-01

    The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. Even subtle changes in the writing conditions, such as an inversion of the writing direction (quill writing effect), show up in the form of a modified plasma distribution, which manifests as a modified index distribution. Finally, it is shown that the superior control over the waveguide properties employing the slit shaping technique is caused by the more confined plasma distribution produced. The underlying reasons for this unexpected result are discussed in terms of non-linear propagation and heat accumulation.

  19. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  20. Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma

    International Nuclear Information System (INIS)

    Bribiesca Argomedo, Federico; Witrant, Emmanuel; Prieur, Christophe; Brémond, Sylvain; Nouailletas, Rémy; Artaud, Jean-François

    2013-01-01

    A real-time model-based controller is developed for the tracking of the distributed safety-factor profile in a tokamak plasma. Using relevant physical models and simplifying assumptions, theoretical stability and robustness guarantees were obtained using a Lyapunov function. This approach considers the couplings between the poloidal flux diffusion equation, the time-varying temperature profiles and an independent total plasma current control. The actuator chosen for the safety-factor profile tracking is the lower hybrid current drive, although the results presented can be easily extended to any non-inductive current source. The performance and robustness of the proposed control law is evaluated with a physics-oriented simulation code on Tore Supra experimental test cases. (paper)

  1. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2001 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada (fusao), do Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2002-07-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic.

  2. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  3. Edge localized mode control by resonant magnetic perturbations in tokamak plasmas

    International Nuclear Information System (INIS)

    Orain, Francois

    2014-01-01

    The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks results in the quasi-periodic relaxation of the edge pressure profile. These relaxations induce large heat fluxes which might be harmful for the divertor in ITER, thus ELM control is mandatory in ITER. One of the promising control methods planned in ITER is the application of external resonant magnetic perturbations (RMPs), already efficient for ELM mitigation/suppression in current tokamak experiments. However a better understanding of the interaction between ELMs, RMPs and plasma flows is needed to explain the experimental results and make reliable predictions for ITER. In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced MHD code JOREK, in toroidal geometry including the X-point and the Scrape-Off Layer. The initial model has been further developed to describe self-consistent plasma flows - with the addition of the bi-fluid diamagnetic drifts, the neoclassical friction and a source of parallel rotation - and to simulate the RMP penetration consistently with the plasma response. As a first step, the plasma response to RMPs (without ELMs) is studied for JET, MAST and ITER realistic plasma parameters and geometry. The general behaviour of the plasma/RMP interaction is similar for the three studied cases: RMPs are generally screened by the formation of response currents, induced by the plasma rotation on the resonant surfaces. RMPs however penetrate at the very edge where an ergodic zone is formed. The amplification of the non-resonant spectrum of the magnetic perturbations is also observed in the core. The edge ergodization induces an enhanced transport at the edge, which slightly degrades the pedestal profiles. RMPs also generate the 3D-deformation of the plasma boundary with a maximum deformation near the X-point where lobe structures are formed. Then the full dynamics of a multi-ELM cycle (without RMPs) is modeled for the first time in realistic

  4. Local magnetic divertor for control of the plasma--limiter interaction in a tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Liewer, P.C.; Gould, R.W.

    1984-01-01

    An experiment is described in which plasma flow to a tokamak limiter is controlled through the use of a local toroidal divertor coil mounted inside the limiter itself. This coil produces a local perturbed field B/sub C/ approximately equal to the local unperturbed toroidal field B/sub T/approx. =3 kG, such that when B/sub C/ adds to B/sub T/ the field lines move into the limiter and the local plasma flow to it increases by a factor as great as 1.6, and when B/sub C/ subtracts from B/sub T/ the field lines move away from the limiter and the local plasma flow to it decreases by as much as a factor of 4. A simple theoretical model is used to interpret these results. Since these changes occur without significantly affecting global plasma confinement, such a control scheme may be useful for optimizing the performance of pumped limiters

  5. Impurity Control Test Facility (ICTF) for the study of fusion reactor plasma/edge materials interactions

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Ehst, D.A.; Boley, C.D.; Hershkowitz, N.

