WorldWideScience

Sample records for plasma nitridation kinetics

  1. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  2. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  3. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  4. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  5. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  6. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  7. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  8. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  9. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  10. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  11. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  12. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  13. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  14. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  15. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  16. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Aecio Fernando; Scheuer, Cristiano Jose; Joanidis, Ioanis Labhardt; Cardoso, Rodrigo Perito; Mafra, Marcio; Klein, Aloisio Nelmo; Brunatto, Silvio Francisco, E-mail: brunatto@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida pro Plasma e Metalurgia do Po

    2014-08-15

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 10{sup 6} Nm{sup 3-1}, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol{sup -1}. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV{sub 0.025} was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  17. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  18. Kinetics of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Osterberg, Daniel D.; Jaques, Brian J. [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Hurley, Michael F. [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2015-01-25

    Highlights: • DyN was mechanochemically synthesized by milling pure metal under nitrogen. • Temperature and pressure were monitored to investigate reaction progress. • The effects of metal adhered to media on the impact energetics was measured. • The reactive milling kinetics are described in terms of reactive surface formation. - Abstract: Dysprosium nitride was synthesized by the reactive milling of the rare earth metal under 400 kPa nitrogen gas in a planetary ball mill. The nitrogen consumption rate was calculated from in situ temperature and pressure measurements to find the reaction extent as a function of milling time at milling speeds from 350 to 650 rpm. The results are analyzed in terms of a fundamental milling dynamics model in which the input milling energy is the primary driving force for reaction and the rate limiting step of the nitridation kinetics is the formation of chemically active surfaces. The model differs from traditional gas–solid reactions which are often limited by diffusion of a species through a surface layer or by dissociation of the gas molecule. These results give fresh insight into reactive gas–solid milling kinetics.

  19. Elements of plasma kinetic theory

    International Nuclear Information System (INIS)

    Guasp, J.

    1976-01-01

    The physical foundations of plasma kinetic equations are exposed inside a series of seminars on plasma and fusion physics. The Vlasov and collisional equations with its application range have been discussed. The momenta equations for the macroscopic magnitudes and the more usual approximations have been obtained: two fluid equations for cold and warm plasmas, magnetohydrodynamic equations and the double-adiabatic theory. (author)

  20. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  1. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  2. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  3. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  4. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  5. Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide

    Science.gov (United States)

    Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.

    2018-01-01

    The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.

  6. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  7. Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Center of Tribology and Tech. Diagnostics; Leskovsek, V. [Inst. of Metals and Technologies, Ljubljana (Slovenia)

    1998-10-10

    Plasma nitriding is usually used for ferrous materials to improve their surface properties. Knowledge of the properties of thin surface layers is essential for designing engineering components with optimal wear performance. In our study, we investigated the microstructural, mechanical and tribological properties of plasma- and pulse plasma-nitrided AISI 4140 steel in comparison to hardened steel. The influence of nitriding case depth as well as the presence of a compound layer on its tribological behaviour was also examined. Plasma and pulse plasma nitriding were carried out using commercial nitriding processes. Nitrided samples were fully characterised, using metallographic, SEM microscopic, microhardness and profilometric techniques, before and after wear testing. Wear tests were performed on a pin-on-disc wear testing machine in which nitrided pins were mated to hardened ball bearing steel discs. The wear tests were carried out under dry conditions where hardened samples were used as a reference. The resulting wear loss as well as the coefficient of friction was monitored as a function of load and test time. Several microscopic techniques were used to analyse the worn surfaces and wear debris in order to determine the dominant friction and wear characteristics. Results showed improved tribological properties of AISI 4140 steel after plasma and pulse plasma nitriding compared to hardening. However, the compound layer should be removed from the surface by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer followed by the formation of hard abrasive particles. (orig.) 10 refs.

  8. Magnetized plasma kinetic theory

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Watson, C.J.H.

    1977-01-01

    The magnetized Balescu-Lenard Collision integral for a multi-species plasma in the form derived by Hassan and Watson (1976) is approximated by ignoring wave effects. The resulting collision integral is put in Fokker-Planck form and most of the integrals occurring in the coefficients are performed analytically. The remaining integral is evaluated approximately in various limits for ion-electron, electron-electron and electron-ion interactions. (author)

  9. Thermal plasma synthesis of transition metal nitrides and alloys

    International Nuclear Information System (INIS)

    Ronsheim, P.; Christensen, A.N.; Mazza, A.

    1981-01-01

    Applications of arc plasma processing to high-temperature chemistry of Group V nitrides and Si and Ge alloys are studied. The transition metal nitrides 4f-VN, 4f-NbN, and 4f-TaN are directly synthesized in a dc argon-nitrogen plasma from powders of the metals. A large excess of N 2 is required to form stoichiometric 4f-VN, while the Nb and Ta can only be synthesized with a substoichiometric N content. In a dc argon plasma the alloys V 3 Si, VSi 2 , NbSi 2 , NbGe 2 , Cr 3 Si, and Mo 3 Si are obtained from powder mixtures of the corresponding elements. The compounds are identified by x-ray diffraction patterns and particle shape and size are studied by electron microscopy

  10. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Gredelj, Sabina; Kumar, Sunil; Gerson, Andrea R.; Cavallaro, Giuseppe P.

    2006-01-01

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al 2 O 3 ratios than obtained at 100 W and 575 deg. C. AlN/Al 2 O 3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  11. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  12. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  13. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  14. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    International Nuclear Information System (INIS)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D.

    2001-01-01

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. [copyright] 2001 American Institute of Physics

  15. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  16. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  17. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  18. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  19. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...... proceeds faster after pre-oxidation, due to a higher nitrogen content in the part of the compound layer closest to the surface....

  20. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  1. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  2. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  3. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  4. Kinetic Profiles in NSTX Plasmas

    International Nuclear Information System (INIS)

    Bell, R.E.; LeBlanc, B.P.; Bourdelle, C.; Ernst, D.R.; Fredrickson, E.D.; Gates, D.A.; Hosea, J.C.; Johnson, D.W.; Kaye, S.M.; Maingi, R.; Medley, S.; Menard, J.E.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, M.; Sabbagh, S.A.; Stutman, D.; Swain, D.W.; Synakowski, E.J.; Wilson, J.R.

    2001-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio (R/a approximately 1.3) device with auxiliary heating from neutral-beam injection (NBI) and high-harmonic fast-wave heating (HHFW). Typical NSTX parameters are R(subscript ''0'') = 85 cm, a = 67 cm, I(subscript ''p'') = 0.7-1.4 MA, B(subscript ''phi'') = 0.25-0.45 T. Three co-directed deuterium neutral-beam sources have injected P(subscript ''NB'') less than or equal to 4.7 MW. HHFW plasmas typically have delivered P(subscript ''RF'') less than or equal to 3 MW. Important to the understanding of NSTX confinement are the new kinetic profile diagnostics: a multi-pulse Thomson scattering system (MPTS) and a charge-exchange recombination spectroscopy (CHERS) system. The MPTS diagnostic currently measures electron density and temperature profiles at 30 Hz at ten spatial locations. The CHERS system has recently become available to measure carbon ion temperature and toroidal flow at 17 radial positions spanning the outer half of the minor radius with 20 msec time resolution during NBI. Experiments conducted during the last year have produced a wide range of kinetic profiles in NSTX. Some interesting examples are presented below

  5. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Science.gov (United States)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  6. Effect of the diameter and depth of pinholes on surface characteristics in the DC pulse plasma nitriding process

    International Nuclear Information System (INIS)

    Calahonra, M.C.G; Egidi, D.A; Svoboda, H; Corengia, P

    2006-01-01

    The ion nitriding treatment is a process widely used in steel alloys to improve the material's properties; such as surface hardness, resistance to wear, fatigue life and resistance to corrosion. But geometric changes in the components can produce during the nitriding process different effects on the behavior of the plasma, such as local variations in the electric field, an empty cathode effect, etc. These in turn can affect among other factors the local temperature and therefore the kinetics of the process, generating variations in the compound layer thicknesses and zone of diffusion, and micro-hardness profile. These heterogeneities limit the effectiveness of the plasma nitriding process, where control and duplication of the surface modification are most important. This work aims to study the effect of the geometry of the pieces treated with ionic nitriding, especially the effect of the orifices. An understanding of the operating mechanisms is sought in order to predict the development of the compound layer and zone of diffusion inside the pinholes. A series of orifices with different diameters and depths were machine made in AISI 4140 quenched and tempered cylindrical steel test pieces. The diameters analyzed were 2, 4, 6, 10 and 12 mm, while the depths studied were 3, 8 and 15 mm, resulting in 15 different configurations. The samples were nitrided by DC-pulse plasma in an industrial reactor, using a mixture of 75% H 2 - 25% N 2 , during 15 hours at a temperature of 500 o C. The nitrided test pieces were characterized with transverse sections using optic and scanning electron microscopy and Vickers micro-hardness profiles, measuring the thicknesses of white layer and zone of diffusion on the wall and base of the orifices. The results show that the sizes of the pinholes made in AISI 4140 steel greatly influence the uniformity and continuity of the compound layers and zones of diffusion. 'Critical diameters' for pinholes were also defined, underneath which the

  7. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  8. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  9. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  10. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  11. Duplex surface treatment of AISI 1045 steel via plasma nitriding of chromized layer

    International Nuclear Information System (INIS)

    Hakami, F.; Sohi, M. Heydarzadeh; Ghani, J. Rasizadeh

    2011-01-01

    In this work AISI 1045 steel were duplex treated via plasma nitriding of chromized layer. Samples were pack chromized by using a powder mixture consisting of ferrochromium, ammonium chloride and alumina at 1273 K for 5 h. The samples were then plasma-nitrided for 5 h at 803 K and 823 K, in a gas mixture of 75%N 2 + 25%H 2 . The treated specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and Vickers micro-hardness test. The thickness of chromized layer before nitriding was about 8 μm and it was increased after plasma nitriding. According to XRD analysis, the chromized layer was composed of chromium and iron carbides. Plasma nitriding of chromized layer resulted in the formation of chromium and iron nitrides and carbides. The hardness of the duplex layers was significantly higher than the hardness of the base material or chromized layer. The main cause of the large improvement in surface hardness was due to the formation of Cr x N and Fe x N phases in the duplex treated layers. Increasing of nitriding temperature from 803 to 823 K enhanced the formation of CrN in the duplex treated layer and increased the thickness of the nitrided layer.

  12. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  13. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  14. Syntheses, Characterization and Kinetics of Nickel-Tungsten Nitride Catalysts for Hydrotreating of Gas Oil

    Science.gov (United States)

    Botchwey, Christian

    This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed

  15. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    Directory of Open Access Journals (Sweden)

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Full Text Available Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscopy, microhardness test, X-ray diffraction and GDOES. The results showed that there are significant microstructural and morphological differences on the formed layers depending on the quantity of nitrogen and methane added to the plasma nitriding atmosphere. Thicknesses of 10, 5 and 2.5 µm were obtained when the nitrogen content of the gas mixtures were varied. The possibility to obtain a compound layer formed mainly by γ'-Fe4N nitrides was also shown. For all studied plasma nitriding conditions, the presence of a compound layer was recognized as being the responsible to hinder the decarburization on the steel surface. The highest value of surface hardness - 1277HV - were measured in the sample which were nitrided with 3vol.% of CH4.

  16. Kinetic Theory of the Inner Magnetospheric Plasma

    CERN Document Server

    Khazanov, George V

    2011-01-01

    This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...

  17. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat ...

    Indian Academy of Sciences (India)

    ††National Engineering Industries Pvt. Ltd., Jaipur 302 006, India. MS received 26 April ... hardened and tempered with spheroidized carbides is the most commonly used mate- ... because they are polluting the environment. Plasma nitrid-.

  18. NLTE4 Plasma Population Kinetics Database

    Science.gov (United States)

    SRD 159 NLTE4 Plasma Population Kinetics Database (Web database for purchase)   This database contains benchmark results for simulation of plasma population kinetics and emission spectra. The data were contributed by the participants of the 4th Non-LTE Code Comparison Workshop who have unrestricted access to the database. The only limitation for other users is in hidden labeling of the output results. Guest users can proceed to the database entry page without entering userid and password.

  19. Kinetic equations for the collisional plasma model

    International Nuclear Information System (INIS)

    Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.

    1977-01-01

    Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)

  20. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    Becerril R, F.

    1999-01-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  1. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  2. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  3. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  4. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  5. Nitriding the influence of plasma in resistance to wear micro abrasive tool steel AISI D2

    International Nuclear Information System (INIS)

    Gobbi, Vagner Joao; Gobb, Silvio Jose; Silva, Cosme Roberto Moreira da

    2010-01-01

    This work studies the influence of time of treatment in the formation of nitride layer of AISI D2 tool steel and the resistance to micro-abrasive wear from the technique of nitriding in plasma. The samples were nitrides at 400 ° C with a pressure of 4.5 mbar (450 Pa) and using a gas mixture of 80% vol.H2 and 20% vol.N2. The times of treatment were: 30, 60, 120, 180 and 360 minutes. The properties of the layers in the samples obtained nitrides were assessed by surface microhardness, profiles of microhardness, metallography analysis, X-ray diffraction and test for resistance to micro-abrasive wear. The best results for nitriding to 400 deg C, was obtained with the time of treatment of 360 minutes. In this case the increase in surface hardness was 94.6% and resistance to micro-abrasive wear of 15%. This increase in hardness may be associated with high concentration of nitrogen in the crystalline network of iron-α and additional training of nitrides. Low temperature of nitriding reduces between grain fragility to reduce the likelihood of precipitation of nitrides in a continuous manner in the austenite grain boundaries and the absence of previous ε'+ γ phases. (author)

  6. Structure and electrochemical properties of plasma-nitrided low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1990-10-01

    Plasma-nitrided SAE 4140 steel has been widely applied industrially because of its superior resistance to wear and fatigue. However, its corrosion behaviour in aqueous environments has not been completely explored. The effects of nitriding on corrosion were investigated by performing electrochemical tests on both nitrided and untreated SAE 4140. It was found that, by plasma nitriding, the corrosion resistance improved significantly in HNO{sub 3} and Na{sub 2}SO{sub 4} aqueous environments. A reaction model is proposed to explain the beneficial effect of nitride on corrosion resistance. It is concluded that nitrogen and chromium (an alloying element) act synergistically to form a dense protective layer which is responsible for the corrosion resistance. Characterization of the surface layers by Auger electron spectroscopy and X-ray photoelectron spectroscopy reveals that the protective layer is composed of (Fe, Cr){sub 4}N, (Fe, Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} together with nitrides in the middle layer, and nitrides, {gamma}'-FeOOH, and Cr(OH){sub 3}.H{sub 2}O in the outermost layer. (orig.).

  7. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  8. a Novel Method for Improving Plasma Nitriding Efficiency: Pre-Magnetization by DC Magnetic Field

    Science.gov (United States)

    Kovaci, Halim; Yetim, Ali Fatih; Bozkurt, Yusuf Burak; Çelik, Ayhan

    2017-06-01

    In this study, a novel pre-magnetization process, which enables easy diffusion of nitrogen, was used to enhance plasma nitriding efficiency. Firstly, magnetic fields with intensities of 1500G and 2500G were applied to the untreated samples before nitriding. After the pre-magnetization, the untreated and pre-magnetized samples were plasma nitrided for 4h in a gas mixture of 50% N2-50% H2 at 500∘C and 600∘C. The structural, mechanical and morphological properties of samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness tester and surface tension meter. It was observed that pre-magnetization increased the surface energy of the samples. Therefore, both compound and diffusion layer thicknesses increased with pre-magnetization process before nitriding treatment. As modified layer thickness increased, higher surface hardness values were obtained.

  9. Nitridation Of The A A 2024 T3 Aluminium By The Glow Discharge Plasma Technique

    International Nuclear Information System (INIS)

    Mudjiman, Supardjono; Sujitno, Tjipto; Sudjatmoko

    1996-01-01

    Nitridation of A A 2024 T3 aluminium by means of plasma glow discharge technique has been carried out. For this purpose, the experiments were carried out at the temperature 30 o C, 60 o C, 100 o C, 150 o C, 200 o C, and 250 o C whereas the nitridation time were varied at 5 minutes, 15 minutes, 40 minutes, 90 minutes and 180 minutes. The results showed that the optimum temperature and time of nitridation were 60 o C and 90 minutes respectively and the hardness increased from 115 to 166 KHN

  10. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  11. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  12. Oxidation kinetics of zirconium nitride. I. Planar symmetry

    International Nuclear Information System (INIS)

    Desmaison, Jean; Billy, Michel

    1976-01-01

    The oxidation behavior of ZrNsub(0.93) plates was investigated at temperatures in the range 625-800 deg C in oxygen over the pressure range 10-730 torr. The reaction product consists of monoclinic zirconia accompanied with trace amounts of cubic or tetragonal zirconia. Although the kinetic results are well interpreted by a Prout and Tompkins type model. The morphological observations suggest a transformation governed by a phase boundary reaction, this being confirmed by the oxygen pressure dependence on the rate law [fr

  13. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  14. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  15. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  16. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  17. Degradation of nitride coatings in low-pressure gas discharge plasma

    Science.gov (United States)

    Ivanov, Yurii; Shugurov, Vladimir; Krysina, Olga; Petrikova, Elizaveta; Tolkachev, Oleg

    2017-12-01

    The paper provides research data on the defect structure, mechanical characteristics, and tribological properties of commercially pure VT1-0 titanium exposed to surface modification on a COMPLEX laboratory electron-ion plasma setup which allows nitriding, coating deposition, and etching in low-pressure gas discharge plasma in a single vacuum cycle. It is shown that preliminary plasma nitriding forms a columnar Ti2N phase in VT1-0 titanium and that subsequent TiN deposition results in a thin nanocrystalline TiN layer. When the coating-substrate system is etched, the coating fails and the tribological properties of the material degrade greatly.

  18. Kinetic theory of gases and plasmas

    International Nuclear Information System (INIS)

    Schram, P.P.J.M.

    1991-01-01

    Kinetic theory provides the link between the non-equilibrium statistical mechanics of many-particle systems and macroscopic or phenomenological physics. This volume deals with the derivation of kinetic equations, their limitations and generalizations,and with the applications of kinetic theory to physical phenomena and the calculation of transport coefficients. This book is divided in 12 chapters which discuss a wide range of topics such as balanced equations, the Klimontovich, Vlasov-Maxwell, and Boltzmann equations, Chapman-Enskog theory, the kinetic theory of plasmas, B.G.K. models, linear response theory, Brownian motion and renormalized kinetic theory. Each chapter is concluded with exercises, which not only enable the readers to test their understanding of the theory, but also present additional examples which complement the text. 151 refs.; 35 figs.; 5 tabs

  19. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  20. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  1. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    Science.gov (United States)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  2. Surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rahman, A.M. [Physics Department, Faculty of Science, Sohag University (Egypt)], E-mail: ahmedphys96@hotmail.com; Maitz, M.F. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany); Kassem, M.A. [Department of Materials and Metals Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University (Egypt); Prokert, F.; Reuther, H.; Pham, M.T.; Richter, E. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany)

    2007-09-30

    The present work describes the surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding. The nitriding process was carried out at different plasma power from 400 W to 650 W where the other plasma conditions were fixed. Grazing incidence X-ray diffractometry (GIXRD), Auger electron spectroscopy (AES), tribometer and a nanohardness tester were employed to characterize the nitrided layer. Further potentiodynamic polarization method was used to describe the corrosion behavior of the un-nitrided and nitrided alloy. It has been found that the Vickers hardness (HV) and corrosion resistance values of the nitrided layers increase with increasing plasma power while the wear rates of the nitrided layers reduce by two orders of magnitude as compared to those of the un-nitrided layer. This improvement in surface properties of the intermetallic alloy is due to formation of a thin modified layer which is composed of titanium nitride in the alloy surface. Moreover, all modified layers were tested for their sustainability as a biocompatible material. Concerning the application area of biocompatibility, the present treated alloy show good surface properties especially for the nitrided alloy at low plasma power of 400 W.

  3. Oxidation kinetics of CVD silicon carbide and silicon nitride

    Science.gov (United States)

    Fox, Dennis S.

    1992-01-01

    The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.

  4. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  5. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Wang Liang, E-mail: wlimt@yahoo.com [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Zhang Dandan; Shen Lie [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China)

    2010-11-15

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH{sub 3} gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 {mu}m thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  6. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    International Nuclear Information System (INIS)

    Li Yang; Wang Liang; Zhang Dandan; Shen Lie

    2010-01-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  7. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Science.gov (United States)

    Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie

    2010-11-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.

  8. Manufacturing technology development of plasma/ion nitriding for improvement of hardness of machine components and tools

    International Nuclear Information System (INIS)

    Suprapto; Tjipto Sujitno; Saminto

    2015-01-01

    The manufacturing technology development of plasma/ion nitriding to improve of hardness of machine components and tools has been done. The development of this technology aims to improve device performance plasma nitriding double chamber and conducted with the addition of thermal radiation shield. Testing was done by testing for preheating operation (start-up), test operation for conditions nitriding and test for nitriding process. The results show that: the plasma nitriding device can be operated for nitriding process at the temperature of about 500 °C for 6 hours, using the thermal radiation shield obtained outside wall temperature of about 65 °C and shorten start-up time to about 60 minutes. The use of thermal radiation shield can also improve the efficiency of the electric power supply and increase the operating temperature for nitriding process. Test for nitriding obtained increase of hardness 1.33 times for the original camshaft (genuine parts) and 1.8 times for the imitation camshaft (imitation parts), the results are compared with after the tempering process at a temperature of 600 °C. For sample SS 304 was 2.45 times compared with before nitrided These results indicate that the development of manufacturing technology of plasma/ion nitriding to increase hardness of machine components and tools have been successfully able to increase the hardness, although still need to be optimized. Besides that, these devices can be developed to use for the process of carburizing and carbonitriding. (author)

  9. Nitridation of porous GaAs by an ECR ammonia plasma

    International Nuclear Information System (INIS)

    Naddaf, M; Hullavarad, S S; Ganesan, V; Bhoraskar, S V

    2006-01-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy

  10. Nitridation of porous GaAs by an ECR ammonia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic); Hullavarad, S S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ganesan, V [Inter University Consortium, Indore (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2006-02-15

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  11. Nitridation of porous GaAs by an ECR ammonia plasma

    Science.gov (United States)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  12. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  13. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  14. Effect of component's geometry on the plasma nitriding behavior of AISI 4340 steel

    International Nuclear Information System (INIS)

    Asadi, Z. Soltani; Mahboubi, F.

    2012-01-01

    Highlights: → The thickness of the compound layer increases with increasing in temperature and groove width. → Surface layer at the remote regions from the edge is thinner than that of closer regions. → The hardness and the case depth of the nitrided layer increase with increasing the width of the groove. → Intensity of ε phase increases with increasing the width of the groove in both methods. → The ASPN specimens are covered by hexagonal particles and for the CPN by cauliflower shape nitrides. -- Abstract: The main aim of this work was to investigate the effect of the sample geometry on properties of the conventional plasma nitrided (CPN) and active screen plasma nitrided (ASPN) steel. Sample assemblies consisting of rectangular grooved steel blocks with different groove dimensions of 2, 4, 6, 8 and 10 (W) x 40 (H) x 20 (L) mm 3 and AISI 4340 steel plates (substrates) with dimensions of 10 x 40 x 60 mm 3 , to serve as groove cover, were prepared. The sample assemblies were conventional and active screen plasma nitrided under the gas mixture of 75%N 2 + 25%H 2 , at temperatures of 500 o C and 540 o C, pressure of 4 torr, for 5 h. Properties of the nitrided substrates were investigated by evaluating compound layer thickness, case depth, phase composition and hardness profile. Results of the experiments showed that the thickness of the compound layer, hardness and nitrided case depth increased with increasing the width of the groove for both methods. Also, in each sample, nitrogen atoms penetrated more deeply in the regions of the groove closer to the edge. Hallow cathode effect occurred at the sample with 2 mm width groove, in the CPN method, leading to the overheating of the sample. In ASPN, the hardness and the nitrided case depth are lower in comparison with CPN. The surface morphology of the CPN treated samples consists of cauliflower shape surface nitrides while the surface of the AS plasma nitrided samples are covered by the hexagonal particles with

  15. A new quantitative analysis on nitriding kinetics in the oxidized Zry-4 at 900-1200 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggi [ACT Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    Two major roles of nitrogen on the zirconium based cladding degradation were identified: mechanical degradation of the cladding, and the additional chemical heat release. It has long been known that accelerated oxidation can occur in air due to the nitrogen. In addition, significant uptake of nitrogen can also occur. The nitriding of pre-oxidized zirconium based alloys leads to micro porous and less coherent oxide scales. This paper aims to quantitatively investigate the nitriding mechanism and kinetics by proposing a new methodology that is coupled with the mass balance analysis and the optical microscope image processing analysis. A new quantitative analysis methodology is described in chapter 2 and the investigation of the nitriding kinetics is performed in chapter 3. The experimental details are previously reported in. Previously only qualitative analysis was performed in, and hence the quantitative analysis will be performed in this paper. In this paper, the nitriding kinetics and mechanism were quantitatively analyzed by the new proposed analysis methods: the mass balance analysis and the optical microscope image processing analysis. Using these combined methods, the mass gain curves and the optical microscopes are analyzed in very detail, and the mechanisms of nitriding accelerated, stabilized and saturated behaviors were well understood. This paper has two very distinctive achievements as follows: 1) Development of very effective quantitative analysis methods only using two main results of oxidation tests: No detailed analytical sample measurements (e.g. TEM, EPMA and so on.) were required. These methods can effectively reduce the cost and effort of the post-test investigation. 2) The first identification of the nitriding behaviors and its very accurate analysis in a quantitative way. Based on this quantitative analysis results on the nitriding kinetics, these new findings will contribute significantly the understanding the air oxidation behaviors and model

  16. Plasma-nitriding assisted micro-texturing into stainless steel molds

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Micro-texturing has grown up to be one of the most promising procedures. This related application required for large-area, fine micro-texturing onto the stainless steel mold materials. A new method other than laser-machining, micro-milling or micro-EDM was awaited for further advancement of this micro-texturing. In the present paper, a plasma nitriding assisted micro-texturing was developed to make various kinds of micro-patterns onto the martensitic stainless steels. First, original patterns were printed onto the surface of substrate by using the ink-jet printer. Then, the masked substrate was subjected to high density plasma nitriding; the un-masked surfaces were nitrided to have higher hardness. This nitrided substrate was further treated by sand-blasting to selectively dig the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel substrate was fabricated as a mold to duplicate these micro-patterns onto the work materials. The spatial resolution and depth profile controllability of this plasma nitriding assisted micro-texturing was investigated for variety of initial micro-patterns. The original size and dimension of initial micro-patterns were precisely compared with the three dimensional geometry of micro-textures after blasting treatment. The plastic cover case for smart cellular phones was employed to demonstrate how useful this processing is in practice.