    1984-05-01

    A test facility for investigating many of the impurity control issues associated with the interactions of materials with the plasma edge is outlined. Analysis indicates that the plasma edge conditions expected in TFCX, INTOR, etc. can be readily produced at the end cells of an rf stabilized mirror, similar in some respects to the Phaedrus device at the University of Wisconsin. A steady-state, Impurity Control Test Facility (ICTF) based on such a mirror device is expected to produce a plasma with typical parameters of n/sub e/ approx. 3 x 10 18 m -3 , T/sub e/ = 50 eV, and T/sub i/ = 100 eV at each end cell. A heat load of approx. 2 MW/m 2 over areas of approx. 1600 cm 2 could be produced at each end with 800 kW of ICRH power. These conditions would provide a unique capability for examining issues such as erosion/redeposition behavior, properties of redeposited materials, high recycling regimes, plasma edge operating limits for high-Z materials, and particle pumping efficiencies for limiter and divertor designs

  6. A virtual test of screening technology based on the AGEIA PhysX

    Energy Technology Data Exchange (ETDEWEB)

    Ai-min Li; Rui-ling Lv; Chu-sheng Liu [China University of Mining and Technology, Xuzhou (China). School of Mechanical and Electrical Engineering

    2008-06-15

    The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software, the MAXScript scripting language and the AGEIA PhysX physics processing unit (PPU). The affect of various parameters on screening efficiency were modeled. The parameters included vibration amplitude, frequency and direction. The length and inclination of the vibrating surface were also varied. The virtual experiment is in basic agreement with results predicted from screening theory. This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design. In addition it can help with theoretical research. 11 refs., 7 figs., 7 tabs.

  7. Plasma oxytocin concentrations are lower in depressed vs. healthy control women and are independent of cortisol.

    Science.gov (United States)

    Yuen, Kaeli W; Garner, Joseph P; Carson, Dean S; Keller, Jennifer; Lembke, Anna; Hyde, Shellie A; Kenna, Heather A; Tennakoon, Lakshika; Schatzberg, Alan F; Parker, Karen J

    2014-04-01

    The neuropeptide oxytocin (OT) promotes social behavior and attenuates stress responsivity in mammals. Recent clinical evidence suggests OT concentrations may be dysregulated in major depression. This study extends previous research by testing whether: 1) OT concentrations vary systematically in depressive disorders with and without hypercortisolemia, 2) gender differences in OT concentrations are observed in depressed vs. healthy control participants, and 3) OT concentrations are predictive of clinical phenotypes. Plasma OT concentrations of psychotic major depressive (PMD; n = 14: 10 female, 4 male), non-psychotic major depressive (NPMD; n = 17: 12 female, 5 male), and non-depressed, healthy control (n = 19: 11 female, 8 male) participants were assayed at 2000, 2400, 0400, and 0800 h. Plasma cortisol concentrations were quantified at 2300 h, and clinical phenotypes were determined. As expected, PMD participants, compared to NPMD and healthy control participants, showed higher plasma cortisol concentrations. Although both depressed groups showed similar OT concentrations, a significant interaction effect between group and gender was observed. Specifically, depressed females exhibited lower mean OT concentrations than depressed males. Further, depressed vs. healthy control female participants exhibited lower mean OT concentrations, whereas depressed vs. healthy control male participants showed a trend in the opposite direction. OT concentrations were also predictive of desirability, drug dependence, and compulsivity scores as measured by the Million Clinical Multiaxial Inventory-III. All findings were independent of cortisol. These data suggest that OT signaling may provide a mechanism by which to better understand female-biased risk to develop depressive disorders and that plasma OT concentrations may be a useful biomarker of certain clinical phenotypes. Copyright © 2013. Published by Elsevier Ltd.

  8. Control of HIV-1 in Elite Suppressors despite Ongoing Replication and Evolution in Plasma Virus▿

    Science.gov (United States)

    O'Connell, Karen A.; Brennan, Timothy P.; Bailey, Justin R.; Ray, Stuart C.; Siliciano, Robert F.; Blankson, Joel N.

    2010-01-01

    A subset of HIV-1-infected patients known as elite controllers or suppressors (ES) control the virus naturally. We have previously demonstrated sequence discordance between proviral and plasma gag clones in ES, much of which can be attributed to selective pressure from the host (J. R. Bailey, T. M. Williams, R. F. Siliciano, and J. N. Blankson, J. Exp. Med. 203:1357-1369, 2006). However, it is not clear whether ongoing viral replication continues in ES once the control of viremia has been established or whether selective pressure impacts this evolution. The cytotoxic T-lymphocyte (CTL) response in ES often targets Gag and frequently is superior to that of HIV-1 progressors, partially due to the HLA class I alleles B*57/5801 and B*27, which are overrepresented in ES. We therefore examined longitudinal plasma and proviral gag sequences from HLA-B*57/5801 and -B*27 ES. Despite the highly conserved nature of gag, we observed clear evidence of evolution in the plasma virus, largely due to synonymous substitutions. In contrast, evolution was rare in proviral clones, suggesting that ongoing replication in ES does not permit the significant reseeding of the latent reservoir. Interestingly, there was little continual evolution in CTL epitopes, and we detected de novo CTL responses to autologous viral mutants. Thus, some ES control viremia despite ongoing replication and evolution. PMID:20444904

  9. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    International Nuclear Information System (INIS)

    Abdoli, A; Mirzaee, I; Purmahmod, N; Anvari, A

    2008-01-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s -1 at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A b and D c , have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications

  10. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  11. Development of a VME multi-processor system for plasma control at the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Takahashi, M.; Kurihara, K.; Kawamata, Y.; Akasaka, H.; Kimura, T.

    1992-01-01

    Design and initial operation results are reported of a VME multi-processor system [1] for plasma control at a large fusion device named 'the JT-60 Upgrade' utilizing three 32-bit MC88100 based RISC computers and VME components. Development of the system was stimulated by faster and more accurate computation requirements for the plasma position and current control. The RISC computers operate at 25 MHz along with two cashe memories named MC88200. We newly developed VME bus modules of up/down counter, analog-to-digital converter and clock pulse generator for measuring magnetic field and coil current and for synchronizing the processing in the three RISCs and direct digital controllers (DDCs) of magnet power supplies. We also evaluated that the speed of the data transfer between the VME bus system and the DDCs through CAMAC highways satisfies the above requirements. In the initial operation of the JT-60 upgrade, it has been proved that the VME multi-processor system well controls the plasma position and current with a sampling period of 250 μsec and a delay of 500 μsec. (author)

  12. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator

    Directory of Open Access Journals (Sweden)

    Şanlısoy A.

    2013-04-01

    Full Text Available In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

  13. Diagnostics and required R and D for control of DEMO grade plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeon K., E-mail: hyeonpark@unist.ac.kr [Fusion Plasma Stability and Confinement Research Center, UNIST, 50 Unist-gil, Ulju-gun, Ulsan (Korea, Republic of)

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  14. Characterization of RFX-mod passive conducting structures to optimize plasma start up and equilibrium control

    International Nuclear Information System (INIS)

    Marchiori, G.; Grando, L.; Cavinato, M.

    2007-01-01

    The load assembly of RFX-mod consists of three toroidal conducting structures whose eddy currents affect the plasma equilibrium magnetic configuration. The high number of electromagnetic probes mounted on the components of the load assembly allowed to analyse the response of each structure to a variation of the magnetic field vertical component. The capability of evaluating the axisymmetric toroidal currents in the passive structures and therefore their contribution to the equilibrium configuration by a 2D FE MHD equilibrium code was validated. The design and implementation of a feedback control system of the magnetic field vertical component before the gas ionization allowed meeting the requirement of an accurate control of this quantity in view of operation at higher plasma current and independently of the magnetizing winding programming

  15. MVA amplifier used for plasma position control in the WEGA tokamak

    International Nuclear Information System (INIS)

    Schenk, G.