  17. Kinetic simulations in plasmas: a general view and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: alves@plasma.inpe.br

    1999-07-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  18. Kinetic simulations in plasmas: a general view and some applications

    International Nuclear Information System (INIS)

    Alves, Maria Virginia

    1999-01-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  19. Comparison of ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel

    International Nuclear Information System (INIS)

    Fattah, M.; Mahboubi, F.

    2010-01-01

    This paper compares the ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel carried out to improve the surface corrosion resistance. The gas composition for plasma nitriding was 85% N 2 -15% H 2 and that for plasma nitrocarburizing was 85% N 2 -12% H 2 -3% CO 2 . Both treatments were performed for 5 h, for different process temperatures of 570 and 620 o C for ferritic and austenitic plasma treatment, respectively. Optical microscopy, X-ray diffraction and potentiodynamic polarization technique in 3.5% NaCl solution, were used to study the treated surfaces. The results of X-ray analysis revealed that with increasing the treatment temperature from 570 to 620 o C for both treatments, the amount of ε phase decreased and γ' phase increased. Nitrocarburizing treatment resulted in formation of a more amount of ε phase with respect to nitriding treatment. However, the highest amount of ε phase was observed in the ferritic nitrocarburized sample at 570 o C. The sample nitrided at 620 o C exhibited the thickest layer. The potentiodynamic polarization results revealed that after plasma nitriding and nitrocarburizing at 570 o C, corrosion potential increased with respect to the untreated sample due to the noble nitride and carbonitride phases formed on the surface. After increasing the treatment temperature from 570 to 620 o C, corrosion potential decreased due to the less ε phase development in the compound layer and more porous compound layer formed at 620 o C with respect to the treated samples at 570 o C.

  20. Solid state alloying by plasma nitriding and diffusion annealing treatment for austenitic stainless steel

    International Nuclear Information System (INIS)

    Pinedo, C.E.; Vatavuk, J.; Oliveira, S.D. de; Tschiptschin, A.P.

    1999-01-01

    Nitrogen has been added to stainless steels to improve mechanical strength and corrosion resistance. High nitrogen steel production is limited by high gas pressure requirements and low nitrogen solubility in the melt. One way to overcome this limitation is the addition of nitrogen in solid state because of its higher solubility in austenite. However, gas and salt bath nitriding have been done at temperatures around 550 C, where nitrogen solubility in the steel is still very low. High temperature nitriding has been, thus proposed to increase nitrogen contents in the steel but the presence of oxide layers on top of the steel is a barrier to nitrogen intake. In this paper a modified plasma nitriding process is proposed. The first step of this process is a hydrogen plasma sputtering for oxide removal, exposing active steel surface improving nitrogen pickup. This is followed by a nitriding step where high nitrogen contents are introduced in the outermost layer of the steel. Diffusion annealing is then performed in order to allow nitrogen diffusion into the core. AISI 316 austenitic stainless steel was plasma nitrided and diffusion annealed at 1423K, for 6 hours, with 0.2 MPa nitrogen pressure. The nitrided steel presented ∝60 μm outermost compact layer of (Fe,Cr) 3 N and (Fe,Cr) 4 N with 11 wt.% N measured by surface depth profiling chemical analysis - GDS system. During the annealing treatment the nitride layer was dissolved and nitrogen diffused to the core of the sample leaving more even nitrogen distribution into the steel. Using this technique one-millimetre thick sample were obtained having high nitrogen content and uniform distribution through the thickness. (orig.)

  1. Fatigue improvement in low temperature plasma nitrided Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farokhzadeh, K.; Edrisy, A., E-mail: edrisy@uwindsor.ca

    2015-01-03

    In this study a low temperature (600 °C) treatment was utilized to improve the fatigue performance of plasma nitrided Ti–6Al–4V alloy by optimization of microstructure. In order to study the fatigue properties, rotation bending tests were conducted, the S–N curves were constructed, and the results were compared with those obtained by an elevated temperature treatment (900 °C) as well as conventional gas/plasma nitriding treatments reported in literature. The plasma nitrided alloy at 600 °C showed an endurance limit of 552 MPa which was higher than those achieved by conventional nitriding treatments performed at 750–1100 °C. In contrast, plasma nitriding at 900 °C resulted in the reduction of fatigue life by at least two orders of magnitude compared to the 600 °C treatment, accompanied by a 13% reduction of tensile strength and a 78% reduction of ductility. The deterioration of mechanical properties after the elevated temperature treatment was attributed to the formation of a thick compound layer (∼6 µm) on the surface followed by an α-Case (∼20 µm) and phase transformation in the bulk microstructure from fully equiaxed to bimodal with coarse grains (∼5 times higher average grain size value). The microstructure developed at 600 °C consisted of a thin compound layer (<2 µm) and a deep nitrogen diffusion zone (∼45 µm) while the bulk microstructure was maintained with only 40% grain growth. The micromechanisms of fatigue failures were identified by examination of the fracture surfaces under a scanning electron microscope (SEM). It was found that fatigue failure in the plasma nitrided alloy initiated from the surface in the low cycle region (N≤10{sup 5} cycles) and propagated in a ductile manner leading to the final rupture. No failures were observed in the high cycle region (N>10{sup 5} cycles) and the nitrided alloy endured cyclic loading until the tests were stopped at 10{sup 7} cycles. The thin morphology of the compound layer in this

  2. Fatigue improvement in low temperature plasma nitrided Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Farokhzadeh, K.; Edrisy, A.

    2015-01-01

    In this study a low temperature (600 °C) treatment was utilized to improve the fatigue performance of plasma nitrided Ti–6Al–4V alloy by optimization of microstructure. In order to study the fatigue properties, rotation bending tests were conducted, the S–N curves were constructed, and the results were compared with those obtained by an elevated temperature treatment (900 °C) as well as conventional gas/plasma nitriding treatments reported in literature. The plasma nitrided alloy at 600 °C showed an endurance limit of 552 MPa which was higher than those achieved by conventional nitriding treatments performed at 750–1100 °C. In contrast, plasma nitriding at 900 °C resulted in the reduction of fatigue life by at least two orders of magnitude compared to the 600 °C treatment, accompanied by a 13% reduction of tensile strength and a 78% reduction of ductility. The deterioration of mechanical properties after the elevated temperature treatment was attributed to the formation of a thick compound layer (∼6 µm) on the surface followed by an α-Case (∼20 µm) and phase transformation in the bulk microstructure from fully equiaxed to bimodal with coarse grains (∼5 times higher average grain size value). The microstructure developed at 600 °C consisted of a thin compound layer (<2 µm) and a deep nitrogen diffusion zone (∼45 µm) while the bulk microstructure was maintained with only 40% grain growth. The micromechanisms of fatigue failures were identified by examination of the fracture surfaces under a scanning electron microscope (SEM). It was found that fatigue failure in the plasma nitrided alloy initiated from the surface in the low cycle region (N≤10 5 cycles) and propagated in a ductile manner leading to the final rupture. No failures were observed in the high cycle region (N>10 5 cycles) and the nitrided alloy endured cyclic loading until the tests were stopped at 10 7 cycles. The thin morphology of the compound layer in this study restricted

  3. Prototype Design of Plasma-Nitriding Apparatus for Components of Industries

    International Nuclear Information System (INIS)

    Bandriyana, B.; Tutun Nugraha; Silakhuddin

    2003-01-01

    An apparatus to carry-out plasma-nitriding surface treatment has been designed. The construction was planned as a prototype for a larger system at industrial scale. The design was based on a similar apparatus currently operating at the Accelerator Laboratory at the P3TM-BATAN, in Yogyakarta. The system consists of a main vacuum chamber from steel SS-304, 45 cm OD, 55 cm height and is equipped with a nitriding chamber in the inner part that also functions as a plasma container (Quartz, cylindrical, 38 cm OD, 40 cm height). The system utilized an anode-cathode pair to generate nitrogen plasma, as well as to accelerate and direct the positively-charged-plasma toward the surface of the material to be treated. The pressure inside the chamber is designed to be in the region of 10 -3 mb with a temperature between 350-590 o C. Pulsated DC high voltage can be set at 1-50 kV at a frequency between 100-1000 Hz and current 1- 50 mA. The safety and reliability features have been designed to obtain nitriding results that are in accordance with the required technical specification as well as economical constrain. It is hoped that this device can become a prototype for future development of an industrial scale plasma-nitriding apparatus. (author)

  4. Microstructure of Nitrided Aluminum Alloys Using an Electron-Beam-Excited-Plasma (EBEP)

    Institute of Scientific and Technical Information of China (English)

    L. Liu; A. Yamamoto; T. Hishida; H. Shoyama; T. Hara; T. Hara

    2004-01-01

    Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP)technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates,aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some Al2O3 particles on the surface of the nitrided AA5052 and AA5083. The AIN layers were formed on the substrates with the thickness of 4.5 μ m for AA5052 and 0.5 μ m for AA5083. A relatively uniform nitrided surface layer composed of AIN can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and AIN layer were smaller than that near the surface. On the surface of AIN layer, the concentration of nitrogen was high and in the middle of AIN layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform AIN layer was not formed as the reason for the high nitriding temperature.

  5. Kinetic electron model for plasma thruster plumes

    Science.gov (United States)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  6. Kinetic simulation on collisional bounded plasma

    International Nuclear Information System (INIS)

    Zhu, S.P.; Sato, Tetsuya; Tomita, Yukihiro; Hatori, Tadatsugu

    1998-01-01

    A self-consistent kinetic simulation model on collisional bounded plasma is presented. The electric field is given by solving Poisson equation and collisions among particles (including charged particles and neutral particles) are included. The excitation and ionization of neutral particle, and recombination are also contained in the present model. The formation of potential structure near a boundary for a discharge system was used as an application of this model. (author)

  7. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    van Assche, F. J. H.; Unnikrishnan, S.; Michels, J. J.; van Mol, A. M. B.; van de Weijer, P.; M. C. M. van de Sanden,; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110 °C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic

  8. The influence of plasma nitriding on the fatigue behavior of austenitic stainless steel types AISI 316 and AISI 304

    International Nuclear Information System (INIS)

    Varavallo, Rogerio; Manfrinato, Marcos Dorigao; Rossino, Luciana Sgarbi; Spinelli, Dirceu; Riofano, Rosamel Melita Munoz

    2010-01-01

    The plasma nitriding process has been used as an efficient method to optimize the surface properties of steel and alloy in order to increase their wear, fatigue and corrosion resistance. This paper reports on a study of the composition and influence of the nitrided layer on the high-cycle fatigue properties of the AISI 316 and 304 type austenitic stainless steels. Test specimens of AISI 316 and 304 steel were nitrided at 400 deg C for 6 hours under a pressure of 4.5 mbar, using a gas mixture of 80% volume of H 2 and 20% volume of N 2 . The rotary fatigue limit of both nitrided and non-nitrided steels was determined, and the effect of the treatment on the fatigue limit of the two steels was evaluated. The mechanical properties of the materials were evaluated based on tensile tests, and the nitrided layer was characterized by microhardness tests, scanning electron microscopy and X-ray diffraction. The resulting nitride layer showed high hardness and mechanical strength, increasing the fatigue limit of the nitrided material in comparison with the non-nitrided one. The fatigue limit of the 316 steel increased from 400 MPa to 510 MPa in response to nitriding, while that of the 304 steel increased from 380 MPa to 560 MPa. One of the contributing factors of this increase was the introduction of residual compressive stresses during the surface hardening process, which reduce the onset of crack formation underneath the nitride layer. (author)

  9. The Use of Plasma Technique in Nitridation Process of Metal Alloy DIN 42CrMo4

    International Nuclear Information System (INIS)

    Purwanto; Malau, Viktor; Tjipto Sujitno

    2003-01-01

    Nitridation process with plasma technique is one of technique for surface treatment of a material. Research on plasma technique for nitridation process has been carried out to find out the nitridation effect on properties of metal alloy DIN 42CrM04. Nitridation process with plasma technique was conducted in a vacuum tube under following conditions 0.36 torr of pressure, 300 o C of temperature and nitridation times 1, 2, and 3 hours. Nitridation process was followed by hardness test measurement using High Quality Micro Hardness Tester machine, serial number MM-0054, as well as microstructure test using Scanning Electron Microscope (SEM) coupled with Energy Dispersive Spectroscopy (EDS) EDAX-DX4. The results showed that surface hardness increased after nitridation process. For nitridation processes for 1, 2, and 3 hours, the hardness increased from 291 kg/mm 2 to 303 kg/mm 2 , 324 kg/mm 2 and 403 kg/mm 2 , respectively. The results from micro structure observation showed that new phase of Ferro Nitride (Fe 4 N) has been formed with 4.17% nitrogen weight equivalent to 14.73% nitrogen atom and with the thickness of 5.71 μm, 5.08% nitrogen weight or 17.51% nitrogen atom and 6.78 μm thickness, and 5.69% nitrogen weight or 19.24% nitrogen atom and 8.57 μm thickness. (author)

  10. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    International Nuclear Information System (INIS)

    Basso, Rodrigo L.O.; Pastore, Heloise O.; Schmidt, Vanessa; Baumvol, Israel J.R.; Abarca, Silvia A.C.; Souza, Fernando S. de; Spinelli, Almir; Figueroa, Carlos A.; Giacomelli, Cristiano

    2010-01-01

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (E pit ) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 o C and 520 o C. Under such experimental conditions the E pit -values shifted up to 1.25 V in the positive direction.

  11. The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys

    Science.gov (United States)

    El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.

    2009-07-01

    Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.

  12. Formation of Ti-N graded bioceramic layer by DC hollow-cathode plasma nitriding

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-lin

    2004-01-01

    Ti-N graded ceramic layer was formed on titanium by using DC hollow-cathode plasma nitriding technique. The structure of Ti-N layer was analyzed using X-ray diffractometry(XRD) with Cu Kα radiation, and the microhardness( HV0.1) was measured from the surface to inner along the cross section of Ti-N layer. The results indicate that the Ti-N graded layer is composed of ε-Ti2 N, δ-TiN and α-Ti(N) phases. Mechanism discussion shows that hollow-cathode discharge can intensify gas ionization, increase current density and enhance the nitriding potential, which directly increases the thickness of the diffusion coatings compared with traditional nitriding methods.

  13. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    Energy Technology Data Exchange (ETDEWEB)

    Shahien, Mohammed [Graduate Student, Toyohashi University of Technology (Japan); Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro, E-mail: mo.shahien@yahoo.com [Toyohashi University of Technology (Japan)

    2011-10-29

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH{sub 4}Cl) powders. Thick and dense AlN coating (more than 300 {mu}m thickness) was successfully fabricated with small addition of NH{sub 4}Cl powders. Thus, addition of NH{sub 4}Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  14. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    International Nuclear Information System (INIS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH 4 Cl) powders. Thick and dense AlN coating (more than 300 μm thickness) was successfully fabricated with small addition of NH 4 Cl powders. Thus, addition of NH 4 Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  15. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  16. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  17. The kinetics of dynamic recrystallization of a low carbon vanadium-nitride microalloyed steel

    International Nuclear Information System (INIS)

    Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang

    2014-01-01

    Single-pass compression tests were performed on a Gleeble-3800 thermo-mechanical simulator to study the dynamic recrystallization behavior of a low carbon vanadium-nitride microalloyed steel at the temperature in the range from 900 °C to 1050 °C and strain rate in the range from 0.1 s −1 to 10 s −1 . Based on the flow curves from the tests, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The strain hardening rate versus stress curves were used to determine the critical stress (strain) or the peak stress (strain). The dependence of the characteristic values on Zener–Hollomon was found. The dynamic recrystallization kinetics model of the tested steel was constructed and the validity was confirmed based on the experimental results

  18. Studies of the process of an unsteady formation of hard nitride coatings in an arc plasma flow

    International Nuclear Information System (INIS)

    Zake, M.

    1996-01-01

    The kinetic studies of an unsteady formation of hard ZrN and TiN coatings on the surface of metallic (Zr, Ti) samples in an Ar-N plasma flow are carried out. The obtained result is that at the initial stage of an unsteady heating of titanium samples nitrogen atoms penetrate into metal lattice and form interstitial compounds of hard nitrogen solutions in α-phase of Ti. This process is followed by a growth of thin surface layers of titanium nitrides with subsequent changes of surface radiance of exposed samples. Unsteady formation of ZrN is a similar two-stage process which includes the ZrN film growth and formation of a α-hard solution with subsequent changes of total normal emissivity of the surface. (author). 1 ref., 1 fig

  19. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  20. Comparative tribological studies of duplex surface treated AISI 1045 steels fabricated by combinations of plasma nitriding and aluminizing

    International Nuclear Information System (INIS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2014-01-01

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Aluminizing of pre-nitrided specimen provides the highest surface hardness. • The lowest wear rate was obtained via aluminizing of pre-nitrided specimen. • Wear mechanism of the modified layer consists of oxidative and spallung wear. - Abstract: Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens

  1. Kinetic coefficients for quark-antiquark plasma

    International Nuclear Information System (INIS)

    Czyz, W.; Florkowski, W.

    1986-03-01

    The quark-antiquark plasma near equilibrium is studied. The results are based on the Heinz kinetic equations with the Boltzmann collision operator approximated by a relaxation term with the relaxation time, τ, treated as a small parameter. Linear in τ solutions of these equations are used to calculate the transport coefficients: the non-abelian version of Ohm's law, and the shear and volume viscosities. We introduce new chemical potentials which determine the color density matrix of quarks (antiquarks). Gradients of these potentials generate color currents. 12 refs. (author)

  2. The effect of the phase composition of compound layer on the growth kinetics of the nitrided layer

    International Nuclear Information System (INIS)

    Ratajski, J.; Olik, R.; Suszko, T.; Tacikowski, J.

    2001-01-01

    This paper presents a part of research work on the kinetics of formation and growth of nitrided layers on 40HM steel that was conducted within the research project devoted to the control of gaseous nitriding processes. The purpose of the research was to find answers to still opened questions connected with the optimization of the growth kinetics of nitrided layer. It has been demonstrated in particular how important in diffusion layer kinetics of growth on steel is the role-played by compound layer phase composition. Mainly, this refers to designing changes of parameters in processes where accurate formation of layer on precise parts with required tolerance of size changes is demanded. It comes out of the presented research that proper diffusion layer growth kinetics can be achieved when phase ε dominates in the compound layer. This domination of the phase ε influences speed of growth of the compound layer and first of all growth of diffusion layer. The obtained results are also a starting point of for working-out of good functional relations which could create good basis for design of algorithms of potential values changes in the function of the process time which provides the optimal kinetics of the growth of the layers. In this respect it has been achieved very good qualitative relation between the simulated distribution of nitrogen concentration in the layer and experimentally established distribution of hardness. (author)

  3. Kinetic equation for spin-polarized plasmas

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Valeo, E.

    1984-07-01

    The usual kinetic description of a plasma is extended to include variables to describe the spin. The distribution function, over phase-space and the new spin variables, provides a sufficient description of a spin-polarized plasma. The evolution equation for the distribution function is given. The equations derived are used to calculate depolarization due to four processes, inhomogeneous fields, collisions, collisions in inhomogeneous fields, and waves. It is found that depolarization by field inhomogeneity on scales large compared with the gyroradius is totally negligible. The same is true for collisional depolarization. Collisions in inhomogeneous fields yield a depolarization rate of order 10 -4 S -1 for deuterons and a negligible rate for tritons in a typical fusion reactor design. This is still sufficiently small on reactor time scales. However, small amplitude magnetic fluctuations (of order one gauss) resonant with the spin precession frequency can lead to significant depolarization (depolarises triton in ten seconds and deuteron in a hundred seconds.)

  4. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  5. Some Temperature Effects on AISI-304 Nitriding in an Inductively Coupled RF Plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.; Munoz-Castro, A. E.; Piedad-Beneitez, A. de la; Rosa-Vazquez, J. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.

    2006-01-01

    Some recent results obtained from nitriding AISI 304 stainless steel samples, 1.2 cm in diameter and 0.5 cm thick are reported here in the case of an 85% hydrogen and 15% nitrogen mixture work gas. The process was carried out from 300 to 400 W for (13.56 MHz) inductively coupled plasma within a 60 cm long pyrex glass tube 3.5 cm in diameter where the samples were biased up to -300 V with respect to earth. The resulting hardness appears to be a function of the substrate temperature which varied from 200 deg. C at a 0 V bias to 550 deg. C at -300 V. The plasma density at 400 W reached 3x1010 cm-3 with a 4 eV electron temperature. Prior to nitriding, all the samples were polished with 0.05 μm diamond paste, leading to a 30 nm average roughness (Ra). After nitriding at -300 V, the Ra rose until ∼400 nm while hardness values of 1500 HV under 300 g loads were measured. X ray diffraction indicates that the extended phase amplitude (γN), Fe and Cr nitride depends on the substrate temperature

  6. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    Science.gov (United States)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this

  7. TEM studies of plasma nitrided austenitic stainless steel.

    Science.gov (United States)

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  8. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  10. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  11. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  12. Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma

    International Nuclear Information System (INIS)

    Kim, Dong-Wook; Kim, Tae-Hee; Park, Hyun-Woo; Park, Dong-Wha

    2011-01-01

    Nanocrystalline magnesium nitride (Mg 3 N 2 ) powder was synthesized from bulk magnesium by thermal plasma at atmospheric pressure. Magnesium vapor was generated through heating the bulk magnesium by DC plasma jet and reacted with ammonia gas. Injecting position and flow rates of ammonia gas were controlled to investigate an ideal condition for Mg 3 N 2 synthesis. The synthesized Mg 3 N 2 was cooled and collected on the chamber wall. Characteristics of the synthesized powders for each experimental condition were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravity analysis (TGA). In absence of NH 3 , magnesium metal powder was formed. The synthesis with NH 3 injection in low temperature region resulted in a formation of crystalline magnesium nitride with trigonal morphology, whereas the mixture of magnesium metal and amorphous Mg 3 N 2 was formed when NH 3 was injected in high temperature region. Also, vaporization process of magnesium was discussed.

  13. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  14. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

    Science.gov (United States)

    Zdravecká, Eva; Slota, Ján; Solfronk, Pavel; Kolnerová, Michaela

    2017-07-01

    This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5-40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500-520 °C) favors the formation of compound layers of γ' and ɛ iron nitrides in the surface layers, whereas a monophase γ'-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

  15. Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications

    Czech Academy of Sciences Publication Activity Database

    Tiron, V.; Velicu, I. L.; Porosnicu, C.; Burducea, I.; Dinca, P.; Malinský, Petr

    Roč. 416, SEP (2017), s. 878-884 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Tugensten nitride layers * m-HIPIMS * deuterium retention * deuterium plasma jet * thermal desorption spectrometry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.387, year: 2016

  16. Sputter deposition of tantalum-nitride films on copper using an rf-plasma

    International Nuclear Information System (INIS)

    Walter, K.C.; Fetherston, R.P.; Sridharan, K.; Chen, A.; Shamim, M.M.; Conrad, J.R.

    1994-01-01

    A tantalum-nitride film was successfully deposited at ambient temperature on copper with a modified ion-assisted-deposition (IAD) technique. The process uses an argon and nitrogen plasma to sputter deposit from a tantalum rf-cathode and ion implant the deposited film simultaneously. Both argon and nitrogen ions are used for sputtering and ion implantation. Auger spectroscopy and x-ray diffraction were used to characterize the resulting film

  17. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  18. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma; Estructura y propiedades del acero inoxidable AISI 316 nitrurado con plasmas de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Becerril R, F

    1999-07-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as {gamma}N which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  19. Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1997-02-01

    A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

  20. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  1. Changing in Fatigue Life of 300 M Bainitic Steel After Laser Carburizing and Plasma Nitriding

    Directory of Open Access Journals (Sweden)

    Abdalla Antonio J.

    2018-01-01

    Full Text Available In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a using low-power laser CO2 (125 W for introducing carbon into the surface and (b plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.

  2. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  3. Radio-frequency plasma nitriding and nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Wang, S.Y.; Chu, P.K.; Tang, B.Y.; Zeng, X.C.; Wang, X.F.; Chen, Y.B.

    1997-01-01

    Nitrogen ion implantation improves the wear resistance of Ti-6Al-4V alloys by forming a hard TiN superficial passivation layer. However, the thickness of the layer formed by traditional ion implantation is typically 100-200 nm and may not be adequate for many industrial applications. We propose to use radio-frequency (RF) plasma nitriding and nitrogen plasma immersion ion implantation (PIII) to increase the layer thickness. By using a newly designed inductively coupled RF plasma source and applying a series of negative high voltage pulses to the Ti-6Al-4V samples. RF plasma nitriding and nitrogen PIII can be achieved. Our process yields a substantially thicker modified layer exhibiting more superior wear resistance characteristics, as demonstrated by data from micro-hardness testing, pin-on-disc wear testing, scanning electron microscopy (SEM), as well as Auger electron spectroscopy (AES). The performance of our newly developed inductively coupled RF plasma source which is responsible for the success of the experiments is also described. (orig.)

  4. Corrosion-electrochemical characteristics of oxide-carbide and oxide-nitride coatings formed by electrolytic plasma

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chukalovskaya, T.V.; Medova, I.L.; Duradzhi, V.N.; Plavnik, G.M.