    1982-02-01

    A new amplifier has been developed for the control of the plasma positron in the WEGA III tokomak acting on the vertical magnetic field. In the high power domain thyristor choppers are usually applied. Unfortunately their response time is quite long and does not yet correspond to the WEGA demand. Therefore transistors have been used to build a fast switching amplifier of the H-bridge type, delivering a power of 1 MVA, by switching 2500 A at 400 V. Because of the duty cycle of the plasma (0,12 s every 240 s) the necessary average power to the amplifier supply is only 500 VA. An intermediate energy storage in an electrolytic capacitor bank is therefore used. As the switching transistors must operate under extreme conditions of voltage and current, precautions must be taken to limit the overvoltage and the overcurrent, to prevent oscillations and to assure power and control equilibrium among the transistors

  16. Control of horizontal plasma position by feedforward-feedback system with digital computer in the JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, Kazuo; Sakurai, Keiichi; Itoh, Satoshi; Matsuura, Kiyokata; Tanashi, Shugo

    1980-01-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation of a large-aspect-ratio tokamak plasma surrounded by a thin resistive shell of a skin time of 5.2 ms, every 1.39 ms with a digital computer. The iron core effect is also taken into account by a simple form in the equation. The required strenght of vertical field is determined by the control demand composed of two groups; one is a ''feedback'' term expressed by the deviation of plasma position from the desired one and proportion-integration-differentiation correction (PID-controller), and the other is a ''feedforward'' term which is in proportion to the plasma current. The experimental results in a quasi-constant phase of plasma current are in good agreement with the stability analysis of the control system by using the so-called Bode-diagram which is calculated on the assumption that the plasma current is independent of time. By this control system, the horizontal plasma displacement has been suppressed within 1 cm of the initiation of discharge to the termination in the high-density and low-q(a) plasma of 15 cm radius which is obtained by both strong gas puffing and second current rise. (author)

  17. Effect of dairy fat on plasma phytanic acid in healthy volunteers - a randomized controlled study

    Directory of Open Access Journals (Sweden)

    Drachmann Tue

    2011-06-01

    Full Text Available Abstract Background Phytanic acid produced in ruminants from chlorophyll may have preventive effects on the metabolic syndrome, partly due to its reported RXR and PPAR- α agonist activity. Milk from cows fed increased levels of green plant material, contains increased phytanic acid concentrations, but it is unknown to what extent minor increases in phytanic acid content in dairy fat leads to higher circulating levels of phytanic acid in plasma of the consumers. Objective To investigate if cow feeding regimes affects concentration of plasma phytanic acid and risk markers of the metabolic syndrome in human. Design In a double-blind, randomized, 4 wk, parallel intervention study 14 healthy young subjects were given 45 g milk fat/d from test butter and cheese with 0.24 wt% phytanic acid or a control diet with 0.13 wt% phytanic acid. Difference in phytanic acid was obtained by feeding roughage with low or high content of chlorophyll. Results There tended to be a difference in plasma phytanic acid (P = 0.0730 concentration after the dietary intervention. Plasma phytanic acid increased significantly within both groups with the highest increase in control group (24% compared to phytanic acid group (15%. There were no significant effects of phytanic acid on risk markers for the metabolic syndrome. Conclusions The results indicate that increased intake of dairy fat modify the plasma phytanic acid concentration, regardless of cows feeding regime and the minor difference in dietary phytanic acid. Whether the phytanic acid has potential to affects the risk markers of the metabolic syndrome in human still remain to be elucidated. Trial Registration ClinicalTrials.gov: NCT01343576

  18. Diffusion-controlled regime of surface-wave-produced plasmas in helium gas

    International Nuclear Information System (INIS)

    Berndt, J; Makasheva, K; Schlueter, H; Shivarova, A

    2002-01-01

    The study presents a numerical fluid-plasma model of diffusion-controlled surface-wave-sustained discharges in helium gas. The self-consistent behaviour of the discharge based on the interrelation between plasma density and Θ, the power absorbed on average by one electron, is described. The nonlinear process of step ionization in the charged particle balance equation is the main factor, which ensures the self-consistency. However, it is shown that in helium discharges, the ionization frequencies enter the dependence of Θ on the plasma density also through the ambipolar-diffusion coefficient. Results at two different values of the gas pressure and of the wave frequency are discussed. The lower value of the gas pressure is chosen according to the condition to have a pure diffusion-controlled regime without interference with a transition to the free-fall regime. The boundary condition for the ion flux at the wall sheath is used for determination of the value of μ, the quantity denoting the degree of the radial plasma-density inhomogeneity which, together with the electron-neutral elastic collision frequency, influences the wave propagation characteristics. The two values of the wave frequency chosen provide descriptions of high-frequency and microwave discharges. The model results in the self-consistent structure of the discharge: interrelated variations along the discharge length of wavenumber, space damping rate, Θ, plasma density and electron temperature. The power necessary for sustaining discharges of a given length is also calculated. Comparisons with argon discharges are shown

  19. Extended plasma channels created by UV laser in air and their application to control electric discharges

    International Nuclear Information System (INIS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-01-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10 11 –1.5×10 13 and 3×10 6 –3×10 11 W/cm 2 , respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10 9 –10 17 cm −3 , are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied

  20. Plasma progranulin and relaxin levels in PCOS women with normal BMI compared to control healthy subjects

    Directory of Open Access Journals (Sweden)

    Samad Akbarzadeh

    2013-09-01

    Full Text Available Background: Poly Cystic Ovary Syndrome (PCOS is the most commonly encountered endocrine gland disease affecting 5-10 present of women at their reproductive age. This syndrome is associated with type 2 diabetes, dyslipidemia, and obesity. Progranulin and relaxin are adipokins that are related with carbohydrate and lipid metabolism. Due to limited data about progranulin and relaxin plasma levels´ in women with PCOS and normal BMI, this study was conducted. Material and Methods: This study is a cross-sectional. During the study 39 women with PCOS and BMI< 25 on the basis of Rotterdam criteria were chosen as the patient group and 38 healthy women were selected as the control group. The concentration of progranulin and relaxin were measured by ELISA technique. Results: The difference in Plasma concentration of progranulin and relaxin, and also some of the biochemical parameters in the patient group versus to the control group was not significant, but there was significant difference in the concentrations of VLDL, triglyceride (p=0.046, insulin (p=0.016, HOMA-IR (p=0.015, testosterone (p=0.01, and DHEAS (p=0.034 in the patients group compared to the control group. Conclusion: In this study, the difference in Plasma concentration of progranulin and relaxin in the patient group compared to the control group was not significant. It could be inferred that lack of change in plasma level of progranulin and relaxin in women with PCOS is related to BMI<25 and FBS<110. Moreoverestosterones, insulin, DHEAS and HOMA-IR changes could be better predictors of PCOS and its associated diabetes.

  1. Total antioxidants in plasma of hemodialysed patients and healthy controls measured by two commercial assays

    OpenAIRE

    Ruskovska, Tatjana; Jansen, Eugene

    2012-01-01

    Introduction: As a result of an increased interest in oxidative stress research, in both basic and clinical studies, numerous commercial test kits became available. The aim of this study was to evaluate the results for total antioxidants measured by two commercial assays in a complex clinical condition such as single hemodialysis session in patients on chronic hemodialysis treatment, in comparison to healthy controls. Methods: The level of plasma total antioxidants was measured by BAP ...

  2. Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas

    Science.gov (United States)

    Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang

    2012-10-01

    Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.