    1990-01-01

    The composition, structure, microhardness and corrosion-electrochemical properties of oxide-carbide and oxide-nitride coatings on titanium in 5n H 2 SO 4 , 50 deg, produced by the method of chemical-heat treatment in electrolytic plasma, containing saturation components of nitrogen and carbon, were investigated. It is shown that the coatings produced have increased hardness, possess high corrosion resistance in sulfuric acid solution at increased temperature, as to their electrochemcial behaviour they are similar to titanium carbide and nitride respectively. It is shown that high corrosion resistance is ensured by electrochemical mechanism of the oxide-carbide and oxide-nitride coating protection

  5. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  6. First results on nitriding aluminium alloys in a low-pressure RF plasma

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: Aluminium alloys are now well established as materials of choice for many commercial applications, especially where strength-to-weight ratio is a critical parameter. However, their more widespread use is inhibited by their low surface hardness. For steels, similar problems can be overcome by nitriding. The nitrogen-rich surface layer has high hardness and load-bearing capacity, and is very well bonded to the substrate. The development of a similar surface-treatment process for aluminium alloys is clearly a desirable goal. It is therefore not surprising that many research groups worldwide have attempted to nitride aluminium. Much of this work studied pure aluminium, a material of no interest for structural applications. Previous investigations into nitriding aluminium alloys' had indifferent results. However, they have served to identify the key issues, which are the importance of a pre-cleaning steps to remove the surface oxide, of impurity control during the nitriding and the desirability of using as low a process temperature as possible. In all of these areas, our process using a low-pressure RF plasma is likely to be competitive. In view of this, we have undertaken a comparative study of a range of commercially available aluminium alloys. All treatments were carried out in the hot-wall nitriding reactor at ANSTO. The samples consist of disks 25mm in diameter and ∼3mm thick which were polished and ultrasonically cleaned in alcohol prior to treatment. The samples were stored in air at all times except when in the nitriding reactor. In a series of treatments, the treatment time was varied in the range 1-16 h and the temperature in the range 350-500 deg C. All treatments were preceeded by a plasma cleaning step in a H 2 /50%Ar mixture for a duration of 1.5-2.0 h while the reactor reached processing temperature. The treatments all used pure N 2 at a pressure of 0.4Pa and a nitrogen flow rate of 12μmol s -1 , with 245W of rf power at 13.56MHz applied to

  7. Kinetic theory of surface waves in plasma jets

    International Nuclear Information System (INIS)

    Shokri, B.

    2002-01-01

    The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied

  8. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  9. Remote plasma-assisted nitridation (RPN): applications to Zr and Hf silicate alloys and Al2O3

    International Nuclear Information System (INIS)

    Hinkle, Chris; Lucovsky, Gerry

    2003-01-01

    Remote plasma-assisted nitridation or RPN is demonstrated to be a processing pathway for nitridation of Zr and Hf silicate alloys, and for Al 2 O 3 , as well. The dependence of nitrogen incorporation on the process pressure is qualitatively similar to what has been reported for the plasma-assisted nitridation of SiO 2 , the lower the process pressure the greater the nitrogen incorporation in the film. The increased incorporation of nitrogen has been correlated with the penetration of the plasma-glow into the process chamber, and the accompanying increase in the concentration of N 2 + ions that participate in the reactions leading to bulk incorporation. The nitrogen incorporation as been studied by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and X-ray absorption spectroscopy (XAS)

  10. Mechanical properties and corrosion resistance of supermartensitic stainless steel surfaces nitrided by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Schibicheski, Bruna Corina Emanuely; Souza, Gelson Biscaia de; Oliveira, Willian Rafael de; Serbena, Francisco Carlos, E-mail: bruna_schibicheski@hotmail.com [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Marino, Cláudia E.B. [Universidade Federal do Paraná (UFPR), Curitiba, PR (Brazil)

    2016-07-01

    Full text: The supermartensitic stainless steel UNS S41426 is employed in marine oil and gas extraction ducts, where it is subjected to severe conditions of temperature, pressure and exposure to corrosive agents (as the H{sub 2}S). In such environments, pitting corrosion is a major cause of degradation of metallic alloys [1]. This work investigated the effectiveness of the nitrogen inlet, attained here by the plasma immersion ion implantation (PIII) technique, in improving the mechanical properties and corrosion resistance of the material surface. Samples were initially austenitized at 1100°C with a subsequent room temperature oil quenching in order to obtain a fully martensitic structure. The nitriding was carried out under 10 kV implantation energy and 30 ms pulse width. The temperatures ranged from 300 °C to 400°C, achieved by controlling the pulse repetition rates. Samples were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, instrumented indentation, scanning electron microscopy, potentiodynamic anodic polarization tests (in NaCl solution), and cathodic hydrogenation tests (in H{sub 2}SO{sub 4} solution). The PIII nitriding produced stratified layers up to 30 mm thick containing nitrogen expanded martensite and iron nitride phases (γ’-Fe{sub 4}N, ε- Fe{sub 2+x}N), depending on the treatment temperature. Consequently, the surface hardness increased from ∼3GPa (reference) up to ∼13GPa (400°C). Regarding the corrosion resistance, the nitrided surfaces presented a significant improvement as compared with the pristine surface, evidenced by the increase of the corrosion potential, which was also correlated to the hydrogen embrittlement reduction and the subsequent suppression of morphological changes. References: [1] M.G. Fontana, Corrosion Engineering, Singapore: McGraw-Hill, 1987. [2] B.C.E.S. Kurelo et al., Applied Surface Science 349 (2015) 403-414. (author)

  11. Plasma-spray synthesis and characterization of ti-based nitride and oxide nanogranules

    Energy Technology Data Exchange (ETDEWEB)

    Antipas, Georgios S.E., E-mail: gantipas@metal.ntua.gr [School of Mining Engineering and Metallurgy, National Technical University of Athens, Athens (Greece)

    2014-09-15

    The synthesis of nanosized Ti-based nanogranules via plasma spraying is reported. The synthesis route involved use of both nitrogen and oxygen gases with varying results. In the case of nitrogen, a mixture of titanium nitrides were produced, yielding both the Ti2N and the sub-stoichiometric TiN0.61 compounds. In the case of oxygen, both the stoichiometric rutile and TiO ceramic phases were indexed. Based on EDS analysis, even fractional oxygen concentrations caused tungsten impurities which originated from the cathode electrode. The method yielded particle mass median sizes of the order of 15nm and the smallest particles detected were 5nm. (author)

  12. The Influence Of Nitridation Temperature And Time On The Surface Hardness Of AISI 1010 Low Carbon Steels Nitrided By Means Of Plasma Glow Discharge Technique

    International Nuclear Information System (INIS)

    Sujitno, Tjipto; Mujiman, Supardjono

    1996-01-01

    The results of the influence of nitridation temperature and time on the surface hardness of AISI 1010 low carbon steels nitrided by means of plasma glow discharge technique are presented in this paper. The results are the changing of surface hardiness, the changing of surface microstructure and the penetration profile depth. The experiment has been carried out at the temperature 400 o C, 450 o C, 500 o C, 550 o C, 570 o C and 600 o C, whereas the time is 5 minutes, 15 minutes, 40 minutes, 90 minutes and 180 minutes. All the experiments have been carried out at the optimum plasma density condition. The optimum plasma density condition is achieved at the pressure of p = 0.2 torr, when thr gas flow of nitrogen is 0.6 liter/minute and the distance of electrode plate is 4.5 cm. It was found that the optimum hardness of the surface was achieved at the temperature of 570 o C and the time of nitridation was 90 minutes, i.e. 190 KHN

  13. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  14. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    International Nuclear Information System (INIS)

    Souza, S.D. de; Olzon-Dionysio, M.; Basso, R.L.O.; Souza, S. de

    2010-01-01

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H 2 -20% N 2 gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 μm was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad γ N phase peaks, signifying a great degree of nitrogen supersaturation. Besides γ N, the Moessbauer spectroscopy results indicated the occurrence of γ' and ε phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the ε/γ' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.

  15. Thermodynamics, Kinetics and Microstructural Evolution of the Compound Layer; a Comparison of the States of Knowledge of Nitriding and Nitrocarburising

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2000-01-01

    and atmospheric corrosion performance. The diffusion zone brings about an improvement of the endurance limit as compared to an untreated component. Hence, nitrocarburising is perhaps the most versatile surface treatment for ferritic steel and has a potential for wide application. From the literature...... conditions for tailoring a certain combination of properties. The present paper describes aspects of the thermodynamics, kinetics and microstructure evolution of the compound layer on pure iron during nitrocarburising, by comparing the current status of qualitative understanding with that for nitriding...

  16. Design and construction of automatic operating system of double chamber plasma nitriding device PLC based

    International Nuclear Information System (INIS)

    Saminto; Slamet Santosa; Eko Priyono

    2012-01-01

    The automatic operating system of double chamber plasma nitriding device has been done. The system is used for operating double chamber plasma nitriding automatically as according to the standard operating procedure by pressing push button on the human machine interface (HMI). The system consists of hardware and software. The hardware was constructed using main components T100MD1616+ PLC module and supported by temperature signal conditioner module, Wheatstone bridge module, isolated amplifier module and EMS 30A H Bridge motor driver module. A software program that is planted on T100MD1616+ PLC using ladder diagrams and Tbasic program. Test system functions performed by inserting a set values of temperature and pressure by pressing the button on the human machine interface (HMI). The test results show that the temperature control with a set of values 100 °C obtained stable coverage of 98 °C to 102 °C, (Δ ± 2 °C) with a 2% tolerance and the output voltage of the DAC is 2.436 volts to 2.913 volts. The pressure control with a set of values 2.169 x 10 -1 mbar obtained stable coverage of 1.995 x 10 -1 mbar to 2.205 x 10 -1 mbar, (Δ ± 0.105 x 10 -1 mbar) with a 5% tol. (author)

  17. Nitriding of Ti substrate using energetic ions from plasma focus device

    International Nuclear Information System (INIS)

    Henriquez, A; Bhuyan, H; Favre, M; Bora, B; Wyndham, E; Chuaqui, H; Mändl, S; Gerlach, J W; Manova, D

    2012-01-01

    Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We have previously investigated the ion flux and energy spectrum of ion beams emitted from a low energy PF, operating at 20 kV, with 1.8 kJ stored energy. It was observed that the ion beams have wide range of energy and intensity spectra with a clear angular anisotropy. Due to the wide range of ion energy and intensity spectra PF has become a subject of current interest for its applications in material sciences including surface modification and thin film deposition. The purpose of this study is the formation of titanium nitride (TiN) thin film and to investigate the structural properties of the TiN thin films in terms of PF angular positions. Substrates like Ti and Ti/Si were nitrided in a 1.8 kJ PF device at different angular positions with respect to the PF axis in order to correlate their surface properties with ion beam parameters. Preliminary characterizations of the ion implanted substrates have been conducted, using SEM, EDX and XRD. Our results indicate the formation of nanocrystalline TiN thin film only in certain angular positions. Angular dependency of the surface morphology was observed, which shows that the surface features strongly depends on ion beam energy and flux. With increasing angular positions, a reduction in the deposition rate and the sputter rate is observed. A pronounced nanostructured surface is only observed at the axis of the pinched plasma column, indicating the dominant role of sputtering and perhaps melting and fast re-crystallization of the surface in creating the nanostructures.

  18. On the kinetic theory of the one-component plasma

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1984-01-01

    In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)

  19. Atomic Layer Deposition of Silicon Nitride from Bis(tert-butylamino)silane and N2 Plasma.

    Science.gov (United States)

    Knoops, Harm C M; Braeken, Eline M J; de Peuter, Koen; Potts, Stephen E; Haukka, Suvi; Pore, Viljami; Kessels, Wilhelmus M M

    2015-09-09

    Atomic layer deposition (ALD) of silicon nitride (SiNx) is deemed essential for a variety of applications in nanoelectronics, such as gate spacer layers in transistors. In this work an ALD process using bis(tert-butylamino)silane (BTBAS) and N2 plasma was developed and studied. The process exhibited a wide temperature window starting from room temperature up to 500 °C. The material properties and wet-etch rates were investigated as a function of plasma exposure time, plasma pressure, and substrate table temperature. Table temperatures of 300-500 °C yielded a high material quality and a composition close to Si3N4 was obtained at 500 °C (N/Si=1.4±0.1, mass density=2.9±0.1 g/cm3, refractive index=1.96±0.03). Low wet-etch rates of ∼1 nm/min were obtained for films deposited at table temperatures of 400 °C and higher, similar to that achieved in the literature using low-pressure chemical vapor deposition of SiNx at >700 °C. For novel applications requiring significantly lower temperatures, the temperature window from room temperature to 200 °C can be a solution, where relatively high material quality was obtained when operating at low plasma pressures or long plasma exposure times.

  20. Plasma nitriding of CA-6NM steel: effect of H2 + N2 gas mixtures in nitride layer formation for low N2 contents at 500 ºC

    Directory of Open Access Journals (Sweden)

    Angela Nardelli Allenstein

    2010-12-01

    Full Text Available This work aims to characterize the phases, thickness, hardness and hardness profiles of the nitride layers formed on the CA-6NM martensitic stainless steel which was plasma nitrided in gas mixtures containing different nitrogen amounts. Nitriding was performed at 500 ºC temperature, and 532 Pa (4 Torr pressure, for gas mixtures of 5% N2 + 95% H2, 10% N2 + 90% H2, and 20% N2 + 80% H2, and 2 hours nitriding time. A 6 hours nitriding time condition for gas mixture of 5% N2 + 95% H2 was also studied. Nitrided samples results were compared with non-nitrided condition. Thickness and microstructure of the nitrided layers were characterized by optical microscopy (OM, using Villela and Nital etchants, and the phases were identified by X-ray diffraction. Hardness profiles and hardness measured on surface steel were determined using Vickers hardness and nanoindentation tester, respectively. It was verified that nitrided layer produced in CA-6NM martensitc stainless steel is constituted of compound layer, being that formation of the diffusion zone was not observed for the studied conditions. The higher the nitrogen amounts in gas mixture the higher is the thickness of the nitrided layer and the probability to form different nitride phases, in the case γ'-Fe4N, ε-Fe2-3N and CrN phases. Intrinsic hardness of the nitrided layers produced in the CA-6NM stainless steel is about 12-14 GPa (~1200-1400 HV.

  1. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications.

    Science.gov (United States)

    Zhao, Guo-Hua; Aune, Ragnhild E; Espallargas, Nuria

    2016-10-01

    The medical grade pure titanium, stainless steel and CoCrMo alloy have been utilized as biomaterials for load-bearing orthopedic prosthesis. The conventional surgery metals suffer from a combined effect of wear and corrosion once they are implanted, which may significantly accelerate the material degradation process. In this work, the tribocorrosion performance of the metallic biomaterials with different surface modifications was studied in the simulated body fluid for the purpose of investigating the effect of the surface treatments on the tribocorrosion performance and eventually finding the most suitable implantation materials. The metals were subjected to surface modifications by plasma nitriding in different treatment temperatures or physical vapor deposition (PVD) to produce diamond-like carbon (DLC) coating, respectively. The dry wear and tribocorrosion properties of the samples were evaluated by using a reciprocating ball-on-disc tribometer equipped with an electrochemical cell. Prior to the tribocorrosion tests, their electrochemical behavior was measured by the potentiodynamic polarization in phosphate buffer saline (PBS) solution at room temperature. Both stainless steel and CoCrMo after low temperature nitriding kept their passive nature by forming an expanded austenite phase. The DLC coated samples presented the low anodic corrosion current due to the chemical inertness of the carbon layer. During the tribocorrosion tests at open circuit potential, the untreated and low temperature nitrided samples exhibited significant potential drop towards the cathodic direction, which was a result of the worn out of the passive film. Galvanic coupling was established between the depassivated (worn) area and the still passive (unworn) area, making the materials suffered from wear-accelerated corrosion. The DLC coating performed as a solid lubricant in both dry wear and tribocorrosion tests, and the resulting wear after the tests was almost negligible. Copyright

  2. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  3. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  4. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  5. Grazing incidence synchrotron X-ray diffraction and Moessbauer spectroscopy analyses of plasma nitrided ASTM F138 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Danilo Olzon Dionysio de; Ardisson, Jose Domingos, E-mail: dolzon@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silva, Edilaine Honorio [Studiecentrum voor Kernenergie (Belgium); Olzon-Dionysio, Maristela; Souza, Sylvio Dionysio de; Fabris, Jose Domingos [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil); Martinez, L.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: systematic investigation of samples of plasma-nitriding austenitic stainless steels ASTM F138 and AISI 316L is reported. The surface treatment of the steels through plasma-nitriding was used to improve further the hardness, wear and corrosion resistance of these stainless steels. The resulting layered crystallographic structure actually corresponds to several phases with close cell parameters, making their identification and quantification a real experimental challenge. The ASTM F138 and AISI 316L stainless steel disks were plasma nitrided for 4 h at 400 deg C in a 80% H{sub 2} -20% N2 atmosphere at 6 torr, using plasma current frequencies between 6 and 100 kHz. Data of Moessbauer (CEMS and CXMS) and grazing incidence synchrotron X-ray diffraction (XRD-SR) were systematically collected. The nitrided layer thickness were not in general influenced by the plasma frequency, except at 12 kHz, which produced a layer thickness of approximately 8.0 mm, being in average 40% thicker than for the other samples. CXMS and CEMS Moessbauer spectra for this 12 kHz-sample show a much more pronounced magnetic resonance lines than for the other samples. The Fe{sub 4}N phase presents a single magnetic hyperfine interaction; the other two (Fe{sub 2-3}N and the expanded austenite) present both paramagnetic and magnetic components, even though their hyperfine parameters may not be safely separated. We also present the results of XRD-SR that were probed at several depths. The data from these techniques may be consistently correlated and this leads to an improved model to explain the structure of the nitrided layers. (author)

  6. Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding

    Directory of Open Access Journals (Sweden)

    Silva Maria Margareth da

    2006-01-01

    Full Text Available Based on the fact that the Ti-6Al-4V alloy has good mechanical properties, excellent resistance to corrosion and also excellent biocompatibility, however with low wear resistance, this work aims to test plasma processes or combination of plasma and ion implantation processes to improve these characteristics. Two types of processing were used: two steps PIII (Plasma Immersion Ion Implantation combined with PN (Plasma Nitriding and single step PIII treatment. According to Auger Electron Spectroscopy (AES results, the best solution was obtained by PIII for 150 minutes resulting in ~ 65 nm of nitrogen implanted layer, while the sample treated with PIII (75 minutes and PN (75 minutes reached ~ 35 nm implanted layer. The improvement of surface properties could also be confirmed by the nanoindentation technique, with values of hardness increasing for both processes. AFM (Atomic Force Microscopy characterization showed that the single step PIII process presented greater efficiency than the duplex process (PIII + PN, probably due to the sputtering occurring during the second step (PN removing partially the implanted layer of first step (PIII.

  7. Nitridation effects of Si(1 1 1) substrate surface on InN nanorods grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tan, Jin, E-mail: jintan_cug@163.com [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Li, Bin; Song, Hao; Wu, Zhengbo; Chen, Xin [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-02-05

    Graphical abstract: The morphology evolution of InN nanorods in samples (g)–(i). The alignment of InN nanorods is improved and the deviation angle distribution narrows down with increase in nitriding time. It suggests that extending the nitriding time can enhance the vertical orientation of InN nanorods. - Highlights: • InN nanorods were grown on surface nitrided Si(1 1 1) substrate using PAMBE system. • Nitridation of substrate surface has a strong effect on morphology of InN nanorods. • InN nanorods cannot be formed with 1 min nitridation of Si(1 1 1) substrate. • Increasing nitriding time will increase optimum growth temperature of InN nanorods. • Increasing nitriding time can enhance vertical orientation of InN nanorods. - Abstract: The InN nanorods were grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE) system, with a substrate nitridation process. The effect of nitriding time of Si(1 1 1) substrate on morphology, orientation and growth temperature of InN nanorods was characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The deviation angle of InN nanorods was measured to evaluate the alignment of arrays. The results showed that InN nanorods could not be formed with 1 min nitridation of Si(1 1 1) substrate, but they could be obtained again when the nitriding time was increased to more than 10 min. In order to get aligned InN nanorods, the growth temperature needed to increase with longer nitriding time. The vertical orientation of InN nanorods could be enhanced with increase in nitriding time. The influence of the substrate nitridation on the photoluminescence (PL) spectra of InN nanorods has been investigated.

  8. Analysis of mechanical properties of steel 1045 plasma nitriding: with and without tempering

    International Nuclear Information System (INIS)

    Machado, N.T.B.; Passos, M.L.M. dos; Riani, J.C.; Recco, A.A.C.

    2014-01-01

    The purpose of this study was to evaluate the possibility of tempering during the nitriding of AISI 1045 steel. The objective was to evaluate the possibility of eliminating this phase, with the nitriding properties remaining unaltered. For this, three parameter samples were compared: quenched, tempered and nitrided for 2h; quenching and nitrided for 2h and quenching and nitrided for 4h. The analysis techniques used for characterizing the samples before and after nitriding were optical microscopy, hardness Rockwell C (HRC), scanning electron microscopy (SEM), X-ray diffraction (XRD). Results showed that phase γ is the most favorable of all parameters tested. The hardness assays showed that samples with different initial hardness (with and without tempering) and even nitriding time showed similar mechanical properties. This fact suggests that the tempering process occurred parallel to the nitriding process. (author)

  9. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  10. Kinetic calculation of plasma deposition in castellated tile gaps

    International Nuclear Information System (INIS)

    Dejarnac, R.; Gunn, J.P.

    2007-01-01

    Plasma-facing divertors and limiters are armoured with castellated tiles to withstand intense heat fluxes. Recent experimental studies show that a non-negligible amount of deuterium is deposited in the gaps between tiles. We present here a numerical study of plasma deposition in this critical region. For this purpose we have developed a particle-in-cell code with realistic boundary conditions determined from kinetic calculations. We find a strong asymmetry of plasma deposition into the gaps. A significant fraction of the plasma influx is expelled from the gap to be deposited on the leading edge of the downstream tile

  11. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  12. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  13. Extended symmetries of the kinetic plasma theory models

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2005-01-01

    Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined

  14. Plasma-nitride α-βTi alloy: layer characterization and mechanical properties modification

    International Nuclear Information System (INIS)

    Raveh, A.; Bussiba, A.; Bettelheim, A.; Katz, Y.

    1993-01-01

    Beyond continuous efforts to develop advanced processing methods or new directions in surface modification, the foundations for assessment of appropriate surface layers still remain very challenging. In this context, Ti-6Al-4V α-β alloy was investigated mainly after plasma nitriding by nitrogen or by a nitrogen mixture with hydrogen and/or argon. The current study objectives consist in gradually developing some aspects of the microstructure and property relationship. As such, the study centred on the characterization of refined layers as well as confronting critical questions of how layers and interfacial microstructure might affect the near-surface mechanical properties (i.e. microhardness, fatigue resistance and erosion). In particular, the effects on fatigue behaviour are emphasized by utilizing single edge notched specimens and fatigue stepdown techniques. It is found that two distinct sublayers, comprising δ-TiN and δ-TiN + ε-Ti 2 N phases, were formed with alloying elements in a segregated zone, followed by a solid solution of N in the Ti. Here, the far field affected zone extended up to about 20 μm. It was observed that the formation of the uppermost sublayer (δ-TiN phase) with a composition including H, NH, and N, as well as Ti depleted of Al and V, has a strong effect on the layer properties. A microhardness value as high as 29.4 GPa (3000 kgf mm -2 ) was obtained with significant improvements in the erosion resistance and fatigue life. It was found that in some controlled plasma nitriding conditions the fatigue life for crack initiation increased by more than a factor of 3. Accordingly, the cyclic crack initiation behaviour is described, revealing substantial influences due to crack tip field perturbations, or fracture resistance modifications. Finally, the role of extrinsic crack tip shielding effects as related to closure or to the local effective driving force for microcracking onset is elaborated. (orig.)

  15. A multi water bag model of drift kinetic electron plasma

    International Nuclear Information System (INIS)

    Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Coulette, D.; Besse, N.

    2014-01-01

    A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)]. (authors)

  16. Plasma nitriding and simultaneous tempering of VF 800AT tool steel; Nitretacao por plasma com revenimento simultaneo do aco ferramenta VF 800AT

    Energy Technology Data Exchange (ETDEWEB)

    Prass, Andre Ricardo; Fontana, Luis Cesar; Recco, Abel Andre Candido, E-mail: prass.andrericardo@gmail.com, E-mail: luis.fontana@udesc.br, E-mail: abel.recco@udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil)

    2017-04-15

    Plasma nitriding of tool steels improves the surface hardness due to formation of diffusion zone and/or compound layer. The process parameters such as temperature, gas composition and dwell time, allow to control the layer thickness, the microstructure, the crystalline phases and the type of layer (for example white layer or diffusion zone). This paper discusses an alternative procedure for the heat treatment of tempering and surface treatment, both in plasma or combining conventional heat treatment with subsequent plasma nitriding. Carrying out both treatments in plasma could enable reduction in manufacturing costs, lower energy consumption and less time for tools manufacturing. Samples of VF800AT steel were treated and characterized (at surface and core of samples) through the following technique: X-ray diffraction, optical microscopy, scanning electron microscopy, micro-hardness profile and Rockwell C measurement. Temperature measurements during the plasma treatment, show that arise thermal gradient between the surface and the core of the samples. In this work, it was observed that the surface was up to 7% hotter than the core of sample, during the plasma treatment with temperature of magnitude about 5 x 10{sup 2} °C. This thermal gradient seems inherent to the plasma process, so that it can produce different microstructure, hardness and crystalline phases between core and edge of samples. However, when two tempering operations are prior carried out in a muffle furnace and the third tempering treatment is subsequently carried out simultaneously with the plasma nitriding, it is observed that the microstructure, the crystalline phases, hardness and micro hardness (in both, edge and core) are similar to treatments done in conventional mode cycle (in muffle furnace) with subsequent plasma nitriding. (author)

  17. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P.; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  18. Fully kinetic simulations of megajoule-scale dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  19. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  20. Computer models for kinetic equations of magnetically confined plasmas

    International Nuclear Information System (INIS)

    Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.

    1987-01-01

    This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method

  1. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  2. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  3. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  4. Probes, Moons, and Kinetic Plasma Wakes

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  5. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  6. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  7. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  8. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  9. Kinetic theory of nonlinear transport phenomena in complex plasmas

    International Nuclear Information System (INIS)

    Mishra, S. K.; Sodha, M. S.

    2013-01-01

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  10. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  11. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  12. Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film

    Science.gov (United States)

    Zhu, Y. D.; Yan, M. F.; Zhang, Y. X.; Zhang, C. S.

    2018-03-01

    In the present work, a copper-titanium film of gradient composition was firstly fabricated by the dual magnetron sputtering through power control and plasma nitriding of the film was then conducted to modify C17200 Cu alloy. The results showed that the prepared gradient Cu-Ti film by magnetron sputtering was amorphous. After plasma nitriding at 650 °C, crystalline Cu-Ti intermetallics appeared in the multi-phase coating, including CuTi2, Cu3Ti, Cu3Ti2 and CuTi. Moreover, even though the plasma nitriding duration of the gradient Cu-Ti film was only 0.5 h, the mechanical properties of the modified Cu surface were obviously improved, with the surface hardness enhanced to be 417 HV0.01, the wear rate to be 0.32 × 10-14 m3/Nm and the friction coefficient to be 0.075 at the load of 10 N, which are all more excellent than the C17200 Cu alloy. In addition, the wear mechanism also changed from adhesion wear for C17200 Cu substrate to abrasive wear for the modified surface.