  3. Plasma position and current control system enhancements for the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); Neto, A.C. [Ass. EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, IST, 1049-001 Lisboa (Portugal); Lomas, P.J.; McCullen, P.; Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2014-03-15

    Highlights: • JET plasma position and current control system enhanced for the JET ITER like wall. • Vertical stabilization system enhanced to speed up its response and to withstand larger perturbations. • Improved termination management system. • Implementation of the current limit avoidance system. • Implementation of PFX-on-early-task. - Abstract: The upgrade of Joint European Torus (JET) to a new all-metal wall, the so-called ITER-like wall (ILW), has posed a set of new challenges regarding both machine operation and protection. The plasma position and current control (PPCC) system plays a crucial role in minimizing the possibility that the plasma could permanently damage the ILW. The installation of the ILW has driven a number of upgrades of the two PPCC components, namely the Vertical Stabilization (VS) system and the Shape Controller (SC). The VS system has been enhanced in order to speed up its response and to withstand larger perturbations. The SC upgrade includes three new features: an improved termination management system, the current limit avoidance system, and the PFX-on-early-task. This paper describes the PPCC upgrades listed above, focusing on the implementation issues and on the experimental results achieved during the 2011–12 JET experimental campaigns.

  4. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Directory of Open Access Journals (Sweden)

    Butakov Evgenii

    2017-01-01

    Full Text Available Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  5. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  6. Surface temperature: A key parameter to control the propanethiol plasma polymer chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Thiry, Damien, E-mail: damien.thiry@umons.ac.be; Aparicio, Francisco J. [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Laha, Priya; Terryn, Herman [Research Group Electrochemical and Surface Engineering (SURF), Department of Materials and Chemistry (MACH), Pleinlaan 2, 1050 Brussel (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons, Belgium and Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2014-09-01

    In this work, the influence of the substrate temperature (T{sub s}) on the chemical composition of propanethiol plasma polymers was investigated for a given set of plasma conditions. In a first study, a decrease in the atomic sulfur content (at. %S) with the deposition time (t{sub d}) was observed. This behavior is explained by the heating of the growing film during deposition process, limiting the incorporation of stable sulfur-based molecules produced in the plasma. Experiments carried out by controlling the substrate temperature support this hypothesis. On the other hand, an empirical law relating the T{sub s} and the at. %S was established. This allows for the formation of gradient layer presenting a heterogeneous chemical composition along the thickness, as determined by depth profile analysis combining X-ray photoelectron spectroscopy and C{sub 60} ion gun sputtering. The experimental data fit with the one predicted from our empiric description. The whole set of our results provide new insights in the relationship between the substrate temperature and the sulfur content in sulfur-based plasma polymers, essential for future developments.

  7. Development of a flight simulator for the control of plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Ravenel, N.; Artaud, J.F.; Bremond, S.; Guillerminet, B.; Huynh, P.; Moreau, P.; Signoret, J. [CEA Cadarache, IRFM, 13 - Saint-Paul-lez-Durance (France)

    2009-07-01

    Over the years, feedback controls in fusion experiments become more and more crucial both for increasing performance, stability and ensuring machine protection. Advanced controls, such as current profile control, have to deal with nonlinear, complex physical processes that can hardly be addressed by 'trial and error' methods. Such issues highlight the necessity to build new tools based on plasma discharge flight simulator for the development, test and qualification of advanced control algorithms. A project aiming at developing such tools has started last year at Cea. A part of the project consists in the development of a flight simulator that will be integrated to the present Real Time Control and Acquisition System. Under the experimental program, it will facilitate the development and the implementation of new advanced controllers in the control units. The flight simulator will be based on the European Integrated Tokamak Modelling (ITM) simulation platform. Thus, it will benefit from the development made by the task force and it will be able to offer a development platform for the new controllers of present day European tokamaks and future machine. This paper will address the architecture of the project focussing on the following items: -) Development of a 'high level' interface to build plasma scenarios as a set in sequence; -) Interface of the Tore Supra data and parameters within the ITM data structure; -) Integration of the developments under the ITM simulation platform (Kepler) using Xcos software (produced by the Scilab Consortium) functionalities such as the automatic code generation for the implementation of the controllers; -) Modification of the present control unit software towards modular units in order to facilitate control algorithm development. This document is composed of an abstract followed by the presentation transparencies. (authors)

  8. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  9. Carprofen pharmacokinetics in plasma and in control and inflamed canine tissue fluid using in vivo ultrafiltration.

    Science.gov (United States)

    Messenger, K M; Wofford, J A; Papich, M G

    2016-02-01

    Measurement of unbound drug concentrations at their sites of action is necessary for accurate PK/PD modeling. The objective of this study was to determine the unbound concentration of carprofen in canine interstitial fluid (ISF) using in vivo ultrafiltration and to compare pharmacokinetic parameters of free carprofen concentrations between inflamed and control tissue sites. We hypothesized that active concentrations of carprofen would exhibit different dispositions in ISF between inflamed vs. normal tissues. Bilateral ultrafiltration probes were placed subcutaneously in six healthy Beagle dogs 12 h prior to induction of inflammation. Two milliliters of either 2% carrageenan or saline control was injected subcutaneously at each probe site, 12 h prior to intravenous carprofen (4 mg/kg) administration. Plasma and ISF samples were collected at regular intervals for 72 h, and carprofen concentrations were determined using HPLC. Prostaglandin E2 (PGE2 ) concentrations were quantified in ISF using ELISA. Unbound carprofen concentrations were higher in ISF compared with predicted unbound plasma drug concentrations. Concentrations were not significantly higher in inflamed ISF compared with control ISF. Compartmental modeling was used to generate pharmacokinetic parameter estimates, which were not significantly different between sites. Terminal half-life (T½) was longer in the ISF compared with plasma. PGE2 in ISF decreased following administration of carprofen. In vivo ultrafiltration is a reliable method to determine unbound carprofen in ISF, and that disposition of unbound drug into tissue is much higher than predicted from unbound drug concentration in plasma. However, concentrations and pharmacokinetic parameter estimates are not significantly different in inflamed vs. un-inflamed tissues. © 2015 John Wiley & Sons Ltd.

  10. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  11. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  12. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.

    Science.gov (United States)

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M

    2008-09-15

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the

  13. Open loop control of filament heating power supply for large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Srivastava, P.K.; Sanyasi, A.K. [Homi Bhabha National Institute, Mumbai 400094 (India); Srivastav, Prabhakar [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Awasthi, L.M., E-mail: kushagra.lalit@gmail.com [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Mattoo, S.K. [Homi Bhabha National Institute, Mumbai 400094 (India)

    2017-02-15

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  14. Open loop control of filament heating power supply for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2017-01-01

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  15. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    International Nuclear Information System (INIS)

    Yamashina, T.

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  16. Development of real-time plasma analysis and control algorithms for the TCV tokamak using SIMULINK

    International Nuclear Information System (INIS)

    Felici, F.; Le, H.B.; Paley, J.I.; Duval, B.P.; Coda, S.; Moret, J.-M.; Bortolon, A.; Federspiel, L.; Goodman, T.P.; Hommen, G.; Karpushov, A.; Piras, F.; Pitzschke, A.; Romero, J.; Sevillano, G.; Sauter, O.; Vijvers, W.

    2014-01-01

    Highlights: • A new digital control system for the TCV tokamak has been commissioned. • The system is entirely programmable by SIMULINK, allowing rapid algorithm development. • Different control system nodes can run different algorithms at varying sampling times. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: One of the key features of the new digital plasma control system installed on the TCV tokamak is the possibility to rapidly design, test and deploy real-time algorithms. With this flexibility the new control system has been used for a large number of new experiments which exploit TCV's powerful actuators consisting of 16 individually controllable poloidal field coils and 7 real-time steerable electron cyclotron (EC) launchers. The system has been used for various applications, ranging from event-based real-time MHD control to real-time current diffusion simulations. These advances have propelled real-time control to one of the cornerstones of the TCV experimental program. Use of the SIMULINK graphical programming language to directly program the control system has greatly facilitated algorithm development and allowed a multitude of different algorithms to be deployed in a short time. This paper will give an overview of the developed algorithms and their application in physics experiments