  13. Plasma kinetics around a dust grain in an ion flow

    International Nuclear Information System (INIS)

    Maiorov, S.A.; Vladimirov, S.V.; Cramer, N.F.

    2000-01-01

    Full text: In a typical laboratory discharge, dust particles are negatively charged and usually levitate in the sheath or pre-sheath region under the balance of gravitational, electrostatic (due to the sheath electric field) and plasma (such as the ion drag) forces. The ion flow provides not only a direct (dragging) influence, but is also responsible for the generation of associated collective plasma processes which can strongly affect the vertical arrangement of the dust grains. The complete problem of the plasma dynamics around a macroscopic body in the presence of plasma flows is highly nonlinear and therefore its numerical analysis is of major importance. Among various numerical methods, direct integration of the equations of motion of the plasma particles represents a numerical experiment whose significance approaches experiments in the laboratory. Here, we present for the first time the results of a self-consistent molecular dynamics (MD) three-dimensional (3D) simulation of the kinetics of plasma particles (electrons and ions) around a dust grain, taking into account the dust charging. The core of the method includes consideration of the time evolution of the system consisting of positively ('ions') and negatively ('electrons') charged particles confined in a simulation box together with a macroscopic absorbing grain ('dust particle') with infinite mass and an initial (negative) charge. The ions are introduced in the system as a uniform flow defined by its Mach number and the ion temperature. The paths of the ions and electrons are determined through numerical integration of the equations of motion. We demonstrate that the plasma kinetics around a dust grain in the presence of an ion flow involves a strong ion focusing behind the grain. We have also confirmed that the most important of the processes involved is the ion time-scale; the kinetics of the electrons follows a Boltzmann distribution with good agreement. We note that the time constraints involved

  14. Modeling of subtle kinetic processes in plasma simulation

    International Nuclear Information System (INIS)

    Sydora, R.D.; Decyk, V.K.; Dawson, J.M.

    1988-01-01

    A new diagnostic method for plasma simulation models is presented which enables one to probe the subtle dielectric properties of the plasma medium. The procedure involves the removal of the background plasma response in order to isolate the effects of small perturbing influences which are externally added. We have found the technique accurately describes fundamental kinetic plasma behavior such as the shielding of individual test charges and currents. Wave emission studies and drag of test particles has been carried out in explicit particle algorithms as well as large time step implicit and gyrokinetic models. Accurate plasma behavior is produced and it is possible to investigate in detail, processes which can be compared with plasma kinetic theory. The technique of subtraction is not only limited to particle simulation models but also can be used in MHD or fluid models where resolution is difficult due to the intensity of the background response relative to the phenomena one is interested in measuring, such as a weakly grouwing instability or nonlinear mode coupling effect. (author)

  15. Enhancement of corrosion resistance for plasma nitrided AISI 4140 steel by plain air plasma post-oxidizing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiqiang; Liu, Han; Ye, Xuemei [Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164 (China); Chai, Yating [Materials Research and Education Center, Auburn University, AL 36849 (United States); Hu, Jing, E-mail: jinghoo@126.com [Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164 (China); Materials Research and Education Center, Auburn University, AL 36849 (United States)

    2015-05-25

    Highlights: • Plain air was primarily used for plasma post-oxidation for AISI 4140 steel. • A thin iron oxide layer composed of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} was formed on top of the compound layer. • The ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} was closely related to the post-oxidizing conditions. • Post-oxidizing at 673 K for 60 min brought out highest ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} and optimum corrosion resistance. - Abstract: Plasma post-oxidizing was conducted immediately after plasma nitriding in the same equipment for AISI 4140 steel, and plain air was used as the oxygen bearing gas. The cross-sectional microstructures of the treated samples were observed by optical metallography and scanning electron microcopy (SEM), and the thickness of compound layer was measured accordingly. The phases were determined by X-ray diffraction (XRD), corrosion resistance was evaluated by electrochemical polarization, and the surface morphology before and after polarization test was also observed by SEM. Meanwhile, standard Gibbs free energy of the oxidation reactions existed in Fe–O system was calculated. The results show that a thin iron oxide layer composed of magnetite (Fe{sub 3}O{sub 4}) and hematite (Fe{sub 2}O{sub 3}) is formed on top of the compound layer during plasma post-oxidizing process, and the ratio of magnetite (Fe{sub 3}O{sub 4}) to hematite (Fe{sub 2}O{sub 3}) is depended on plasma post-oxidizing temperature and time. Highest ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} is obtained while post-oxidizing at 673 K for 60 min due to lower standard Gibbs free energy and appropriate forming rate for the formation of Fe{sub 3}O{sub 4} at this temperature. The thin oxide layer brings out significant enhancement of corrosion resistance, especially at higher ratios of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3}, due to the dense and adherent characteristic of Fe{sub 3}O{sub 4} oxide. Surface images of the post-oxidizing specimen

  16. Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Foerster, C.E.; Serbena, F.C.; Silva, S.L.R. da; Lepienski, C.M.; Siqueira, C.J. de M.; Ueda, M.

    2007-01-01

    Results about mechanical and tribological behavior of AISI 304 stainless steel nitrided by three different ion beam processes - glow discharge (GD), ion implantation (II) and plasma immersion ion implantation (PI3) are reported. Expanded austenite γ N and nitrides phases (Fe 2+x N, γ'-Fe 4 N and Cr-N) were identified as a function of nitriding conditions. Hardness (H) and elastic modulus (E) profiles were obtained by instrumented penetration. The hardness reached values as high as 21 GPa by PI3. Tribological behavior was studied by reciprocating sliding tests with a WC (Co) ball at room temperature (RT) in dry condition. Different wear regimes were identified in the friction coefficient profiles. The profile form and the running-in distance are strongly dependent on the nitriding process. Adhesive and abrasive wear components can be inferred from these friction profiles. Hardness and tribological performance, after the nitriding processes, are discussed in terms of surface microstructure

  17. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    Science.gov (United States)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding

  18. Treatment of nitridation by microwave post discharge plasma in an AISI 4140 steel

    International Nuclear Information System (INIS)

    Medina F, A.; Rodriguez L, V.; Zamora R, L.; Oseguera P, J.

    1998-01-01

    The objective of this work is to determine through X-ray diffraction, microhardness measurement and scanning electron microscopy those main operation parameters of the microwave post discharge treatment (temperature of treatment, gas mixture and permanence time) nitriding an AISI 4140 steel and to characterize the compact layer of nitrides formed during the treatment. (Author)

  19. Kinetic theory of the interdiffusion coefficient in dense plasmas

    International Nuclear Information System (INIS)

    Boercker, D.B.

    1986-08-01

    Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs

  20. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    International Nuclear Information System (INIS)

    Macheret, Sergey

    2005-01-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed

  1. Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

    KAUST Repository

    Ibrahim, Youssef H.

    2013-05-27

    Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.

  2. Deposition of titanium nitride on Si(1 0 0) wafers using plasma focus

    International Nuclear Information System (INIS)

    Hussain, Tousif; Ahmad, R.; Khan, I.A.; Siddiqui, Jamil; Khalid, Nida; Bhatti, Arshad Saleem; Naseem, Shahzad

    2009-01-01

    Titanium nitride thin films were deposited on Si(1 0 0) substrates by using a low energy (2.3 KJ) Mather-type plasma focus device. The composition of the deposited films was characterized by X-ray diffraction (XRD). The crystallite size has strong dependence on the numbers of focus shots. The crystallinity of TiN thin films is found to increase with increasing the number of focus shots. The effect of different number of focus shots on micro structural changes of thin films was characterized by Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). SEM results showed net-like structure for film deposited for 15 numbers of shots, which are elongated grains of Si 3 N 4 in amorphous form embedded into TiN crystals. The average surface roughness was calculated from AFM images of the thin films. These results indicated that the average surface roughness increased for films deposited with increased number of focus shots. The least crystallite size and roughness are observed for film deposited with 25 focus shots.

  3. Species separation and kinetic effects in collisional plasma shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15

    The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10{sup −4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

  4. Kinetic theory of two-temperature polyatomic plasmas

    Science.gov (United States)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  5. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior

    Science.gov (United States)

    Li, Yang; He, Yongyong; Wang, Wei; Mao, Junyuan; Zhang, Lei; Zhu, Yijie; Ye, Qianwen

    2018-03-01

    In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.

  6. Unequilibrium kinetic of collisionless boundary layers in binary plasmas

    International Nuclear Information System (INIS)

    Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.

    1985-01-01

    Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)

  7. INFLUENCE OF PLASMA NITRIDING ON THE CORROSION BEHAVIOUR AND ADHESION OF DLC COATINGS DEPOSITED ON AISI 420 STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Jorge N. Pecina

    2016-06-01

    Full Text Available In this work the corrosion behavior and adhesion of two DLC (“Diamond Like Carbon” films (“Soft” and “Hard” were studied. Both coatings were deposited by PACVD (“Plasma Assisted Chemical Vapour Deposition” on plasma-nitrided and non-nitrided AISI 420 stainless steel. Raman spectroscopy was conducted and surface hardness was measured. The microstructure by OM and SEM, was observed. Adhesion tests were performed with C. Rockwell indentation test. Salt Spray and immersion were performed in HCl. The “Soft” coating was 20 μm thick, the “Hard” film was about 2.5 μm. The hardness was of 500 HV in the “Soft” DLC and 1400 HV in the “Hard” DLC. Both coatings presented low friction coefficient and good adhesion when they were deposited on nitrided steel. Also presented good resistance to atmospheric corrosion. HCl DLC degradation slowed rapidly introduced uncoated samples.

  8. Passivation of Ge/high-κ interface using RF Plasma nitridation

    Science.gov (United States)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2018-01-01

    In this paper, plasma nitridation of a germanium surface using NH3 and N2 gases is performed with a standard RF-PECVD method at a substrate temperature of 250 °C. The structural and optical properties of the Ge surface have been investigated using Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), and Variable Angle Spectroscopic Ellipsometery (VASE). Study of the Ge (100) surface revealed that it is nitrated after plasma treatment while the GeO2 regrowth on the surface has been suppressed. Also, stability of the treated surface under air exposure is observed, where all the measurements were performed at room ambient. The electrical characteristics of fabricated Al/Ti/HfO2/GeON/p-Ge capacitors using the proposed surface treatment technique have been investigated. The C-V curves indicated a negligible hysteresis compared to ˜500 mV observed in untreated samples. Additionally, the C-V characteristic is used to extract the high-κ/Ge interface trap density using the most commonly used methods in determining the interface traps. The discussion includes the Dit calculation from the high-low frequency (Castagné-Vapaille) method and Terman (high-frequency) method. The high-low frequency method indicated a low interface trap density of ˜2.5 × 1011 eV-1.cm-2 compared to the Terman method. The J-V measurements revealed more than two orders of magnitude reduction of the gate leakage. This improved Ge interface quality is a promising low-temperature technique for fabricating high-performance Ge MOSFETs.

  9. Plasma kinetics of 14C-uric acid in bulls

    International Nuclear Information System (INIS)

    Cetinkaya, N.

    1999-01-01

    Plasma kinetics of uric acid were followed by 14C labelled uric acid to measure the effects of feed intake upon kinetic parameters. Two bulls (average L W 346±79 kg) were given an intravenous administration of a tracer (8-14C-uric acid, 250μCi/50 ml) by single injection via a jugular catheter. Animals were fed a mixed diet containing 30% wheat straw and 70% compounded feed as 95 and 60 % of the voluntary intake. Voluntary intakes were 8 kg/d as fed for two bulls. Blood samples, were collected at 0, 0.5,1, 2, 3, 4, 6, 8, 12, 16, 24 and 28 h after tracer administration. Fractional rates of clearance from the blood and pool size of compartments in the blood were estimated using plasma 8-14C-counts, following the method proposed by Chen and Franklin. The mean values of fractional rates (K 2,1 , K 1,2 ) and compartments pool size (V 1 , V 2 ) and the total pool size of compartments I and 2 at 60% and 95% feeding level were 1.97 and 1.44, 1.06 and 0.78; 76.9 L and 94.5 L, 137.01 L and 163.51 L; 214.0 L and 250.3 L respectively. Plasma kinetic parameters of 14C-uric acid were not affected at different feed intakes

  10. Plasma norepinephrine in humans: limitations in assessment of whole body norepinephrine kinetics and plasma clearance

    DEFF Research Database (Denmark)

    Christensen, N J; Henriksen, Jens Henrik Sahl

    1989-01-01

    ]IP and 131I-hippurate, whole body clearance from plasma of [3H]NE, as obtained from infusion rate divided by plasma concentration of tracer [1.74 +/- 0.64 (SD) 1/min] was significantly higher than the value obtained by total tracer infusion divided by total plasma area of tracer (1.27 +/- 0.51, P less than 0...... irreversible removal of NE, is smaller than previously estimated due to recycling through the plasma space. Attention has been drawn to limitations of [3H]NE kinetics....

  11. Plasma kinetics issues in an ESA study for a plasma laboratory in space

    International Nuclear Information System (INIS)

    Annaratone, B M; Biancalani, A; Ceccherini, F; Pegoraro, F; Bruno, D; Capitelli, M; Pascale, O de; Longo, S; Daly, E; Hilgers, A; Diomede, P; D'Ammando, G; Marcuccio, S; Mendonca, J T; Nagnibeda, V; Sanmartin, J R

    2008-01-01

    A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by 'space plasma physics'. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a spatial scale (10 1 -10 4 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, large-scale discharges and long tether-plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities, MHD turbulence, atomic excited states kinetics, weakly ionized plasmas, plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates

  12. Coating of Titanium Nitride on Stainless Steel Targets by a 4 kJ Plasma Focus Device

    Science.gov (United States)

    Omrani, M.; Habibi, M.; Amrollahi, R.

    2012-08-01

    Titanium nitride thin films were deposited on stainless steel (SS316L) targets by using a 4 kJ plasma focus device. The corresponding energy flux delivered to SS316L surface is estimated to be 2.69 × 1013 kev cm-3 ns-1. X-ray diffraction analysis reveals the formation of a nanocrystalline titanium nitride coating on the surface of targets. Thickness of the elements found on the surface of treated samples which are obtained by Rutherford backscattering spectrometry analysis (RBS) were (×1015 at/cm2) .45% Ti, 50% N and 5% Fe. Scanning electron microscopy was used to indicate changes in surface morphology. Existence of grains in different size confirms the formation of TiN crystals on the surface of targets.

  13. Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N{sub 2}/H{sub 2} cold plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.f [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-10-15

    C38 carbon steel have been plasma-nitrided using a radiofrequency cold plasma discharge treatment in order to investigate the influence of gas composition on corrosion behaviour of nitrided substrates. The investigated C38 steel was nitrided by a RF plasma discharge treatment using two different gas mixtures (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) at different times of plasma-treatment on non-heated substrates. Electron Probe Microanalysis (EPMA) showed that the nitrided layer formed using 75% N{sub 2}/25% H{sub 2} gas mixture was thicker compared to those formed in the case of 25% N{sub 2}/75% H{sub 2} or pure N{sub 2}. The modifications of the corrosion resistance characteristics of plasma-nitrided C38 steel in 1 M HCl solution were investigated by weight loss measurements and ac impedance technique. The results obtained from these two evaluation methods were in good agreement. It was shown that the nitriding treatment in both cases (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) improves the corrosion resistance of investigated carbon steel, while the better performance is obtained for the 75% N{sub 2}/25% H{sub 2} gas mixture. X-ray photoelectron spectroscopy (XPS) was carried out before and after immersion in corrosive medium in order to establish the mechanism of corrosion inhibition using N{sub 2}/H{sub 2} cold plasma nitriding process.

  14. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  15. Atomic kinetics of a neon photoionized plasma experiment at Z

    Science.gov (United States)

    Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration

    2018-06-01

    We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  16. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study.

    Science.gov (United States)

    Borén, Jan; Watts, Gerald F; Adiels, Martin; Söderlund, Sanni; Chan, Dick C; Hakkarainen, Antti; Lundbom, Nina; Matikainen, Niina; Kahri, Juhani; Vergès, Bruno; Barrett, P Hugh R; Taskinen, Marja-Riitta

    2015-10-01

    Patients with obesity and diabetes mellitus have increased risk of cardiovascular disease. A major cause is an atherogenic dyslipidemia related primarily to elevated plasma concentrations of triglyceride-rich lipoproteins. The aim of this study was to clarify determinants of plasma triglyceride concentration. We focused on factors that predict the kinetics of very-low density lipoprotein 1 (VLDL1) triglycerides. A multicenter study using dual stable isotopes (deuterated leucine and glycerol) and multicompartmental modeling was performed to elucidate the kinetics of triglycerides and apoB in VLDL1 in 46 subjects with abdominal obesity and additional cardiometabolic risk factors. Results showed that plasma triglyceride concentrations were dependent on both the secretion rate (r=0.44, Ptriglycerides and VLDL1-apoB. Liver fat mass was independently and directly associated with secretion rates of VLDL1-triglycerides (r=0.56, Ptriglycerides (r=0.48, Ptriglyceride concentrations in abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly dependent on apoC-III concentration and secretion on liver fat content. Reduction in liver fat and targeting apoC-III may be an effective approach for correcting triglyceride metabolism atherogenic dyslipidemia in obesity. © 2015 American Heart Association, Inc.

  17. The study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 steel under hot and cold wall conditions

    International Nuclear Information System (INIS)

    Maniee, A.; Mahboubi, F.; Soleimani, R.

    2014-01-01

    Highlights: • 34CrNiMo6 steel was plasma nitrided under hot and cold wall conditions. • The amount of ε phase in hot wall condition was more than that of cold wall condition. • Wear resistance of hot wall nitrided samples was more than cold wall treated ones. • Hot wall nitriding provides better corrosion behavior than cold wall nitriding. - Abstract: This paper reports on a comparative study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 low alloy steel under modern hot wall condition and conventional cold wall condition. Plasma nitriding was carried out at 500 °C and 550 °C with a 25% N 2 + 75% H 2 gas mixture for 8 h. The wall temperature of the chamber in hot wall condition was set to 400 °C. The treated specimens were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness and surface roughness techniques. The wear test was performed by pin-on-disc method. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were also used to evaluate the corrosion resistance of the samples. The results demonstrated that in both nitriding conditions, wear and corrosion resistance of the treated samples decrease with increasing temperature from 500 °C to 550 °C. Moreover, nitriding under hot wall condition at the same temperature provided slightly better tribological and corrosion behavior in comparison with cold wall condition. In consequence, the lowest friction coefficient, and highest wear and corrosion resistance were found on the sample treated under hot wall condition at 500 °C, which had the maximum surface hardness and ε-Fe 2–3 N phase

  18. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  19. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  20. Effect of pulsed duty cycle control on tribological and corrosion properties of AISI-316 in cathodic cage plasma nitriding

    Science.gov (United States)

    Naeem, M.; Raza, H. A.; Shafiq, M.; Zaka-ul-Islam, M.; Iqbal, Javed; Díaz-Guillén, J. C.; Zakaullah, M.

    2017-11-01

    Austenitic stainless steels are of prime importance in many industrial sectors because of their excellent corrosion resistance; however, their poor mechanical and tribological features lead to their reduced applicability. In this regard, low-temperature cathodic cage plasma nitriding (CCPN) can be used to improve surface properties of steels without scarifying the inherent corrosion resistance. In this study, AISI-316 samples are processed in CCPN reactor at a temperature of 400 °C, for the treatment time of 4 h, at a pressure of 150 Pa and variable pulsed duty cycle (15-75%). The microstructure and mechanical features are analyzed using x-ray diffraction, scanning electron microscopy, microhardness tester and ball-on-disc wear tester. The anodic polarization test in 3.5% NaCl is conducted to examine the corrosion properties. The results show that hardness is enhanced up to 1327 HV at low duty cycle, which is considerably higher than base material (278 HV). The wear rate is found to be reduced up to 90% over base material by processing at low duty cycle. The base material exhibits severe abrasive wear, and the nitrided sample has dominant adhesive wear. The corrosion rate is found to be reduced up to 95% over base material for the sample nitrided at low duty cycle. This study shows that wear and corrosion resistance in CCPN can be significantly boosted by reducing the pulsed duty cycle.

  1. Linear kinetic enlightenment of a slab of nonuniform plasma

    International Nuclear Information System (INIS)

    Revenchuk, S.M.

    1996-01-01

    A phenomenon of linear kinetic regeneration of a harmonic electric-field perturbation beyond the nonuniform opacity barrier due to electrons trapped by a potential well is investigated. Such electrons are reflected by the well walls without loss of phase memory about the external perturbation, which is rehabilitated on the other side of the barrier. The incidence of the electromagnetic wave polarized in the plane of incidence on a plasma slab. Analytic expressions for the regenerated electric field and regeneration coefficient are obtained in the ballistic approximation. The dependence of the regeneration coefficient on shape of the electrostatic potential confining the wave barrier is discussed

  2. Kinetic theory of spectral line broadening in plasmas

    International Nuclear Information System (INIS)

    Hussey, T.W.

    1974-01-01

    A formal kinetic theory is used to cast the line shape function into a form that, while similar to the ''unified'' theories of Smith, Cooper, and Vidal and of Voslamber, does not introduce some of the usual approximations. The resulting line shape function explicitly includes the initial correlations between the atom and perturbers, and also demonstrates the natural separation of plasma mean field and collisional effects. The classical path and no-quenching approximations are discussed and ultimately employed; however, they are not required in the formal development. The weak coupling limit is considered as a systematic approximation to the formal results. It is shown tha different ways of applying this limit lead to different expressions for the memory operator, some of which correspond to existing theories. One approximation is considered which systematically incorporates the effects of electron correlations within the framework of a unified theory. In addition, a practical approximation suitable for a strongly interacting plasma is discussed

  3. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hubmayr, J., E-mail: hubmayr@nist.gov; Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Devlin, M.; Dober, B. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, Pennsylvania 19104 (United States); Groppi, C.; Mauskopf, P. [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Rd., Tempe, Arizona 85281 (United States); Irwin, K. D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Wang, Y. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China); Wei, L. F. [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China)

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  4. Microstructure and local texture evolution by plasma nitriding in a 316L austenitic stainless steel and consequences on its fatigue durability

    International Nuclear Information System (INIS)

    Stinville, Jean-Charles

    2010-01-01

    The present study concerns the surface and mechanical properties induced by specific low temperature (∼400 C) plasma nitriding of an AISI 316L austenitic stainless steel largely used for structural component in nuclear and chemical industries. It focuses especially on its influence on the fatigue durability. The great advantages of this plasma nitriding process are to produce thick nitrided layers with a high concentration of nitrogen atoms in solid solution into the material and to preserve the stainless character of the substrate. As a consequence a new phase named expanded austenite or γ N phase is formed and the lattice expansion associated with the high supersaturation of interstitial nitrogen atoms results in residual compressive stresses at the surface that exceed 2 GPa. The surface is then strongly modified as a result of complex effects including some crystallographic plane rotation, plasticity and damage in some grains depending on their orientation. The considerable increase of hardness and wear resistance produced by plasma nitriding of austenitic stainless steels is now well documented but there are practically no data on the influence on fatigue properties. Series of fatigue tests in air at room temperature carried out in the low cycle fatigue range show a significant improvement of the fatigue life. The results are discussed especially taking into account the compressive residual stresses induced by the nitrided layer. (authors)

  5. Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Zagorodny, A.H.

    2004-01-01

    The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)

  6. Design and construction the identification of nitriding plasma process parameters using personal computer based on serial communication

    International Nuclear Information System (INIS)

    Frida Iswinning Diah; Slamet Santosa

    2012-01-01

    Design and construction the identification of process parameters using personal computer based on serial communication PLC M-series has been done. The function of this device is to identify the process parameters of a system (plan), to which then be analyzed and conducted a follow-up given to the plan by the user. The main component of this device is the M-Series T100MD1616 PLC and personal computer (PC). In this device the data plan parameters obtained from the corresponding sensor outputs in the form of voltage or current. While the analog parameter data is adjusted to the ADC analog input of the PLC using a signal conditioning system. Then, as the parameter is processed by the PLC then sent to a PC via RS232 to be displayed in the form of graphs or tables and stored in the database. Software to program the database is created using Visual Basic Programming V-6. The device operation test is performed for the measurement of temperature parameter and vacuum level on the plasma nitriding machine. The results indicate that the device has functioning as an identification device parameters process of plasma nitriding machine. (author)

  7. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  8. Kinetic Study of Nonequilibrium Plasma-Assisted Methane Steam Reforming

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2014-01-01

    Full Text Available To develop a detailed reaction mechanism for plasma-assisted methane steam reforming, a comprehensive numerical and experimental study of effect laws on methane conversion and products yield is performed at different steam to methane molar ratio (S/C, residence time s, and reaction temperatures. A CHEMKIN-PRO software with sensitivity analysis module and path flux analysis module was used for simulations. A set of comparisons show that the developed reaction mechanism can accurately predict methane conversion and the trend of products yield in different operating conditions. Using the developed reaction mechanism in plasma-assisted kinetic model, the reaction path flux analysis was carried out. The result shows that CH3 recombination is the limiting reaction for CO production and O is the critical species for CO production. Adding 40 wt.% Ni/SiO2 in discharge region has significantly promoted the yield of H2, CO, or CO2 in dielectric packed bed (DPB reactor. Plasma catalytic hybrid reforming experiment verifies the reaction path flux analysis tentatively.

  9. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  10. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    Science.gov (United States)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  11. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  12. On the S-phase formation and the balanced plasma nitriding of austenitic-ferritic super duplex stainless steel

    Science.gov (United States)

    de Oliveira, Willian R.; Kurelo, Bruna C. E. S.; Ditzel, Dair G.; Serbena, Francisco C.; Foerster, Carlos E.; de Souza, Gelson B.

    2018-03-01

    The different physical responses of austenite (γ) and ferrite (α) iron structures upon nitriding result in technical challenges to the uniform modification of α-γ materials, as the super duplex stainless steel (SDSS). The effects of voltage (7-10 kV), frequency and pulse width on the nitrogen plasma immersion ion implantation of SDSS (α ∼ 56%, γ ∼ 44%) were investigated, correlated with structural, morphological and mechanical analyses. By controlling the treatment power, temperatures ranged from 292 °C to 401 °C. Despite the overall increase in hardness for any of the employed parameters (from ∼6 GPa to ∼15 GPa), the structure of individual grains was strikingly dissimilar at the same temperatures, depending on the energetic conditions of implantation. Modified-α grains containing iron nitrides (ε-Fe2-3N, γ‧ -Fe4N) presented intense brittleness, whereas the expanded phase γN (S-phase) laid principally in modified-γ grains, exhibiting ductile-like deformation features and thicker layers. The γN was the dominant phase in both α-γ grains at ∼401 °C, providing them with balanced structure and mechanical behavior. These phenomena corroborate with γN as mediator of the process, through a mechanism involving the nitrogen-promoted ferrite to austenite conversion and nitrides dissolution at high temperatures. An approximately linear correlation of the γN content with respect to the ion energy per pulse was demonstrated, which properly embodies limiting effects to the treatment. This can be a parameter for the α-γ steel surface modification, consisting in a better adjustment to obtain more precise control along with temperature.

  13. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Kevin J [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Yin, Lin [Los Alamos National Laboratory; Daughton, William S [Los Alamos National Laboratory; Roytershteyn, Vadim [Los Alamos National Laboratory; Kwan, Thomas J T [Los Alamos National Laboratory

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration and modeling reconnection in magnetic confinement fusion experiments.

  14. Kinetic global analysis of Alfven eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Fukuyama, A.

    2002-01-01

    Systematic study on low to medium n (toroidal mode number) Alfven eigenmodes (AE) in tokamaks and helical systems is presented. Linear stability of AE in the presence of energetic ions was studied using the kinetic full-wave code TASK/WM.We have reproduced the destabilizing effect of toroidal co-rotation on TAE for JT-60U parameters. We have found the existence of reversed-shear-induced Alfven eigenmode (RSAE) which localizes near the q minimum in a reversed magnetic shear configuration. Two kinds of mode structures are identified for energetic particle mode (EPM) below the TAE frequency gap. The coupling to lower-frequency modes such as drift waves and MHD modes as well as the effect of trapped particles are also taken into account. For a helical plasma, the existence of GAE in the central region and TAE in the off-axis region was confirmed. (author)

  15. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  16. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano

    2016-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data

  17. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  18. Hydrogen permeation modification of 4140 steel by ion nitriding with pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzoni, P.; Ortiz, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bruehl, S.P.; Gomez, B.J.A.; Feugeas, J.N. [Inst. de Fisica Rosario (UNR-CONICET), Rosario (Argentina); Nosei, L. [Inst. de Mecanica Aplicada y Estructuras (UNR), Rosario (Argentina)

    1998-11-10

    It is widely known that the hydrogen in steel produces embrittlement. This effect may cause the failure of the elements (confining walls, mechanical parts, etc.) whose surfaces are in contact with this gas or with processes in which hydrogen is continuously generated. In this work it is shown that the ion nitriding of the surface of AISI 4140 is a good mechanism to act as a barrier against hydrogen permeation in its bulk. The ion nitriding was performed using a square wave DC glow discharge. The development of a compound layer of iron nitrides was observed as the cause of the hydrogen permeation reduction. For equal duration of treatment, thicker compound layers were developed in higher discharge/post-discharge ratios in the square wave of the applied voltage onto the sample (cathode), with a greater reduction of hydrogen permeation coefficient as a consequence. Nevertheless, the permeation was not reduced to zero in any of the treatment conditions used. The results of the analysis of the permeation tests and the image of the photomicrographs showed that the existence of cracks, fractures, failures, etc. in the compound layer (pre-existing in the AISI 4140 steel) could be the cause of the residual hydrogen permeation. This can be attributed to the movement of the hydrogen through these defects diffusing through the original {alpha}-Fe phase of the non-treated steel. (orig.) 11 refs.

  19. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride.

    Science.gov (United States)

    Bernard, Samuel; Fiaty, Koffi; Cornu, David; Miele, Philippe; Laurent, Pierre

    2006-05-11

    A complete kinetic modeling of the polymer-derived ceramics (PDCs) route is achieved for the first time through the investigation of the solid-state decomposition of a typical melt-spinnable poly[B-(methylamino)borazine] into boron nitride fibers at various heating rates. Through the use of the Lorentz fitting approach, it is shown that the two-step weight loss associated with the polymer-to-ceramic conversion is governed by a complex interplay of five diffusion-type transport mechanisms that are independent of the applied heating schedule. The application of the Friedman method to dynamic thermogravimetry data yields Ea and ln A values that are seen to increase with the extent of the ceramic conversion from region one (Ea = 38.73 kJ mol(-1)) to region five (Ea = 146.64 kJ mol(-1)). This fact indicates that both the mechanisms within those regions are parallel routes to the formation of the final solid-state material and their complexity increases with the conversion progress. The cross-linking process (first weight loss) of the polymer is governed by three dependent poorly energetic mechanisms. The first weight loss is activated by ammonolysis reactions that provide a modified polymer capable of undergoing condensation reactions in regions two and three to yield a highly cross-linked polymer. A large evolution of methylamine is identified during this process. Mineralization (region four) and ceramization (region five) steps are represented by two highly energetic multistep mechanisms. The mineralization step is associated with a large evolution of methylamine and occurs during the transition between the cross-linking and ceramization processes through the cleavage of the inter-ring B-N bonds. Ceramization represents the end of the polymer-to-ceramic conversion in which the planar consolidation of BN hexagons occurs through complex structural rearrangements of the borazine units (cleavage of the intraring B-N bonds) accompanied with an ammonia evolution. Finally

  20. Kinetic modelling of runaway electron avalanches in tokamak plasmas

    International Nuclear Information System (INIS)

    Nilsson, E; Peysson, Y; Saint-Laurent, F; Decker, J; Granetz, R S; Vlainic, M

    2015-01-01

    Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355–62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally

  1. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Schaekers, Marc [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Blasco, Nicolas [Air Liquide Electronics US, L.P., 46401 Landing Parkway, Fremont, California 94538 (United States)

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  2. Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable

    Energy Technology Data Exchange (ETDEWEB)

    Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)

  3. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  4. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    Science.gov (United States)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  5. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  6. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    Science.gov (United States)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  7. The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study

    International Nuclear Information System (INIS)

    Cao Fenglei; Ji Yuemeng; Zhao Cunyuan; Ren Wei

    2009-01-01

    The reaction behavior of the chemical modification of boron nitride nanotubes (BNNTs) with ammonia plasmas has been investigated by density functional theory (DFT) calculations. Unlike previously studied functionalization with NH 3 and amino functional groups, we found that NH 2 * radicals involved in the ammonia plasmas can be covalently incorporated to BNNTs through a strong single B-N bond. Subsequently, the H * radicals also involved in the ammonia plasmas would prefer to combine with the N atoms neighboring the NH 2 -functionalized B atoms. Our study revealed that this reaction behavior can be elucidated using the frontier orbital theory. The calculated band structures and density of states (DOS) indicate that this modification is an effective method to modulate the electronic properties of BNNTs. We have discussed various defects on the surface of BNNTs generated by collisions of N 2 + ions. For most defects considered, the reactivity of the functionalization of BNNTs with NH 2 * are enhanced. Our conclusions are independent of the chirality, and the diameter dependence of the reaction energies is presented.

  8. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  9. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    International Nuclear Information System (INIS)

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  10. Novel Cyclosilazane-Type Silicon Precursor and Two-Step Plasma for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Lee, Sang-Ick; Lee, Won-Jun

    2018-03-14

    We designed cyclosilazane-type silicon precursors and proposed a three-step plasma-enhanced atomic layer deposition (PEALD) process to prepare silicon nitride films with high quality and excellent step coverage. The cyclosilazane-type precursor, 1,3-di-isopropylamino-2,4-dimethylcyclosilazane (CSN-2), has a closed ring structure for good thermal stability and high reactivity. CSN-2 showed thermal stability up to 450 °C and a sufficient vapor pressure of 4 Torr at 60 °C. The energy for the chemisorption of CSN-2 on the undercoordinated silicon nitride surface as calculated by density functional theory method was -7.38 eV. The PEALD process window was between 200 and 500 °C, with a growth rate of 0.43 Å/cycle. The best film quality was obtained at 500 °C, with hydrogen impurity of ∼7 atom %, oxygen impurity less than 2 atom %, low wet etching rate, and excellent step coverage of ∼95%. At 300 °C and lower temperatures, the wet etching rate was high especially at the lower sidewall of the trench pattern. We introduced the three-step PEALD process to improve the film quality and the step coverage on the lower sidewall. The sequence of the three-step PEALD process consists of the CSN-2 feeding step, the NH 3 /N 2 plasma step, and the N 2 plasma step. The H radicals in NH 3 /N 2 plasma efficiently remove the ligands from the precursor, and the N 2 plasma after the NH 3 plasma removes the surface hydrogen atoms to activate the adsorption of the precursor. The films deposited at 300 °C using the novel precursor and the three-step PEALD process showed a significantly improved step coverage of ∼95% and an excellent wet etching resistance at the lower sidewall, which is only twice as high as that of the blanket film prepared by low-pressure chemical vapor deposition.

  11. The origin of traps and the effect of nitrogen plasma in oxide-nitride-oxide structures for non-volatile memories

    International Nuclear Information System (INIS)

    Kim, W. S.; Kwak, D. W.; Oh, J. S.; Lee, D. W.; Cho, H. Y.

    2010-01-01

    Ultrathin oxide-nitride-oxide (ONO) dielectric stacked layers are fundamental structures of silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory devices in which information is known to be stored as charges trapped in silicon nitride. Deep-level transient spectroscopy (DLTS) and a capacitance-voltage (CV) analysis were introduced to observe the trap behavior related to the memory effect in memory devices. The DLTS results verified that the nitride-related traps were a dominant factor in the memory effect. The energy of hole traps was 0.307 eV above the balance band. To improve the memory effects of the non-volatile memory devices with ONO structures, we introduced a nitrogen plasma treatment. After the N-plasma treatment, the flat-band voltage shift (ΔV FB ) was increased by about 1.5 times. The program and the erase (P-E) characteristics were also shown to be better than those for the as-ONO structure. In addition, the retention characteristics were improved by over 2.4 times.

  12. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  13. Plasma synthesis and HPHT consolidation of BN nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride

    Science.gov (United States)

    Stout, Christopher

    Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of 20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.

  14. Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction

    Science.gov (United States)

    Bonelli, Thiago Scremin; Pereyra, Inés

    2018-06-01

    Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.

  15. Characterization of stainless steel through Scanning Electron Microscopy, nitrided in the process of implantation of immersed ions in plasma

    International Nuclear Information System (INIS)

    Moreno S, H.

    2003-01-01

    The present project carries out the investigation of the nitridation of the austenitic stainless steel schedule 304, applying the novel technology of installation of nitrogen ions in immersed materials in plasma (Plll), by means of which they modify those properties of the surface of the steel. The obtained results by means of tests of Vickers microhardness, shows that the hardness was increment from 266 to 740 HV (microhardness units). It was determined by means of scanning electron microscopy, the one semiquantitative chemical analysis of the elements that constitute the austenitic stainless steel schedule 304; the obtained results, show to the nitrogen like an element of their composition in the pieces where carried out to end the PIII technology. The parameters of the plasma with which carried out the technology Plll, were monitored and determined by means of electric probes, and with which it was determined that the density of particles is stable in the interval of 1x10 -1 at 3x10 -1 Torr, and it is where better results of hardness were obtained. That reported in this work, they are the first results obtained when applying the technology Plll in Mexico, and with base in these, it is even necessary to investigate and to deepen until to dominate the process and to be in possibilities of proposing it to be carried out and exploited in an industrial way. (Author)

  16. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  17. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    Directory of Open Access Journals (Sweden)

    Felipe Orgaz

    2016-03-01

    Full Text Available A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16 and a borosilicate bioglass (BSG. Combined processing techniques (gel casting and foam replication were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016 [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973 [3] and (Nieto, 1984 [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016 [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. Keywords: Biomaterials, Bioglass, Simulated body fluid, Degradability, Biomaterial resorption, Bone repair

  18. Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1989-04-01

    A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab

  19. The unified description of kinetic and hydrodynamic processes in gases and plasmas

    International Nuclear Information System (INIS)

    Klimontovich, Yu.L.

    1992-01-01

    The unified description of kinetic and hydrodynamic processes in gases and plasmas for all values of the Knudsen number is proposed. The generalized kinetic equation consists of the additional dissipative term and is defined by the diffusion of the distribution function in the coordinate space. This equation is used for the description of nonequilibrium processes in passive and active media. (orig.)

  20. Kinetic parameters for plasma β-endorphin in lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Rodd, D.; Farrell, P.A.; Caston, A.L.; Green, M.H.

    1991-01-01

    To determine plasma clearance kinetics for β-endorphin (BE) by empirical compartmental analysis, a bolus of radioactive labeled 125I-BE was rapidly injected into a carotid artery catheter of unanesthetized lean (L) and obese (O) Zucker rats. The plasma disappearance of 125I was followed over a 3-h period. A 3-component exponential equation provided the best fit for plasma data. Plasma transit times were very short (10 s); however, plasma fractional catabolic rate was much slower. Plasma mean residence time was similar for both groups (50 min) as was recycle time (1.3 min). These data suggest that BE plasma disappearance kinetics are similar in L and O rats

  1. Kinetic parameters for plasma. beta. -endorphin in lean and obese Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodd, D.; Farrell, P.A.; Caston, A.L.; Green, M.H. (Department of Exercise and Sport Science, Pennsylvania State University, University Park (USA))

    1991-03-01

    To determine plasma clearance kinetics for {beta}-endorphin (BE) by empirical compartmental analysis, a bolus of radioactive labeled 125I-BE was rapidly injected into a carotid artery catheter of unanesthetized lean (L) and obese (O) Zucker rats. The plasma disappearance of 125I was followed over a 3-h period. A 3-component exponential equation provided the best fit for plasma data. Plasma transit times were very short (10 s); however, plasma fractional catabolic rate was much slower. Plasma mean residence time was similar for both groups (50 min) as was recycle time (1.3 min). These data suggest that BE plasma disappearance kinetics are similar in L and O rats.

  2. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)]. E-mail: linyimin_2001@yahoo.com.cn; Lu Jian [LASMIS, University of Technology of Troyes, 10000 Troyes (France); Wang Liping [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Xu Tao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China); Xue Qunji [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China)]. E-mail: qjxue@ns.lzb.ac.cn

    2006-12-15

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 321 austenitic stainless steel by means of surface mechanical attrition treatment (SMAT). Low-temperature nitriding of SMAT and un-SMAT AISI 321 stainless steel was carried out in pulsed-DC glow discharge. The effect of SMAT pretreatment on the microstructure and properties of the stainless steel were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Vickers hardness tester and UMT-2MT tribometer. The results show that the plasma nitriding of AISI 321 steel can be enhanced considerably by means of SMAT process before nitriding, and a much thicker nitrogen diffusion layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples. In addition, the wear resistance and load capacity of the nitrided layers on the SMAT samples was much higher than that of the un-SMAT samples due to the thicker S phase case and the gradient nitrogen diffusion layer.

  3. Interaction of the Modulated Electron Beam with Plasma: Kinetic Effects

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kiyanchuk, M.J.; Soroka, S.V.; Velikanets', D.M.

    2006-01-01

    Evolution of the velocity distribution functions of plasma and beam electrons during modulated electron beam propagation in homogeneous and inhomogeneous plasmas was studied numerically. Velocity distribution function of plasma electrons at the late time moments strongly differs from the initially Maxwellian one. In the regions of strong electric field plasma electrons' bunches are formed. Comparison of distribution functions of beam electrons for modulated and non-modulated beams shows that deep initial modulation suppresses resonant instability development. In the inhomogeneous plasma acceleration of electrons in the plasma resonance point can be observed

  4. Comparative study on nitridation and oxidation plasma interface treatment for AlGaN/GaN MIS-HEMTs with AlN gate dielectric

    Science.gov (United States)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue

    2017-02-01

    This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.

  5. Plasma-assisted molecular beam epitaxy of (11-22)-oriented 3-nitrides

    International Nuclear Information System (INIS)

    Lahourcade, L.

    2009-10-01

    This work reports on the molecular-beam epitaxial growth of (1122)-oriented semi-polar nitride semiconductors using m-sapphire substrates. The (1122) crystallographic orientation is predefined by AlN deposition on m-sapphire under N excess. On top of this AlN buffer layer, undoped or Si-doped two-dimensional GaN(1122) films are formed under Ga-rich conditions, with a stabilized Ga-excess ad-layer of about 1.05±0.10 ML. In contrast, Mg tends to segregate on the GaN surface, inhibiting the self-regulated Ga excess film. Nevertheless, uniform Mg incorporation can be obtained, and p-type conductivity was achieved. GaN/AlN quantum wells are synthesized by deposition of the binary compounds under the above-described conditions. In the case of GaN/AlN quantum dots, the three-dimensional transition is induced by a growth interruption under vacuum. The reduction of the internal electric field in GaN/AlN nano-structures is confirmed by the blue shift of the photoluminescence spectrum and by the short photoluminescence decay times measured at low temperature. These results are consistent with theoretical calculations of the electronic structure. (author)

  6. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  7. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  8. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  9. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  11. Influence of the density of the microwave plasma in the nitridation of the AISI 4140 steel

    International Nuclear Information System (INIS)

    Chirino O, S.; Camps C, E.; Escobar A, L.; Mejia H, J.A.

    2004-01-01

    A source of microwaves plasma type ECR was used to modify those mechanical properties of the surface of steel pieces AISI 4140. The experiments were carried out in a range of pressure among 4 X 10 -4 and 7 X 10 -4 Torr using one mixture of gases 60/40 hydrogen / nitrogen and an incident power of the microwaves of 400 W. Previous to the treatment of the samples, the plasma was studied using one Langmuir probe to determine the temperature of the electrons and the density of the plasma, the species excited in the plasma were determined by means of Optical emission spectroscopy. All the samples were treated during 50 min in a regime of low temperature (- 250 C), and the surface hardness it was increased up of 100% of their initial value, with a depth of penetration of the nitrogen of 4.5 μ m. The biggest hardness and depth of penetration of the nitrogen were obtained when the biggest density in the plasma was used to carry out the experiments. (Author)

  12. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian [Veeco Instruments, 1 Terminal Drive, Plainview, New York 11803 (United States)

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  13. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  14. Spectroscopic investigations of plasma nitriding processes: A comparative study using steel and carbon as active screen materials

    Science.gov (United States)

    Hamann, S.; Burlacov, I.; Spies, H.-J.; Biermann, H.; Röpcke, J.

    2017-04-01

    Low-pressure pulsed DC H2-N2 plasmas were investigated in the laboratory active screen plasma nitriding monitoring reactor, PLANIMOR, to compare the usage of two different active screen electrodes: (i) a steel screen with the additional usage of CH4 as carbon containing precursor in the feeding gas and (ii) a carbon screen without the usage of any additional gaseous carbon precursor. Applying the quantum cascade laser absorption spectroscopy, the evolution of the concentration of four stable molecular species, NH3, HCN, CH4, and C2H2, has been monitored. The concentrations were found to be in a range of 1012-1016 molecules cm-3. By analyzing the development of the molecular concentrations at variations of the screen plasma power, a similar behavior of the monitored reaction products has been found for both screen materials, with NH3 and HCN as the main reaction products. When using the carbon screen, the concentration of HCN and C2H2 was 30 and 70 times higher, respectively, compared to the usage of the steel screen with an admixture of 1% CH4. Considering the concentration of the three detected hydrocarbon reaction products, a combustion rate of the carbon screen of up to 69 mg h-1 has been found. The applied optical emission spectroscopy enabled the determination of the rotational temperature of the N2+ ion which has been in a range of 650-900 K increasing with the power in a similar way in the plasma of both screens. Also with power the ionic component of nitrogen molecules, represented by the N2+ (0-0) band of the first negative system, as well as the CN (0-0) band of the violet system increase strongly in relation to the intensity of the neutral nitrogen component, i.e., the N2 (0-0) band of the second positive system. In addition, steel samples have been treated with both the steel and the carbon screen resulting in a formation of a compound layer of up to 10 wt. % nitrogen and 10 wt. % carbon, respectively, depending on the screen material.

  15. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    International Nuclear Information System (INIS)

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  16. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  17. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  18. Hollow-anode plasma source for molecular beam epitaxy of gallium nitride

    International Nuclear Information System (INIS)

    Anders, A.; Newman, N.; Rubin, M.; Dickinson, M.; Jones, E.; Phatak, P.; Gassmann, A.

    1996-01-01

    GaN films have been grown by molecular beam epitaxy (MBE) using a hollow-anode nitrogen plasma source. The source was developed to minimize defect formation as a result of contamination and ion damage. The hollow-anode discharge is a special form of glow discharge with very small anode area. A positive anode voltage drop of 30 endash 40 V and an increased anode sheath thickness leads to ignition of a relatively dense plasma in front of the anode hole. Driven by the pressure gradient, the open-quote open-quote anode close-quote close-quote plasma forms a bright plasma jet streaming with supersonic velocity towards the substrate. Films of GaN have been grown on (0001) SiC and (0001) Al 2 O 3 at 600 endash 800 degree C. The films were investigated by photoluminescence, cathodoluminescence, x-ray diffraction, Rutherford backscattering, and particle-induced x-ray emission. The film with the highest structural quality had a rocking curve width of 5 arcmin, the lowest reported value for MBE growth to date. copyright 1996 American Institute of Physics

  19. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NARCIS (Netherlands)

    Du, S.; Lin, K.; Malladi, S.R.K.; Lu, Y.; Sun, S.; Xu, Q.; Steinberger-Wilckens, R.; Dong, H.

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support

  20. Etching Enhancement Followed by Nitridation on Low-k SiOCH Film in Ar/C5F10O Plasma

    Science.gov (United States)

    Miyawaki, Yudai; Shibata, Emi; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Okamoto, Hidekazu; Sekine, Makoto; Hori, Masaru

    2013-02-01

    The etching rates of low-dielectric-constant (low-k), porous SiOCH (p-SiOCH) films were increased by nitrogen-added Ar/C5F10O plasma etching in dual-frequency (60 MHz/2 MHz)-excited parallel plate capacitively coupled plasma. Previously, perfluoropropyl vinyl ether [C5F10O] provided a very high density of CF3+ ions [Nagai et al.: Jpn. J. Appl. Phys. 45 (2006) 7100]. Surface nitridation on the p-SiOCH surface exposed to Ar/N2 plasma led to the etching of larger amounts of p-SiOCH in Ar/C5F10O plasma, which depended on the formation of bonds such as =C(sp2)=N(sp2)- and -C(sp)≡N(sp).

  1. Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis

    International Nuclear Information System (INIS)

    Zhou, Zhengshou; Dai, Mingyang; Shen, Zhiyuan; Hu, Jing

    2015-01-01

    Highlights: • A rapid salt bath nitriding technology enhanced by D.C. electric field was developed primarily. • The heating duration could be shortened to less than a half. • Higher surface hardness, modestly higher sub-surface hardness and superior hardness profile were obtained. • The diffusion coefficient of nitrogen was increased to more than 1.9 times and Q value was decrease. • Chemical reactions were promoted and active atoms were forced to diffuse directionally toward the treated specimen. - Abstract: A rapid salt bath nitriding technology was primarily developed by additionally applying direct current (D.C.) electric field on the basis of traditional technique (NM). Characterization of the modified surface layers was made by means of optical microscopy, Vickers micro-hardness test and X-ray diffraction analysis. The results showed that D.C. electric field could significantly enhance the nitriding efficiency and the enhancement effect was closely related to the intensity of D.C. electric field. By applying D.C electric field of 7.5 V, even a little thicker compound layer could be obtained at only half duration of that in traditional technique, and the thickness of compound layer increased more than 60%, from 18 μm up to 29 μm at the same treating temperature of 848 K and holding duration of 100 min. Meanwhile, higher surface hardness, modestly higher sub-surface hardness and superior hardness profile were obtained assisted by D.C. electric field. It was also found that the diffusion coefficient of nitrogen was increased more than 1.9 times and activation energy was decreased from 184 kJ/mol to 159 kJ/mol enhanced by D.C. electric field. The possible enhancement mechanism is that D.C. electric field can promote chemical reactions and produce more active nitrogen atoms in the salt bath, positively charge the active atoms and force them diffuse directionally toward the surface of the treated specimen, and hence significantly improve the efficiency

  2. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  3. 'Kinetic calculation of plasma deposition in castellated tile gaps'.

    Czech Academy of Sciences Publication Activity Database

    Dejarnac, Renaud; Gunn, J. P.

    363-365, - (2007), s. 560-564 ISSN 0022-3115 Grant - others:-(XE) EURATOM fellowship contract no.012801 Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge modeling * Divertor plasma * Ion-surface interactions * ITER * Sheaths Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.643, year: 2007

  4. Investigation of diffusion kinetics of plasma paste borided AISI 8620 ...

    Indian Academy of Sciences (India)

    Henríquez 2009), plasma boriding (Rodríguez et al 1999) and plasma paste boriding (Gunes et al 2011; Yoon et al ... symmetric geometry with monochromatized radiation (Cu Kα, λ = 0.15418 nm). ..... cate the degree of reliability of the predicted results, when compared with that of the experiments. ... low alloy steels. Surf.

  5. Study creep in 4340 steels with different microstructure and plasma carbon nitridation processing

    International Nuclear Information System (INIS)

    Abdalla, A.J.; Carrer, I.R.; Barboza, M.J.R.; Baggio-Scheid, V.H.; Moura Neto, C.; Reis, D.A.P.

    2010-01-01

    From the AISI 4340 bars specimens were made-for-test of creep, they were subjected to different heat treatments for the formation of multiphase microstructures. After this initial treatment, a lot of the specimens were tested in creep. One second batch of specimens was treated with a plasma carbonitriding, and later, were also tested. The carbonitriding layer and microstructure were characterized with X-ray analysis, laser confocal microscopy and hardness testing. Tests showed that the hardness in the steel was reduced due to thermochemical treatment at 500 deg C. We observed variation in creep behavior due to different microstructures formed. After the plasma treatment, there was a considerable reduction in the rate of creep and an increase in the time required for fracture. (author)

  6. Plasma kinetics of 125I beta endorphin turnover in lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Rodd, D.; Caston, A.L.; Green, M.H.; Farrell, P.A.

    1990-01-01

    Plasma clearance kinetics for Beta Endorphin (BEP) are not well-defined and no definitive data exist for lean versus obese animals. To determine such kinetic parameters, a bolus of 125 I BEP (1μCi/kg) was infused into awake lean(L) and obese(O) Zucker rats. Arterial blood samples were withdrawn initially at 20 seconds intervals and less frequently as a 3-hour experimental period progressed. Donor rat blood was infused (venous catheter) to replace withdrawn blood. At 180 minutes approximately 10% of the initial dose remained in the plasma. Clearance kinetics for 125 I BEP were analyzed by compartmental analysis. A 3-component equation (i.e., 3 compartment model) provided the best fit for both L and O groups. Plasma transit times were very rapid; however, plasma fractional catabolic rate was low. Plasma mean residence time was similar for both groups (50 minutes) as was recycle time. These data suggest that BEP kinetics are similar in L and O rats, and that this peptide may undergo extensive recycling into and out of the plasma compartment. The identity of the other two compartments requires further investigation

  7. Plasma kinetics of sup 125 I beta endorphin turnover in lean and obese Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodd, D.; Caston, A.L.; Green M.H.; Farrell, P.A. (Pennsylvania State Univ., University Park (United States))

    1990-02-26

    Plasma clearance kinetics for Beta Endorphin (BEP) are not well-defined and no definitive data exist for lean versus obese animals. To determine such kinetic parameters, a bolus of {sup 125}I BEP (1{mu}Ci/kg) was infused into awake lean(L) and obese(O) Zucker rats. Arterial blood samples were withdrawn initially at 20 seconds intervals and less frequently as a 3-hour experimental period progressed. Donor rat blood was infused (venous catheter) to replace withdrawn blood. At 180 minutes approximately 10% of the initial dose remained in the plasma. Clearance kinetics for {sup 125}I BEP were analyzed by compartmental analysis. A 3-component equation (i.e., 3 compartment model) provided the best fit for both L and O groups. Plasma transit times were very rapid; however, plasma fractional catabolic rate was low. Plasma mean residence time was similar for both groups (50 minutes) as was recycle time. These data suggest that BEP kinetics are similar in L and O rats, and that this peptide may undergo extensive recycling into and out of the plasma compartment. The identity of the other two compartments requires further investigation.

  8. On the kinetic theory of parametric resonance in relativistic plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1982-08-01

    The instability of relativistic hot plasma located in high-frequency external electric field is studied. The dispersion relation, in the case when the plasma electrons have relativistic oscillatory motion, is obtained. It is shown that if the electron Deby's radius is less than the wave length of plasma oscillation and far from the resonance on the overtones of the external field frequency, the oscillation build-up is possible. It is also shown that taking into account the relativistic motion of electrons leads to a considerable decrease in the frequency at which the parametric resonance takes place. (author)

  9. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  10. The kinetics of nonequilibrium chain plasma-chemical oxidation in heterogeneous media

    International Nuclear Information System (INIS)

    Deminskii, M.A.; Potapkin, B.V.; Rusanov, V.D.

    1994-01-01

    The kinetics of oxidation of low-impurity components in air mixtures under heterogeneous conditions was studied. The principal kinetic features of the process were determined on the basis of theoretical analysis of plasma-chemical oxidation in heterogeneous media. The analysis also showed that low concentrations of impurities in liquid aerosol particles can be efficiently oxidized via a chain process induced by reactive species formed in the gas

  11. Kinetic coefficients for quark-antiquark plasma with quantal treatment of color

    International Nuclear Information System (INIS)

    Dyrek, A.; Florkowski, W.

    1986-07-01

    We discuss the near-equilibrium state of the q-bar q plasma treated as a system of classical particles with quantized color charges. The matrix of the kinetic coefficients is calculated (in the relaxation approximation of the transport equation) and compared with its classical version. The color Ohm law is recovered but the structure of the kinetic matrix is different. 5 refs. (author)

  12. Non Equilbrium Vibrational Kinetics in Expanding Plasma Flows

    International Nuclear Information System (INIS)

    Colonna, Gianpiero

    2008-01-01

    The supersonic expansion of a plasma is a system of interest for aerospace applications, ranging from propulsion to hypersonic wind tunnels. Under these conditions the plasma shows significant departures from chemical and thermal equilibrium, similarly to post-discharge conditions. The multitemperature description is not adequate because the internal level distributions show tails overpopulated with respect to a Boltzmann distribution. The state-to-state approach has to be used, including the interaction with free electrons which follow non-maxwellian distributions.

  13. Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers

    Science.gov (United States)

    Green, David; Berry, Lee; RF-SciDAC Collaboration

    2017-10-01

    The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  14. Kinetic approach to plasma end loss from linear devices

    International Nuclear Information System (INIS)

    Dreicer, H.

    1976-01-01

    A first step in the direction of a kinetic approach to end loss has been presented. This approach brings to light some fundamental processes not uncovered by the magnetohydrodynamic or guiding center approach. Attention was focused on the basically transient phenomenon in a way that describes the quite different behavior of collision dominated and collisionless ions, but ignores the magnetic nozzle effects near the ends of the system. The treatment illuminates some of the roles played by the parameter l/sub ii//L, and suggests the direction for more detailed investigations. End loss from linear systems is a very many faceted problem. Kinetic effects, magnetic effects, heat flow, etc. are all intermixed, and it will require a strong long term experimental and theoretical program to unravel all of its mysteries

  15. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].

    Science.gov (United States)

    Wen, Ke; Li, Fenglan

    2015-12-01

    To study the electrochemical corrosion performance of a type of biomedical materials near beta titanium alloy(Ti-3Zr-2Sn-3Mo-25Nb, TLM) in artificial saliva before and after nitride changing, and to provide clinical basis for clinical application of titanium alloy TLM. The double glow plasma alloying technology was used to nitride the surface of titanium alloy TLM. The surface properties of the modified layer were observed and tested by optical microscope, scanning electron microscope, glow discharge spectrum analyzer, X-ray diffraction and micro hardness tester. Then, electrochemical measurement system was used to test and compare titanium alloy TLM's electrochemical corrosion in artificial saliva before and after its surface change. Finally, the surface morphology of the original titanium alloy and the modified layer was compared by scanning electron microscope. By the technology of double glow plasma nitriding, the surface of the titanium alloy TLM had been successfully nitrided with a modified layer of 4-5 µm in thickness, uniform and compact. Its main compositions were Ti and Ti(2)N. The Microhardness of modified layer also had been improved from (236.8 ± 5.4) to (871.8 ± 5.2) HV. The self-corrosion potential in electrochemical corrosion tests had been increased from -0.559 V to -0.540 V, while the self- corrosion current density had been reduced from 2.091 × 10(-7) A/cm(2) to 7.188 × 10(-8) A/cm(2). Besides, alternating-current impedance(AC Impedance) had also been increased. With the scanning electron microscope, it's obvious that the diameter of corrosion holes on modified layer were approximately 10 µm. As to the diameter and number of corrosion holes on modified layer, they had been decreased comparing with the original titanium alloy. The type of near beta titanium alloy TLM can construct a nitriding modified layer on its surface. Meanwhile, the performance of its anti- corrosion in artificial saliva has been improved, comparing to the original

  16. Simulation of the organic-waste processing in plasma with allowance for kinetics of thermochemical transformations

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.

    2017-07-01

    Kinetic calculations of the plasma processing/utilization process of organic waste in air and steam ambient were carried out. It is shown that, during the time of waste residence in the plasma reactor, 0.7 and 1.2 s, at the exit from the reactor there forms a high-calorific fuel gas with a combustion heat of 3540 and 5070 kcal/kg, respectively. In this process, 1 kg of waste yields 1.16 kg of fuel gas at air gasification of waste and 0.87 kg of pure synthesis gas at steam gasification. The energy efficiency of the waste gasification process, defined by the ratio between the calorific value of the resultant fuel gas and the initial calorific value of the waste amounts to 91 % in air plasma and 98 % in steam plasma. A comparison between the results of kinetic and thermodynamic calculations has revealed their good agreement.

  17. Kinetics of HIV-1 in cerebrospinal fluid and plasma in cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Jorge A. Benetucci

    2012-04-01

    Full Text Available In order to determine HIV-1 kinetics in cerebrospinal fluid (CSF and plasma in patients with cryptococcal meningitis (CM, we undertook a prospective collection of paired CSF/plasma samples from antiretroviral therapy- free HIV-infected patients with CM. Samples were obtained at baseline (S1 and at the second (S2 and third (S3 weeks of antifungal therapy. HIV-1 CSF concentrations were significantly lower in both S2 and S3 with respect to S1. Plasma concentrations remained stable. HIV-1 concentrations were higher in plasma than CSF in all cases. Patients who survived the episode of CM (but not those who died showed a decrease in CSF viral load, what suggests different viral kinetics of HIV-1 in the CSF according to the clinical course of this opportunistic disease.

  18. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  19. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  20. Effects of N{sub 2} and NH{sub 3} remote plasma nitridation on the structural and electrical characteristics of the HfO{sub 2} gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.-S., E-mail: kunsik@etri.re.kr [RFID/USN Research Department, Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Baek, K.-H.; Kim, D.P.; Woo, J.-C.; Do, L.-M. [RFID/USN Research Department, Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); No, K.-S. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-12-01

    The remote plasma nitridation (RPN) of an HfO{sub 2} film using N{sub 2} and NH{sub 3} has been investigated comparatively. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses after post-deposition annealing (PDA) at 700 deg. C show that a large amount of nitrogen is present in the bulk film as well as in the interfacial layer for the HfO{sub 2} film nitrided with NH{sub 3}-RPN. It is also shown that the interfacial layer formed during RPN and PDA is a nitrogen-rich Hf-silicate. The C-V characteristics of an HfO{sub x}N{sub y} gate dielectric nitrided with NH{sub 3}-RPN have a smaller equivalent oxide thickness than that nitrided with N{sub 2}-RPN in spite of its thicker interfacial layer.

  1. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    Science.gov (United States)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  2. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  3. Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition

    CERN Document Server

    Kim, H

    2002-01-01

    We have investigated the growth kinetics of plasma-enhanced Ti atomic layer deposition (ALD) using a quartz crystal microbalance. Ti ALD films were grown at temperatures from 20 to 200 deg. C using TiCl sub 4 as a source gas and rf plasma-produced atomic H as the reducing agent. Postdeposition ex situ chemical analyses of thin films showed that the main impurity is oxygen, mostly incorporated during the air exposure prior to analysis. The thickness per cycle, corresponding to the growth rate, was measured by quartz crystal microbalance as a function of various key growth parameters, including TiCl sub 4 and H exposure time, rf plasma power, and sample temperature. The growth rates were independent of TiCl sub 4 exposure above 1x10 sup 3 L, indicating typical ALD mode growth. The key kinetic parameters for Cl extraction reaction and TiCl sub 4 adsorption kinetics were obtained and the growth kinetics were modeled to predict the growth rates based upon these results. Also, the dependency of growth kinetics on d...

  4. On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.

  5. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    Science.gov (United States)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  6. On the equivalence of convergent kinetic equations for hot dilute plasmas: Generating functions for collision brackets

    NARCIS (Netherlands)

    Cohen, J.S.; Suttorp, L.G.

    1982-01-01

    The generating functions for the collision brackets associated with two alternative convergent kinetic equations are derived for small values of the plasma parameter. It is shown that the first few terms in the asymptotic expansions of these generating functions are identical. Consequently, both

  7. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    International Nuclear Information System (INIS)

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  8. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Science.gov (United States)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  9. Kinetic instabilities in relativistic plasmas: the Harris instability revisited

    International Nuclear Information System (INIS)

    Tautz, R.C.

    2008-01-01

    Plasma instabilities that generate aperiodic fluctuations are of outstanding importance in the astrophysical context. Two prominent examples are the electromagnetic Weibel instability and the electrostatic Harris instability, which operate in initially non-magnetized and magnetized plasmas, respectively. In this talk, the original formulation of the Harris instability will be reviewed and generalizations will be presented such as the inclusion of (1) relativistic effects, (2) ion effects, and (3) mode coupling. It will be shown that, with these modifications, a powerful method has been developed for the determination of both the existence and the growth rate of low-frequency instabilities. Applications can be found in astrophysical jets, where the rest frame can be used and so no parallel motion is present. At the end of the talk, how the particle composition of gamma-ray burst jets can be predicted using the Harris technique. (author)

  10. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  11. Computer simulation of kinetic properties of plasmas. Final report

    International Nuclear Information System (INIS)

    Denavit, J.

    1982-08-01

    The research was directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas, and their application to physical problems of current significance to Magnetic Fusion Energy. This project will terminate on August 31, 1982 and this Final Report describes: (1) the research accomplished since the last renewal on October 1, 1981; and (2) a perspective of the work done since the beginning of the project in February 1972

  12. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  13. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  14. Conversion electron Moessbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    International Nuclear Information System (INIS)

    Terwagne, G.; Hutchings, R.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI 3 ) at 350 C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ε-Fe 2 N through ε-Fe 3 N to γ'-Fe 4 N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone. (orig.)

  15. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    Science.gov (United States)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  16. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  17. HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1993-05-01

    An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)

  18. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-01-01

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed

  19. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  20. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  1. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)

    Science.gov (United States)

    Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa

    2017-10-01

    The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.

  2. Kinetics in Gas Mixtures for Problem of Plasma Assisted Combustion

    Science.gov (United States)

    2010-05-01

    precautions: in the case of relatively low elec- tron density, as it is realized for N2 or for O2, non–zero background due to accumulation of residual electron...and Lave L B 2003 Evaluating automobile fuel/propulsion system technologies Progress in Energy and Combustion Science 29 (2003) 1--69 [11] Polak L S...43 79—110 [41] Janev R K and Reiter D 2004 Collision processes of C2,3Hy and C2,3H + y hydrocarbons with electrons and protons Phys. Plasmas 11 780—829

  3. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    Science.gov (United States)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  4. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  5. Effects of feeding on the plasma disposition kinetics of the anthelmintic albendazole in laying hens.

    Science.gov (United States)

    Bistoletti, M; Alvarez, L; Lanusse, C; Moreno, L

    2014-01-01

    1. To optimise the use of albendazole (ABZ) as an anthelmintic in hens, the effects of fasting and type of diet on the plasma kinetics of ABZ and its metabolites were evaluated. 2. Twenty-four hens were distributed into 4 groups: In experiment I the Fed group were fed ad libitum, while the Fasted group was fasted over a 12-h period. In experiment II the Pelleted group was fed with pelleted commercial food, while the Grain group was fed with cereal grains. All the groups were treated with ABZ by oral route. Blood samples were taken and plasma analysed by HPLC. 3. ABZ and its metabolites albendazole-sulphoxide (ABZSO) and albendazole-sulphone (ABZSO2) were recovered in plasma in all the groups. The 12-h fasting period did not modify the disposition kinetics of ABZ in hens. The type of feed affected ABZ kinetics. ABZSO concentration profile was higher and detected for longer in the Grain group compared to the Pelleted group. Statistical differences were not found for AUC0-∞ values, whereas the T1/2for and T1/2el were different between groups. 4. Factors affecting ABZ kinetic behaviour should be taken into account to optimise its use to ensure the sustainability of the limited available anthelmintic therapeutic tools in avian parasite control.

  6. Kinetic mechanism of plasma-assisted ignition of hydrocarbons

    International Nuclear Information System (INIS)

    Kosarev, I N; Aleksandrov, N L; Kindysheva, S V; Starikovskaia, S M; Starikovskii, A Yu

    2008-01-01

    Ignition of hydrocarbon-containing gaseous mixtures has been studied experimentally and numerically under the action of a high-voltage nanosecond discharge at elevated temperatures. Ignition delay times were measured behind a reflected shock wave in stoichiometric C n H 2n+2 : O 2 mixtures (10%) diluted with Ar (90%) for n = 1-5. It was shown that the application of the gas discharge leads to more than an order of magnitude decrease in ignition delay time for all hydrocarbons under consideration. The measured values of ignition delay time agree well with the results of a numerical simulation of the ignition based on the calculation of atom and radical production during the discharge and in its afterglow. The analysis of simulation results showed that a non-equilibrium plasma favours the ignition mainly due to O atoms produced in the active phase of the discharge. (fast track communication)

  7. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  8. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  9. Numerical study of drift-kinetic evolution of collisional plasmas in tori

    International Nuclear Information System (INIS)

    Beasley, C.O. Jr.; Meier, H.K.; van Rij, W.I.; McCune, J.E.

    1976-03-01

    Preliminary numerical results for the dynamics of toroidally confined plasmas in the drift-kinetic, Fokker--Planck description are discussed. These solutions were obtained by using the techniques inherent to the collisional plasma model (CPM) described in detail elsewhere. An initial value problem is solved in the local approximation in which collisions and particle dynamics compete in a given magnetic field to set up a quasi-equilibrium. Both the plasma (guiding center) distribution function and many macroscopic quantities of interest are monitored. Good agreement with corresponding but more approximate theories is obtained over a wide range of collisionality, particularly with regard to the neoclassical particle flux. Encouraging confirmation of earlier results for the distribution function is achieved when due account is taken of the differing collisionality of particles with differing energies. These initial results indicate the potential importance of certain non-local effects as well as inclusion of self-consistency between fields and plasma currents and densities

  10. Kinetic models of partially ionized complex plasmas in the low frequency regime

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.; Angelis, U. de

    2011-01-01

    The results from three kinetic models of complex plasmas taking into account collisions with neutrals are compared in the low-frequency regime: The ''full'' model which considers the absorption of plasma fluxes on dust particles and dust charge fluctuations, the ''multi-component'' model where both these effects are neglected, and the ''standard'' model which takes into account the dust charge perturbations but not the absorption of fluxes. We derive and numerically evaluate expressions of the low frequency responses of these models, also taking into account the modification of the capture cross-sections due to the effect of neutrals. The role of plasma sources and collisions with neutrals is assessed by computing the plasma permittivities and static permittivities for all the three models.

  11. Plasma adrenaline kinetics in type 1 (insulin-dependent) diabetic patients with and without autonomic neuropathy

    DEFF Research Database (Denmark)

    Dejgaard, A; Hilsted, J; Henriksen, Jens Henrik Sahl

    1989-01-01

    Plasma adrenaline kinetics (clearance, extraction across the forearm, initial plasma disappearance rate, mean sojourn time, volume of distribution) were studied in sixteen Type 1 (insulin-dependent) diabetic patients during constant i.v. infusion of tritium labelled adrenaline. In patients with (n...... = 8) and without (n = 8) neuropathy forearm venous plasma noradrenaline and adrenaline concentrations as well as plasma clearance of adrenaline based on arterial sampling (1.7 vs 2.1 l/min) were not significantly different. The initial disappearance time (T 1/2) after the infusion of the tritium...... labelled adrenaline had been stopped was significantly prolonged in Type 1 diabetic patients with neuropathy compared to those without (after 20 min infusion 2.7 vs 2.2 min, p less than 0.02, after 75 min infusion 3.7 vs 2.9 min, p less than 0.05). The corresponding values for the mean sojourn time...

  12. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    International Nuclear Information System (INIS)

    Welzel, S; Rousseau, A; Davies, P B; Roepcke, J

    2007-01-01

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 μm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared

  13. Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear

    Science.gov (United States)

    Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.

    2018-05-01

    Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.

  14. Transformation kinetics in plasma-sprayed barium- and strontium-doped aluminosilicate (BSAS)

    International Nuclear Information System (INIS)

    Harder, B.J.; Faber, K.T.

    2010-01-01

    The hexacelsian-to-celsian phase transformation in Ba 1-x Sr x Al 2 Si 2 O 8 is of interest for environmental barrier coating applications. Plasma-sprayed microstructures were heat treated above 1100 o C and the kinetics of the hexacelsian-to-celsian transformation were quantified. Activation energies for bulk and crushed materials were determined to be ∼340 and ∼500 kJ mol -1 , respectively. X-ray diffraction and electron backscattered diffraction were used to establish how plasma spraying barium- and strontium-doped aluminosilicate effectively reduces the energy required for its transformation.

  15. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  16. Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas

    Science.gov (United States)

    Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana

    2017-10-01

    MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.

  17. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  18. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    Science.gov (United States)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  19. Effects of bias voltage on the corrosion resistance of titanium nitride thin films fabricated by dynamic plasma immersion ion implantation-deposition

    International Nuclear Information System (INIS)

    Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2002-01-01

    Dynamic plasma-based thin-film deposition incorporating ion mixing and plasma immersion is an effective technique to synthesize nitride-based hard films. We have fabricated TiN films using a filtered titanium vacuum arc in a nitrogen plasma environment. A pulsed high voltage is applied to the target for a short time when the metallic arc is fired to attain simultaneous plasma deposition and ion mixing. We investigate the dependence of the corrosion resistance and interfacial structure of the treated samples on the applied voltage. Our Auger results reveal an oxygen-rich surface film due to the non-ultra-high-vacuum conditions and high affinity of oxygen to titanium. The corrosion current is reduced by two orders of magnitude comparing the sample processed at 8 kV to the untreated sample, but the 23 kV sample unexpectedly shows worse results. The pitting potential diminishes substantially although the corrosion current is similar to that observed in the 8 kV sample. The polarization test data are consistent with our scanning electron microscopy observation, corroborating the difference in the pitting distribution and appearance. This anomalous behavior is believed to be due to the change in the chemical composition as a result of high-energy ion bombardment

  20. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  1. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  2. Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart

    2006-01-01

    A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses

  3. Kinetic theory of plasma in the limiter-scrape-off layer

    International Nuclear Information System (INIS)

    Daybelge, U.; Bein, B.

    1977-01-01

    An asymptotic solution is given for the ion-drift-kinetic equation with a full Fokker--Planck term for the limiter-scrape-off layer in a tokamak. In this layer, the plasma is assumed to consist of hot, collisionless ions, and cold, collisional electrons. From the solution of the boundary-layer problem, ion and electron particle and energy losses to the limiter are calculated. Limiter load profiles due to ions are explicitly given as functions of the poloidal angle

  4. Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

    Science.gov (United States)

    Tokar, Mikhail Z.

    2017-12-01

    The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.

  5. A quiver kinetic formulation of radio frequency heating and confinement in collisional edge plasmas

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.

    1989-01-01

    The near fields in the collisional edge plasma of a radio frequency heated tokamak can cause one or more charged species to oscillate in the applied field with a quiver (or jitter) speed comparable to its thermal speed. By assuming the quiver motion dominates over drifts and gyromotion a completely new kinetic description of the flows in an edge plasma is formulated which retains Coulomb collisions and the relevant atomic processes. Moment equations are employed to obtain a description in which only a lowest order quiver kinetic equation need be solved to evaluate the slow time particle fluxes and current induced by the applied fields. The electron heating by collisional randomization of their quiver motion (inverse bremsstrahlung) is balanced by impact excitation losses since equilibration with the ions is too weak. A model plasma of electrons, neutrals, and a single cold ion species is considered to illustrate the utility of the quiver kinetic formulation. The model predicts local electrostatic potential changes and a local /rvec E//times//rvec B/ convective flux that is of the same magnitude and scaling as would be predicted by Bohm diffusion. 30 refs

  6. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    International Nuclear Information System (INIS)

    Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna

    2014-01-01

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers

  7. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)

    2014-12-09

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.

  8. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  9. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  10. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.

    2009-01-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  11. Kinetic Analysis of Weakly ionized Plasmas in presence of collecting walls

    Science.gov (United States)

    Gonzalez, J.; Donoso, J. M.

    2018-02-01

    Description of plasmas in contact with a wall able to collecting or emitting charged particles is a research topic of great importance. This situation arises in a great variety of phenomena such as the characterization of plasmas by means of electric probes, in the surface treatment of materials and in the service-life of coatings in electric thrusters. In particular, in this work we devote attention to the dynamics of an argon weakly ionized plasma in the presence of a collecting wall. It is proposed a kinetic model in a 1D1V planar phase-space geometry. The model accounts for the electric field coupled to the system by solving the associated Poisson’s equation. To solve numerically the resulting non-linear system of equations, the Propagator Integral Method is used in conjunction with a slabbing method. On each interrelating plasma slab the integral advancing scheme operates in velocity space, in such a way that the all the species dynamics dominating the system evolution are kinetically described.

  12. The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope

    Science.gov (United States)

    Tang, B.; Li, W.; Wang, C.; Dai, L.

    2017-12-01

    Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.

  13. Characterization of electron states in dense plasmas and its use in atomic kinetics modeling

    International Nuclear Information System (INIS)

    Fisher, D.V.; Maron, Y.

    2003-01-01

    We describe a self-consistent statistical approach to account for plasma density effects in collisional-radiative kinetics. The approach is based on the characterization of three distinct types of electron states, namely, bound, collectivized, and free, and on the formalism of the effective statistical weights (ESW) of the bound states. The present approach accounts for individual and collective effects of the surrounding electrons and ions on atomic (ionic) electron states. High-accuracy expressions for the ESWs of bound states have been derived. The notions of ionization stage population, free electron density, and rate coefficient are redefined in accordance with the present characterization scheme. The modified expressions for the probabilities of electron-impact induced transitions as well as spontaneous and induced radiative transitions are then obtained. The influence of collectivized states on a dense plasma ionization composition is demonstrated to be strong. Examples of calculated ESWs and populations of ionic quantum states for steady state and transient plasmas are given

  14. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β -TCP ceramics

    International Nuclear Information System (INIS)

    Labay, C; Buxadera-Palomero, J; Avilés, M; Canal, C; Ginebra, M P

    2016-01-01

    Beta-tricalcium phosphate ( β -TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β -TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β -TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies. (paper)

  16. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  17. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  18. Kinetic transport in a magnetically confined and flux-constrained fusion plasma

    International Nuclear Information System (INIS)

    Darmet, G.

    2007-11-01

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  19. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    ring shape morphology of a beam with orbital angular momentum (OAM) is ideal for the observation of solar corona around the sun where the intensity of the beam is minimum at the center, in solar experiments, and Earth's ionosphere. The twisted plasma modes carrying OAM are mostly studied either by the fluid theory or Maxwellian distributed Kinetic Theory. But most of the space plasmas and some laboratory plasmas have non-thermal distributions due to super-thermal population of the plasma particles. Therefore the Kinetic Theory of twisted plasma modes carrying OAM are recently studied using non-thermal (kappa) distribution of the super-thermal particles in the presence of the helical electric field and significant change in the damping rates are observed by tuning appropriate parameters.

  20. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  1. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, G., E-mail: geetphy9@gmail.com; Ahirwar, G. [School of Studies in Physics, Vikram University, Ujjain India (India); Shrivastava, J., E-mail: jayashrivastava2007@gmail.com [Dronacharya Group of Institutions, Greater Noida-India (India)

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  2. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  3. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Science.gov (United States)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  4. A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software

    Science.gov (United States)

    Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  5. Advanced 3-dimensional electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.; Bers, A.; Ram, A.; Harvey, R.

    2004-01-01

    Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-dimensional calculations based on a finite difference scheme and an incomplete L and U matrices factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvements. (authors)

  6. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.

    1989-01-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet

  7. Three species one-dimensional kinetic model for weakly ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  8. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  9. Kinetic theory of beam-induced plasmas generalised to sophisticated atomic structures

    International Nuclear Information System (INIS)

    Peyraud-Cuenca, Nelly

    1987-01-01

    We present an analytic kinetic model available for all particle-beam-induced atomic plasmas, without any restriction on the distribution of electronic levels. The method is an iteration of the already known solution available only for the distribution of atomic levels as in the rare gases. We recall a universal atomic kinetic model which, independently of its applications to the study of efficient laser systems, might be a first step in the analytic investigation of molecular problems. Then, the iteration is systematically applied to all possible atomic structures whose number is increased by the non-local character of inelastic processes. We deduce a general analytic representation of the 'tail' of the electron distribution function as a ratio between non-local source terms and a combination of inelastic cross sections, from which we exhibit a physical interpretation and essential scaling laws. The theory is applied to sodium which is an important element in the research of efficient laser systems. (author)

  10. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    International Nuclear Information System (INIS)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-01-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, ibid. 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλ D of interest to Raman backscatter of a laser driver in inertial confinement fusion

  11. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    Science.gov (United States)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-10-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, Phys. Fluids 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλD of interest to Raman backscatter of a laser driver in inertial confinement fusion.

  12. Start broadened profiles with self-consistent radiation transfer and atomic kinetics in plasmas produced by high intensity lasers

    International Nuclear Information System (INIS)

    Olson, G.L.; Comly, J.C.; La Gattuta, J.K.; Kilcrease, D.P.

    1993-01-01

    Spectral line shapes and line strengths have long been used to diagnose plasma temperatures and densities. In dense plasmas, the additional broadening due to Stark effects give additional information about the plasma density. We present calculations that are self-consistent in that the radiation fields of the line transitions and the atomic kinetics are iterated to convergence. Examples are given for simple plasmas with temperature gradients, density gradients, and velocity fields. Then a more complex example of a laser produced plasma is presented

  13. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    Science.gov (United States)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  14. Kinetic theory and simulation of multi-species plasmas in tokamaks excited with ICRF microwaves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1984-01-01

    This paper presents a description of a bounce-averaged Fokker-Planck quasilinear model for the kinetic description of tokamak plasmas. The non-linear collision and quasilinear resonant diffusion operators are represented in a form conducive to numerical solution with specific attention to the treatment of the boundary layer separating trapped and passing orbit regions of velocity space. The numerical techniques employed are detailed in so far as they constitute significant departure from those used in the conventional uniform magnetic field case. Examples are given to illustrate the combined effects of collisional and resonant diffusion

  15. Some kinetic properties of plasma lecithin-cholesterol acyltransferase in hyper-alphalipoproteinemia in man

    International Nuclear Information System (INIS)

    Nikiforova, A.A.; Alksnis, E.G.; Ivanova, E.M.

    1985-01-01

    The aim of this investigation was to study some kinetic properties of lecithin-cholesterol acyltransferase (LCAT) in the blood plasma of patients with hyper-alpha-lipoproteinemia, enabling the presence of LCAT isozymes in the blood to be detected. The velocity of the LCAT reaction was judged by determining labeled CHE formed from 14 C-nonesterified CH and lecithin of HDL on incubation of the latter with the enzyme. Dependence of the velocity of the LCAT reaction on concentration of substrate (nonesterified HDL cholesterol) in four subjects with hyper-alpha-lipoproteinemia is shown

  16. Computer simulation of kinetic properties of plasmas. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Denavit, J.

    1978-01-01

    The research is directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas and their application to physical problems of current significance to Magnetic Fusion Energy. During the past year, research on the project has been concerned with the following specific problems: (1) analysis and computer simulations of the dissipative trapped-electron instability in tokamaks; (2) long-time-scale algorithms for numerical solutions of the drift-kinetic equation; and (3) computer simulation of field-reversed ion ring stability

  17. The Pade approximate method for solving problems in plasma kinetic theory

    International Nuclear Information System (INIS)

    Jasperse, J.R.; Basu, B.

    1992-01-01

    The method of Pade Approximates has been a powerful tool in solving for the time dependent propagator (Green function) in model quantum field theories. We have developed a modified Pade method which we feel has promise for solving linearized collisional and weakly nonlinear problems in plasma kinetic theory. In order to illustrate the general applicability of the method, in this paper we discuss Pade solutions for the linearized collisional propagator and the collisional dielectric function for a model collisional problem. (author) 3 refs., 2 tabs

  18. Computer simulation of kinetic properties of plasmas. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Denavit, J.

    1979-01-01

    The research is directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas, and their application to physical problems of current significance to Magnetic Fusion Energy. During the present period, research on the project has been concerned with the following specific problems: (1) Computer simulations of drift and dissipative trapped-electron instabilities in tokamaks, including radial dependence and shear stabilization. (2) Long-time-scale algorithms for numerical solutions of the drift-kinetic equation. (3) Computer simulation of field-reversed ion ring stability. (4) Nonlinear, single-mode saturation of the bump-on-tail instability

  19. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  20. Kinetic theory of cross-modulation in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Garrett, A.J.M.

    1991-01-01

    Cross-modulation in plasma is an electromagnetic wave interaction in which the modulation of one 'disturbing' wave is imposed nonlinearly on the transport properties of the medium, and thence onto a second, 'wanted' wave propagating linearly through it. This analysis is restricted to weakly ionized plasma with allowance for ambient magnetic field, as in the lower ionosphere. A kinetic description is used, based on the Boltzmann equation for the electrons, with electron-molecule collisions described by Boltzmann's collision integral. Because of the small mass ratio this simplifies to a differential form. There is no cross-modulation if the collision frequency is independent of collision speed, when contributions from all parts of velocity space cancel. (author)

  1. Two new proofs of the test particle superposition principle of plasma kinetic theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1975-12-01

    The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids

  2. Neoclassical kinetic theory near the edge of a diverted tokamak plasma

    International Nuclear Information System (INIS)

    Solano, E.R.; Hazeltine, R.D.

    1993-01-01

    In a diverted plasma, the poloidal magnetic field has a strong poloidal variation, approaching zero near the X-point. Typically, neoclassical theory is based on ordering assumptions about the 3 characteristic frequencies present in the problem: streaming, collisions and drift. In a circular geometry, the streaming freuency is constant, while the drift frequency has a sin(θ) variation. In a shaped plasma, the streaming frequency also has a poloidal variation. The ordering is now established by the amplitude of these frequencies. With a model poloidal flux function, the authors solve the drift kinetic equation inside, but near, the separatrix. Both the plateau and collisional regime are considered. Ion rotation rates, and their poloidal variation, are calculated. It is shown that the standard neoclassical rotation predictions still hold, when correctly interpreted. Other neoclassical fluxes are calculated as well

  3. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  4. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Department of Chemical and Biomolecular Engineering, Plasma Processing Laboratory, University of Houston, Houston, Texas 77204 (United States)

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreased sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.

  5. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  6. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  7. Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas?

    International Nuclear Information System (INIS)

    White, R D; Robson, R E; Schmidt, B; Morrison, Michael A

    2003-01-01

    The 'two-term' approximation (representation of the electron distribution by the first two terms of an expansion in spherical harmonics in velocity space) continues to occupy a central role in the low-temperature plasma physics literature, in spite of the mass of evidence illustrating its inadequacy in the swarm (free diffusion) limit for many molecular gases. Part of the problem lies in the failure of many authors to specify quantitatively what they mean when they say that the two-term approximation is 'acceptable'. Thus for example, an error of 10% in transport coefficients may well be acceptable in many plasma applications, but for analysis of highly accurate swarm experiments to compare with ab initio and beam-derived cross-sections, 0.1% or less is required, making 'multi-term' analysis mandatory. While reconciliation of the swarm and plasma literature along the lines of two different accuracy regimes may thus be possible, we dispute claims that the two-term approximation is generally satisfactory for inversion of swarm experiment data to obtain electron impact cross-sections. The unsatisfactory nature of other assumptions implicit in much of the modern plasma kinetic theory literature is also discussed

  8. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  9. The kinetic theory and stability of a stochastic plasma with respect to low frequency perturbations and magnetospheric convection

    International Nuclear Information System (INIS)

    Hurricane, O.A.

    1994-09-01

    In this dissertation, a new linear Vlasov kinetic theory is developed for calculating the plasma response to perturbing electromagnetic fields in cases where the particle dynamics are stochastic; for modes with frequencies less than the typical particle bounce frequency. A variational form is arrived at which allows one to properly perform a stability analysis for a stochastic plasma. In the case of stochastic dynamics, the authors demonstrate that the plasma responds to the flux tube volume average of the perturbing potentials as opposed to the usual case of adiabatic dynamics where plasma responds to the bounce average of the perturbed potentials. They show that for the stochastic plasma, the kinetic variational form maps into the Bernstein energy principle if the perturbation frequency is large compared to all drift frequencies, the perpendicular wavelength is large compared to the Larmor radius, and vanishing of the potentials associated with the parallel electric field are all assumed. By explicit minimization of the energy principle, it is established that the stochastic plasma is always less stable than an adiabatic plasma. Lastly, the effect of strictly enforcing the quasi-neutrality (QN) condition upon a gyro-kinetic type stability analysis is explored. From simple mathematical considerations, it is shown that when the QN condition is imposed convective type modes that are equipotentials along magnetic field lines are created that alter the stability properties of the plasma. The pertinent modifications to the Bernstein energy principle are given

  10. Experimental study of the efficiency of transformation of the dense plasma hypersonic flow kinetic energy into a radiation

    International Nuclear Information System (INIS)

    Kamrukov, A.S.; Kozlov, N.P.; Myshelov, E.P.; Protasov, Yu.S.

    1981-01-01

    Analysis of physical specific features of radiator where plasma heating is performed with tbermalization of directed kinetic energy of dense plasma flows accelerated electrodynamically up to hypersonic velocities during its shock deceleration, is given. It is shown that the plasma heating method considered has a number of principle advantages as compared with methods most disseminated now for generation of dense intensively radiating plasma (current heating exploding method) and suggests new possibilities for construction of selective high brightness radiat.ion sources of ultraviolet and far vacuum ultraviolet ranges of spectrum. Radiation gas dynamic processes of hypersonic plasma flow deceleration formed with magnetoplasma compressors have been experimentally investigated on their interaction with condenced matters in vacuum and basic thermodynamic parameters of shock compressed plasma have been determined. It is shown that the conversion process of kinetic energy of high-velocity plasma flows to radiation is accomplished at very high efficiency-integral luminescence of shock compressed plasma can reach approximately 90% of initial kinetic energy of flow [ru

  11. Simulation studies of plasma waves in the electron foreshock: The transition from reactive to kinetic instability

    International Nuclear Information System (INIS)

    Dum, C.T.

    1990-01-01

    The electron beam-plasma instability is analyzed in particle simulation experiments, starting with a beam of small velocity spread. The dispersion relation is solved for snapshots of the actual evolving electron distribution function, rather than for the usual models consisting of Maxwellians. As the beam broadens, the analysis shows a transition from reactive beam modes, with frequencies extending much below the plasma frequency ω e , to kinetic instability of Langmuir waves, ω∼ω e , which is in agreement with the frequencies and growth rates observed in the simulation. Beam evolution is also in agreement with quasi-linear theory, except at the end of the reactive phase when trapping of beam electrons is seen. Although the spectrum temporarily narrows at this stage, there are, in contrast to previous simulations, still many modes present. the system then can proceed to a kinetic phase in which quasi-linear theory is again applicable. This stage is identical with the evolution starting from a gentle broad beam, except that wave levels are several times higher. With higher wave levels, mode coupling effects are also more prominent, but are still unable to prevent plateau formation. In contrast to the Langmuir wave regime, the reactive broadband wave regime lasts only for a relatively short period. In the electron foreshock it could only persist if a narrow beam or a sharp cutoff feature were maintained by continued beam injection and the time-of-flight mechanism

  12. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  13. Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations

    Science.gov (United States)

    Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.

    2018-06-01

    Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.

  14. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies.

    Science.gov (United States)

    Faraz, Tahsin; Knoops, Harm C M; Verheijen, Marcel A; van Helvoirt, Cristian A A; Karwal, Saurabh; Sharma, Akhil; Beladiya, Vivek; Szeghalmi, Adriana; Hausmann, Dennis M; Henri, Jon; Creatore, Mariadriana; Kessels, Wilhelmus M M

    2018-04-18

    Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for

  15. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  16. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    International Nuclear Information System (INIS)

    Burnette, D; Montello, A; Adamovich, I V; Lempert, W R

    2014-01-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N 2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N 2 (v = 0–4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N 2 vibrational temperature of T v  ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N 2 –N 2 vibration–vibration (V–V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N 2  + O, and ozone formation reaction, O + O 2  + M → O 3  + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of

  17. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    Science.gov (United States)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on

  18. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  19. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  20. Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas

    Science.gov (United States)

    Arshad, K.; Poedts, S.; Lazar, M.

    2017-12-01

    The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and

  1. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  2. Corrections to classical kinetic and transport theory for a two-temparature, fully ionized plasma in electromagnetic fields

    International Nuclear Information System (INIS)

    Oeien, A.H.

    1977-06-01

    Sets of lower order and higher order kinetic and macroscopic equations are developed for a plasma where collisions are important but electrons and ions are allowed to have different temperatures when transports, due to gradients and fields, set in. Solving the lower order kinetic equations and taking appropriate velocity moments we show that usual classical transports emerge. From the higher order kinetic equations special notice is taken of some new correction terms to the classical transports. These corrections are linear in gradients and fields, some of which are found in a two-temperature state only. (Auth.)

  3. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Unified Gas Kinetic Scheme for Transport and Collision Effects in Plasma

    Directory of Open Access Journals (Sweden)

    Dongxin Pan

    2018-05-01

    Full Text Available In this study, the Boltzmann equation with electric acceleration term is discretized and solved by the unified gas-kinetic scheme (UGKS. The charged particle transport driven by electric field is included in the electric acceleration term. To capture non-equilibrium distribution function, the probability distribution functions of gas is discretized in a discrete velocity space. After discretization, the numerical flux for distribution function is computed to update the microscopic and macroscopic states. The flux is decided by an integral solution of Boltzmann equation based on characteristic problem. An electron-ion collision model is introduced in the Boltzmann Bhatnagar-Gross-Krook (BGK equation. This finite volume method for the UGKS couples the free transport and long-range interaction between particles. For simplicity, the electric field induced by charged particles is controlled by the Poisson’s equation, which is solved using the Green’s function for two dimensional plasma system subjected to the symmetry or periodic boundary conditions. Two numerical cases, linear Landau damping and Gaussian beam, are carried out to validate the proposed method. The linear electron plasma wave damping is simulated based on electron-ion collision operator. Comparison results show good accuracy and higher efficiency than particle based methods. Difference between Poisson’s equation and complete electromagnetic Maxwell equation is presented by numerical results based on the two models. Highly non-equilibrium and rarefied plasma flows, such as electron flows driven by electromagnetic field, can be simulated easily. The UGKS-Poisson model is proved to be promising in plasma flow simulation.

  5. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  6. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  7. A (2 d,3 v) cylindrical, kinetic model of a time-independent, collisionless bounded plasma

    International Nuclear Information System (INIS)

    Pedit, H.; Kuhn, S.

    1994-01-01

    A (2 d,3 v) cylindrical, electrostatic, collisionless kinetic model for a wide class of negative-bias de states of the single-ended Q machine is developed. Based on the method presented recently by the authors for an analogous cartesian model, the self-consistent plasma state is found by means of an iterative scheme in which the charge-density and potential distributions are alternately advanced. The electron an ion velocity distribution functions are calculated via trajectory integration, which ensures high accuracy and resolution in both configuration and velocity space. The main differences between cartesian and cylindrical geometry are discussed, and typical macroscopic as well as microscopic quantities for an exemplary special case are presented. (author). 3 refs, 5 figs

  8. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  9. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood, E-mail: maliofkh@gmail.com; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R{sub v}, R{sub sk}, and R{sub lo} parameters. Correlation between the diameter of discharge channel (d{sub c}) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation

  10. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  11. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    International Nuclear Information System (INIS)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R v , R sk , and R lo parameters. Correlation between the diameter of discharge channel (d c ) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation the amount of

  12. Kinetic equations and fluctuations in μspace of one-component dilute plasmas

    International Nuclear Information System (INIS)

    Tokuyama, Michio; Mori, Hazime

    1977-01-01

    Kinetic equations for a spatially coarse-grained electron density in μ phase space A(p, r; t) with a length cutoff b and for its fluctuations are studied by a scaling method and a time-convolutionless approach developed by the present authors. An electron gas with a small plasma parameter epsilon=1/c (lambda sub(D)) 3 has three characteristic lengths; the Landau cutoff r sub(L)=epsilon lambda sub(D), the Debye length lambda sub(D)=√k sub(B)T/4πe 2 c and the mean free path l sub(f)=lambda sub(D)/epsilon, e and c being electronic charge and mean electron density, respectively. It is shown that there are two characteristic regions of the length cutoff b. One is a coherent region where r sub(L)<< b<< lambda sub(D). Its characteristic scaling is c→0, b→infinity, t→infinity with b√c and t√c being kept constant. The Vlasov equation is derived in this limit. The other is a kinetic region where lambda sub(D)<< b<< l sub(f). Its characteristic scaling is c→0, b→infinity, t→infinity with bc and tc being kept constant. The Vlasov term disappears and the Balescu-Lenard-Boltzmann-Landau equation, which is free of divergence for both close and distant collisions, is derived in this limit. It is shown that the fluctuations of A(p, r; t) obey a Markov process with scaling exponents α=0, β=1/2 in the coherent region near thermal equilibrium, while they obey a Gaussian Markov process with α=0, β=1 in the kinetic region. The present theory does not need the factorization ansatz and Bogoliubov's functional ansatz. (auth.)

  13. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  14. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, Alessandro [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 206A Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States); Mansour, Nagi N. [NASA Ames Research Center, Moffett Field, 94035 CA (United States); Panesi, Marco, E-mail: munafo@illinois.edu, E-mail: nagi.n.mansour@nasa.gov, E-mail: m.panesi@illinois.edu [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States)

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α , β , and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  15. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  16. KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER

    International Nuclear Information System (INIS)

    Roberts, O. W.; Li, X.; Li, B.

    2013-01-01

    The k-filtering technique and wave polarization analysis are applied to Cluster magnetic field data to study plasma turbulence at the scale of the ion gyroradius in the fast solar wind. Waves are found propagating in directions nearly perpendicular to the background magnetic field at such scales. The frequencies of these waves in the solar wind frame are much smaller than the proton gyrofrequency. After the wavevector k is determined at each spacecraft frequency f sc , wave polarization property is analyzed in the plane perpendicular to k. Magnetic fluctuations have δB > δB ∥ (here the ∥ and refer to the background magnetic field B 0 ). The wave magnetic field has right-handed polarization at propagation angles θ kB 90°. The magnetic field in the plane perpendicular to B 0 , however, has no clear sense of a dominant polarization but local rotations. We discuss the merits and limitations of linear kinetic Alfvén waves (KAWs) and coherent Alfvén vortices in the interpretation of the data. We suggest that the fast solar wind turbulence may be populated with KAWs, small-scale current sheets, and Alfvén vortices at ion kinetic scales.

  17. Plasma kinetics of Ar/O2 magnetron discharge by two-dimensional multifluid modeling

    International Nuclear Information System (INIS)

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G.

    2010-01-01

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O 2 magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar + , O 2 + , and O + - and two negative species - e - and O - - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O 2 , O, O 3 , and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O 2 in Ar/O 2 mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O 2 ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  18. Plasma kinetics of Ar/O{sub 2} magnetron discharge by two-dimensional multifluid modeling

    Energy Technology Data Exchange (ETDEWEB)

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G. [LPGP, UMR 8578, CNRS-Paris-Sud XI University, Bat. 210, Orsay Cedex 91405, France and Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., Iasi 700506 (Romania); LPGP, UMR 8578, CNRS-Paris-Sud XI University, Bat. 210, Orsay Cedex 91405 (France); Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., Iasi 700506 (Romania); LPGP, UMR 8578, CNRS-Paris-Sud XI University, Bat. 210, Orsay Cedex 91405 (France)

    2010-03-15

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O{sub 2} magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar{sup +}, O{sub 2}{sup +}, and O{sup +} - and two negative species - e{sup -} and O{sup -} - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O{sub 2}, O, O{sub 3}, and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O{sub 2} in Ar/O{sub 2} mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O{sub 2} ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  19. Long-time tails of the heat-conductivity time correlation functions for a magnetized plasma - a kinetic theory approach

    NARCIS (Netherlands)

    Schoolderman, A.J.; Suttorp, L.G.

    1989-01-01

    The long-time behaviour of the longitudinal and the transverse heat conductivity time correlation functions for a magnetized one-component plasma is studied by means of kinetic theory. To that end these correlation functions, which are defined as the inverse Laplace transforms of the dynamic heat

  20. Characterization of stainless steel through Scanning Electron Microscopy, nitrided in the process of implantation of immersed ions in plasma; Caracterizacion de acero inoxidable mediante Microscopia Electronica de Barrido nitrurado en el proceso de implantacion de iones inmersos en plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno S, H

    2003-07-01

    The present project carries out the investigation of the nitridation of the austenitic stainless steel schedule 304, applying the novel technology of installation of nitrogen ions in immersed materials in plasma (Plll), by means of which they modify those properties of the surface of the steel. The obtained results by means of tests of Vickers microhardness, shows that the hardness was increment from 266 to 740 HV (microhardness units). It was determined by means of scanning electron microscopy, the one semiquantitative chemical analysis of the elements that constitute the austenitic stainless steel schedule 304; the obtained results, show to the nitrogen like an element of their composition in the pieces where carried out to end the PIII technology. The parameters of the plasma with which carried out the technology Plll, were monitored and determined by means of electric probes, and with which it was determined that the density of particles is stable in the interval of 1x10{sup -1} at 3x10{sup -1}Torr, and it is where better results of hardness were obtained. That reported in this work, they are the first results obtained when applying the technology Plll in Mexico, and with base in these, it is even necessary to investigate and to deepen until to dominate the process and to be in possibilities of proposing it to be carried out and exploited in an industrial way. (Author)

  1. Contribution to the modelling and multi-scale numerical simulation of kinetic electron transport in hot plasma

    International Nuclear Information System (INIS)

    Mallet, J.

    2012-01-01

    This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties

  2. Two new proofs of the test particle superposition principle of plasma kinetic theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1976-01-01

    The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented; the deductive approach appears here for the first time in the literature. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution is then re-arranged into the superposition principle. The inductive proof is simpler than Rostoker's although similar in some ways; it differs in that first-order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids

  3. Kinetic effects in the propagation of ion-acoustic negative solitons in plasmas with negative ions

    International Nuclear Information System (INIS)

    Roberto, M.

    1986-12-01

    The existence of ion-acoustic negative (rarefactive) solitons in plasmas was experimentally verified and explained by means of the Korteweg-de Vries equation, obtained from a fluid model. The experimental results obtained in a double-plasma machine of the Institute for Space Research, however, have provided values of Mach number larger than predicted by this simple model. In order to improve the analysis of the phenomenon, Kinetic effects resultant from the occurrence of reflected electrons and trapped ions in the soliton potential were considered, using the theory of Sagdeev potential. For the description of the negative ion dynamics the fluid model treatment was preserved. It was verified that the effects of the finite temperature and trapping of the positive ions modify the results predicted by the simple KdV model in such a way that the Mach number is reduced as the ion temperature increases. It was shown that reflection of electrons is consistent with the large experimental values of Mach number. (Author) [pt

  4. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  5. A new variational formulation of kinetic plasma theory and the application of moving finite elements

    International Nuclear Information System (INIS)

    Glasser, A.H.

    1991-01-01

    A new variational formulation has been developed for the system of equations governing kinetic plasmas and electromagnetic fields. It is used to apply the method of Moving Finite Elements to the electromagnetic fields. The fields are expanded in a basis of linear finite elements on a movable, unstructured grid of triangles in 2D or tetrahedra in 3D, while the plasma distribution function is expanded in a basis of super particles. Minimization of the variational with respect to the time derivatives of the field quantities yields a coupled system of equations for simultaneously advancing the amplitudes and node positions, resulting in adaptive grid motion. The adaptivity of the grid may save a large factor in the size of the grid and the number of particles required in many problems. Minimization of the variational with respect to the time derivatives of the particle positions and velocities gives the equations of motion, providing consistent prescriptions for assigning particles to the grid and fields to the particles. Orthogonality conditions on the particles are derived as conditions for keeping their equations of motion independent. Collisions can be included in a natural way. The relationship between PIC methods and alternative methods of discretizing phase space is clarified

  6. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    International Nuclear Information System (INIS)

    Tskhakaya, D. D.; Kos, L.

    2014-01-01

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths λ D (electron Debye length), ρ i (ion gyro-radius), and ℓ (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering λ D ≪ρ i ≪ℓ, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ε Dm (λ D /ρ i )→0 and ε mc (ρ i /ℓ)→0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the ε Dm →0 and ε mc →0 approximations. The MPS entrance and the related kinetic form of the Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities

  7. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  8. Culture of normal human blood cells in a diffusion chamber system II. Lymphocyte and plasma cell kinetics

    International Nuclear Information System (INIS)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1979-01-01

    Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture

  9. X-ray photoelectron spectroscopy and Auger electron spectroscopy studies on the passivation behavior of plasma-nitrided low alloy steel in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-12-14

    Nitrided SAE 4140 steel has been passivated by concentrated nitric acid. The resulting film was characterized using a combination of surface-analytical techniques, such as X-ray photoelectron spectroscopy (XPS) to evaluate the chemical composition of the passive film. Auger electron spectroscopy (AES) combined with ion etching was used to determine the composition depth profiles of nitrided surface. It was found that preferential dissolution of iron leads to enhanced nitrogen and chromium concentrations within the oxynitrided layer. A dense protective oxynitrided layer was found to be formed on the nitrided surface when the concentration of nitric acid was as high as 8 M. The results of X-ray diffraction, XPS and AES analyses conclude that the protective nitride layer is composed of (Fe,Cr){sub 4}N, (Fe,Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and remnant nitrides in the middle layer and nitrides accompanying Cr(OH){sub 3}.H{sub 2}O and {gamma}'-FeOOH in the outermost layer. (orig.).

  10. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    pact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C,. 1300°C, 1350°C and 1400°C). ... Reaction sintered silicon nitride; nitridation; reaction kinetics. 1. Introduction. Formation of ..... cation of silica layer resulted in active oxidation of silicon at high temperature to ...

  11. The influence of powder composition and sintering temperature on transformation kinetics, structure and mechanical properties of hot-pressed silicon nitride

    International Nuclear Information System (INIS)

    Knoch, H.; Ziegler, G.

    1977-01-01

    The strength at room temperature of hot-pressed silicon nitride is strongly dependent on the structure which in turn depends on powder composition and process parameters. Connections between production conditions (MgO content, pressing temperature, pressing time), structure (α/β content and morphology), and the properties at room temperature are discussed. The growth of oblong β grains - as a direct result of phase transition from α- to β-Si 3 N 4 - results in microstructural meshing and thus in a higher strength. Optimum mechanical properties are achieved after full phase transformation and with a microstructure as fine as possible. The direct connection between strength and transformed β fraction indicates a possible way for a relatively fast determination of optimum properties for a given initial powder. (orig.) [de

  12. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  13. characterization and weldability of plasma nitrided P/M martensitic stainless steel X 20 Cr Ni 172

    International Nuclear Information System (INIS)

    Abdel-Karim, R.A.; El-demellawy, M.A; Waheed, A.F.

    2004-01-01

    stainless steels are widely used in nuclear applications, as a construction material. in these applications stainless steels suffer from corrosion degradation due severe environment and operating conditions. improving the engineering properties of such material prolong the service life time.in the present study, powder metallurgy technique namely plasma rotating electrode process (PREP) was used to produce martensitic steel DIN X 20 Cr Ni 172 with 0.5 % N. this step was followed by hot isostatic pressing process (HIP) . the effect of N on the weldability of this steel has been investigated . this included microstructure characterization, hardness evaluation and ferrite content measurements. the results showed that the presence of high nitrogen content in this steel resulted in a pore free structure with improved the hardness across the welding area. A single phase with few precipitates was detected on the grain boundaries in the heat affected zone. the results were supplemented by x-ray diffraction patterns and EDAX analysis

  14. The growth of III-V nitrides heterostructure on Si substrate by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Beh, K.P.; Yam, F.K.; Chin, C.W.; Tneh, S.S.; Hassan, Z.

    2010-01-01

    This paper reports the growth of InGaN/GaN/AlN epitaxial layer on Si(1 1 1) substrate by utilizing plasma-assisted molecular beam epitaxy (PA-MBE) system. The as-grown film was characterized using high-resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). High work function metals, iridium and gold were deposited on the film as metal contacts and their electrical characteristics at pre- and post-annealing were studied. The structural quality of this film is comparative to the values reported in the literature, and the indium molar fraction is 0.57 by employing Vegard's law. The relatively low yellow band emission signifies the grown film is of high quality. For metal contact studies it was found that the post-annealed sample for 5 min shows good conductivity as compared to the other samples.

  15. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  16. Modernization of serial facility 'BULAT-6' for synthesis of vacuum-arc coatings by the method of plasma-based ion implantation and deposition as well as ion hydrogen-free nitriding

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Andreev, A.A.; Rudenko, V.P.

    2008-01-01

    The model of laboratory vacuum-arc facility for realization of the method of plasma-based ion implantation and deposition is worked out by means modernization of serial industrial facility 'BULAT-6'. The facility is suitable for surface modification of instrumental steel items, including the low-alloyed steels with low temperatures of tempering. The low-temperature deposition of coatings on the preliminary nitrided surface of instrument permits obtaining dense coating with minimum maintenance of macroparticles, as well as with coatings superhigh adhesion to the substrate and with superhardness. The coatings possess high property stableness in time.

  17. Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    International Nuclear Information System (INIS)

    Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter

    2012-01-01

    A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at x E ≡ 0 towards the plasma bulk. An arbitrary endpoint x B is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at x B and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [x E , x B ] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at x B until they reach the electrode at x E , utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes n im (x) of the ion density n i (x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the

  18. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    alloy powders were obtained. Two types of the simple thermal treatment procedures were tested to fabricate nitride powders. First, the procedure is a direct nitriding process in which the metal powders were annealed at 1000 deg. C under nitrogen gas and then further annealed at 1500 deg. C under hydrogen containing Ar gas atmosphere. It was revealed that the particles were fragmented to smaller particles during the annealing. The XRD results showed that the uranium metal converted to UN 2 phase during the annealing at 1000 deg. C and then decomposed to UN phase during the further annealing at 1500 deg. C. Observed fragmentation and cracking of particles were caused by sequential volume changes of expansion and contraction which were accompanied by the formation and decomposition of uranium nitrides. Although uranium nitride powders were successfully fabricated during the simple nitriding process, it seems that milling of the obtained powder might be necessary to fabricate sintered nitride fuel pellets. In order to fabricate finer nitride powders, a nitriding procedure has been modified. In the modified process, the particles were heat-treated at 250 deg. C in H 2 before nitriding. The addition of a hydriding step was effective in obtaining fine uranium nitride powder. In the case of U-10 wt% Zr-alloy, however, only a few large cracks were developed on the particle surface and the particle maintained its size. This result reveals that hydriding and nitriding kinetics or mechanisms of U-10 wt% Zr alloy are quite different from those of U metal

  19. Marking with radioactive iodine of a plasma substitute and preliminary essays of his kinetic behaviour in rats

    International Nuclear Information System (INIS)

    Cova, Wilma Guimaraes

    1973-01-01

    A blood plasma substitute (Haem accel - PGO), which has as a base a degraded and polymerized gelatin, was labelled with radioactive iodine (I-131) and preliminary essays of its kinetic behavior was done. We have used the labelling method of McFarlaner. The results obtained - radiochemical yield and purity - were favorable. The kinetic behaviour the residual radioactivity studied by measuring the residual radioactivity of the body and excreta in groups of male Wistar rats for a maximum period of 150 hours. These results have shown and excellent correlation for a two components exponential function's adjustment, suggesting therefore a bi compartmental mathematical model. (author)

  20. Treatment of nitridation by microwave post discharge plasma in an AISI 4140 steel; Tratamiento de nitruracion por plasma post-descarga micro-ondas en un acero AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A. [Instituto Tecnologico de Morelia, Morelia e Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rodriguez L, V.; Zamora R, L. [ININ, Mexico D.F. (Mexico); Oseguera P, J

    1998-07-01

    The objective of this work is to determine through X-ray diffraction, microhardness measurement and scanning electron microscopy those main operation parameters of the microwave post discharge treatment (temperature of treatment, gas mixture and permanence time) nitriding an AISI 4140 steel and to characterize the compact layer of nitrides formed during the treatment. (Author)

  1. Study creep in 4340 steels with different microstructure and plasma carbon nitridation processing; Estudo de fluencia em acos 4340 com diferentes microestruturas e tratamento de carbonitretacao a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.J., E-mail: abdalla@ieav.cta.b [Departamento de Ciencia e Tecnologia Aeroespacial (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Carrer, I.R.; Barboza, M.J.R.; Baggio-Scheid, V.H. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Moura Neto, C.; Reis, D.A.P. [Departamento de Ciencia e Tecnologia Aeroespacial (ITA/DCTA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica

    2010-07-01

    From the AISI 4340 bars specimens were made-for-test of creep, they were subjected to different heat treatments for the formation of multiphase microstructures. After this initial treatment, a lot of the specimens were tested in creep. One second batch of specimens was treated with a plasma carbonitriding, and later, were also tested. The carbonitriding layer and microstructure were characterized with X-ray analysis, laser confocal microscopy and hardness testing. Tests showed that the hardness in the steel was reduced due to thermochemical treatment at 500 deg C. We observed variation in creep behavior due to different microstructures formed. After the plasma treatment, there was a considerable reduction in the rate of creep and an increase in the time required for fracture. (author)

  2. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    Science.gov (United States)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  3. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pansila, P. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Miura, M. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Ahmmad, B.; Kubota, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-12-01

    Highlights: • We discuss the reaction mechanism of the low temperature GaN ALD. • The plasma-excited NH{sub 3} is effective in the nitridation of the TMG saturated GaN surface with surface temperatures in excess of 100 °C. • The temperature controlled ALD of GaN is examined using RT-TMG adsorption and plasma-excited NH{sub 3} treatment with the temperature of 115 °C. - Abstract: Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH{sub 3} are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 10{sup 4} Langmuir (L), where 1 L corresponds to 1.33 × 10{sup −4} Pa s (or 1.0 × 10{sup −6} Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH{sub 3} on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH{sub 3}.

  4. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    International Nuclear Information System (INIS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-01-01

    Highlights: • We discuss the reaction mechanism of the low temperature GaN ALD. • The plasma-excited NH 3 is effective in the nitridation of the TMG saturated GaN surface with surface temperatures in excess of 100 °C. • The temperature controlled ALD of GaN is examined using RT-TMG adsorption and plasma-excited NH 3 treatment with the temperature of 115 °C. - Abstract: Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH 3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 10 4 Langmuir (L), where 1 L corresponds to 1.33 × 10 −4 Pa s (or 1.0 × 10 −6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH 3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH 3 .

  5. Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.; Robinson, Zachary R.; Nath, Anindya; Kozen, Alexander C.; Qadri, Syed B.; DeMasi, Alexander; Hite, Jennifer K.; Ludwig, Karl F.; Eddy, Charles R.

    2017-05-01

    Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layer epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.

  6. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  7. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  8. Hamiltonian structure of reduced fluid models for plasmas obtained from a kinetic description

    International Nuclear Information System (INIS)

    Guillebon, L. de; Chandre, C.

    2012-01-01

    We consider the Hamiltonian structure of reduced fluid models obtained from a kinetic description of collisionless plasmas by Vlasov–Maxwell equations. We investigate the possibility of finding Poisson subalgebras associated with fluid models starting from the Vlasov–Maxwell Poisson algebra. In this way, we show that the only possible Poisson subalgebra involves the moments of zeroth and first order of the Vlasov distribution, meaning the fluid density and the fluid velocity. We find that the bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] which involves moments of order 2 is not a Poisson bracket since it does not satisfy the Jacobi identity. -- Highlights: ► We investigate fluid reductions from the Vlasov–Maxwell Poisson bracket. ► The only Poisson subalgebra involves fluid density and fluid velocity. ► The bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] is not Hamiltonian.

  9. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  10. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    International Nuclear Information System (INIS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-01-01

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow

  11. Transport coefficients of Quark-Gluon Plasma in a Kinetic Theory approach

    International Nuclear Information System (INIS)

    Puglisi, A; Plumari, S; Scardina, F; Greco, V

    2014-01-01

    One of the main results of heavy ions collision at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s = 1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green- Kubo relations give us an exact expression to compute these coefficients. We computed shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigated different cases of particles, for one component system (gluon matter), interacting via isotropic or anisotropic cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. Another transport coefficient of interest is the electric conductivity σ el which determines the response of QGP to the electromagnetic fields present in the early stage of the collision. We study the σ el dependence on microscopic details of interaction and we find also in this case that Relaxation Time Approximation is a good approximation only for isotropic cross-section.

  12. Low-frequency linear waves and instabilities in uniform and stratified plasmas: the role of kinetic effects

    Directory of Open Access Journals (Sweden)

    K. M. Ferrière

    2004-01-01

    Full Text Available We review the basic approximations underlying magnetohydrodynamic (MHD theory, with special emphasis on the closure approximations, i.e. the approximations used in any fluid approach to close the hierarchy of moment equations. We then present the main closure models that have been constructed for collisionless plasmas in the large-scale regime, and we describe our own mixed MHD-kinetic model, which is designed to study low-frequency linear waves and instabilities in collisionless plasmas. We write down the full dispersion relation in a new, general form, which gathers all the specific features of our MHD-kinetic model into four polytropic indices, and which can be applied to standard adiabatic MHD and to double-adiabatic MHD through a simple change in the expressions of the polytropic indices. We study the mode solutions and the stability properties of the full dispersion relation in each of these three theories, first in the case of a uniform plasma, and then in the case of a stratified plasma. In both cases, we show how the results are affected by the collisionless nature of the plasma.

  13. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  14. Jet energy loss in quark-gluon plasma. Kinetic theory with a Bhatnagar-Gross-Krook collisional kernel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cheng; Hou, De-fu; Li, Jia-rong [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan, Hubei (China); Jiang, Bing-feng [Hubei University for Nationalities, Center for Theoretical Physics and School of Sciences, Enshi, Hubei (China)

    2017-10-15

    The dielectric functions ε{sub L}, ε{sub T} of the quark-gluon plasma (QGP) are derived within the framework of the kinetic theory with BGK-type collisional kernel. The collision effect manifested by the collision rate is encoded in the dielectric functions. Based on the derived dielectric functions we study the collisional energy loss suffered by a fast parton traveling through the QGP. The numerical results show that the collision rate increases the energy loss. (orig.)

  15. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults.

    Science.gov (United States)

    Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Salvadori, Alberto; Brunani, Amelia; Malatesta, Davide

    2014-01-01

    This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (poxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (poxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.

  16. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  17. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    International Nuclear Information System (INIS)

    Andreev, Pavel A.

    2015-01-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction

  18. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  19. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  20. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  1. III-nitrides, 2D transition metal dichalcogenides, and their heterojunctions

    KAUST Repository

    Mishra, Pawan

    2017-04-01

    Group III-nitride materials have attracted great attention for applications in high efficiency electronic and optoelectronics devices such as high electron mobility transistors, light emitting diodes, and laser diodes. On the other hand, group VI transition metal dichalcogenides (TMDs) in the form of MX2 has recently emerged as a novel atomic layered material system with excellent thermoelectric, electronic and optoelectronic properties. Also, the recent investigations reveal that the dissimilar heterojunctions formed by TMDs and III-nitrides provide the route for novel devices in the area of optoelectronic, electronics, and water splitting applications. In addition, integration of III-nitrides and TMDs will enable high density integrated optoelectronic circuits and the development of hybrid integration technologies. In this work, we have demonstrated kinetically controlled growth processes in plasma assisted molecular beam epitaxy (PAMBE) for the III-nitrides and their engineered heterostructures. Techniques such as Ga irradiation and nitrogen plasma exposure has been utilized to implement bulk GaN, InGaN and their heterostructures in PAMBE. For the growth of III-nitride based heterostructures, the in-situ surface stoichiometry monitoring (i-SSM) technique was developed and used for implementing stepped and compositionally graded InGaN-based multiple quantum wells (MQWs). Their optical and microstrain analysis in conjunction with theoretical studies confirmed improvement in the radiative recombination rate of the graded-MQWs as compared to that of stepped-MQWs, owing to the reduced strain in graded-MQWs. Our achievement also includes the realization of the p-type MoS2 by engineering pristine MoS2 layers in PAMBE. Mainly, Ga and nitrogen plasma irradiation on the pristine MoS2 in PAMBE has resulted in the realization of the p-type MoS2. Also, GaN epitaxial thin layers were deposited on MoS2/c-sapphire, WSe2/c-sapphire substrates by PAMBE to study the band

  2. Dispersion and absorption of longitudinal electro-kinetic wave in ion-implanted GaN semiconductor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Dilip [Government P G Madhav Science College, Ujjain (M P) (India); Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Saxena, Ajay [Government College, Garoth, Dist. Mandsaur (M P) (India); Jadhav, Akhilesh [Government J Yoganandam Chhattisgarh College, Raipur (C G) (India)

    2015-07-31

    An analytical study on propagation characteristics of longitudinal electro-kinetic (LEK) waves is presented. Based on multi-fluid model of plasma, we have derived a dispersion relation for LEK waves in colloid laden GaN semiconductor plasmas. It is assumed that ions are implanted to form colloids in the GaN sample. The colloids are continuously bombarded by the plasma particles and stick on them, but they acquire a net negative charge due to relatively higher mobility of electrons. It is found from the dispersion relation that the presence of charged colloids not only modifies the existing modes but also supports new novel modes of LEKWs. It is hoped that the study would enhance understanding on dispersion and absorption of LEKWs and help in singling out the appropriate configurations in which GaN crystal would be better suited for fabrication of microwave devices.

  3. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  4. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  5. Plasma basic concepts and nitrogen containing plasmas

    OpenAIRE

    Sanz Lluch, M. del Mar; Tanarro, Isabel

    2007-01-01

    Basic concepts related to plasmas are described as well as the typical characterization methods currently available. A brief overview about some plasma applications is given, but focusing on plasma used in material processing mainly devoted to the microelectronics industry. Finally, specific applications related to plasma-assisted MBE for nitrides and dilute nitrides are given, showing some interesting research works performed to that purpose, and giving the usual characterization techniques ...

  6. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    International Nuclear Information System (INIS)

    Gibbons, M.R.

    1995-06-01

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents

  7. Kinetic stability constraints on magnetized plasma equilibria: Quasi-particle approach

    International Nuclear Information System (INIS)

    Sosenko, P.; Weiland, J.

    1996-01-01

    Macroscopic adiabatic invariants for the magnetized plasma are studied within the context of the quasi-particle description, as well as constraints which they impose on energy transfer and stable plasma equilibria. 6 refs

  8. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  9. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  10. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-05

    R and Pouvesle J M 2009 Experimental study of a compact nanosecond plasma gun Plasma Processes and Polymers 6 795—802 [11] Heinlin J, Morfill G...radially symmetrical geometry. The thickness of the plasma layer in the direction perpendicular to the dielectric plane is about 1 mm. The central coaxial ...Positive and negative polarity discharge at elevated pres- sures Discharge in coaxial geometry has been developed for plasma assisted ignition at high

  11. Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.

    2008-01-01

    The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted

  12. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  13. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  14. Nitrogen transport during plasma-enhanced case nitriding of stainless steels - the effects of the passivating oxide layer; Stickstofftransport waehrend der plasmagestuetzten Randaufstickung nichtrostender Staehle - der Einfluss der passivierenden Oxidschicht

    Energy Technology Data Exchange (ETDEWEB)

    Parascandola, S.; Kruse, O.; Richter, E. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Ionenstrahlphysik und Materialforschung; Moeller, W.

    1998-12-31

    Plasma-enhanced case nitriding at moderate temperatures is a promising technique for surface treatment of components made of stainless steels. In-situ ERD permits time-resolved and depth-dependent elemental analysis during the case nitriding process. This offers possibilities for process characterisation which are only briefly discussed in the paper. The oxide layer at the surface of the steel is a barrier to nitrogen input. In order to achieve fast nitrogen diffusion into the material, the oxide layer has to be largely removed in the low-energy ion implantation process. The observed equilibrium between diffusion and re-absorption is in good agreement with calculated as well as empirical results. (orig./CB) [Deutsch] Die plasmagestuetzte Randaufstickung bei moderaten Temperaturen ist eine erfolgversprechende Technologie zur Oberflaechenveredelung von Bauteilen aus nichtrostendem Stahl. Die Analytik mit in-situ ERD erlaubt zeit- und tiefenaufgeloeste Elementanalyse waehrend des Aufstickungsprozesses. Dadurch ergeben sich Moeglichkeiten der Prozesscharakterisierung, die hier nur angedeutet werden konnten. Die Oxidschicht an der Oberflaeche der nichtrostenden Staehle stellt eine Barriere fuer den Stickstoffeintrag dar. Fuer schnelle Stickstoffdiffusion muss die Oxidschicht bei der Niederenergie-Ionenimplantation weitgehend abgebaut werden. Das beobachtete Gleichgewicht zwischen Zerstaeubung und Wiederbelegung stimmt gut mit Simulationsrechnungen bzw. empirischen Werten ueberein. (orig.)

  15. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  16. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Kommoshvili, K; Cuperman, S; Bruma, C

    2003-01-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects

  17. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Science.gov (United States)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  18. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  19. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  20. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  1. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  2. Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas

    Czech Academy of Sciences Publication Activity Database

    Mašek, Martin; Rohlena, Karel

    2015-01-01

    Roč. 69, č. 4 (2015), s. 109 ISSN 1434-6060 R&D Projects: GA ČR GAP205/11/0571; GA MŠk(CZ) LD14089 Institutional support: RVO:68378271 Keywords : plasma physics * Vlasov equation * numerical-simulation electromagnetic - waves * acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.208, year: 2015

  3. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  4. Kinetic theory of interaction of high frequency waves with a rotating plasma

    International Nuclear Information System (INIS)

    Chiu, S. C.; Chan, V. S.; Chu, M. S.; Lin-Liu, Y. R.

    2000-01-01

    The equations of motion of charged particles of a strongly magnetized flowing plasma under the influence of high frequency waves are derived in the guiding center approximation. A quasilinear theory of the interactions of waves with rotating plasmas is formulated. This is applied to investigate the effect of radio frequency waves on a rotating tokamak plasma with a heated minority species. The angular momentum drive is mainly due to the rf-induced radial minority current. The return current by the bulk plasma gives an equal and opposite rotation drive on the bulk. Using moment equations and a small banana width approximation, the JxB drive was evaluated for the bulk plasma. Quite remarkably, although collisions are included, the net rotation drive is due to a term which can be obtained by neglecting collisions. (c) 2000 American Institute of Physics

  5. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  6. Roles of kinetics and energetics in the growth of AlN by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Im, I. H.; Minegishi, T.; Hanada, T.; Lee, S. W.; Cho, M. W.; Yao, T.; Oh, D. C.; Chang, J. H.

    2006-01-01

    The roles of kinetics and energetics in the growth processes of AlN on c-sapphire by plasma assisted molecular beam epitaxy are investigated by varying the growth rate from 1 to 31 A/min and the substrate temperature from 800 to 1000 .deg. C. The energetics is found to govern the growth of AlN in the low-growth rate region even at a low substrate temperature of 800 .deg. C owing to the enhanced residence time of adatoms, thereby increasing the surface migration length. As the growth rate increases, the growth tends to be governed by kinetics because of a reduction in the residence time of adatoms. Consequently, the surface roughness and crystal quality are greatly improved for the low-growth-rate case. In addition, the lattice strain relaxation is completed from the beginning of epitaxy for energetics-limiting growth while lattice strain relaxation is retarded for kinetics-limiting growth because of pre-existing partial strain relaxation. Energetics becomes more favorable as the substrate temperature is raised because of an increase in the surface diffusion length owing to an enhanced diffusion coefficient. Consequently high-crystal-quality AlN layers are grown under the energetics-limiting growth condition with a screw dislocation density of 7.4 x 10 8 cm -2 even for a thin 42-nm thick film.

  7. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  8. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  9. Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas

    International Nuclear Information System (INIS)

    Wang, X; Zonca, F; Chen, L

    2010-01-01

    It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.

  10. Covariant kinetic dispersion theory of linear transverse waves parallel propagating in magnetized plasmas with thermal anisotropy

    International Nuclear Information System (INIS)

    Lazar, M.; Schlickeiser, R.

    2006-01-01

    The properties of transverse waves parallel propagating in magnetized plasmas with arbitrary composition and thermally anisotropic, are investigated on the basis of relativistic Vlasov-Maxwell equations. The transverse dispersion relations for plasmas with arbitrary distribution functions are derived. These dispersion relations describe the linear response of the system to the initial perturbations and thus define all existing linear (transverse) plasma modes in the system. By analytic continuation the dispersion relations in the whole complex frequency plane are constructed. Further analysis is restricted to the important case of anisotropic bi-Maxwellian equilibrium plasma distribution functions. Explicit forms of the relativistically correct transverse dispersion relations are derived that hold for any values of the plasma temperatures and the temperature anisotropy. In the limit of nonrelativistic plasma temperatures the dispersion relations are expressed in terms of plasma dispersion function, however, the dependence on frequency and wave numbers is markedly different from the standard noncovariant nonrelativistic analysis. Only in the strictly unphysical formal limit of an infinitely large speed of light, c→∞, does the nonrelativistic dispersion relations reduce to the standard noncovariant dispersion relations

  11. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus'kov, S. Yu.; Chodukowski, T.; Dudžák, Roman; Korneev, Ph.; Demchenko, N. N.; Kalinowska, Z.; Dostál, Jan; Zaras-Szydlowska, A.; Borodziuk, S.; Juha, Libor; Cikhardt, Jakub; Krása, Josef; Klír, Daniel; Cikhardtová, B.; Kubeš, P.; Krouský, Eduard; Krůs, Miroslav; Ullschmied, Jiří; Jungwirth, Karel; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Renner, Oldřich; Singh, Sushil K.; Kar, S.; Ahmed, H.; Skála, Jiří; Pisarczyk, P.

    2017-01-01

    Roč. 24, č. 10 (2017), s. 1-11, č. článku 102711. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * femtosecond polaro-interferometry * spontaneous magnetic fiel * spatial and temporal electron density distribution Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  12. A kinetic model of retarding field analyser measurements in strongly magnetized, flowing, collisional plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Fuchs, Vladimír; Kočan, M.

    2013-01-01

    Roč. 55, č. 4 (2013), 045012-045012 ISSN 0741-3335 R&D Projects: GA MŠk 7G10072 Institutional support: RVO:61389021 Keywords : plasma * collisions * magnetic field * retarding field analyzer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/4/045012/pdf/0741-3335_55_4_045012.pdf

  13. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor.

    Science.gov (United States)

    Zhang, Ruobing; Zhang, Chi; Cheng, XingXin; Wang, Liming; Wu, Yan; Guan, Zhicheng

    2007-04-02

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m(3)/h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 microS/cm. The decolorization reaction has a high rate constant (k=0.0269 min(-1)) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k(min)=0.01603 min(-1)), then increases to 0.02105 min(-1) when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment.

  14. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    International Nuclear Information System (INIS)

    Zhang Ruobing; Zhang Chi; Cheng Xingxin; Wang Liming; Wu Yan; Guan Zhicheng

    2007-01-01

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m 3 /h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 μS/cm. The decolorization reaction has a high rate constant (k = 0.0269 min -1 ) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k min = 0.01603 min -1 ), then increases to 0.02105 min -1 when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment

  15. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  16. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separa