  17. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-05

    voltage J. Phys. D: Appl. Phys. 36 2683 [25] Soloviev V, Krivtsov V 2009 SDBD discharge modelling for aerodynamic applications J. Phys. D: Appl. Phys...effects. Plasma Sources Sci. Technol. 18 034018 (13pp). [14] Soloviev V, Krivtsov V. 2009. Surface barrier discharge modelling for aerodynamic applications...Lempert W and Gundersen MA. 2012. Vi- brational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric

  18. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    International Nuclear Information System (INIS)

    Han Menghu; Li Jun; Liang Hua; Zhao Guangyin; Niu Zhongguo

    2015-01-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. (paper)

  19. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  20. A case-control study of the relation between plasma selenium and asthma in European populations

    DEFF Research Database (Denmark)

    Burney, P; Potts, J; Makowska, J

    2008-01-01

    BACKGROUND: There is evidence that selenium levels are relatively low in Europe and may be falling. Low levels of selenium or low activity of some of the enzymes dependent on selenium have been associated with asthma. METHODS: The GA(2)LEN network has organized a multicentre case-control study...... in Europe to assess the relation of plasma selenium to asthma. The network compared 569 cases in 14 European centres with a diagnosis of asthma and reporting asthma symptoms in the last 12 months with 576 controls from the same centres with no diagnosis of asthma and no asthmatic symptoms in the last 12......-analysis of the results from the centres showed no overall association between asthma and plasma selenium [odds ratio (OR)/10 microg/l increase in plasma selenium: 1.04; 95% confidence interval (CI): 0.89-1.21] though there was a significantly protective effect in Lodz (OR: 0.48; 95% CI: 0.29-0.78) and a marginally...

  1. Response to 'Comment on 'Mathematical and physical aspects of Kappa velocity distribution'' [Phys. Plasmas 16, 094701 (2009)

    International Nuclear Information System (INIS)

    Hau, L.-N.; Fu, W.-Z.; Chuang, S.-H.

    2009-01-01

    The comment questions the formulation of the κ velocity distribution function used in our paper as compared to a slightly different form used by the authors. The difference in the distribution function necessarily leads to different number densities, thermal pressures, etc. We show that the restriction with their distribution function is that the macroscopic temperature (or average kinetic energy) is the same for all spatially uniform systems with a family of κ distributions including the Maxwellian case. The distribution function used in our paper and widely adopted in various studies of nonthermal systems, however, does not impose such a constraint; in particular, the temperature has κ dependence reflecting the kinetic nature of different statistical systems. The points made in the comment are trivial and misleading.

  2. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  3. Control of work function of graphene by plasma assisted nitrogen doping

    International Nuclear Information System (INIS)

    Akada, Keishi; Terasawa, Tomo-o; Imamura, Gaku; Obata, Seiji; Saiki, Koichiro

    2014-01-01

    Nitrogen doping is expected to provide several intriguing properties to graphene. Nitrogen plasma treatment to defect-free and defective highly oriented pyrolytic graphite (HOPG) samples causes doping of nitrogen atom into the graphene layer. Nitrogen atoms are initially doped at a graphitic site (inside the graphene) for the defect-free HOPG, while doping to a pyridinic or a pyrrolic site (edge of the graphene) is dominant for the defective HOPG. The work function of graphene correlates strongly with the site and amount of doped nitrogen. Nitrogen atoms doped at a graphitic site lower the work function, while nitrogen atoms at a pyridinic or a pyrrolic site increase the work function. Control of plasma treatment time and the amount of initial defect could change the work function of graphite from 4.3 eV to 5.4 eV, which would open a way to tailor the nature of graphene for various industrial applications

  4. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution,