WorldWideScience

Sample records for plasma membranes links

  1. Channelopathies linked to plasma membrane phosphoinositides.

    Science.gov (United States)

    Logothetis, Diomedes E; Petrou, Vasileios I; Adney, Scott K; Mahajan, Rahul

    2010-07-01

    The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.

  2. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    Science.gov (United States)

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  3. Asparagine-linked sugar chains of glycoproteins in calf thymocyte plasma membrane. Isolation and fractionation of oligosaccharides liberated by hydrazinolysis.

    Science.gov (United States)

    Yoshima, H; Takasaki, S; Kobata, A

    1980-07-01

    The plasma membrane glycoproteins of calf thymocytes were converted to glycopeptides by exhaustive pronase digestion. Glycopeptides with asparagine-linked sugar chains were separated from those with mucine-type sugar chains by Bio-Gel P-10 column chromatography. The asparagine-linked sugar chains were released as oligosaccharides from the peptide moiety by hydrazinolysis and labeled by reduction with NaB[3H]4. The radioactive oligosaccharides were fractionated into fifteen acidic components and ten neutral components by combination of paper electrophoresis and Bio-Gel P-4 column chromatography. The acidic nature of all fifteen acidic components can be ascribed to their N-acetylneuraminic acid residues. The Bio-Gel P-4 column chromatographic patterns of the neutral oligosaccharide fraction and of the neutral fraction obtained on sialidase treatment of the pooled acidic oligosaccharide fraction were totally different, indicating that the acidic oligosaccharides are not simple sialyl derivatives of the neutral oligosaccharides.

  4. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  5. PrPSc accumulation in neuronal plasma membranes links Notch-1 activation to dendritic degeneration in prion diseases

    Directory of Open Access Journals (Sweden)

    DeArmond Stephen J

    2010-01-01

    Full Text Available Abstract Prion diseases are disorders of protein conformation in which PrPC, the normal cellular conformer, is converted to an abnormal, protease-resistant conformer rPrPSc. Approximately 80% of rPrPSc accumulates in neuronal plasma membranes where it changes their physical properties and profoundly affects membrane functions. In this review we explain how rPrPSc is transported along axons to presynaptic boutons and how we envision the conversion of PrPC to rPrPSc in the postsynaptic membrane. This information is a prerequisite to the second half of this review in which we present evidence that rPrPSc accumulation in synaptic regions links Notch-1 signaling with the dendritic degeneration. The hypothesis that the Notch-1 intracellular domain, NICD, is involved in prion disease was tested by treating prion-infected mice with the γ-secretase inhibitor (GSI LY411575, with quinacrine (Qa, and with the combination of GSI + Qa. Surprisingly, treatment with GSI alone markedly decreased NICD but did not prevent dendritic degeneration. Qa alone produced near normal dendritic trees. The combined GSI + Qa treatment resulted in a richer dendritic tree than in controls. We speculate that treatment with GSI alone inhibited both stimulators and inhibitors of dendritic growth. With the combined GSI + Qa treatment, Qa modulated the effect of GSI perhaps by destabilizing membrane rafts. GSI + Qa decreased PrPSc in the neocortex and the hippocampus by 95%, but only by 50% in the thalamus where disease was begun by intrathalamic inoculation of prions. The results of this study indicate that GSI + Qa work synergistically to prevent dendrite degeneration and to block formation of PrPSc.

  6. 2D-ELDOR study of heterogeneity and domain structure changes in plasma membrane vesicles upon cross-linking of receptors.

    Science.gov (United States)

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Baird, Barbara; Freed, Jack H

    2011-09-08

    2D electron-electron double resonance (2D-ELDOR) with the "full Sc-" method of analysis is applied to the study of plasma membrane vesicles. Membrane structural changes upon antigen cross-linking of IgE receptors (IgE-FcεRI) in plasma membrane vesicles (PMVs) isolated from RBL-2H3 mast cells are investigated, for the first time, by means of these 2D-ELDOR techniques. Spectra of 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) from PMVs before and after this stimulation at several temperatures are reported. The results demonstrate a coexistence of liquid-ordered (L(o)) and liquid-disordered (L(d)) components. We find that upon cross-linking, the membrane environment is remodeled to become more disordered, as shown by a moderate increase in the population of the L(d) component. This change in the relative amount of the L(o) versus L(d) components upon cross-linking is consistent with a model wherein the IgE receptors, which when clustered by antigen to cause cell stimulation, lead to more disordered lipids, and their dynamic and structural properties are slightly altered. This study demonstrates that 2D-ELDOR, analyzed by the full Sc- method, is a powerful approach for capturing the molecular dynamics in biological membranes. This is a particular case showing how 2D-ELDOR can be applied to study physical processes in complex systems that yield subtle changes.

  7. Criticality in Plasma Membranes

    Science.gov (United States)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  8. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2013-12-11

    A number of plasma membrane progestin receptors linked to non-genomic events have been identified. These include: (1) α1-subunit of the Na(+)/K(+)-ATPase (ATP1A1), (2) progestin binding PAQR proteins, (3) membrane progestin receptor alpha (mPRα), (4) progesterone receptor MAPR proteins and (5) the association of nuclear receptor (PRB) with the plasma membrane. This study compares: the pore-lining regions (ion channels), transmembrane (TM) helices, caveolin binding (CB) motifs and leucine-rich repeats (LRRs) of putative progesterone receptors. ATP1A1 contains 10 TM helices (TM-2, 4, 5, 6 and 8 are pores) and 4 CB motifs; whereas PAQR5, PAQR6, PAQR7, PAQRB8 and fish mPRα each contain 8 TM helices (TM-3 is a pore) and 2-4 CB motifs. MAPR proteins contain a single TM helix but lack pore-lining regions and CB motifs. PRB contains one or more TM helices in the steroid binding region, one of which is a pore. ATP1A1, PAQR5/7/8, mPRα, and MAPR-1 contain highly conserved leucine-rich repeats (LRR, common to plant membrane proteins) that are ligand binding sites for ouabain-like steroids associated with LRR kinases. LRR domains are within or overlap TM helices predicted to be ion channels (pore-lining regions), with the variable LRR sequence either at the C-terminus (PAQR and MAPR-1) or within an external loop (ATP1A1). Since ouabain-like steroids are produced by animal cells, our findings suggest that ATP1A1, PAQR5/7/8 and mPRα represent ion channel-linked receptors that respond physiologically to ouabain-like steroids (not progestin) similar to those known to regulate developmental and defense-related processes in plants.

  9. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different

  10. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated v

  11. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated

  12. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different li

  13. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    Science.gov (United States)

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  14. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

      The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  15. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

      The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  16. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  18. Paracrine signaling through plasma membrane hemichannels

    National Research Council Canada - National Science Library

    Wang, Nan; De Bock, Marijke; Decrock, Elke; Bol, Mélissa; Gadicherla, Ashish; Vinken, Mathieu; Rogiers, Vera; Bukauskas, Feliksas F; Bultynck, Geert; Leybaert, Luc

    2013-01-01

    Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels...

  19. Proteomics and the dynamic plasma membrane

    DEFF Research Database (Denmark)

    Sprenger, Richard R; Jensen, Ole Nørregaard

    2010-01-01

    plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma...... membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among...... the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required...

  20. Role of zinc in plasma membrane function

    National Research Council Canada - National Science Library

    O'Dell, B L

    2000-01-01

    ... with a posttranslational change in plasma membrane proteins. Among the signs of zinc deficiency in rats is a bleeding tendency associated with failure of platelet aggregation, a phenomenon that correlates with impaired uptake of Ca(2+) when stimulated...

  1. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  2. Endocytosis of GPI-linked membrane folate receptor-alpha.

    Science.gov (United States)

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  3. Plasma membrane regulates Ras signaling networks.

    Science.gov (United States)

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

  4. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  5. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  6. Sulfate transport in Penicillium chrysogenum plasma membranes.

    OpenAIRE

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

  7. Microcompartments within the yeast plasma membrane.

    Science.gov (United States)

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  8. Plasma deposited fluorinated films on porous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gancarz, Irena [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Bryjak, Marek, E-mail: marek.bryjak@pwr.edu.pl [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawski, Jan; Wolska, Joanna [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawa, Joanna; Kujawski, Wojciech [Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina St., 87-100 Torun (Poland)

    2015-02-01

    75 KHz plasma was used to modify track etched poly(ethylene terephthalate) membranes and deposit on them flouropolymers. Two fluorine bearing monomers were used: perflourohexane and hexafluorobenzene. The modified surfaces were analyzed by means of attenuated total reflection infra-red spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and wettability. It was detected that hexaflourobenxene deposited to the larger extent than perflourohaxane did. The roughness of surfaces decreased when more fluoropolymer was deposited. The hydrophobic character of surface slightly disappeared during 20-days storage of hexaflourobenzene modified membrane. Perfluorohexane modified membrane did not change its character within 120 days after modification. It was expected that this phenomenon resulted from post-reactions of oxygen with radicals in polymer deposits. The obtained membranes could be used for membrane distillation of juices. - Highlights: • Plasma deposited hydrophobic layer of flouropolymers. • Deposition degree affects the surface properties. • Hydrohilization of surface due to reaction of oxygen with entrapped radicals. • Possibility to use modified porous membrane for water distillation and apple juice concentration.

  9. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  10. Uterine receptivity and the plasma membrane transformation

    Institute of Scientific and Technical Information of China (English)

    Christopher R MURPHY

    2004-01-01

    This review begins with a brief commentary on the diversity of placentation mechanisms, and then goes on to examine the extensive alterations which occur in the plasma membrane of uterine epithelial cells during early pregnancy across species. Ultrastructural, biochemical and more general morphological data reveal that strikingly common phenomena occur in this plasma membrane during early pregnancy despite the diversity of placental types-from epitheliochorial to hemochorial, which ultimately form in different species. To encapsulate the concept that common morphological and molecular alterations occur across species, that they are found basolaterally as well as apically, and that moreover they are an ongoing process during much of early pregnancy, not just an event at the time attachment,brane during early pregnancy are key to uterine receptivity.

  11. Vesicular and Plasma Membrane Transporters for Neurotransmitters

    OpenAIRE

    2012-01-01

    The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoacti...

  12. Lipid domain structure of the plasma membrane revealed by patching of membrane components.

    Science.gov (United States)

    Harder, T; Scheiffele, P; Verkade, P; Simons, K

    1998-05-18

    Lateral assemblies of glycolipids and cholesterol, "rafts," have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T-lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.

  13. Labeling the plasma membrane with TMA-DPH.

    Science.gov (United States)

    Chazotte, Brad

    2011-05-01

    INTRODUCTION TMA-DPH (trimethylamine-diphenylhexatriene) is a fluorescent membrane probe that has classically been used to label the outer leaflet of a membrane bilayer, to label the outer leaflet of the plasma membrane in cells, and to report on membrane dynamics using the techniques of fluorescence polarization and/or fluorescence lifetime. This probe has also been used to follow exocytosis and endocytosis of labeled plasma membranes. The interaction of the aqueous environment with mitochondrial inner membrane dynamics has also been studied following the fluorescence polarization and the lifetime of TMA-DPH. This protocol describes the use of TMA-DPH to label the plasma membrane.

  14. Linking molecular motors to membrane cargo

    NARCIS (Netherlands)

    A.S. Akhmanova (Anna); J.A. Hammer (John)

    2010-01-01

    textabstractThree types of motors, myosins, kinesins, and cytoplasmic dynein, cooperate to transport intracellular membrane organelles. Transport of each cargo is determined by recruitment of specific sets of motors and their regulation. Targeting of motors to membranes often depends on the formatio

  15. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  16. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Christophe Coutanceau

    2012-07-01

    Full Text Available In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  17. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasts from winter wheat mesophyll cells were observed, and compared with dead protoplasts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasts was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasts were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased. The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40―60 nm, and a range of 1.8―5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12―40 nm for their diameter and 0.7―2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplast. Distribution density of them at plasmalemma was about 16 pits per 15 μm2. According to their

  18. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    SUN DeLan; CHEN JianMin; SONG YanMei; ZHU ChuanFeng; PAN GeBo; WAN LiJun

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasta from winter wheat mesophyll cells were observed, and compared with dead protoplssts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasta was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasta were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased.The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40-60 nm,and a range of 1.8-5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12-40 nm for their diameter and 0.7-2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplsst. Distributlon density of them at plasmalemma was about 16 pits per 15 μm2. According to their size, we

  19. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  20. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  1. Microdomains of SNARE proteins in the plasma membrane

    NARCIS (Netherlands)

    Bogaart, G. van den; Lang, T.; Jahn, R.

    2013-01-01

    Exocytosis is catalyzed by the engagement of SNARE proteins embedded in the plasma membrane with complementary SNAREs in the membrane of trafficking vesicles undergoing exocytosis. In most cells studied so far, SNAREs are not randomly distributed across the plasma membrane but are clustered and

  2. Nanoclustering as a dominant feature of plasma membrane organization

    NARCIS (Netherlands)

    Garcia-Parajo, M.F.; Cambi, A.; Torreno-Pina, J.A.; Thompson, N.; Jacobson, K.

    2014-01-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at

  3. Regulation of Plasma Membrane Recycling by CFTR

    Science.gov (United States)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  4. The mitochondria-plasma membrane contact site.

    Science.gov (United States)

    Westermann, Benedikt

    2015-08-01

    Mitochondria are dynamic organelles that are highly motile and frequently fuse and divide. It has recently become clear that their complex behavior is governed to a large extent by interactions with other cellular structures. This review will focus on a mitochondria-plasma membrane tethering complex that was recently discovered and molecularly analyzed in budding yeast, the Num1/Mdm36 complex. This complex attaches mitochondria to the cell cortex and ensures that a portion of the organelles is retained in mother cells during cell division. At the same time, it supports mitochondrial division and integrates mitochondrial dynamics into cellular architecture. Recent evidence suggests that similar mechanisms might exist also in mammalian cells.

  5. Flow in a rotating membrane plasma separator.

    Science.gov (United States)

    Lueptow, R M; Hajiloo, A

    1995-01-01

    Rotating filter separators are very effective in the separation of plasma from whole blood, but details of the flow field in the device have not been investigated. The flow in a commercial device has been modeled computationally using the finite element code FIDAP. Taylor vortices appear in the upstream end of the annulus but disappear in the downstream end because of increasing blood viscosity as plasma is removed. Fluid transport at the upstream end of the annulus results from both translation of Taylor vortices and fluid winding around the vortices. If the inertial effects of the axial flow are reduced, less fluid winds around the vortices and more fluid is transported by the translation of the vortices. The pressure at the membrane is nonuniform in the region where vortices appear, although the relative magnitude of the fluctuations is small.

  6. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    Science.gov (United States)

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  7. Hydrogen Production from Ammonia Using a Plasma Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Shinji Kambara

    2016-06-01

    Full Text Available In this study, an efficient method for using pulsed plasma to produce hydrogen from ammonia was developed. An original pulsed plasma reactor with a hydrogen separation membrane was developed for efficient hydrogen production, and its hydrogen production performance was investigated. Hydrogen production in the plasma was affected by the applied voltage and flow rate of ammonia gas. The maximum hydrogen production flow rate of a typical plasma reactor was 8.7 L/h, whereas that of the plasma membrane reactor was 21.0 L/h. We found that ammonia recombination reactions in the plasma controlled hydrogen production in the plasma reactor. In the plasma membrane reactor, a significant increase in hydrogen production was obtained because ammonia recombination reactions were inhibited by the permeation of hydrogen radicals generated in the plasma through a palladium alloy membrane. The energy efficiency was 4.42 mol-H2/kWh depending on the discharge power.

  8. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian

    2016-05-12

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  9. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  10. [Updated detection of the function of sperm plasma membrane].

    Science.gov (United States)

    Zhou, Xin; Xia, Xin-Yi; Huang, Yu-Feng

    2010-08-01

    The sperm plasma membrane is rich in polyunsaturated fatty acids and a variety of proteins, and its function is associated with sperm capacitation, acrosome reaction and sperm-egg fusion. Sperm fertilizability can be predicted by detecting the function of the sperm plasma membrane, which is performed mainly with the following five techniques: sperm hypoosmotic swelling test, Eosin gamma water test, sperm membrane lipid peroxidation determination, seminal plasma superoxide dismutase determination, and flow cytometry. The evaluation of the function of sperm plasma membrane can be applied in detecting semen quality, selecting semen centrifugation, assessing the quality and fertilizability of sex-sorted sperm, improving cryopreservation, and guiding the optimization of intracytoplasmic sperm injection. This review presents an update on the principles, methods and steps of the detection of sperm plasma membrane function, as well as an overview of its status quo and application.

  11. Membrane Compartment Occupied by Can1 (MCC and Eisosome Subdomains of the Fungal Plasma Membrane

    Directory of Open Access Journals (Sweden)

    James B. Konopka

    2011-12-01

    Full Text Available Studies on the budding yeast Saccharomyces cerevisiae have revealed that fungal plasma membranes are organized into different subdomains. One new domain termed MCC/eisosomes consists of stable punctate patches that are distinct from lipid rafts. The MCC/eisosome domains correspond to furrows in the plasma membrane that are about 300 nm long and 50 nm deep. The MCC portion includes integral membrane proteins, such as the tetraspanners Sur7 and Nce102. The adjacent eisosome includes proteins that are peripherally associated with the membrane, including the BAR domains proteins Pil1 and Lsp1 that are thought to promote membrane curvature. Genetic analysis of the MCC/eisosome components indicates these domains broadly affect overall plasma membrane organization. The mechanisms regulating the formation of MCC/eisosomes in model organisms will be reviewed as well as the role of these plasma membrane domains in fungal pathogenesis and response to antifungal drugs.

  12. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination.......Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...

  13. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, M.J.T.

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  14. Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells

    Science.gov (United States)

    Roualdes, Stéphanie; Topala, Ionut; Mahdjoub, Habiba; Rouessac, Vincent; Sistat, Philippe; Durand, Jean

    Sulfonated polystyrene-type membranes were synthesized by plasma polymerization of a mixture of styrene and trifluoromethane sulfonic acid monomers in a low-frequency after-glow discharge plasma reactor. Such a deposition process enables the preservation of the monomers structure, which was confirmed by mass spectrometry analysis. The synthesized plasma-polymerized membranes are dense and uniform with a few microns thickness. Their structure determined by Fourier-transform infra-red spectroscopy and X-ray photoelectron spectroscopy is very rich in sulfonic acid groups (up to 5%) and stable up to 120 °C. Even if their intrinsic proton conductivity is low (10 -1 mS cm -1), directly related to their disorganized and highly cross-linked structure, plasma-polymerized membranes present a proton conduction ability similar to Nafion ® because of their low thickness. Due to their highly cross-linked structure, these membranes enable a reduction of the methanol crossover in a factor 10 by comparison with Nafion ®. Thus, the integration of plasma-polymerized films in miniaturized direct methanol fuel cells as proton-exchange membranes seems promising.

  15. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast.

    Science.gov (United States)

    Grossmann, Guido; Opekarová, Miroslava; Malinsky, Jan; Weig-Meckl, Ina; Tanner, Widmar

    2007-01-10

    The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

  16. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  17. Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major Players in Plasma Membrane Nanodomain Formation

    Science.gov (United States)

    Fujimoto, Toyoshi; Parmryd, Ingela

    2017-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence. PMID:28119914

  18. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  19. Identification and role of plasma membrane aquaporin in maize root

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using antiserum against expressed aquaporin fusion protein, GST-RD28, the distribution of aquaporin in the plasma membrane of maize root protoplasts has been examined under confocal laser scanning microscopy by indirect fluorescence staining. Results indicate that there are abundant aquaporins in maize roots, which are distributed in plasma membrane unevenly. Western blotting analysis of total protein solubilized from maize root plasma membrane shows that antiserum against GST-RD28 can cross-react with one protein around 55 ku. Another 28 ku protein can also be detected when the concentration of SDS and DTT in SDS-PAGE sample buffer is increased. The 55 and 28 ku proteins may be dimeric and monomeric of aquaporin respectively. Functional experiments show that aquaporin blocker HgCl2 and aquaporin antiserum can suppress the swelling of maize root protoplasts in hypotonic solution, indicating that aquaporin in plasma membrane of protoplast facilitates rapid transmembrane water flow.

  20. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  1. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    OpenAIRE

    de Laat, S W; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FP...

  2. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  3. Regulation of the Plasma Membrane H+-ATPase

    DEFF Research Database (Denmark)

    Falhof, Janus

    The plasma membrane (PM) H+-ATPase is responsible for generating the electrochemical gradientthat drives the secondary transport of nutrients across the cellular membrane. It belongs to a familyof cation and lipid transporters that are vital to many organisms. PM H+-ATPases are Type P3AATPases...

  4. Autoinhibitory Regulation of Plasma Membrane H+-ATPases

    DEFF Research Database (Denmark)

    Pedersen, Jesper Torbøl

    Electrochemical gradients across cell membranes are essential for nutrient uptake. In plant and fungal cells the electrochemical gradient across the plasma membrane (PM) can build much higher than in mammalian cells. The protein responsible for this gradient is the essential PM H+-ATPase that uses...

  5. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  6. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Directory of Open Access Journals (Sweden)

    Qingqing Lin

    Full Text Available Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM and/or phosphatidylcholine (PC outside/phosphatidylethanolamine (PE and phosphatidylserine (PS inside, and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm" vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  7. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Science.gov (United States)

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  8. Muscle intermediate filaments and their links to membranes and membranous organelles.

    Science.gov (United States)

    Capetanaki, Yassemi; Bloch, Robert J; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  9. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.

    Science.gov (United States)

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-08-09

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent upon plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here, we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together, these discoveries provide new clues to how growth-dependent signals control cell growth and the cell cycle. © 2017 by The American Society for Cell Biology.

  10. There Is No Simple Model of the Plasma Membrane Organization

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  11. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Buch-Pedersen, Morten J; Morth, Jens Preben

    2007-01-01

    define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle......A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi 1, 2......, 3 , and Na+,K+-ATPase (the sodium–potassium pump) in animals 4 . The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis 5 . The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na...

  12. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Buch-Pedersen, Morten J; Morth, Jens Preben;

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi 1, 2......, 3 , and Na+,K+-ATPase (the sodium–potassium pump) in animals 4 . The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis 5 . The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na...... define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle...

  13. There is no simple model of the plasma membrane organisation

    Directory of Open Access Journals (Sweden)

    Jorge Bernardino De La Serna

    2016-09-01

    Full Text Available Ever since technologies enabled the characterisation of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organisation such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasising on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organisation and functionality, leading to a better understanding of this essential cellular structure.

  14. The dynamics of plant plasma membrane proteins: PINs and beyond.

    Science.gov (United States)

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.

  15. Surface modification of nanoporous alumina membranes by plasma polymerization.

    Science.gov (United States)

    Losic, Dusan; Cole, Martin A; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  16. Facilitative plasma membrane transporters function during ER transit.

    Science.gov (United States)

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  17. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    Science.gov (United States)

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  18. Ras diffusion is sensitive to plasma membrane viscosity.

    Science.gov (United States)

    Goodwin, J Shawn; Drake, Kimberly R; Remmert, Catha L; Kenworthy, Anne K

    2005-08-01

    The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.

  19. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  20. Plasma membrane organization and function: moving past lipid rafts.

    Science.gov (United States)

    Kraft, Mary L

    2013-09-01

    "Lipid raft" is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein-protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.

  1. Endosomal recycling controls plasma membrane area during mitosis.

    Science.gov (United States)

    Boucrot, Emmanuel; Kirchhausen, Tomas

    2007-05-08

    The shape and total surface of a cell and its daughters change during mitosis. Many cells round up during prophase and metaphase and reacquire their extended and flattened shape during cytokinesis. How does the total area of plasma membrane change to accommodate these morphological changes and by what mechanism is control of total membrane area achieved? Using single-cell imaging methods, we have found that the amount of plasma membrane in attached cells in culture decreases at the beginning of mitosis and recovers rapidly by the end. Clathrin-based endocytosis is normal throughout all phases of cell division, whereas recycling of internalized membranes back to the cell surface slows considerably during the rounding up period and resumes at the time at which recovery of cell membrane begins. Interference with either one of these processes by genetic or chemical means impairs cell division. The total cell-membrane area recovers even in the absence of a functional Golgi apparatus, which would be needed for export of newly synthesized membrane lipids and proteins. We propose a mechanism by which modulation of endosomal recycling controls cell area and surface expression of membrane-bound proteins during cell division.

  2. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  3. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  4. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    Science.gov (United States)

    Demming, Anna

    2013-03-01

    appearing in the 620-800 nm regions of the absorption spectra. A number of research groups have investigated the possibility of exploiting the plasmonic properties of silver and gold nanostructures for optoelectronic devices [7-9]. The advantages can be quite substantial. Researchers in Korea successfully used silver nanoparticles to obtain a 38% increase in performance of blue LEDs by using silver nanoparticles embedded in p-GaN [10]. The researchers attribute the improvement to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in the silver nanoparticles. In their work reported in this issue Kostya Ostrikov and his co-authors bridge the link between microplasma-assisted electrochemical process parameters and the plasmonic response. As they point out, 'This is an important experimental step towards bringing together plasma chemistry and plasmonics' [1]. All-gas-phase plasma approaches have already been demonstrated for the synthesis of nanoparticles of other metals. X D Pi and colleagues from the University of Minnesota demonstrated how one simple gas-phase process could produce stable silicon nanocrystal emitters with tailored size and surface functionalization [11]. Previously silicon nanocrystals had been prone to emission instabilities in air. Now Ostrikov and colleagues at the University of Sydney, CSIRO Materials Science and Engineering in Australia and the Key Laboratory for Laser Plasmas in China have studied microplasma-assisted electrochemical synthesis of Ag nanoparticles for plasmonic applications [1]. The synthesis uses moderate temperatures and atmospheric pressures and does not involve any toxic reducing agents. In addition they demonstrate how it allows control over nanoparticle size and interparticle spacing to optimize performance in device applications. Despite the overlap in plasma physics and the origins of plasmonic phenomena, studies of the

  5. Plasma membrane electron transport in frog blood vessels

    Indian Academy of Sciences (India)

    Rashmi P Rao; K Nalini; J Prakasa Rao

    2009-12-01

    In an attempt to see if frog blood vessels possess a plasma membrane electron transport system, the postcaval vein and aorta isolated from Rana tigrina were tested for their ability to reduce ferricyanide, methylene blue, and 2,6-dichloroindophenol. While the dyes remained unchanged, ferricyanide was reduced to ferrocyanide. This reduction was resistant to inhibition by cyanide and azide. Heptane extraction or formalin fixation of the tissues markedly reduced the capability to reduce ferricyanide. Denuded aortas retained only 30% of the activity of intact tissue. Our results indicate that the amphibian postcaval vein and aorta exhibit plasma membrane electron transport

  6. Therapeutic plasmapheresis using membrane plasma separation.

    Science.gov (United States)

    Sinha, Aditi; Tiwari, Anand Narain; Chanchlani, Rahul; Seetharamanjaneyulu, V; Hari, Pankaj; Bagga, Arvind

    2012-08-01

    The authors present their experience with therapeutic plasmapheresis (TPE) using membrane filters at the pediatric dialysis unit of a referral center. Between January 2006 and December 2010, 486 sessions of TPE were performed in 39 patients (range 6-17 y), chiefly for atypical hemolytic uremic syndrome (HUS, n = 22), crescentic glomerulonephritis (n = 8) and focal segmental glomerulosclerosis (n = 5). Satisfactory response was noted in 32 patients, particularly with HUS (n = 22) or crescentic glomerulonephritis (n = 6). Adverse effects included chills or urticaria (n = 8 sessions), hypocalcemia (n = 6) and hypotension (n = 5). The present findings highlight the safety, efficacy and feasibility of TPE using membrane filtration.

  7. Magnetic apatite for structural insights on the plasma membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  8. Magnetic apatite for structural insights on the plasma membrane

    Science.gov (United States)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  9. Identification of calcium-binding proteins associated with the human sperm plasma membrane

    National Research Council Canada - National Science Library

    Naaby-Hansen, Soren; Diekman, Alan; Shetty, Jagathpala; Flickinger, Charles J; Westbrook, Anne; Herr, John C

    2010-01-01

    The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation...

  10. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    National Research Council Canada - National Science Library

    Lizard, G; Fournel, S; Genestier, L; Dhedin, N; Chaput, C; Flacher, M; Mutin, M; Panaye, G; Revillard, J P

    1995-01-01

    ... of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display an early desintegration of cytoplasmic membrane and swelling of mitochondria...

  11. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells.

    Science.gov (United States)

    Vilcaes, Aldo A; Demichelis, Vanina Torres; Daniotti, Jose L

    2011-09-09

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition.

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    NARCIS (Netherlands)

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The pre

  14. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  15. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    NARCIS (Netherlands)

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The

  16. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extens

  17. Mammalian gamete plasma membranes re-assessments and reproductive implications

    Science.gov (United States)

    Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...

  18. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in

  19. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  20. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  1. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    2009-01-01

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally, comp

  2. Perforin rapidly induces plasma membrane phospholipid flip-flop.

    Directory of Open Access Journals (Sweden)

    Sunil S Metkar

    Full Text Available The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.

  3. Exclusive photorelease of signalling lipids at the plasma membrane.

    Science.gov (United States)

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  4. Plant Phosphoproteomics: Analysis of Plasma Membrane Transporters by Mass Spectrometry

    DEFF Research Database (Denmark)

    Ye, Juanying; Rudashevskaya, Elena; Young, Clifford

    important physiological functions, such as stomata aperture, cell elongation, or cellular pH regulation. It is known that the activity of plant plasma membrane H+-ATPase is regulated by phosphorylation. Therefore, we first investigated the phosphorylation profile of plant H+-ATPase by enriching...... the phosphopeptides with optimized TiO2 and IMAC enrichment methods prior to MS analysis. We further investigated the global phosphorylation profile of the whole plant plasma membrane proteins using the combination of our recently established phosphopeptide enrichment method, Calcium phosphate precipitation......  Phosphorylation is a key regulatory factor in all aspects of eukaryotic biology including the regulation of plant membrane-bound transport proteins. To date, mass spectrometry (MS) has been introduced as powerful technology for study of post translational modifications (PTMs), including protein...

  5. Lipid signalling dynamics at the β-cell plasma membrane.

    Science.gov (United States)

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  6. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

    Science.gov (United States)

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-01-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909

  7. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    Science.gov (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. PLASMA POLYMERIZATION OF HYDROPHILIC AND HYDROPHOBIC MONOMERS FOR SURFACE MODIFICATION OF NUCLE-MICROPOROUS MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui

    1990-01-01

    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  9. Analysis of lipid-composition changes in plasma membrane microdomains.

    Science.gov (United States)

    Ogiso, Hideo; Taniguchi, Makoto; Okazaki, Toshiro

    2015-08-01

    Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.

  10. A mechanism of raft formation on both plasma membrane layers

    Science.gov (United States)

    Sornbundit, Kan; Modchang, Charin; Triampo, Wannapong; Triampo, Darapond; Nuttavut, Narin

    2013-10-01

    A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

  11. Autoinhibitory Regulation of Plasma Membrane H+-ATPases

    DEFF Research Database (Denmark)

    Pedersen, Jesper Torbøl

    Electrochemical gradients across cell membranes are essential for nutrient uptake. In plant and fungal cells the electrochemical gradient across the plasma membrane (PM) can build much higher than in mammalian cells. The protein responsible for this gradient is the essential PM H+-ATPase that uses...... in mammalian cells and it has been speculated if they have a similar function in plants. In this thesis we show, that plant PM H+-ATPases are receptors for lysophospholipids and the autoinhibitory terminal inhibition is released upon lysophospholipid binding. Finally, we have used a group of stabilizing...

  12. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  13. Remodeling of the postsynaptic plasma membrane during neural development.

    Science.gov (United States)

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.

  15. Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases.

    Science.gov (United States)

    Crespo, Pilar M; Demichelis, Vanina Torres; Daniotti, José L

    2010-09-17

    Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.

  16. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.

  17. The apical plasma membrane of chitin-synthesizing epithelia

    Institute of Scientific and Technical Information of China (English)

    Bernard Moussian

    2013-01-01

    Chitin is the second most abundant polysaccharide on earth.It is produced at the apical side of epidermal,tracheal,fore-,and hindgut epithelial cells in insects as a central component of the protective and supporting extracellular cuticle.Chitin is also an important constituent of the midgut peritrophic matrix that encases the food supporting its digestion and protects the epithelium against invasion by possibly ingested pathogens.The enzyme producing chitin is a glycosyltransferase that resides in the apical plasma membrane forming a pore to extrude the chains of chitin into the extracellular space.The apical plasma membrane is not only a platform for chitin synthases but,probably through its shape and equipment with distinct factors,also plays an important role in orienting and organizing chitin fibers.Here,I review findings on the cellular and molecular constitution of the apical plasma membrane of chitin-producing epithelia mainly focusing on work done in the fruit fly Drosophila melanogaster.

  18. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  19. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    Science.gov (United States)

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  20. Inside job: ligand-receptor pharmacology beneath the plasma membrane.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2013-07-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon.

  1. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    Institute of Scientific and Technical Information of China (English)

    Joseph J BABCOCK; Min LI

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments.However,these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone.Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell.These additional modes of interaction have been reported for functionally diverse ligands of GPCRs,ion channels,and transporters.Such intracellular drug-target engagements affect cell surface expression.Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation.Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites,and the potential therapeutic opportunities presented by this phenomenon.

  2. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    Science.gov (United States)

    Grossmann, Guido; Malinsky, Jan; Stahlschmidt, Wiebke; Loibl, Martin; Weig-Meckl, Ina; Frommer, Wolf B.; Opekarová, Miroslava; Tanner, Widmar

    2008-01-01

    In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins. PMID:19064668

  3. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  4. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M.; Zhu, Xiang; Dai, Sheng

    2014-04-01

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energyand environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to ‘classical’ methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  5. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    Science.gov (United States)

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  6. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels

    OpenAIRE

    Fröhlich, Florian; Christiano, Romain; Olson, Daniel K.; Alcazar-Roman, Abel; DeCamilli, Pietro; Walther, Tobias C

    2014-01-01

    The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain–containing proteins Pi...

  7. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  8. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    NARCIS (Netherlands)

    Rothamel, D.; Schwarz, F.; Sager, M.; Herten, M. van; Sculean, A.; Becker, J.M.

    2005-01-01

    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendE

  9. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  10. Plasma membrane mechanical stress activates TRPC5 channels.

    Directory of Open Access Journals (Sweden)

    Bing Shen

    Full Text Available Mechanical forces exerted on cells impose stress on the plasma membrane. Cells sense this stress and elicit a mechanoelectric transduction cascade that initiates compensatory mechanisms. Mechanosensitive ion channels in the plasma membrane are responsible for transducing the mechanical signals to electrical signals. However, the mechanisms underlying channel activation in response to mechanical stress remain incompletely understood. Transient Receptor Potential (TRP channels serve essential functions in several sensory modalities. These channels can also participate in mechanotransduction by either being autonomously sensitive to mechanical perturbation or by coupling to other mechanosensory components of the cell. Here, we investigated the response of a TRP family member, TRPC5, to mechanical stress. Hypoosmolarity triggers Ca2+ influx and cationic conductance through TRPC5. Importantly, for the first time we were able to record the stretch-activated TRPC5 current at single-channel level. The activation threshold for TRPC5 was found to be 240 mOsm for hypoosmotic stress and between -20 and -40 mmHg for pressure applied to membrane patch. In addition, we found that disruption of actin filaments suppresses TRPC5 response to hypoosmotic stress and patch pipette pressure, but does not prevent the activation of TRPC5 by stretch-independent mechanisms, indicating that actin cytoskeleton is an essential transduction component that confers mechanosensitivity to TRPC5. In summary, our findings establish that TRPC5 can be activated at the single-channel level when mechanical stress on the cell reaches a certain threshold.

  11. Immunoelectron microscopic evidence for Tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jason Hammonds

    2010-02-01

    Full Text Available Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence.

  12. The plasma membrane calcium pumps: focus on the role in (neuro)pathology.

    Science.gov (United States)

    Brini, Marisa; Carafoli, Ernesto; Calì, Tito

    2017-02-19

    The plasma membrane Ca(2+) ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It is organized in the plasma membrane with ten transmembrane helices and two main cytosolic loops, one of which contains the catalytic center. It also contains a long C-terminal tail that houses the binding site for calmodulin, the main regulator of the activity of the pump. The pump also contains a number of other regulators, among them acidic phospholipids, kinases, and numerous protein interactors. Separate genes code for 4 basic pump isoforms in mammals, additional isoform complexity being generated by the alternative splicing of primary transcripts. Pumps 1 and 4 are expressed ubiquitously, pumps 2 and 3 are tissue restricted, with preference for the nervous system. In essentially all cells, the pump coexists with much more powerful systems that clear Ca(2+) from the cytosol, e.g. the SERCA pump and the Na(+)/Ca(2+) exchanger. Its role in the global regulation of cellular Ca(2+) homeostasis is thus quantitatively marginal: its main function is the regulation of Ca(2+) signaling in selected sub-plasma membrane microdomains where Ca(2+) modulated interactors also reside. Malfunctions of the pump linked to genetic mutations are now described with increasing frequency, the disease phenotypes being especially severe in the nervous system where isoforms 2 and 3 predominate. The analysis of the pump defects suggests that the disease phenotypes are likely to be related to the imperfect modulation of Ca(2+) signaling in selected sub-plasma membrane microdomains, leading to the defective control of the activity of important Ca(2+) dependent interactors.

  13. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  14. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  15. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  16. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  17. Plasma membrane repair: the adaptable cell life-insurance.

    Science.gov (United States)

    Jimenez, Ana Joaquina; Perez, Franck

    2017-08-01

    The plasma membrane is the most basic element necessary for the cell to exist and be distinguishable from its environment. Regulated mechanisms allow tightly controlled communication between intacellular and extracellular medium allowing the maintenance of a specific biochemical environment, optimized for cellular functions. The anarchic and uncontrolled opening of a hole in the PM induces a change in the concentration of ions and oxidizing agents perturbing homeostasis. Fortunately, the cell possesses mechanisms that are capable of reacting to sudden extracellular medium entry and to block the leakage locally. Here we summarize the known mechanisms of membrane repair and how the size of the wound and the resulting calcium entry activates preferentially one or another mechanism adapted to the magnitude of the injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Revisiting transbilayer distribution of lipids in the plasma membrane.

    Science.gov (United States)

    Murate, Motohide; Kobayashi, Toshihide

    2016-01-01

    Whereas asymmetric transbilayer lipid distribution in the plasma membrane is well recognized, methods to examine the precise localization of lipids are limited. In this review, we critically evaluate the methods that are applied to study transbilayer asymmetry of lipids, summarizing the factors that influence the measurement. Although none of the present methods is perfect, the current application of immunoelectron microscopy-based technique provides a new picture of lipid asymmetry. Next, we summarize the transbilayer distribution of individual lipid in both erythrocytes and nucleated cells. Finally we discuss the concept of the interbilayer communication of lipids.

  19. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  20. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  1. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    Science.gov (United States)

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  2. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    Science.gov (United States)

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  3. Regulation of Ras signaling and function by plasma membrane microdomains.

    Science.gov (United States)

    Goldfinger, Lawrence E; Michael, James V

    2017-02-07

    Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.

  4. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  5. MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates

    Directory of Open Access Journals (Sweden)

    Yves Dondelinger

    2014-05-01

    Full Text Available Although mixed lineage kinase domain-like (MLKL protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5P and PI(4,5P2 specifically inhibits tumor necrosis factor (TNF-mediated necroptosis but not apoptosis.

  6. Structure and function of thyroid hormone plasma membrane transporters.

    Science.gov (United States)

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  7. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    Science.gov (United States)

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  8. Plasma membrane calcium pump regulation by metabolic stress

    Institute of Scientific and Technical Information of China (English)

    Jason; IE; Bruce

    2010-01-01

    The plasma membrane Ca2+-ATPase(PMCA)is an ATPdriven pump that is critical for the maintenance of low resting[Ca2+]i in all eukaryotic cells.Metabolic stress, either due to inhibition of mitochondrial or glycolytic metabolism,has the capacity to cause ATP depletion and thus inhibit PMCA activity.This has potentially fatal consequences,particularly for non-excitable cells in which the PMCA is the major Ca2+efflux pathway.This is because inhibition of the PMCA inevitably leads to cytosolic Ca2+ overload and the consequent cell death.However,the relationship between metabolic stress,ATP depletion and inhibition of the PMCA is not as simple as one would have originally predicted.There is increasing evidence that metabolic stress can lead to the inhibition of PMCA activity independent of ATP or prior to substantial ATP depletion.In particular,there is evidence that the PMCA has its own glycolytic ATP supply that can fuel the PMCA in the face of impaired mitochondrial function.Moreover, membrane phospholipids,mitochondrial membrane potential,caspase/calpain cleavage and oxidative stress have all been implicated in metabolic stress-induced inhibition of the PMCA.The major focus of this review is to challenge the conventional view of ATP-dependent regulation of the PMCA and bring together some of the alternative or additional mechanisms by which metabolic stress impairs PMCA activity resulting in cytosolic Ca2+ overload and cytotoxicity.

  9. The plasma membrane: Penultimate regulator of ADAM sheddase function.

    Science.gov (United States)

    Reiss, Karina; Bhakdi, Sucharit

    2017-11-01

    ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.

  10. High-Throughput Microplate-Based Assay to Monitor Plasma Membrane Wounding and Repair

    Directory of Open Access Journals (Sweden)

    Sarika Pathak-Sharma

    2017-07-01

    Full Text Available The plasma membrane of mammalian cells is susceptible to disruption by mechanical and biochemical damages that frequently occur within tissues. Therefore, efficient and rapid repair of the plasma membrane is essential for maintaining cellular homeostasis and survival. Excessive damage of the plasma membrane and defects in its repair are associated with pathological conditions such as infections, muscular dystrophy, heart failure, diabetes, and lung and neurodegenerative diseases. The molecular events that remodel the plasma membrane during its repair remain poorly understood. In the present work, we report the development of a quantitative high-throughput assay that monitors the efficiency of the plasma membrane repair in real time using a sensitive microplate reader. In this assay, the plasma membrane of living cells is perforated by the bacterial pore-forming toxin listeriolysin O and the integrity and recovery of the membrane are monitored at 37°C by measuring the fluorescence intensity of the membrane impermeant dye propidium iodide. We demonstrate that listeriolysin O causes dose-dependent plasma membrane wounding and activation of the cell repair machinery. This assay was successfully applied to cell types from different origins including epithelial and muscle cells. In conclusion, this high-throughput assay provides a novel opportunity for the discovery of membrane repair effectors and the development of new therapeutic compounds that could target membrane repair in various pathological processes, from degenerative to infectious diseases.

  11. Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuse; Gásková, Dana; Kucerová, Helena

    2009-05-01

    Microorganisms that survive in natural environments form organized multicellular communities, biofilms and colonies with specific properties. During stress and nutrient limitation, slow growing and senescent cells in such communities retain vital processes by maintaining plasma membrane integrity and retaining the ability to generate transmembrane electrochemical gradients. We report the use of a Saccharomyces cerevisiae colonial model to show that population growth in a multicellular community depends on nutrient diffusion and that resting cells start to accumulate from the beginning of the second acidic phase of colony development. Despite differentiation of colony members, synchronous transmembrane potential oscillation was detected in the organized colony. The electrochemical membrane potential periodically oscillated at frequencies between those for circadian to infradian rhythms during colony aging and transiently decreased at time points previously linked with rebuilding of yeast metabolism. Despite extensive decreases in the intracellular ATP concentration and in the amount and activity of the plasma membrane proton pump during nutrient limited growth and colony aging, the transmembrane electrochemical potential appeared to be maintained above a level critical for population survival.

  12. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.

    Science.gov (United States)

    Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří

    2016-11-07

    Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.

  13. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  14. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  15. Isolation of plasma and nuclear membranes of thymocytes. II. Biochemical composition.

    Science.gov (United States)

    Monneron, A; d'Alayer, J

    1978-04-01

    Thymocyte plasma and nuclear membranes obtained by the procedure described in the accompanying paper were analyzed for their biochemical composition. Plasma membranes were very rich in phospholipid, cholesterol, sialic aicd; they did not contain nucleic acids. In comparison, nuclear membranes had a lower phospholipid to protein ratio and contained much less sialic acid and cholesterol. 50% of the cellular cholesterol and of the membrane-bound sialic acid were found in the plasma membranes, 14% in the nuclear membranes. Live cells were labeled with 131I, and the acid-insoluble radioactivity was followed in the subfractions. A good correlation with the distribution and enrichment of plasma membrane market-enzymes was obtained. Label enrichment was about 50-fold in the two lightest of the three plasma membrane fractions. 60% of the label was contained in the plasma membranes, only 4% in the nuclear membranes. Cross-contamination of these two types of membranes was thus negligible. Sodium dodecyl sulfate-gel electrophoresis revealed three different patterns specific for, respectively, plasma membranes, the microsomal-mitochondrial fraction, and nuclear membranes. Each pattern was characterized by a set of proteins and glycoproteins, among which high molecular weight glycoproteins could be considered as marker-proteins of, respectively, 280,000, 260,000, and 230,000 daltons. 131I-labeling of live cells tagged with a very high specific activity three glycoproteins of mol wt 280,000, 200,000, and 135,000 daltons. Nuclear membranes prepared from labeled isolated nuclei had a set of labeled proteins completely different from plasma membranes.

  16. Border control--a membrane-linked interactome of Arabidopsis.

    Science.gov (United States)

    Jones, Alexander M; Xuan, Yuanhu; Xu, Meng; Wang, Rui-Sheng; Ho, Cheng-Hsun; Lalonde, Sylvie; You, Chang Hun; Sardi, Maria I; Parsa, Saman A; Smith-Valle, Erika; Su, Tianying; Frazer, Keith A; Pilot, Guillaume; Pratelli, Réjane; Grossmann, Guido; Acharya, Biswa R; Hu, Heng-Cheng; Engineer, Cawas; Villiers, Florent; Ju, Chuanli; Takeda, Kouji; Su, Zhao; Dong, Qunfeng; Assmann, Sarah M; Chen, Jin; Kwak, June M; Schroeder, Julian I; Albert, Reka; Rhee, Seung Y; Frommer, Wolf B

    2014-05-16

    Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 × 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, >99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms. Copyright © 2014, American Association for the Advancement of Science.

  17. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium

    Science.gov (United States)

    Brini, Marisa; Carafoli, Ernesto

    2011-01-01

    Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range). PMID:21421919

  18. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  19. A Comparative Study of Hydrophilic Modification of Polypropylene Membranes by Remote and Direct Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suzhen; CHENG Cheng; LAN Yan; MENG Yuedong

    2009-01-01

    Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work]was investigated.It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification,hydrophilicity and graft yield (GY) of the treated membrane.Results suggest that remote plasma treatment with a proper sample position,plasma power and graft polymerization leads to a membrane surface with not only less damage,but also more permanent hydrophilicity,than direct plasma treatment does.By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively,a possible mechanism was tentatively revealed.

  20. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  1. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    Science.gov (United States)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  2. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    Science.gov (United States)

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.

  3. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A1

    Science.gov (United States)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen; Folch-Puy, Emma; Foronjy, Robert; Jalili, Roxana; Jendresen, Christian Bille; Kimura, Masashi; Kraft, Edward; Lindemose, Søren; Lu, Jin; McLain, Teri; Nutt, Leta; Ramon-Garcia, Santiago; Smith, Joseph; Spivak, Aaron; Wang, Michael L.; Zanic, Marija; Lin, Sue-Hwa

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic-bead separation to obtain highly purified plasma membrane proteins from crude membrane preparations or cell lines. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. When these ConA magnetic beads were used to enrich plasma membranes from a crude membrane preparation, this procedure resulted in 3.7-fold enrichment of plasma membrane marker 5′-nucleotidase activity with 70% recovery of the activity in the crude membrane fraction of rat liver. In agreement with the results of 5′-nucleotidase activity, immunoblotting with antibodies specific for a rat liver plasma membrane protein, CEACAM1, indicated that CEACAM1 was enriched about threefold relative to that of the original membranes. In similar experiments, this method produced 13-fold enrichment of 5′-nucleotidase activity with 45% recovery of the activity from a total cell lysate of PC-3 cells and 7.1-fold enrichment of 5′-nucleotidase activity with 33% recovery of the activity from a total cell lysate of HeLa cells. These results suggest that this one-step purification method can be used to isolate total plasma membrane proteins from tissue or cells for the identification of membrane biomarkers. PMID:18765283

  4. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    Energy Technology Data Exchange (ETDEWEB)

    Witt, P.L.; Bownds, M.D.

    1987-03-24

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger.

  5. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane

    Directory of Open Access Journals (Sweden)

    Thomas Graham H

    2010-05-01

    Full Text Available Abstract Background The plasma membrane (PM is a compartment of significant interest because cell surface proteins influence the way in which a cell interacts with its neighbours and its extracellular environment. However, PM is hard to isolate because of its low abundance. Aqueous two-phase affinity purification (2PAP, based on PEG/Dextran two-phase fractionation and lectin affinity for PM-derived microsomes, is an emerging method for the isolation of high purity plasma membranes from several vertebrate sources. In contrast, PM isolation techniques in important invertebrate genetic model systems, such as Drosophila melanogaster, have relied upon enrichment by density gradient centrifugation. To facilitate genetic investigation of activities contributing to the content of the PM sub-proteome, we sought to adapt 2PAP to this invertebrate model to provide a robust PM isolation technique for Drosophila. Results We show that 2PAP alone does not completely remove contaminating endoplasmic reticulum and mitochondrial membrane. However, a novel combination of density gradient centrifugation plus 2PAP results in a robust PM preparation. To demonstrate the utility of this technique we isolated PM from fly heads and successfully identified 432 proteins using MudPIT, of which 37% are integral membrane proteins from all compartments. Of the 432 proteins, 22% have been previously assigned to the PM compartment, and a further 34% are currently unassigned to any compartment and represent candidates for assignment to the PM. The remainder have previous assignments to other compartments. Conclusion A combination of density gradient centrifugation and 2PAP results in a robust, high purity PM preparation from Drosophila, something neither technique can achieve on its own. This novel preparation should lay the groundwork for the proteomic investigation of the PM in different genetic backgrounds in Drosophila. Our results also identify two key steps in this

  6. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    Science.gov (United States)

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that

  7. Glycosidases in the plasma membrane of Ceratitis capitata spermatozoa.

    Science.gov (United States)

    Intra, Jari; De Caro, Daniela; Perotti, Maria-Elisa; Pasini, Maria Enrica

    2011-02-01

    Fruit flies in the family Tephritidae are rated among the world's most destructive agricultural pests. The Mediterranean fruit fly Ceratitis capitata is emerging as a model organism to study the fertilization in Insects. Three integral proteins with glycosidase activity are present in the plasma membrane of spermatozoa. The glycosidases have been purified and characterized. We have demonstrated the presence of three enzymes, a β-N-acetylhexosaminidase, an α-mannosidase and an α-l-fucosidase. The molecular mass of the native enzymes estimated by gel filtration was 160 kDa for β-N-acetylhexosaminidase, 310 kDa for α-mannosidase and 140 kDa for α-l-fucosidase. SDS-PAGE showed that β-N-acetylhexosaminidase is a dimer of a single protein of 73 kDa, α-mannosidase consists of six subunits with different molecular weights and α-l-fucosidase is a dimer made up by two different monomers. Characterization of the purified enzymes included glycosylation pattern, pI, optimal pH, substrate preference, kinetic properties and thermal stability. Soluble forms similar to the sperm associated glycosidases are present. Polyclonal antibodies raised against synthetic peptides designed from the predicted products of the Drosophila melanogaster genes encoding β-N-acetylhexosaminidase and α-l-fucosidase were used. Immunofluorescence labelling of spermatozoa showed that the enzymes are present in the sperm plasma membrane overlying the acrosome and the tail. This work represents the first report on the characterization in C. capitata of sperm proteins that are potentially involved in primary gamete recognition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Intrarenal localization of the plasma membrane ATP channel pannexin1.

    Science.gov (United States)

    Hanner, Fiona; Lam, Lisa; Nguyen, Mien T X; Yu, Alan; Peti-Peterdi, János

    2012-11-15

    In the renal tubules, ATP released from epithelial cells stimulates purinergic receptors, regulating salt and water reabsorption. However, the mechanisms by which ATP is released into the tubular lumen are multifaceted. Pannexin1 (Panx1) is a newly identified. ubiquitously expressed protein that forms connexin-like channels in the plasma membrane, which have been demonstrated to function as a mechanosensitive ATP conduit. Here, we report on the localization of Panx1 in the mouse kidney. Using immunofluorescence, strong Panx1 expression was observed in renal tubules, including proximal tubules, thin descending limbs, and collecting ducts, along their apical cell membranes. In the renal vasculature, Panx1 expression was localized to vascular smooth muscle cells in renal arteries, including the afferent and efferent arterioles. Additionally, we tested whether Panx1 channels expressed in renal epithelial cells facilitate luminal ATP release by measuring the ATP content of urine samples freshly collected from wild-type and Panx1(-/-) mice. Urinary ATP levels were reduced by 30% in Panx1(-/-) compared with wild-type mice. These results suggest that Panx1 channels in the kidney may regulate ATP release and via purinergic signaling may participate in the control of renal epithelial fluid and electrolyte transport and vascular functions.

  10. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  11. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    Science.gov (United States)

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  12. pH-induced proton permeability changes of plasma membrane vesicles

    NARCIS (Netherlands)

    Miedema, H; Prins, HBA; Staal, H.

    In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles.

  13. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the

  14. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lip

  15. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard

    2013-01-01

    Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane...

  16. Interaction between La(III) and proteins on the plasma membrane of horseradish

    Science.gov (United States)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  17. Enzymes of phosphoinositide synthesis in secretory vesicles destined for the plasma membrane in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kinney, A J; Carman, G M

    1990-07-01

    CDP-diacylglycerol synthase, phosphatidylinositol synthase, and phosphatidylinositol kinase activities were associated with post-Golgi apparatus secretory vesicles destined for the plasma membrane of Saccharomyces cerevisiae. These results suggest that the plasma membrane is capable of synthesizing both CDP-diacylglycerol and phosphatidylinositol as well as phosphorylating phosphatidylinositol.

  18. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    1994-01-01

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  19. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A

    DEFF Research Database (Denmark)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen;

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membran...

  20. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    Science.gov (United States)

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs.

  1. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  2. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  3. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  4. Red wine activates plasma membrane redox system in human erythrocytes.

    Science.gov (United States)

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  5. Existence and characteristics of nitrate reductase in plasma membrane of maize roots

    Institute of Scientific and Technical Information of China (English)

    陈珈; 王学臣

    1995-01-01

    The existence and characteristics of nitrate reductase (NR) have been investigated with microsomes and purified plasma membrane vesicles (RV and IV) from the primary root tips of maize (Zea mays L.). An integral membrane protein capable of reducing nitrate is presented in the plasma membrane which is obviously different from the soluble cytoplasmic NR in respect of NO3- induction and Triton X-100 activation Plasma membrane-bound NR did not have direct coupling relationship with the transmembrane H-transport, however, it could inhibit the electron transmission from NADH to K3[Fe(CN)6]. The possible action mode of plasma membrane redox system that the membrane-bound NR is involved in is discussed.

  6. The isolation of plasma membrane from protoplasts of soybean suspension cultures.

    Science.gov (United States)

    Galbraith, D W; Northcote, D H

    1977-04-01

    A procedure for the isolation of plasma membranes from protoplasts of suspension-cultured soybean is described. Protoplasts were prepared by enzymic digestion of the cell wall and the plasma membrane was labelled with radioactive diazotized sulphanilic acid. The membrane systems from broken protoplasts were separated by continuous isopycnic sucrose gradient centrifugation. Radioactivity was localized in a band possessing a buoyant density of 1-14 g ml-1. The activities of NADPH- and NADH-cytochrome c reductase, fumarase, Mg2+-ATPase, IDPase and acid phosphodiesterase in the various regions of the density gradient were determined. A plasma membrane fraction was selected which was relatively uncontaminated with membranes derived from endoplasmic reticulum, tonoplasts and mitochondria. The results indicated that Mg2+-ATPase and possibly acid phosphodiesterase were associated with the plasma membrane.

  7. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina;

    2009-01-01

    domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  8. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review.

    Science.gov (United States)

    Kochkodan, Victor M; Sharma, Virender K

    2012-01-01

    This article presents a review of recent developments in surface modification of polymer membranes via graft polymerization and plasma treatment for reduction of fouling with organic compounds and microorganisms in pressure driven membrane processes. The factors affecting membrane fouling, such as membrane hydrophilicity, charge and surface roughness are discussed. The recent studies in which the reduction of organic fouling and biofouling by the modification of the membrane surface via ultraviolet/redox initiated surface grafting of hydrophilic polymers and low temperature plasma treatment are reviewed.

  9. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  10. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  11. Preliminary study on plasma membrane fluidity of Psychrophilic Yeast Rhodotorula sp. NJ298 in low temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The ability of cell to modulate the fluidity of plasma membrane was crucial to the survival of microorganism at low temperature. Plasma membrane proteins, fatty acids and carotenoids profiles of Antarctic psychrophilc yeast Rhodotorula sp. NJ298 were investigated at -3 ℃, 0 ℃ and 8 ℃. The results showed that plasma membrane protein content was greater at -3 ℃ than that at 8 ℃, and a unique membrane polypeptide composition with an apparent molecular mass of 94.7 kDa was newly synthesized with SDS-PAGE analysis; GC analysis showed that the main changes of fatty acids were the percentage of unsaturated fatty acids (C18∶ 1 and C18∶ 2) and shorter chain saturated fatty acid (C10∶ 0) increased along with the decrease of the culture temperature from 8 ℃ to -3 ℃; HPLC analysis indicated that astaxanthin was the major functional carotenoids of the plasma membrane, percentage of which increased from 54.6±1.5% at 8 ℃ to 81.9±2.1% at -3 ℃. However the fluidity of plasma membrane which was determined by measuring fluorescence anisotropy was similar at -3 ℃, 0 ℃ and 8 ℃. Hence these changes in plasma membrane's characteristics were involved in the cellular cold-adaptation by which NJ298 could maintain normal plasma membrane fluidity at near-freezing temperature.

  12. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    Science.gov (United States)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  13. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  14. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  15. Thylakoid membrane maturation and PSII activation are linked in greening Synechocystis sp. PCC 6803 cells.

    Science.gov (United States)

    Barthel, Sandra; Bernát, Gábor; Seidel, Tobias; Rupprecht, Eva; Kahmann, Uwe; Schneider, Dirk

    2013-10-01

    Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, "greening" of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs.

  16. Lateral diffusion of phospholipids in the plasma membrane of soybean protoplasts: Evidence for membrane lipid domains.

    Science.gov (United States)

    Metcalf, T N; Wang, J L; Schindler, M

    1986-01-01

    Fluorescent lipid and phospholipid probes were incorporated at 4 degrees C into soybean protoplasts prepared from cultured soybean (SB-1) cells. Fluorescence microscopy showed that the plasma membrane as well as the nucleus were labeled. Fluorescence redistribution after photobleaching (FRAP) analysis was performed on these cells at 18 degrees C to monitor the lateral mobility of the incorporated probes. After labeling at low concentrations (40 mug/ml) of phosphatidyl-N-(4-nitrobenzo-2-oxa-1,3-diazolyl)ethanolamine (NBD-PtdEtn), a single mobile component was observed with a diffusion coefficient (D) of approximately 3 x 10(-9) cm(2)/sec. After labeling at higher probe concentrations (>/=100 mug/ml), two diffusing species were observed, with diffusion coefficients of approximately 3 x 10(-9) cm(2)/sec ("fast") and approximately 5 x 10(-10) cm(2)/sec ("slow"). Similar results were observed with fluorescent derivatives of phosphatidylcholine and fatty acids. In contrast to these results, parallel analysis of 3T3 fibroblasts, using the same probes and conditions, yielded only a single diffusion component. These results suggest that the soybean plasma membrane may contain two distinct lipid domains in terms of lipid mobility. Consistent with this idea, experiments with soybean protoplasts yielded a single diffusion component under the following conditions: (i) labeling with NBD-PtdEtn (100 mug/ml), FRAP analysis at 37 degrees C (D = 1.1 x 10(-8) cm(2)/sec); (ii) labeling with NBD-PtdEtn (100 mug/ml), FRAP analysis at 18 degrees C in the presence of 2 mM EGTA (D = 4.2 x 10(-9) cm(2)/sec); (iii) labeling with 5-(N-dodecanoyl)aminofluorescein (a short-chain lipid probe), FRAP analysis at 18 degrees C or 37 degrees C (D = 2.5 x 10(-8) cm(2)/sec). These results suggest that the plasma membrane of soybean cells may contain stable immiscible domains of fluid and gel-like lipids.

  17. Perspective on plasma membrane cholesterol efflux and spermatozoal function

    Directory of Open Access Journals (Sweden)

    Dhastagir Sultan Sheriff

    2010-01-01

    techniques for enhancing fertility, identifying and treating certain forms of male infertility, and preventing conception. One remarkable insight is the importance of membrane cholesterol efflux in initiating transmembrane signaling events that confer fertilization competence. The identity of the physiologically relevant cholesterol acceptors and modulators of cholesterol efflux is therefore of great interest. Still, it is clear that cholesterol efflux represents only a part of this story. The involvement of phospholipid translocation in mediating dynamic changes in the membrane, rendering it conducive to transmembrane signaling, and the modulation of membrane components of signal transduction cascades by cholesterol or phospholipids will yield important insights into the links between environmental sensing and transmembrane signaling in the sperm. Understanding the membrane molecular events will ultimately provide new and exciting areas of investigation for the future.

  18. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  19. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Nanoscale effects of ethanol and naltrexone on protein organization in the plasma membrane studied by photoactivated localization microscopy (PALM.

    Directory of Open Access Journals (Sweden)

    Steven J Tobin

    Full Text Available BACKGROUND: Ethanol affects the signaling of several important neurotransmitter and neuromodulator systems in the CNS. It has been recently proposed that ethanol alters the dynamic lateral organization of proteins and lipids in the plasma membrane, thereby affecting surface receptor-mediated cellular signaling. Our aims are to establish whether pharmacologically relevant levels of ethanol can affect the lateral organization of plasma membrane and cytoskeletal proteins at the nanoscopic level, and investigate the relevance of such perturbations for mu-opioid receptor (MOP function. METHODOLOGY/PRINCIPAL FINDINGS: We used Photoactivated Localization Microscopy with pair-correlation analysis (pcPALM, a quantitative fluorescence imaging technique with high spatial resolution (15-25 nm and single-molecule sensitivity, to study ethanol effects on protein organization in the plasma membrane. We observed that short (20 min exposure to 20 and 40 mM ethanol alters protein organization in the plasma membrane of cells that harbor endogenous MOPs, causing a rearrangement of the lipid raft marker glycosylphosphatidylinositol (GPI. These effects could be largely occluded by pretreating the cells with the MOP antagonist naltrexone (200 nM for 3 hours. In addition, ethanol induced pronounced actin polymerization, leading to its partial co-localization with GPI. CONCLUSIONS/SIGNIFICANCE: Pharmacologically relevant levels of ethanol alter the lateral organization of GPI-linked proteins and induce actin cytoskeleton reorganization. Pretreatment with the MOP antagonist naltrexone is protective against ethanol action and significantly reduces the extent to which ethanol remodels the lateral organization of lipid-rafts-associated proteins in the plasma membrane. Super-resolution pcPALM reveals details of ethanol action at the nanoscale level, giving new mechanistic insight on the cellular and molecular mechanisms of its action.

  1. TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment

    DEFF Research Database (Denmark)

    Thingholm, Tine; Larsen, Martin Røssel; Ingrell, Christian

    2008-01-01

    of the plasma membrane phosphoproteome are challenging. We present an optimized analytical strategy for plasma membrane phosphoproteomics that combines efficient plasma membrane protein preparation with TiO 2-based phosphopeptide enrichment and high-performance mass spectrometry for phosphopeptide sequencing...

  2. Sperm-Egg Interaction: Evidence for Boar Sperm Plasma Membrane Receptors for Porcine Zona Pellucida

    Science.gov (United States)

    Peterson, Rudolph N.; Russell, Lonnie; Bundman, Donna; Freund, Matthew

    1980-01-01

    Freshly ejaculated, noncapacitated boar sperm bind rapidly and in large numbers to pig egg zona pellucida in vitro. In the present study, the number of sperm bound decreased sharply when sperm motility was lowered by energy poisons or by reducing the temperature. Highly motile sperm from humans, guinea pigs, and rats, added at concentrations ten times higher than control sperm, did not bind to the porcine zona. At the same high concentration, a small number of hamster and bull sperm bound to the zona. Binding of boar sperm to the zona pellucida was blocked almost completely by diluted whole antiserum to sperm plasma membranes and by univalent (Fab) antibody to these membranes. When antibody to sperm plasma membrane was first absorbed with plasma membrane vesicles, sperm binding was not inhibited. These results provide direct evidence for the existence of sperm plasma membrane receptors for the zona pellucida of the pig.

  3. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chenyu; Deng, Jia [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Xiang, Lin; Wu, Yingying [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wei, Xiawei [State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 (China); Qu, Yili [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Man, Yi, E-mail: manyi780203@126.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  4. Plasma Membrane H+-ATPase in Maize Roots Induced for NO3- Uptake.

    Science.gov (United States)

    Santi, S.; Locci, G.; Pinton, R.; Cesco, S.; Varanini, Z.

    1995-12-01

    Plasma membrane H+-ATPase was studied in maize (Zea mays L.) roots induced for NO3- uptake. Membrane vesicles were isolated by means of Suc density gradient from roots exposed for 24 h either to 1.5 mM NO3- or 1.5 mM SO4-. The two populations of vesicles had similar composition as shown by diagnostic inhibitors of membrane-associated ATPases. However, both ATP-dependent intravesicular H+ accumulation and ATP hydrolysis were considerably enhanced (60-100%) in vesicles isolated from NO3--induced roots. Km for Mg:ATP and pH dependency were not influenced by NO3- treatment of the roots. ATP hydrolysis in plasma membrane vesicles for both control and NO3--induced roots was not affected by 10 to 150 mM NO3- or Cl-. On the other hand, kinetics of NO3-- or Cl--stimulated ATP-dependent intravesicular H+ accumulation were modified in plasma membrane vesicles isolated from NO3-- induced roots. Immunoassays carried out with polyclonal antibodies against plasma membrane H+-ATPase revealed an increased steady-state level of the enzyme in plasma membrane vesicles isolated from NO3--induced roots. Results are consistent with the idea of an involvement of plasma membrane H+-ATPase in the overall response of roots to NO3-.

  5. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion.

    Science.gov (United States)

    Petkovic, Maja; Jemaiel, Aymen; Daste, Frédéric; Specht, Christian G; Izeddin, Ignacio; Vorkel, Daniela; Verbavatz, Jean-Marc; Darzacq, Xavier; Triller, Antoine; Pfenninger, Karl H; Tareste, David; Jackson, Catherine L; Galli, Thierry

    2014-05-01

    Development of the nervous system requires extensive axonal and dendritic growth during which neurons massively increase their surface area. Here we report that the endoplasmic reticulum (ER)-resident SNARE Sec22b has a conserved non-fusogenic function in plasma membrane expansion. Sec22b is closely apposed to the plasma membrane SNARE syntaxin1. Sec22b forms a trans-SNARE complex with syntaxin1 that does not include SNAP23/25/29, and does not mediate fusion. Insertion of a long rigid linker between the SNARE and transmembrane domains of Sec22b extends the distance between the ER and plasma membrane, and impairs neurite growth but not the secretion of VSV-G. In yeast, Sec22 interacts with lipid transfer proteins, and inhibition of Sec22 leads to defects in lipid metabolism at contact sites between the ER and plasma membrane. These results suggest that close apposition of the ER and plasma membrane mediated by Sec22 and plasma membrane syntaxins generates a non-fusogenic SNARE bridge contributing to plasma membrane expansion, probably through non-vesicular lipid transfer.

  6. Cholesterol:phospholipid ratio is elevated in platelet plasma membrane in patients with hypertension.

    Science.gov (United States)

    Benjamin, N; Robinson, B F; Graham, J G; Wilson, R B

    1990-06-01

    The cholesterol:phospholipid ratio was measured in platelet plasma membrane, red blood cell (RBC) membranes, low density lipoprotein (LDL) and whole plasma in patients with primary hypertension and in matched normal controls. The cholesterol:phospholipid ratio was raised in the platelet membrane from hypertensive patients compared with that from normal controls (0.65 +/- 0.03 vs 0.53 +/- 0.02: mean +/- SEM; P less than 0.01). The ratio observed in RBC membranes, LDL and whole blood was similar in the two groups. If this abnormality in the lipid composition of platelet plasma membrane is present in other cells it could account for some of the changes in cell membrane function that have been described in hypertension.

  7. The strength of side chain hydrogen bonds in the plasma membrane

    Science.gov (United States)

    Hristova, Kalina; Sarabipour, Sarvenaz

    2013-03-01

    There are no direct quantitative measurements of hydrogen bond strengths in membrane proteins residing in their native cellular environment. To address this knowledge gap, here we use fluorescence resonance energy transfer (FRET) to measure the impact of hydrogen bonds on the stability of a membrane protein dimer in vesicles derived from eukaryotic plasma membranes, and we compare these results to previous measurements of hydrogen bond strengths in model lipid bilayers. We demonstrate that FRET measurements of membrane protein interactions in plasma membrane vesicles have the requisite sensitivity to quantify the strength of hydrogen bonds. We find that the hydrogen bond-mediated stabilization in the plasma membrane is small, only -0.7 kcal/mole. It is the same as in model lipid bilayers, despite the different nature and dielectric properties of the two environments.

  8. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    Science.gov (United States)

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  9. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...... with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane....

  10. Cryodamage to plasma membrane integrity in head and tail regions of human sperm

    Institute of Scientific and Technical Information of China (English)

    Wei-JieZHU; Xue-GaoLIU

    2000-01-01

    Aim: To investigate the effect of cryopreservation on the plasma membrane integrity in the head and tail regions of individual sperm, and the relationship between intact cryopreserved sperm and its motility and zona-free hamster oocyte penetration rate. Methods: The eosin Y exclusion and the hypoosmotic swelling tests were combined to form a single test (HOS-EY test) to identify the spermatozoa with four types of membrane integrity. Results: After cryopreservation, there was a marked decline in the percentage of spermatozoa with Type IV membrane integrity (head membrane intact/tail membrane intact), and a significant increase in those with Type Ⅰ (head membrane damaged/tail membrane damaged) and Type Ⅲ (head membrane damaged/tail membrane intact) membrane integrity (n = 50, P0.05). Conclusion: (1) The HOS-EY test has the advantage of showing four patterns of membrane integrity in individual spermatozoon; (2) Cryopreservation causes a significant membrane rupture in the head and tail regions of spermatozoa; Type IT[ is the main transitional state of membrane cryodamage; (3) Cryodamage to head and tail membrane may occur independently; the presence of an intact tail membrane does not necessarily indicate the intactness of head membrane. (4) Intact membranes am closely related to postthaw motility, but do not reflect the fertilizing potential.

  11. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    Science.gov (United States)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  12. Plasma membrane calcium pumps and their emerging roles in cancer

    Institute of Scientific and Technical Information of China (English)

    Sarah; J; Roberts-Thomson; Merril; C; Curry; Gregory; R; Monteith

    2010-01-01

    Alterations in calcium signaling and/or the expression of calcium pumps and channels are an increasingly recognized property of some cancer cells.Alterations in the expression of plasma membrane calcium ATPase(PMCA) isoforms have been reported in a variety of cancer types,including those of breast and colon,with some studies of cancer cell line differentiation identifying specific PMCA isoforms,which may be altered in some cancers.Some studies have also begun to assess levels of PMCA isoforms in clinical tumor samples and to address mechanisms of altered PMCA expression in cancers.Both increases and decreases in PMCA expression have been reported in different cancer types and in many cases these alterations are isoform specific.In this review,we provide an overview of studies investigating the expression of PMCA in cancer and discuss how both the overexpression and reduced expression of a PMCA isoform in a cancer cell could bestow a growth advantage,through augmenting responses to proliferative stimuli or reducing sensitivity to apoptosis.

  13. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    Directory of Open Access Journals (Sweden)

    Laura Paparelli

    2016-09-01

    Full Text Available Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH. We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

  14. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    Science.gov (United States)

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  15. Liquid general anesthetics lower critical temperatures in plasma membrane vesicles

    CERN Document Server

    Gray, Ellyn; Machta, Benjamin B; Veatch, Sarah L

    2013-01-01

    A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand gated ion channels. Here we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4{\\deg}C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critic...

  16. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  17. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    Science.gov (United States)

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Wakefield, Devin L; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-09-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

  18. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  19. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  20. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane.

    Science.gov (United States)

    Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi

    2016-09-13

    Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p membrane of sperm head which could improve sperm plasma membrane integrity.

  1. Estradiol Modulates Membrane-Linked ATPases, Antioxidant Enzymes, Membrane Fluidity, Lipid Peroxidation, and Lipofuscin in Aged Rat Liver

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2011-01-01

    Full Text Available Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase, antioxidant enzymes (superoxide dismutase, glutathione-S-transferase, lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2. The aged rats (12 and 24 months were given subcutaneous injection of E2 (0.1 μg/g body weight daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses.

  2. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  3. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  4. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Science.gov (United States)

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  5. alpha-Synuclein fission yeast model: concentration-dependent aggregation without plasma membrane localization or toxicity.

    Science.gov (United States)

    Brandis, Katrina A; Holmes, Isaac F; England, Samantha J; Sharma, Nijee; Kukreja, Lokesh; DebBurman, Shubhik K

    2006-01-01

    Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because alpha-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates alpha-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for alpha-synuclein misfolding and aggregation. In support of the hypothesis, wild-type and A53T alpha-synuclein formed prominent intracellular cytoplasmic inclusions within fission yeast cells in a concentration- and time-dependent manner, whereas A30P and A30P/A53T remained diffuse throughout the cytoplasm. A53T alpha-synuclein formed aggregates faster than wild-type alpha-synuclein and at a lower alpha-synuclein concentration. Unexpectedly, unlike in budding yeast, wild-type and A53T alpha-synuclein did not target to the plasma membrane in fission yeast, not even at low alpha-synuclein concentrations or as a precursor step to forming aggregates. Despite alpha-synuclein's extensive aggregation, it was surprisingly nontoxic to fission yeast. Future genetic dissection might yield molecular insight into this protection against toxicity. We speculate that alpha-synuclein toxicity might be linked to its membrane binding capacity. To conclude, S. pombe and S. cerevisiae model similar yet distinct aspects of alpha-synuclein biology, and both organisms shed insight into alpha-synuclein's role in PD pathogenesis.

  6. [Interaction of FABP4 with plasma membrane proteins of endothelial cells].

    Science.gov (United States)

    Saavedra, Paula; Girona, Josefa; Aragonès, Gemma; Cabré, Anna; Guaita, Sandra; Heras, Mercedes; Masana, Lluís

    2015-01-01

    Fatty acid binding protein (FABP4) is an adipose tissue-secreted adipokine implicated in the regulation of the energetic metabolism and inflammation. High levels of circulating FABP4 have been described in people with obesity, atherogenic dyslipidemia, diabetes and metabolic syndrome. Recent studies have demonstrated that FABP4 could have a direct effect on peripheral tissues and, specifically, on vascular function. It is still unknown how the interaction between FABP4 and the endothelial cells is produced to prompt these effects on vascular function. The objective of this work is studying the interaction between FABP4 and the plasma membrane proteins of endothelial cells. HUVEC cells were incubated with and without FABP4 (100 ng/ml) for 5 minutes. Immunolocalization of FABP4 was studied by confocal microscopy. The results showed that FABP4 colocalizates with CD31, a membrane protein marker. A strategy which combines 6XHistidine-tag FABP4 (FABP4-His), incubations with or without FABP4-His (100 ng/ml), formaldehyde cross-linking, cellular membrane protein extraction and western blot, was designed to study the FABP4 interactions with membrane proteins of HUVECs. The results showed different western blot profiles depending of the incubation with or without FABP4-His. The immunoblot revelead three covalent protein complexes of about 108, 77 and 33 kDa containing FAPB4 and its putative receptor. The existence of a specific binding protein complex able to bind FABP4 to endothelial cells is supported by these results. The obtained results will permit us advance in the molecular knowledge of FABP4 effects as well as use this protein and its receptor as therapeutic target to prevent cardiovascular. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  7. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  8. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  9. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  10. Plasma membrane organization and dynamics is probe and cell line dependent.

    Science.gov (United States)

    Huang, Shuangru; Lim, Shi Ying; Gupta, Anjali; Bag, Nirmalya; Wohland, Thorsten

    2017-09-01

    The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (EArr) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and EArr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue

  11. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    Science.gov (United States)

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  12. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments

    DEFF Research Database (Denmark)

    Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole N;

    2012-01-01

    Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric...

  13. Laser induced wounding of the plasma membrane and methods to study the repair process.

    Science.gov (United States)

    Jimenez, Ana J; Maiuri, Paolo; Lafaurie-Janvore, Julie; Perez, Franck; Piel, Matthieu

    2015-01-01

    Cells are constantly exposed to agents that can trigger the perforation of their plasma membrane. This damage occurs naturally, and the frequency and intensity depends on how much cells are exposed to damaging threats. The following protocol is a simple and powerful method to damage the plasma membrane using laser ablation. It allows the induction of a single and localized wound at the plasma membrane of cultured cells, which can be followed with fast time-lapse imaging. The first part of the protocol describes simple cell culture techniques and the material ideal to make the experiments. A second part of the protocol gives advice about the procedures to make effective wounds in cells while ensuring a good survival rate. We also propose different ways to follow the opening and closure of the plasma membrane. Finally, we describe the procedure to efficiently analyze the data acquired after single cell photodamage to characterize the wounding process.

  14. Plasma membrane proteomics and its application in clinical cancer biomarker discovery

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Ditzel, Henrik J

    2010-01-01

    Plasma membrane proteins that are exposed on the cell surface have important biological functions, such as signaling into and out of the cells, ion transport, and cell-cell and cell-matrix interactions. The expression level of many of the plasma membrane proteins involved in these key functions...... targeted by protein drugs, such as human antibodies, that have enhanced survival of several groups of cancer patients. The combination of novel analytical approaches and subcellular fractionation procedures has made it possible to study the plasma membrane proteome in more detail, which will elucidate...... cancer biology, particularly metastasis, and guide future development of novel drug targets. The technical advances in plasma membrane proteomics and the consequent biological revelations will be discussed herein. Many of the advances have been made using cancer cell lines, but because the main goal...

  15. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding...... assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1....... In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  16. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular,

  17. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...... into soluble nanoscale lipid bilayers, also termed nanodiscs. Extensive analysis confirms the correct assembly and reconstitution of active proton pump into nanodiscs. The pump inserts as a monomer, which through activity analysis confirms this as the minimal functional unit of the plasma membrane H......+-ATPase. Reconstitution of the H+-ATPase into nanodiscs has the potential to enable structural and functional characterization using various techniques, exemplified by the specific immobilization of reconstituted proton pump using surface plasma resonance. The ability to efficiently separate empty from membrane protein...

  18. Involvement of Plasma Membrane H+-ATPase in Adaption of Rice to Ammonium Nutrient

    Institute of Scientific and Technical Information of China (English)

    ZHU Yi-yong; LIAN Juan; ZENG Hou-qing; LIU GAN; DI Ting-jun; SHEN Qi-rong; XU Guo-hua

    2011-01-01

    The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption.However,the adaptation of rice root to low pH has not been fully elucidated.The plasma membrane H+-ATPase is a universal electronic H+ pump,which uses ATP as energy source to pump H+ across the plasma membranes into the apoplast.The key function of this enzyme is to keep pH homeostasis of plant cells and generate a H+ electrochemical gradient,thereby providing the driving force for the active influx and efflux of ions and metabolites across the plasma membrane.This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH.This mechanism might be partly responsible for the preference of rice plants to NH4+ nutrition.

  19. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  20. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes

    Science.gov (United States)

    Veatch, Sarah

    2013-03-01

    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  1. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    KAUST Repository

    Xu, Sheng

    2015-12-01

    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2\\'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3\\',4,4\\'-benzophenone tetracarboxylic dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  2. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    Science.gov (United States)

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  3. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-02-17

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  4. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    OpenAIRE

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-di...

  5. The plasma membrane redox system: a candidate source of aging-related oxidative stress

    OpenAIRE

    de Grey, Aubrey D. N. J

    2005-01-01

    The plasma membrane redox system (PMRS) is an electron transport chain in the plasma membrane that transfers electrons from either intra- or extracellular donors to extracellular acceptors. Unlike the superoxide-generating NADPH oxidase of phagocytes and the homologous (but much less active) enzymes found in some other cells, the PMRS is still incompletely characterised at the molecular level. Much is known, however, concerning its function and affinity for both physiological and non-physiolo...

  6. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen;

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt...

  7. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation.

    Science.gov (United States)

    Veríssimo, D M; Leitão, R F C; Ribeiro, R A; Figueiró, S D; Sombra, A S B; Góes, J C; Brito, G A C

    2010-10-01

    The ultimate goal of periodontal therapy is to control periodontal tissue inflammation and to produce predictable regeneration of that part of the periodontium which has been lost as a result of periodontal disease. In guided tissue regeneration membranes function as mechanical barriers, excluding the epithelium and gingival corium from the root surface and allowing regeneration by periodontal ligament cells. This report aims to study the effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen (PAC) membranes by conducting a histological evaluation of the tissue response (biocompatibility) and by assessing the biodegradation of subcutaneous membrane implants in rats. We studied six different samples: a PAC, a PAC mineralized by alternate soaking processes for either 25 or 75 cycles (PAC 25 and PAC 75, respectively) and these films cross-linked by GA. Inflammatory infiltrate, cytokine dosage, fibrosis capsule thickness, metalloproteinase immunohistochemistry and membrane biodegradation after 1, 7, 15 and 30 days were measured. The inflammatory response was found to be more intense in membranes without cross-linking, while the fibrosis capsules became thicker in cross-linked membranes after 30 days. The membranes without cross-linking suffered intense biodegradation, while the membranes with cross-linking remained intact after 30 days. The cross-linking with GA reduced the inflammatory response and prevented degradation of the membranes over the entire course of the observation period. These membranes are thus an attractive option when the production of new bone depends on the prolonged presence of a mechanical barrier.

  8. [Use of native and cross-linked collagen membranes for guided tissue and bone regeneration].

    Science.gov (United States)

    Schwarz, Frank; Sager, Martin; Rothamel, Daniel; Herten, Monika; Sculean, Anton; Becker, Jürgen

    2006-01-01

    A material which is used as a barrier for GBR/GTR procedures has to satisfy several physicochemical characteristics such as biocompatibility, tissue integration, barrier function, and dimensional stability. Recently, many investigations reported on the use of products derived from type I and type III porcine or bovine collagen. Collagen membranes are predominantly resorbed by enzymatic activity (protease and collagenase). To decrease resorption, various physical and chemical cross-linking techniques have been used. Although nowadays cross-linking of collagen seems to be a commonly used procedure, its impact on physicochemical properties of the membrane is still unknown. The aim of the present literature review is to evaluate the potential use of different collagen membranes for GBR/GTR procedures.

  9. The importance of plasma membrane coenzyme Q in aging and stress responses.

    Science.gov (United States)

    Navas, Plácido; Villalba, José Manuel; de Cabo, Rafael

    2007-06-01

    The plasma membrane of eukaryotic cells is the limit to interact with the environment. This position implies receiving stress signals that affects its components such as phospholipids. Inserted inside these components is coenzyme Q that is a redox compound acting as antioxidant. Coenzyme Q is reduced by diverse dehydrogenase enzymes mainly NADH-cytochrome b(5) reductase and NAD(P)H:quinone reductase 1. Reduced coenzyme Q can prevent lipid peroxidation chain reaction by itself or by reducing other antioxidants such as alpha-tocopherol and ascorbate. The group formed by antioxidants and the enzymes able to reduce coenzyme Q constitutes a plasma membrane redox system that is regulated by conditions that induce oxidative stress. Growth factor removal, ethidium bromide-induced rho degrees cells, and vitamin E deficiency are some of the conditions where both coenzyme Q and its reductases are increased in the plasma membrane. This antioxidant system in the plasma membrane has been observed to participate in the healthy aging induced by calorie restriction. Furthermore, coenzyme Q regulates the release of ceramide from sphingomyelin, which is concentrated in the plasma membrane. This results from the non-competitive inhibition of the neutral sphingomyelinase by coenzyme Q particularly by its reduced form. Coenzyme Q in the plasma membrane is then the center of a complex antioxidant system preventing the accumulation of oxidative damage and regulating the externally initiated ceramide signaling pathway.

  10. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    Science.gov (United States)

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  11. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes.

    Science.gov (United States)

    Ortegren, Unn; Karlsson, Margareta; Blazic, Natascha; Blomqvist, Maria; Nystrom, Fredrik H; Gustavsson, Johanna; Fredman, Pam; Strålfors, Peter

    2004-05-01

    We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.

  12. HIV-1 buds predominantly at the plasma membrane of primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Sonja Welsch

    2007-03-01

    Full Text Available HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red-positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane-derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages.

  13. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking

    Science.gov (United States)

    Yang, Zhenbiao; Lavagi, Irene

    2013-01-01

    Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants. PMID:23177207

  14. Nitrous oxide and xenon enhance phospholipid-N-methylation in rat brain synaptic plasma membranes.

    Science.gov (United States)

    Horn, J L; Janicki, P K; Franks, J J

    1995-01-01

    Halothane and isoflurane increase the rate of phospholipid methylation (PLM) in rat brain synaptosomal membranes, a process linked to the coupling of neuronal excitation to neurotransmitter release. In contrast, synaptic plasma membrane (SPM) Ca2+ ATPase (PMCA) pumping is reduced by exposure to halothane, isoflurane, xenon and nitrous oxide (N2O). To examine further the relationship between PLM, PMCA and anesthetic action, we investigated the effect of clinically relevant concentrations of two less potent anesthetic gases, N2O and xenon, on PLM in SPM. Biochemical assays were performed on SPM exposed to 1.3 MAC of N2O (2 atm), 1.3 MAC of xenon (1.23 atm) or an equivalent pressure of helium for control. N2O or xenon exposure increased PLM to 115% or 113%, respectively, of helium control (p xenon depressed PMCA activity to 78% and 85% of control (p < 0.05). Observations that PLM and PMCA are both altered by a wide variety of inhalation anesthetic agents at clinically relevant partial pressures lend support to a possible involvement and interaction of these processes in anesthetic action.

  15. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

    Indian Academy of Sciences (India)

    Bhabesh Kumar Nath; Aziz Khan; Joyanti Chutia; Arup Ratan Pal; Heremba Bailung; Neelotpal Sen Sarma; Devasish Chowdhury; Nirab Chandra Adhikary

    2014-12-01

    This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm-2 exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  16. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  17. Localization of plasma membrane t-SNAREs syntaxin 2 and 3 in intracellular compartments

    Directory of Open Access Journals (Sweden)

    Kuismanen Esa

    2005-05-01

    Full Text Available Abstract Background Membrane fusion requires the formation of a complex between a vesicle protein (v-SNARE and the target membrane proteins (t-SNAREs. Syntaxin 2 and 3 are t-SNAREs that, according to previous over-expression studies, are predominantly localized at the plasma membrane. In the present study we investigated localization of the endogenous syntaxin 2 and 3. Results Endogenous syntaxin 2 and 3 were found in NRK cells in intracellular vesicular structures in addition to regions of the plasma membrane. Treatment of these cells with N-ethylmaleimide (NEM, which is known to inactivate membrane fusion, caused syntaxin 3 to accumulate in the trans-Golgi network and syntaxin 2 in perinuclear membrane vesicles. Kinetic analysis in the presence of NEM indicated that this redistribution of syntaxin 2 and 3 takes place via actin containing structures. Conclusion Our data suggest that syntaxin 2 cycles between the plasma membrane and the perinuclear compartment whereas syntaxin 3 cycles between the plasma membrane and the trans-Golgi network. It is possible that this cycling has an important role in the regulation of t-SNARE function.

  18. Why Do Some T Cell Receptor Cytoplasmic Domains Associate with the Plasma Membrane?

    OpenAIRE

    Philip Anton evan der Merwe; Hao eZhang; Shaun-Paul eCordoba

    2012-01-01

    Based on studies in model systems it has been proposed that the cytoplasmic domains of T cell receptor signaling subunits that have polybasic motifs associate with the plasma membrane, and that this regulates their phosphorylation. Recent experiments in more physiological systems have confirmed membrane association but raised questions as to its function.

  19. Basic Amino Acid Transport in Plasma Membrane Vesicles of Penicillium chrysogenum

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumul

  20. Integrity of the plasma membrane, the acrosomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity

    Directory of Open Access Journals (Sweden)

    L.S.L.S. Reis

    2016-06-01

    Full Text Available ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion, scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342. The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.

  1. Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts.

    Directory of Open Access Journals (Sweden)

    Imre Gombos

    Full Text Available Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1 acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.

  2. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    OpenAIRE

    Christophe Coutanceau; Marc Reinholdt; Jean Durand; Valérie Flaud; Serguei Martemianov; Alina Ilie; Eric Beche; Stéphanie Roualdès; Mauricio Schieda; Jérémy Frugier

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, com...

  3. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  4. Reactivation from latency displays HIV particle budding at plasma membrane, accompanying CD44 upregulation and recruitment

    Directory of Open Access Journals (Sweden)

    Sano Kouichi

    2009-07-01

    Full Text Available Abstract Background It has been accepted that HIV buds from the cell surface in T lymphocytes, whereas in macrophages it buds into intracellular endosomes. Recent studies, on the other hand, suggest that HIV preferentially buds from the cell surface even in monocytic cells. However, most studies are based on observations in acutely infected cells and little is known about HIV budding concomitant with reactivation from latency. Such studies would provide a better understanding of a reservoir for HIV. Results We observed HIV budding in latently infected T lymphocytic and monocytic cell lines following TNF-α stimulation and examined the upregulation of host factors that may be involved in particle production. Electron microscopy analysis revealed that reactivation of latently infected J1.1 cells (latently infected Jurkat cells with HIV-1 and U1 cells (latently infected U937 cells with HIV-1 displayed HIV particle budding predominantly at the plasma membrane, a morphology that is similar to particle budding in acutely infected Jurkat and U937 cells. When mRNA expression levels were quantified by qRT-PCR, we found that particle production from reactivated J1.1 and U1 cells was accompanied by CD44 upregulation. This upregulation was similarly observed when Jurkat and U937 cells were acutely infected with HIV-1 but not when just stimulated with TNF-α, suggesting that CD44 upregulation was linked with HIV production but not with cell stimulation. The molecules in endocytic pathways such as CD63 and HRS were also upregulated when U1 cells were reactivated and U937 cells were acutely infected with HIV-1. Confocal microscopy revealed that these upregulated host molecules were recruited to and accumulated at the sites where mature particles were formed at the plasma membrane. Conclusion Our study indicates that HIV particles are budded at the plasma membrane upon reactivation from latency, a morphology that is similar to particle budding in acute

  5. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    OpenAIRE

    Rackel Reis; Dumée, Ludovic F.; Tardy, Blaise L.; Raymond Dagastine; John D. Orbell; Jürg A. Schutz; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membra...

  6. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7.

    Science.gov (United States)

    Staubach, Simon; Razawi, Hanieh; Hanisch, Franz-Georg

    2009-05-01

    Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.

  7. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.

    2015-01-01

    in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...... accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features...

  8. Choroideremia Is a Systemic Disease With Lymphocyte Crystals and Plasma Lipid and RBC Membrane Abnormalities

    Science.gov (United States)

    Zhang, Alice Yang; Mysore, Naveen; Vali, Hojatollah; Koenekoop, Jamie; Cao, Sang Ni; Li, Shen; Ren, Huanan; Keser, Vafa; Lopez-Solache, Irma; Siddiqui, Sorath Noorani; Khan, Ayesha; Mui, Jeannie; Sears, Kelly; Dixon, Jim; Schwartzentruber, Jeremy; Majewski, Jacek; Braverman, Nancy; Koenekoop, Robert K.

    2015-01-01

    Purpose Photoreceptor neuronal degenerations are common, incurable causes of human blindness affecting 1 in 2000 patients worldwide. Only half of all patients are associated with known mutations in over 250 disease genes, prompting our research program to identify the remaining new genes. Most retinal degenerations are restricted to the retina, but photoreceptor degenerations can also be found in a wide variety of systemic diseases. We identified an X-linked family from Sri Lanka with a severe choroidal degeneration and postulated a new disease entity. Because of phenotypic overlaps with Bietti's crystalline dystrophy, which was recently found to have systemic features, we hypothesized that a systemic disease may be present in this new disease as well. Methods For phenotyping, we performed detailed eye exams with in vivo retinal imaging by optical coherence tomography. For genotyping, we performed whole exome sequencing, followed by Sanger sequencing confirmations and cosegregation. Systemic investigations included electron microscopy studies of peripheral blood cells in patients and in normal controls and detailed fatty acid profiles (both plasma and red blood cell [RBC] membranes). Fatty acid levels were compared to normal controls, and only values two standard deviations above or below normal controls were further evaluated. Results The family segregated a REP1 mutation, suggesting choroideremia (CHM). We then found crystals in peripheral blood lymphocytes and discovered significant plasma fatty acid abnormalities and RBC membrane abnormalities (i.e., elevated plasmalogens). To replicate our discoveries, we expanded the cohort to nine CHM patients, genotyped them for REP1 mutations, and found the same abnormalities (crystals and fatty acid abnormalities) in all patients. Conclusions Previously, CHM was thought to be restricted to the retina. We show, to our knowledge for the first time, that CHM is a systemic condition with prominent crystals in lymphocytes and

  9. Parallel artificial liquid membrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Roldan-Pijuan, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-01-01

    The new sample preparation concept “Parallel artificial liquid membrane extraction (PALME)” was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual...

  10. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching

    NARCIS (Netherlands)

    Olde riekerink, M.B.; Engbers, G.H.M.; Wessling, Matthias; Feijen, Jan

    2002-01-01

    Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF4) or carbon dioxide (CO2), 47¿49 W, 0.04¿0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top

  11. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins.

    Science.gov (United States)

    Chen, Rong; Wang, Jian-Bo; Zhang, Xian-Qing; Ren, Jing; Zeng, Cheng-Ming

    2011-03-15

    Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS-PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.

  12. Glycosylphosphatidyl Inositol-anchored Proteins and fyn Kinase Assemble in Noncaveolar Plasma Membrane Microdomains Defined by Reggie-1 and -2

    OpenAIRE

    Stürmer, Claudia; Lang, Dirk M.; Kirsch, Friederike; Wiechers, Marianne F.; Deininger, Sören-Oliver; Plattner, Helmut

    2001-01-01

    Using confocal laser scanning and double immunogold electron microscopy, we demonstrate that reggie-1 and -2 are colocalized in ≤0.1-μm plasma membrane microdomains of neurons and astrocytes. In astrocytes, reggie-1 and -2 do not occur in caveolae but clearly outside these structures. Microscopy and coimmunoprecipitation show that reggie-1 and -2 are associated with fyn kinase and with the glycosylphosphatidyl inositol-anchored proteins Thy-1 and F3 that, when activated by antibody cross-link...

  13. Covalent crosslinking of thyrotropin to thyroid plasma membrane receptors: subunit composition of the thyrotropin receptor.

    Science.gov (United States)

    McQuade, R; Thomas, C G; Nayfeh, S N

    1986-04-01

    The subunit composition of the thyrotropin (TSH) receptor has been characterized using the bifunctional crosslinking agent, disuccinimidyl suberate (DSS), to covalently link [125I]TSH to its receptor. Purified thyroid membranes were labeled with [125I]TSH, and the hormone-receptor complex was crosslinked by incubation with 0.1 mM DSS. Analysis of this crosslinked complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions indicated the presence of a specifically labeled hormone-receptor complex, corresponding to a Mr of 68,000 +/- 3000 before correction for the relative molecular mass of TSH. When reducing agents were absent during SDS solubilization, the mobility of the band increased slightly, suggesting the presence of intramolecular disulfide bonds. The labeling of the 68,000 band was specifically inhibited by TSH, but not by other glycoprotein hormones. Specific labeling occurred only in thyroid, and not in liver or muscle plasma membranes. Protease-free immunoglobulin G, isolated from sera of patients with Graves' disease and capable of competing with TSH for binding to its receptor, inhibited the labeling of the 68,000 complex. When the hormone-receptor complex was crosslinked with higher concentrations of DSS (greater than 0.3 mM), a second specifically labeled band was observed, with a Mr of 80,000 +/- 5000. This complex exhibited hormone, tissue, and immunologic specificities similar to those of the 68,000 band. Continuous sucrose density gradient analysis indicated that the intact solubilized receptor possessed a sedimentation coefficient of 10.5 S prior to correction for detergent binding. However, this value increased to 16 S when determined under conditions which took into account the change in hydrodynamic properties attributable to bound Triton X-100. These data suggest that the 80,000 and 68,000 bands represent binding components of the TSH receptor and that the receptor molecule most likely contains

  14. Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes

    NARCIS (Netherlands)

    Stafie, N.; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    This work focuses on the effect of poly(dimethyl siloxane) (PDMS) cross-linking on the permeation performance of the poly(acrylonitrile) (PAN)/PDMS nanofiltration (NF) composite membrane. PDMS membrane of various cross-linking degrees could be obtained by changing the ratio of a vinyl-terminated

  15. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    Science.gov (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail.

  16. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    OpenAIRE

    Mudtorlep Nisoa; Pikul Wanichapichart

    2010-01-01

    Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effec...

  17. The Role of the Plasma Membrane in the Response of Plant Roots to Aluminum Toxicity

    OpenAIRE

    Ahn, Sung-Ju; Matsumoto, Hideaki

    2006-01-01

    Al3+, the predominant form of solubilized aluminum at pH values below 5.0, has been shown to exert a profound inhibitory effect on root elongation. Al is known to accumulate at the root apex. The plasma membrane represents the first potential target for Al toxicity, due to its pronounced binding to phospholipids. Al appears to alter both the structure and functions of the plasma membrane, and a great deal of research has been conducted concerning the interactions between Al and the plasma mem...

  18. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  19. Prostasomes of canine seminal plasma - zinc-binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa.

    Science.gov (United States)

    Mogielnicka-Brzozowska, M; Strzeżek, R; Wasilewska, K; Kordan, W

    2015-06-01

    Prostasomes are small lipid membrane-confined vesicles that are involved in various fertilization-related processes. The aim of this study was to demonstrate canine seminal plasma prostasomes' ability to bind zinc ions, as well as examining their effects on sperm motility characteristics and plasma membrane integrity during cold storage. Ejaculates, collected from five cross-bred dogs (n = 50), were subjected to ultracentrifugation followed by gel filtration (GF) on a Superose 6 column. Prostasomes appeared as a single fraction in the elution profile. Transmission electron microscopy (TEM) analysis of canine prostasomes revealed the presence of membrane vesicles with diameters ranging from 20.3 to 301 nm. The zinc-affinity chromatography on a Chelating Sepharose Fast Flow - Zn(2 +) showed that from 93 to 100% of the prostasome proteins bind zinc ions (P(+) Zn). SDS-PAGE revealed that canine P(+) Zn comprised four protein bands, with low molecular weights (10.2-12 kDa). We have also shown a positive effect of prostasomes (p spermatozoa with intact plasma membrane (SYBR/PI dual staining) and intact acrosome (Giemsa stained), after 2 h storage at 5°C, was showed, in variant A (1.5% of total seminal plasma protein) and B, when compared with Control and variant C (2.5% of total seminal plasma protein). The prostasomes' effect on motility and plasma membrane integrity of canine cold-stored spermatozoa may be related to their ability to bind zinc ions and regulate their availability to the sperm.

  20. Novel determinants of H-Ras plasma membrane localization and transformation

    DEFF Research Database (Denmark)

    Willumsen, B M; Cox, A D; Solski, P A;

    1996-01-01

    cysteine did not abolish palmitoylation. However, despite continued lipid modification the mutant proteins failed to bind to plasma membranes and instead accumulated on internal membranes and, importantly, were not transforming. Addition of an N-terminal myristoylation signal to these defective mutants......, or to proteins entirely lacking the C-terminal 25 residues restored both plasma membrane association and transforming activity. Thus, H-Ras does not absolutely require prenylation or palmitoylation nor indeed its hypervariable domain in order to interact with effectors that ultimately cause transformation....... However, in this native state, the C-terminus appears to provide a combination of lipids and a previously unrecognized signal for specific plasma membrane targeting that are essential for the correct localization and biological function of H-Ras....

  1. Investigation of pig sperm plasma membrane reorganization using progesterone-albumin-fluorescein probes

    Institute of Scientific and Technical Information of China (English)

    Alfredo Medrano; Paul F Watson; William V Holt

    2012-01-01

    Objective:To relate semen susceptibility in cooling protocols to sperm plasma membrane properties.Methods:A series of experiments was performed using the fluorescent markers, progesterone-BSA-FITC andBSA-FITC.Results:These experiments indicated that both progesterone-BSA-FITC andBSA-FITC bound to specific sperm plasma membrane domains, thus producing four different binding patterns, revealing probable changes in membrane organization during capacitation and during cooling.Those patterns seem to make a sequence progressing from non-capacitated status to capacitated status.The proportion of each pattern was different during incubation than during cooling, showing the latter had a higher proportion of dead sperm than the former.Conclusions:At this stage, the association of sperm plasma membrane alterations was revealed byBSA-FITC probes and cryosensitivity remains unclear.

  2. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  3. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  4. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Science.gov (United States)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  5. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    Science.gov (United States)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  6. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    Science.gov (United States)

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  7. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    Science.gov (United States)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  8. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    Science.gov (United States)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  9. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  10. Presence of membranous vesicles in cat seminal plasma: ultrastructural characteristics, protein profile and enzymatic activity.

    Science.gov (United States)

    Polisca, A; Troisi, A; Minelli, A; Bellezza, I; Fontbonne, A; Zelli, R

    2015-02-01

    This study sought to verify the presence of membranous vesicles in cat seminal plasma by means of transmission electron microscopy and to identify protein profile and some of the enzymatic activities associated with these particles. The transmission electron microscopy observations showed the existence of different sized vesicular membranous structures of more or less spherical shape. These vesicles were surrounded by single-, double- or multiple-layered laminar membranes. The vesicle diameters ranged from 16.3 to 387.4 nm, with a mean of 116.5 ± 70.7 nm. Enzyme activity determinations showed the presence of dipeptilpeptidase IV, aminopeptidase, alkaline and acid phosphatase. To our knowledge, this is the first report that identifies and characterizes the membranous vesicles in cat seminal plasma. However, further studies are necessary to identify the exact site of production of these membranous vesicles in the cat male genital tract and to determine their specific roles in the reproductive events of this species.

  11. Comparative studies on performance of radiation-induced and thermal cross-linked ion-exchange membrane for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Tina; Jasti, Amaranadh [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India); Goel, N.K. [Radiation Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Shahi, Vinod K., E-mail: vkshahi@csmcri.or [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India); Sabharwal, Sunil [Radiation Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2011-07-15

    Radiation-induced and thermal cross-linked sulfonated poly(ether sulfone) (SPS)-sulfonated poly(ether ether ketone) (SPK) composite ion-exchange membranes (SPS/SPK({gamma}) and SPS/SPK(T), respectively) were prepared. Their performances for water electrolysis were comparatively assessed. Thermal cross-linked membrane (SPS/SPK(T)) showed cross-linking of part functional groups (-SO{sub 3}H) and thus deterioration in membrane conductivity. While, radiation-induced cross-linked membrane (SPS/SPK({gamma})) avoided any cross-linking between functional groups and thus conductivity. Electrolysis performances of these membranes were evaluated in comparison with Nafion117 membrane. Relatively low current efficiency (CE) for SPS/SPK and SPS/SPK(T) membranes was due to their high mass transfer (water) via electro-osmotic drag, which was negligible for SPS/SPK({gamma}) membrane. SPS/SPK({gamma}) membrane exhibited comparable stabilities and water splitting performance with Nafion117 membrane, which revealed its suitability as substitute for electrochemical applications.

  12. Comparative studies on performance of radiation-induced and thermal cross-linked ion-exchange membrane for water electrolysis

    Science.gov (United States)

    Chakrabarty, Tina; Jasti, Amaranadh; Goel, N. K.; Shahi, Vinod K.; Sabharwal, Sunil

    2011-07-01

    Radiation-induced and thermal cross-linked sulfonated poly(ether sulfone) (SPS)-sulfonated poly(ether ether ketone) (SPK) composite ion-exchange membranes (SPS/SPK(γ) and SPS/SPK(T), respectively) were prepared. Their performances for water electrolysis were comparatively assessed. Thermal cross-linked membrane (SPS/SPK(T)) showed cross-linking of part functional groups (-SO 3H) and thus deterioration in membrane conductivity. While, radiation-induced cross-linked membrane (SPS/SPK(γ)) avoided any cross-linking between functional groups and thus conductivity. Electrolysis performances of these membranes were evaluated in comparison with Nafion117 membrane. Relatively low current efficiency (CE) for SPS/SPK and SPS/SPK(T) membranes was due to their high mass transfer (water) via electro-osmotic drag, which was negligible for SPS/SPK(γ) membrane. SPS/SPK(γ) membrane exhibited comparable stabilities and water splitting performance with Nafion117 membrane, which revealed its suitability as substitute for electrochemical applications.

  13. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    Science.gov (United States)

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  14. Chromium(VI)—induces Production of Reactive Oxygen Species,Change of Plasma Membrane Potential and Dissipation of Mitochondria Membrane otential in Chinese Hamster Lung Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    XIEYI; ZHUANGZHI-XIONG

    2001-01-01

    Objective:To examine whether Reactive Oxygen Species(ROS) is generated,and whether plasma membrane potential and mitochnodrial membrane potential are depolarized in Chinese Hamster Lung(CHL)cell lines exposed to Cr(VI),Methods:CHL Cells were incubated with Cr(VI) at 10 umol/L,2.5umol/L,0.65umol/L for 3 and 6 hours,respectively.The rpoduction of ROS was performed by using 2,7-dichlorofluorescin discetate;The changes in plasma membrane potential were performed by using 2,7-dichlorofluorescin discetate;The changes in plasma membrane potential were performed by using 2,7-dichlorofluorescin diacetate;The changes in plasma membrane potential were estimated using fluorescent cationic dye DiBAC4;And the changes in mitochondria membrane potential were estimated using fluorescent dye Rhodamine 123,Results:The ROS levels in CHL cells increased in all treated groups compared with the control group(P<0.01);The plasma membrane potential and mitochondrial membrane potential in CHL cells dissipated after incubated with Cr(VI) at 10umol/L for 3 hours and 6 hours(P<0.01),at 2.5umol/L for 6 hours(P<0.01 or 0.05),Conclusion:Cr(VI) causes the dissipation of plasma membrane potential and mitochnodrial membrane otential in CHL cell cultrues,and Cr(VI)-induced ROS may play a role in the injuries.

  15. Elevated cAMP increases aquaporin-3 plasma membrane diffusion

    DEFF Research Database (Denmark)

    Marlar, Saw; Christensen, Eva Arnspang; Koffman, Jennifer Skaarup

    2014-01-01

    Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water ex...

  16. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.;

    2015-01-01

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains...... in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...

  17. Glucosylation of membrane-bound proteins by lipid-linked glucose.

    Science.gov (United States)

    Pont Lezica, R; Romero, P A; Hopp, H E

    1978-01-01

    Particulate preparations from Pisum sativum. were able to incorporate [(14)C]glucose from UDP-[(14)C]glucose into oligosaccharide-linked lipids was formed by an oligosaccharide chain containing 7-8 glucose residues linked to dolichol, presumably via a pyrophosphate. The polymer was identified as a membrane-bound glucoprotein that could be solubilized by Triton X-100. SDS gel electrophoresis showed that a polypeptide with an apparent molecular weight of 13,000 could be glucosylated from dolichyl-phosphate-glucose. This was coincident with the electrophoretic mobility of the β subunit of the pea lectin in the same system. The glucosylated protein was solubilized from the membranes by sonication and showed the same carbohydrate-binding ability as pea lectins. These results strongly suggest that pea lectins can be glucosylated by the lipid intermediate pathway.

  18. The plasma membrane as a capacitor for energy and metabolism.

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  19. Activation of Raf as a result of recruitment to the plasma membrane.

    Science.gov (United States)

    Stokoe, D; Macdonald, S G; Cadwallader, K; Symons, M; Hancock, J F

    1994-06-01

    The small guanine nucleotide binding protein Ras participates in a growth promoting signal transduction pathway. The mechanism by which interaction of Ras with the protein kinase Raf leads to activation of Raf was studied. Raf was targeted to the plasma membrane by addition of the COOH-terminal localization signals of K-ras. This modified form of Raf (RafCAAX) was activated to the same extent as Raf coexpressed with oncogenic mutant Ras. Plasma membrane localization rather than farnesylation or the presence of the additional COOH-terminal sequence accounted for the activation of RafCAAX. The activation of RafCAAX was completely independent of Ras; it was neither potentiated by oncogenic mutant Ras nor abrogated by dominant negative Ras. Raf, once recruited to the plasma membrane, was not anchored there by Ras; most activated Raf in cells was associated with plasma membrane cytoskeletal elements, not the lipid bilayer. Thus, Ras functions in the activation of Raf by recruiting Raf to the plasma membrane where a separate, Ras-independent, activation of Raf occurs.

  20. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  1. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  2. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels.

    Science.gov (United States)

    Fröhlich, Florian; Christiano, Romain; Olson, Daniel K; Alcazar-Roman, Abel; DeCamilli, Pietro; Walther, Tobias C

    2014-09-15

    The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain-containing proteins Pil1 and Lsp1, is poorly understood. Here we show that eisosomes interact with the PI(4,5)P2 phosphatase Inp51/Sjl1, thereby recruiting it to the plasma membrane. Pil1 is essential for plasma membrane localization and function of Inp51 but not for the homologous phosphatidylinositol bisphosphate phosphatases Inp52/Sjl2 and Inp53/Sjl3. Consistent with this, absence of Pil1 increases total and available PI(4,5)P2 levels at the plasma membrane. On the basis of these findings, we propose a model in which the eisosomes function in maintaining PI(4,5)P2 levels by Inp51/Sjl1 recruitment. © 2014 Fröhlich et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    Science.gov (United States)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum Golgi apparatusGolgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  4. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    Science.gov (United States)

    Rothamel, Daniel; Schwarz, Frank; Sager, Martin; Herten, Monika; Sculean, Anton; Becker, Jürgen

    2005-06-01

    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendExtend (BME) (glutaraldehyde cross-linked bovine type I collagen), (4) Ossix (OS) (enzymatic-cross-linked bovine type I collagen), (5) TutoDent (TD) (non-cross-linked bovine type I collagen, and (6-8) VN(1-3) (chemical cross-linked porcine type I and III collagens). Specimens were randomly allocated in unconnected subcutaneous pouches separated surgically on the back of 40 wistar rats, which were divided into five groups (2, 4, 8, 16, and 24 weeks), including eight animals each. After 2, 4, 8, 16, and 24 weeks of healing, the rats were sacrificed and explanted specimens were prepared for histologic and histometric analysis. The following parameters were evaluated: biodegradation over time, vascularization, tissue integration, and foreign body reaction. Highest vascularization and tissue integration was noted for BG followed by BM, BME, and VN(1); TD, VN(2), and VN(3) showed prolongated, while OS exhibited no vascularization. Subsequently, biodegradation of BG, BM, BME and VN(1) was faster than TD, VN(2), and VN(3). OS showed only a minute amount of superficial biodegradation 24 weeks following implantation. Biodegradation of TD, BM, BME, VN(2), and VN(3) was associated with the presence of inflammatory cells. Within the limits of the present study, it was concluded that cross-linking of bovine and porcine-derived collagen types I and III was associated with (i) prolonged biodegradation, (ii) decreased tissue integration and vascularization, and (iii) in case of TD, BM, BME, VN(2), and VN(3) foreign body reactions.

  5. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  6. Significance of the plasma membrane for the nerve cell function, development and plasticity.

    Science.gov (United States)

    Mourek, Jindrich; Langmeier, Milos; Pokorny, Jaroslav

    2009-01-01

    Lipoid character of plasma membrane namely the presence of polyenic fatty acids enables to interact with membrane proteins and in certain extent also to modulate their function. During the development, molecules of membrane fatty acids become more and more complex, and the ratio of polyenic fatty acids/saturated fatty acids in the brain rises, while the concentration of monoenic fatty acids remained relatively stable. This phenomenon is apparent also in the ratio of unsaturated fatty acids OMEGA-3 in plasma of newborns which correlates with the birth weight. Plasma membrane reflects local specializations of nerve cells. Its composition varies in functionally specialized regions called domains. Specialized domains of nerve cells determine the function of dendrites, soma, axon, axon hillock ect. Premature weaning of laboratory rats results in structural changes and in the increase of excitability of neuronal circuits in hypothalamus, septum and hippocampus which indicate the possibility of membrane composition changes. In synapses, transport proteins of synaptic vesicles, act together with the specific proteins of the presynaptic membrane. Membrane proteins determine the release of neurotransmitter at different conditions of synaptic activity, and they can contribute to the recovery of neurotransmitter content after the repeated hyperactivity. In the model of experimental kindling, repeated seizures bring about decreases and distribution changes of synaptic vesicles.

  7. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    Science.gov (United States)

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-04

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  8. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    Science.gov (United States)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  9. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    Science.gov (United States)

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  10. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    Science.gov (United States)

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  11. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport......, and regulation of H+-ATPases, key questions, in particular concerning the detailed interaction of regulator proteins with the H+-ATPases, remains answering that may require the use of new approaches. In this work the proton pump Arabidopsis thaliana plasma membrane H+-ATPase isoform 2 has been reconstituted...... into soluble nanoscale lipid bilayers, also termed nanodiscs. Extensive analysis confirms the correct assembly and reconstitution of active proton pump into nanodiscs. The pump inserts as a monomer, which through activity analysis confirms this as the minimal functional unit of the plasma membrane H...

  12. Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters.

    Science.gov (United States)

    Stewart, Gavin S; O'Brien, Jennifer H; Smith, Craig P

    2008-07-01

    The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines expressing each of the three renal UT-A transporters. Inhibition of the ubiquitin-proteasome pathway caused an increase in basal transepithelial urea flux across MDCK-rat (r)UT-A1 and MDCK-mouse (m)UT-A2 monolayers (P UT-A transporter expression in the plasma membrane (P UT-A3 expression in the plasma membrane (P UT-A urea transporters, but that this is not the mechanism primarily used by vasopressin to produce its physiological effects.

  13. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis

    DEFF Research Database (Denmark)

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae......) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen...... from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both...

  14. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    Science.gov (United States)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  15. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza

    2015-01-01

    Plasma Membrane Ca(2+)-ATPase's (PMCA) participate in epithelial Ca(2+) transport and intracellular Ca(2+) signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial Ca(2+) channel, Trpv5. We therefore hypothesized that Pmca4 plays a significant...... in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments, but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing...... detected Pmca1 in lateral membranes of enterocytes. In kidney, Pmca4 showed broad localization to the distal nephron. In mouse, expression was most abundant in segments coexpressing the epithelial Ca(2+) channel, Trpv5. Significant, albeit lower expression, was also evident in the region encompassing...

  16. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    Science.gov (United States)

    Serpe, M. D.; Nothnagel, E. A.

    1996-11-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content.

  17. Identification of type-2 phosphatidic acid phosphohydrolase (PAPH-2) in neutrophil plasma membranes.

    Science.gov (United States)

    Boder, E; Taylor, G; Akard, L; Jansen, J; English, D

    1994-11-01

    Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg(2+)-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase D-dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergent availability and cation sensitivity on the apparent distribution of PAPH in neutrophil subcellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzymes was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.

  18. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investiga

  19. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    Science.gov (United States)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  20. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gerrit; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was

  1. DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps.

    OpenAIRE

    1987-01-01

    In vitro translocation of periplasmic and outer membrane proteins into inverted plasma membrane vesicles from Escherichia coli was completely prevented by the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). DCCD was inhibitory to both co- and post-translational translocations, suggesting an involvement of the H+-translocating F1F0-ATPase in either mode of transport. This was verified by (i) the dependence of efficient co-translational translocation upon a low salt, i.e. F1-containin...

  2. Why cholesterol should be found predominantly in the cytoplasmic leaf of the plasma membrane

    CERN Document Server

    Giang, Ha

    2014-01-01

    In the mammalian plasma membrane, cholesterol can translocate rapidly between the exoplasmic and cytoplasmic leaves, and is found predominantly in the latter. We hypothesize that it is drawn to the inner leaf to reduce the bending free energy of the membrane caused by the presence there of phosphatidylethanolamine. Incorporating this mechanism into a model free energy for the bilayer, we calculate that approximately two thirds of the total cholesterol should be in the inner leaf.

  3. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet

    DEFF Research Database (Denmark)

    Tjällström, H; Hellgren, Lars; Wieslander, Å;

    2010-01-01

    barrier) and rafts both contain only trace amounts of DGDG, we conclude that this lipid class is not compatible with membrane functions requiring a high degree of lipid order. By not replacing phospholipids site specifically with DGDG, negative functional effects of this lipid in the plasma membrane...... are avoided.-Tjellström, H., Hellgren, L. I., Wieslander, A., Sandelius, A. S. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet.......As in other eukaryotes, plant plasma membranes contain sphingolipids, phospholipids, and free sterols. In addition, plant plasma membranes also contain sterol derivatives and usually 5 mol% DGDG was included. As both the apoplastic plasma membrane leaflet (probably the major water permeability...

  4. Purification and identification of the fusicoccin binding protein from oat root plasma membrane

    Science.gov (United States)

    de Boer, A. H.; Watson, B. A.; Cleland, R. E.

    1989-01-01

    Fusicoccin (FC), a fungal phytotoxin, stimulates the H(+) -ATPase located in the plasma membrane (PM) of higher plants. The first event in the reaction chain leading to enhanced H(+) -efflux seems to be the binding of FC to a FC-binding protein (FCBP) in the PM. We solubilized 90% of the FCBP from oat (Avena sativa L. cv Victory) root PM in an active form with 1% octyl-glucoside. The FCBP was stabilized by the presence of protease inhibitors. The FCBP was purified by affinity chromatography using FC-linked adipic acid dihydrazide agarose (FC-AADA). Upon elution with 8 molar urea, two major protein bands on sodium dodecyl sulfate-polyaerylamide gel electrophoresis with molecular weights of 29,700 and 31,000 were obtained. Successive chromatography on BBAB Bio-Gel A, hexyl agarose, and FC-AADA resulted in the same two bands when the FC-AADA was eluted with sodium dodecyl sulfate. A direct correlation was made between 3H-FC-binding activity and the presence of the two protein bands. The stoichiometry of the 29,700 and 31,000 molecular weight bands was 1:2. This suggests that the FCBP occurs in the native form as a heterotrimer with an apparent molecular weight of approximately 92,000.

  5. Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation.

    Science.gov (United States)

    Mokbel, Nancy; Hoffman, Nolan J; Girgis, Christian M; Small, Lewin; Turner, Nigel; Daly, Roger J; Cooney, Gregory J; Holt, Lowenna J

    2014-11-01

    Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.

  6. Plasma membrane Ca2+-ATPases in the nervous system during development and ageing

    Institute of Scientific and Technical Information of China (English)

    Ana; M; Mata; M; Rosario; Sepulveda

    2010-01-01

    Calcium signaling is used by neurons to control a variety of functions,including cellular differentiation,synaptic maturation,neurotransmitter release,intracellular signaling and cell death.This review focuses on one of the most important Ca2+regulators in the cell,the plasma membrane Ca2+-ATPase(PMCA),which has a high affinity for Ca2+and is widely expressed in brain.The ontogeny of PMCA isoforms,linked to specific requirements of Ca2+ during development of different brain areas,is addressed, as well as their function in the adult tissue.This is based on the high diversity of variants in the PMCA family in brain,which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely,alterations in the activity of PMCAs could lead to changes in Ca2+homeostasis and,consequently,to neural dysfunction.The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.

  7. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  8. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  9. Comparative studies on the soluble and plasma membrane associated nitrate reductase from Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-02-01

    Full Text Available The biochemical comparison between two forms of nitrate reductase from cucumber roots: the soluble enzyme and the plasma membrane-associated one was made. Soluble nitrate reductase was purified on the blue-Sepharose 4B. The nitrate reductase bound with plasma membranes was isolated from cucumber roots by partition of microsomes in the 6.5% dextran-PEG two phase system. The molecular weight of native enzyme estimated with HPLC was 240 kDa and 114 kDa for the soluble and membrane bounded enzyme, respectively. Temperature induced phase separation in Triton X-114 indicated a huge difference in hydrophobicity of the plasma membrane associated nitrate reductase and soluble form of enzyme. Small differences were observed in partial activities of plasma membrane nitrate reductase and soluble nitrate reductase. Also experiments with polyclonal antiserum raised against the native nitrate reductase showed some differences in the immunological properties of both forms of the nitrate reductase. The above results indicated that in cucumber roots two different forms of the nitrate reductase are present.

  10. Surface Modification of Asymmetric Polysulfone/Polyethylene Glycol Membranes by DC Ar-Glow Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chalad Yuenyao

    2016-01-01

    Full Text Available Polysulfone/polyethylene glycol (PSF/PEG membranes were prepared by dry/wet phase inversion method. Effects of direct current glow discharge plasma using argon as working gas on morphological structures and gas separation properties of membranes were studied. Alteration of membrane characteristics were analyzed by various techniques like contact angle, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic mechanical thermal analysis. Gas separation properties were measured in terms of permeation and ideal O2/N2 selectivity. Results showed that hydrophilic and gas separation properties of PSF/PEG membranes increased by plasma surface modification. It was also shown that the dosage of PEG and plasma treatment affected the morphological structures and mechanical and gas separation properties. The macro voids and transmembrane structure disappeared with a little amount of PEG dosage. Pore size and mechanical strength tend to decrease with increasing PEG dosage up to 10 wt%. Glass transition temperature (Tg receded from 201.8 to 143.7°C for pure PSF and PSF/PEG with PEG dosage of 10 wt%. O2 and N2 gases permeation through the 10-minute plasma treated membranes tend to increase. However, the permeation strongly dispersed when treatment time was more extended.

  11. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  12. Nonidet P-40 extraction of lymphocyte plasma membrane. Characterization of the insoluble residue.

    Science.gov (United States)

    Davies, A A; Wigglesworth, N M; Allan, D; Owens, R J; Crumpton, M J

    1984-04-01

    Purified preparations of lymphocyte plasma membrane were extracted exhaustively with Nonidet P-40 in Dulbecco's phosphate-buffered saline medium. The insoluble fraction, as defined by sedimentation at 10(6) g-min, contained about 10% of the membrane protein as well as cholesterol and phospholipid. The lipid/protein ratio, cholesterol/phospholipid ratio and sphingomyelin content were increased in the residue. Density-gradient centrifugation suggested that the lipid and protein form a common entity. As judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Nonidet P-40-insoluble fractions of the plasma membranes of human B lymphoblastoid cells and pig mesenteric lymph-node lymphocytes possessed similar qualitative polypeptide compositions but differed quantitatively. Both residues comprised major polypeptides of Mr 28 000, 33 000, 45 000 and 68 000, together with a prominent band of Mr 120 000 in the human and of Mr 200 000 in the pig. The polypeptides of Mr 28 000, 33 000, 68 000 and 120 000 were probably located exclusively in the Nonidet P-40-insoluble residue, which also possessed a 4-fold increase in 5'-nucleotidase specific activity. The results indicate that a reproducible fraction of lymphocyte plasma membrane is insoluble in non-ionic detergents and that this fraction possesses a unique polypeptide composition. By analogy with similar studies with erythrocyte ghosts, it appears likely that the polypeptides are located on the plasma membrane's cytoplasmic face.

  13. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    Science.gov (United States)

    Qiao, Zhenzhen; Libault, Marc

    2017-08-17

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  14. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  15. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity

    Directory of Open Access Journals (Sweden)

    Anastasia A. Kirpichnikova

    2014-03-01

    Full Text Available Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1 is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca2+ cytosolic concentration, which is suggested to be dependent on the activation of Ca2+ influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca2+ efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C3-(5. The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth the magnitude of Ca2+ efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca2+ efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10−8 to 10−6 M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10−6 M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca2+ and that ABP1 is involved in modulation of this reaction.

  16. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-03-05

    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.

  17. Regulation of plant plasma membrane H+- and Ca2+-ATPases by terminal domains

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde

    2005-01-01

    In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulator...... mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed....

  18. Structure-function relationships of ErbB RTKs in the plasma membrane of living cells.

    Science.gov (United States)

    Arndt-Jovin, Donna J; Botelho, Michelle G; Jovin, Thomas M

    2014-04-01

    We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field.

  19. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  20. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages.

    Science.gov (United States)

    de la Haba, Carlos; Palacio, José R; Martínez, Paz; Morros, Antoni

    2013-02-01

    Plasma membrane is one of the preferential targets of reactive oxygen species which cause lipid peroxidation. This process modifies membrane properties such as membrane fluidity, a very important physical feature known to modulate membrane protein localization and function. The aim of this study is to evaluate the effect of oxidative stress on plasma membrane fluidity regionalization of single living THP-1 macrophages. These cells were oxidized with H(2)O(2) at different concentrations, and plasma membrane fluidity was analyzed by two-photon microscopy in combination with the environment-sensitive probe Laurdan. Results show a significant H(2)O(2) concentration dependent increase in the frequency of rigid lipid regions, mainly attributable to lipid rafts, at the expense of the intermediate fluidity regions. A novel statistical analysis evaluated changes in size and number of lipid raft domains under oxidative stress conditions, as lipid rafts are platforms aiding cell signaling and are thought to have relevant roles in macrophage functions. It is shown that H(2)O(2) causes an increase in the number, but not the size, of raft domains. As macrophages are highly resistant to H(2)O(2), these new raft domains might be involved in cell survival pathways.

  1. Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jan ePrchal

    2014-01-01

    Full Text Available Budding is the final step of the late phase of retroviral life cycle. It begins with the interaction of Gag precursor with plasma membrane through its N-terminal domain, the matrix protein. However, single generas of Retroviridae family differ in the way how they interact with plasma membrane. While in case of lentiviruses (e.g. human immunodeficiency virus (HIV the structural polyprotein precursor Gag interacts with cellular membrane prior to the assembly, betaretroviruses (Mason-Pfizer monkey virus (M-PMV first assemble their virus-like particles in the pericentriolar region of the infected cell and therefore, already assembled particles interact with the membrane. Although both these types of retroviruses use similar mechanism of the interaction of Gag with the membrane, the difference in the site of assembly leads to some differences in the mechanism of the interaction. Here we describe the interaction of M-PMV matrix protein with plasma membrane with emphasis on the structural aspects of the interaction with single phospholipids.

  2. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin

    2011-08-09

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams. Despite this advantage, such a high temperature might result in collapse of substructure and transition layers in the asymmetric structure of a hollow fibers based on such a material. In this work, the thermal cross-linking of the 6FDA-DAM:DABA at temperatures much below the glass transition temperature (∼387 °C by DSC) was demonstrated. This sub-Tg cross-linking capability enables extension to asymmetric structures useful for large scale membranes. The resulting polymer membranes were characterized by swelling in known solvents for the un-cross-linked materials, TGA analysis, and permeation tests of aggressive gas feed stream at higher pressure. The annealing temperature and time clearly influence the degree of cross-linking of the membranes, and results in a slight difference in selectivity for membranes under various cross-linking conditions. Results indicate that the sub-Tg thermal cross-linking of 6FDA-DAM:DABA dense film membrane can be carried out completely even at a temperature as low as 330 °C. Permeabilities were tested for the polyimide membranes using both pure gases (He, O2, N2, CH4, CO2) and mixed gases (CO2/CH4). The selectivity of the cross-linked membrane can be maintained even under very aggressive CO2 operating conditions that are not possible without cross-linking. Moreover, the plasticization resistance was demonstrated up to 700 psia for pure CO 2 gas or 1000 psia for 50% CO2 mixed gas feeds. © 2011 American Chemical Society.

  3. Plant polyphenols as electron donors for erythrocyte plasma membrane redox system: validation through in silico approach

    OpenAIRE

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna; Rizvi, Syed Ibrahim

    2012-01-01

    Background The plasma membrane redox system (PMRS) has extensively been studied in erythrocytes. The PMRS plays an important role in maintaining plasma redox balance and provides a protective mechanism against oxidative stress. Earlier it was proposed that only NADH or NADPH provided reducing equivalents to PMRS; however, now it is acknowledged that some polyphenols also have the ability to donate reducing equivalents to PMRS. Methods Two different docking simulation softwares, Molegro Virtua...

  4. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    Science.gov (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  5. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY

    2015-01-10

    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  6. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    Science.gov (United States)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  7. A Novel Membrane Prepared from Sodium Alginate Cross-linked with Sodium Tartrate for CO2 Capture

    Institute of Scientific and Technical Information of China (English)

    朱娅群; 王志; 张晨昕; 王纪孝; 王世昌

    2013-01-01

    The membrane-based CO2 separation process has an advantage compared to traditional CO2 separation technologies. The membrane is the key of the membrane separation process. In this paper, preparation, characteriza-tion and laboratory testing of the membrane, which was prepared from sodium alginate, hydrogen bond cross-linked with sodium tartrate and used for CO2/N2 separation, were reported. The resistance to SO2 of the membrane was also investigated. The experimental results demonstrate that the membrane possesses a high resistance to SO2. Finally, based on experimental results, the economic feasibility of the membrane used for CO2/N2 separation was evaluated, indicating the two-stage membrane process can compete with the traditional chemical absorption method.

  8. Influence of Low-Energy Ion Irradiation on Plasma MembranePermeability of Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong-Mei; CUI Fu-Zhai; SUN Su-Qin; LIN You-Bo; TIAN Min-Bo; CHEN Guo-Qiang

    2000-01-01

    Effect of low-energy ion irradiation on plasma membrane permeability has been investigated by using electron spin resonance (ESR) spectroscopy of spin probe technique. The investigated system is plumule cells of wheat (Triticum aestivum L.) seeds implanted by 30keV N+ ions. ESR spectra indicated that plasmalemma permeability is sensitive to low-energyion irradiation. Ion irradiations with increasing fluences up to semi-lethal dose lead to gradual increase in plasmalemma permeability of the plumule cells. The possible factors relevant to the changes in membrane permeability are discussed in relation to the changes in the physical state and chemical nature of membranes.

  9. N- and O-linked glycosylation of total plasma glycoproteins in galactosemia.

    Science.gov (United States)

    Liu, Ying; Xia, Baoyun; Gleason, Tyler J; Castañeda, Uriel; He, Miao; Berry, Gerard T; Fridovich-Keil, Judith L

    2012-08-01

    Classic galactosemia is a potentially lethal metabolic disorder that results from profound impairment of the enzyme galactose-1-phosphate uridylyltransferase (GALT); despite decades of research, the underlying mechanism of pathophysiology remains unclear. Previous studies of plasma and tissue samples from patients with classic galactosemia have revealed defects of protein and lipid glycosylation, however, the underlying bases for these defects and their clinical significance, if any, has remained unclear. As a step toward addressing these questions we characterized both the N- and O-linked glycomes of plasma proteins from neonates, infants, children, and adults with galactosemia using mass spectrometry and asked (1) whether similar or disparate defects exist for N-linked and O-linked modifications, (2) what factors correlate with the severity of these defects in different patients, and perhaps most important, (3) whether there is any apparent relationship between chronic glycosylation defects and long-term outcome in patients. We found that some but not all of the galactosemic neonates tested exhibited abnormal N- and O-linked glycosylation of plasma proteins. The types of abnormalities seen were similar between N- and O-linked moieties, but the extent of the defects varied between patients. Age, gender, GALT genotype, and predicted residual GALT activity all failed to explain the extent of the glycosylation defect in the samples studied. Dietary galactose restriction markedly normalized both the N- and O-linked glycosylation patterns for all infants tested; however, any remaining glycosylation defects evident in the plasma of older children or adults on galactose-restricted diets showed no correlation with clinical outcome. These data cannot rule out the possibility that subtle or localized glycosylation defects, not detectable by our methods or not reflected in plasma, may contribute to acute or long-term outcome severity.

  10. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  11. Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils

    Directory of Open Access Journals (Sweden)

    Campbell Kevin P

    2007-08-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils (PMN constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods. Results To identify the proteins light membrane fractions enriched for plasma membrane vesicles and secretory vesicles, we employed a proteomic approach, first using MALDI-TOF (peptide mass fingerprinting and then by HPLC-MS/MS using a 3D ion trap mass spectrometer to analyze the two vesicle populations from resting PMN. We identified several proteins that are functionally important but had not previously been recovered in PMN secretory vesicles. Two such proteins, 5-lipoxygenase-activating protein (FLAP and dysferlin were further validated by immunoblot analysis. Conclusion Our data demonstrate the broad array of proteins present in secretory vesicles that provides the PMN with the capacity for remarkable and rapid reorganization of its plasma membrane after exposure to proinflammatory agents or stimuli.

  12. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells.

    Science.gov (United States)

    Deng, Qiong; Wu, Yong; Zhang, Zeng; Wang, Yue; Li, Minghua; Liang, Hui; Gui, Yaoting

    2017-01-01

    The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR) localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  13. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Qiong Deng

    2017-01-01

    Full Text Available The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  14. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  15. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable ro...

  16. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    Science.gov (United States)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  17. Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance

    Science.gov (United States)

    Malagoli, Philippe; Britto, Dev T.; Schulze, Lasse M.; Kronzucker, Herbert J.

    2008-01-01

    Globally, over one-third of irrigated land is affected by salinity, including much of the land under lowland rice cultivation in the tropics, seriously compromising yields of this most important of crop species. However, there remains an insufficient understanding of the cellular basis of salt tolerance in rice. Here, three methods of 24Na+ tracer analysis were used to investigate primary Na+ transport at the root plasma membrane in a salt-tolerant rice cultivar (Pokkali) and a salt-sensitive cultivar (IR29). Futile cycling of Na+ at the plasma membrane of intact roots occurred at both low and elevated levels of steady-state Na+ supply ([Na+]ext=1 mM and 25 mM) in both cultivars. At 25 mM [Na+]ext, a toxic condition for IR29, unidirectional influx and efflux of Na+ in this cultivar, but not in Pokkali, became very high [>100 μmol g (root FW)−1 h−1], demonstrating an inability to restrict sodium fluxes. Current models of sodium transport energetics across the plasma membrane in root cells predict that, if the sodium efflux were mediated by Na+/H+ antiport, this toxic scenario would impose a substantial respiratory cost in IR29. This cost is calculated here, and compared with root respiration, which, however, comprised only ∼50% of what would be required to sustain efflux by the antiporter. This suggests that either the conventional ‘leak-pump’ model of Na+ transport or the energetic model of proton-linked Na+ transport may require some revision. In addition, the lack of suppression of Na+ influx by both K+ and Ca2+, and by the application of the channel inhibitors Cs+, TEA+, and Ba2+, questions the participation of potassium channels and non-selective cation channels in the observed Na+ fluxes. PMID:18854575

  18. Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite

    Science.gov (United States)

    Marsh, M. E.; Ridall, A. L.; Azadi, P.; Duke, P. J.

    2002-01-01

    The coccolithophores are valuable models for the design and synthesis of composite materials, because the cellular machinery controlling the nucleation, growth, and patterning of their calcitic scales (coccoliths) can be examined genetically. The coccoliths are formed within the Golgi complex and are the major CaCO(3) component in limestone sediments-particularly those of the Cretaceous period. In this study, we describe mutants lacking a sulfated galacturonomannan and show that this polysaccharide in conjunction with the Golgi-derived membrane is directly linked to the growth and shaping of coccolith calcite but not to the initial orientated nucleation of the mineral phase.

  19. Evaluation of a new microporous filtration membrane system for therapeutic plasma exchange.

    Science.gov (United States)

    Kurtz, S R; Carey, P M; McGill, M; Pineda, A A; Zaroulis, C G; Case, M T

    1987-01-01

    A new therapeutic plasma exchange device developed by Sarns Inc./3M was evaluated in plasmapheresis of 20 healthy volunteers and in a multicenter clinical study of therapeutic plasma exchange that included 49 patients. Safety and efficacy of plasma separation from whole blood were assessed for a module that contains Durapore microporous surfactant-free polyvinylidene fluoride membrane (Millipore Corp., Bedford, Mass., USA). The extra-corporeal volume was 80 ml. Citrate and heparin anticoagulants were utilized. Mean plasma separation efficiency was 62% with unhindered passage of plasma proteins through the membrane pores and no hemolysis or activation of complement as measured by total hemolytic complement (CH50) and C3 conversion. Mean decrease in platelet count after procedures was 10%. No severe reactions occurred, and citrate effects (13%) were comparable to values reported with centrifugal instruments. The Sarns Inc./3M Therapore device is a rapid, safe and efficient system for plasma exchange and potentially for source plasma collection. The principal benefits are small extracorporeal volume and cell-free filtrate.

  20. Proteomic analysis of liver plasma membrane from hepatitis B surface antigen transgenic mice

    Institute of Scientific and Technical Information of China (English)

    贾小芳

    2012-01-01

    Objective To explore the differential liver plasma membrane( PM) proteins that may be related to the occurrence,development and reversal process of hepatitis and to understand the pathogenesis of hepatitis and the new drug targets by performing a comparative proteomics research of liver PM between

  1. Gateway to understanding microparticles: standardized isolation and identification of plasma membrane-derived vesicles

    NARCIS (Netherlands)

    Dinkla, S.; Brock, R.; Joosten, I.; Bosman, G.J.C.G.M.

    2013-01-01

    Microparticles (MPs) are small plasma membrane-derived vesicles that can expose molecules originating from their parental cells. As vectors of biological information they are likely to play an active role in both homeostasis and pathogenesis, making them promising biomarkers and nanomedicine tools.

  2. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking

    DEFF Research Database (Denmark)

    Clausen, M. P.; Lagerholm, B. C.

    2013-01-01

    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several thous...

  3. Redox enzymes in the plant plasma membrane and their possible roles

    DEFF Research Database (Denmark)

    Berczi, A.; Møller, I.M.

    2000-01-01

    Purified plasma membrane (PM) vesicles from higher plants contain redox proteins with low-molecular-mass prosthetic groups such as flavins (both FMN and FAD), hemes, metals (Cu, Fe and Mn), thiol groups and possibly naphthoquinone (vitamin K-1), all of which are likely to participate in redox...

  4. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    Science.gov (United States)

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  5. Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Palmgren, Michael Gjedde; Buch-Pedersen, Morten Jeppe

    The plant plasma membrane proton pump (H(+)-ATPase) is stimulated by potassium, but it has remained unclear whether potassium is actually transported by the pump or whether it serves other roles. We now show that K(+) is bound to the proton pump at a site involving Asp(617) in the cytoplasmic...

  6. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  7. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    NARCIS (Netherlands)

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl 3,3,3′,3′-tetramethyli

  8. Video Views and Reviews: Golgi Export, Targeting, and Plasma Membrane Caveolae

    Science.gov (United States)

    Watters, Christopher

    2004-01-01

    In this article, the author reviews videos from "Molecular Biology of the Cell (MBC)" depicting various aspects of plasma membrane (PM) dynamics, including the targeting of newly synthesized components and the organization of those PM invaginations called caveolae. The papers accompanying these videos describe, respectively, the constitutive…

  9. Advanced Fluorescence Microscopy Approaches to Understand the Dynamic Organization of the Plasma Membrane in Eukaryotes

    DEFF Research Database (Denmark)

    Ziomkiewicz, Iwona

    The plasma membrane (PM) is a physical barrier that defines the boundaries of a cell. It not only isolates the cell interior from the environment, but also enables cell communication and a selective exchange of solutes. To serve those contrasting functions, the PM has a dynamic structure consisting...

  10. ADENOSINE-TRIPHOSPHATE DEPENDENT TAUROCHOLATE TRANSPORT IN HUMAN LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    WOLTERS, H; KUIPERS, F; SLOOFF, MJH; VONK, RJ

    1992-01-01

    Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles iso

  11. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    NARCIS (Netherlands)

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl

  12. Effects of Aluminum on ATPase Activity and Lipid Composition of Plasma Membranes from Wheat Roots

    Institute of Scientific and Technical Information of China (English)

    HE Long-fei; LIU You-liang; SHEN Zhen-guo; WANG Ai-qin

    2002-01-01

    The effects of aluminum on ATPase activity and lipid composition of the plasma membranes isolated from root tips of Al-tolerant (Altas 66) or Al-sensitive (Scout 66) cultivar of Triticum aestivum L.was assayed. The results showed that both cultivars had similar changes in H+ -ATPase and Ca2+ -ATPase activities after aluminum treatment. Exposure of both cultivars to 20 and 100 (mol/L aluminum for 5 d significantly decreased the activities of Ca2+ -ATPase of plasma membranes. The activities of H+-ATPasc in plasma membrane increased under 20 μmol/L aluminum and decreased at 100 μmol/L aluminum. With aluminum treatment, the PL content of plasma membrane decreased, but GL content increased. The ratio of PL to GL decreased more distinctly in Scout 66 than that in Altas 66. Treated with 20 and 100 μmol/L aluminum, linolenic acid content and the index of unsaturated fatty acids decreaced greatly in Scout 66, but the index of unsaturated fatty acids in Altas 66 increased slightly.

  13. Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal.

    Science.gov (United States)

    Barroso, M P; Gómez-Díaz, C; Villalba, J M; Burón, M I; López-Lluch, G; Navas, P

    1997-06-01

    Serum provides cultured cells with survival factors required to maintain growth. Its withdrawal induces the development of programmed cell death. HL-60 cells were sensitive to serum removal, and an increase of lipid peroxidation and apoptosis was observed. Long-term treatment with ethidium bromide induced the mitochondria-deficient rho(o)HL-60 cell line. These cells were surprisingly more resistant to serum removal, displaying fewer apoptotic cells and lower lipid peroxidation. HL-60 cells contained less ubiquinone at the plasma membrane than rho(o)HL-60 cells. Both cell types increased plasma membrane ubiquinone in response to serum removal, although this increase was much higher in rho(o) cells. Addition of ubiquinone to both cell cultures in the absence of serum improved cell survival with decreasing lipid peroxidation and apoptosis. Ceramide was accumulated after serum removal in HL-60 but not in rho(o)HL-60 cells, and exogenous ubiquinone reduced this accumulation. These results demonstrate a relationship between ubiquinone levels in the plasma membrane and the induction of serum withdrawal-induced apoptosis, and ceramide accumulation. Thus, ubiquinone, which is a central component of the plasma membrane electron transport system, can represent a first level of protection against oxidative damage caused by serum withdrawal.

  14. Calcium ion transport across plasma membranes isolated from rat kidney cortex.

    Science.gov (United States)

    Gmaj, P; Murer, H; Kinne, R

    1979-03-15

    Basal-lateral-plasma-membrane vesicles and brush-border-membrane vesicles were isolated from rat kidney cortex by differential centrifugation followed by free-flow-electrophoresis. Ca2+ uptake into these vesicles was investigated by a rapid filtration method. Both membranes show a considerable binding of Ca2+ to the vesicle interior, making the analysis of passive fluxes in uptake experiments difficult. Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin. The basal-lateral plasma membranes contain in addition a Na+/Ca2+-exchange system which mediates a probably rheogenic counter-transport of Ca2+ and Na+ across the basal cell border. The latter system is probably involved in the secondary active Na+-dependent and ouabain-inhibitable Ca2+ reabsorption in the proximal tubule, the ATP-driven system is probably more important for the maintenance of a low concentration of intracellular Ca2+.

  15. Localization of Membrane-Associated Proteins in Vesicular Stomatitis Virus by Use of Hydrophobic Membrane Probes and Cross-Linking Reagents

    Science.gov (United States)

    Zakowski, Jack J.; Wagner, Robert R.

    1980-01-01

    The location of membrane-associated proteins of vesicular stomatitis virus was investigated by using two monofunctional and three bifunctional probes that differ in the degree to which they partition into membranes and in their specific group reactivity. Two hydrophobic aryl azide probes, [125I]5-iodonaphthyl-1-azide and [3H]pyrenesulfonylazide, readily partitioned into virion membrane and, when activated to nitrenes by UV irradiation, formed stable covalent adducts to membrane constituents. Both of these monofunctional probes labeled the glyco-protein G and matrix M proteins, but [125I]5-iodonaphthyl-1-azide also labeled the nucleocapsid N protein and an unidentified low-molecular-weight component. Protein labeling of intact virions was unaffected by the presence of cytochrome c or glutathione, but disruption of membrane by sodium dodecyl sulfate greatly enhanced the labeling of all viral proteins except G. Labeling of G protein was essentially restricted to the membrane-embedded, thermolysin-resistant tail fragment. Three bifunctional reagents, tartryl diazide, dimethylsuberimidate, and 4,4′-dithiobisphenylazide, were tested for their capacity to cross-link proteins to membrane phospholipids of virions grown in the presence of [3H]palmitate. Only G and M proteins of intact virions were labeled with 3H-phospholipid by these cross-linkers; the reactions were not affected by cytochrome c but were abolished by disruption of virus with sodium dodecyl sulfate. Dimethylsuberimidate, which reacts with free amino groups, cross-linked 3H-phospholipid to both G and M protein. In contrast, the hydrophilic tartryl diazide cross-linked phospholipid primarily to the M protein, whereas the hydrophobic 4,4′-dithiobisphenylazide cross-linked phospholipid primarily to the intrinsic G protein. These data support the hypothesis that the G protein traverses the virion membrane and that the M protein is membrane associated but does not penetrate very deeply, if at all. PMID:6255216

  16. GLUT-4 content in plasma membrane of muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Lund, S; Vestergaard, H; Andersen, P H

    1993-01-01

    The abundance of GLUT-4 protein in both total crude membrane and plasma membrane fractions of vastus lateralis muscle from 13 obese non-insulin-dependent diabetes mellitus (NIDDM) patients and 14 healthy subjects were examined in the fasting state and after supraphysiological hyperinsulinemia....... In the basal state the immunoreactive mass of GLUT-4 protein both in the crude membrane preparation and in the plasma membrane fraction was similar in NIDDM patients and control subjects. Moreover, in vivo insulin exposure neither for 30 min nor for 4 h had any impact on the content of GLUT-4 protein in plasma...... membranes. With the use of the same methodology, antibody, and achieving the same degree of plasma membrane purification and recovery, we found, however, that intraperitoneal administration of insulin to 7-wk-old rats within 30 min increased the content of GLUT-4 protein more than twofold (P

  17. Auxiliary Subunits: Shepherding AMPA Receptors to the Plasma Membrane

    Directory of Open Access Journals (Sweden)

    Simon C. Haering

    2014-08-01

    Full Text Available Ionotropic glutamate receptors (iGluRs are tetrameric ligand-gated cation channels that mediate excitatory signal transmission in the central nervous system (CNS of vertebrates. The members of the iGluR subfamily of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA receptors (AMPARs mediate most of the fast excitatory signal transmission, and their abundance in the postsynaptic membrane is a major determinant of the strength of excitatory synapses. Therefore, regulation of AMPAR trafficking to the postsynaptic membrane is an important constituent of mechanisms involved in learning and memory formation, such as long-term potentiation (LTP and long-term depression (LTD. Auxiliary subunits play a critical role in the facilitation and regulation of AMPAR trafficking and function. The currently identified auxiliary subunits of AMPARs are transmembrane AMPA receptor regulatory proteins (TARPs, suppressor of lurcher (SOL, cornichon homologues (CNIHs, synapse differentiation-induced gene I (SynDIG I, cysteine-knot AMPAR modulating proteins 44 (CKAMP44, and germ cell-specific gene 1-like (GSG1L protein. In this review we summarize our current knowledge of the modulatory influence exerted by these important but still underappreciated proteins.

  18. Water/O2-plasma-assisted treatment of PCL membranes for biosignal immobilization.

    Science.gov (United States)

    Saşmazel, Hilal Türkoğlu; Manolache, Sorin; Gümüşderelioğlu, Menemşe

    2009-01-01

    The main purpose of this study was to obtain COOH functionalities on the surface of poly-epsilon-caprolactone (PCL) membranes using low-pressure water/O(2)-plasma-assisted treatment. PCL membranes were prepared using the solvent-casting technique. Then, low-pressure water/O(2) plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor in three steps: H(2)O/O(2)-plasma treatment; in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis for final -COOH functionalities. Optimization of plasma modification processes was done using the DoE software program. COOH and OH functionalities on modified surfaces were detected quantitatively using the fluorescent labeling technique and an UVX 300G sensor. Chemical structural information of untreated, plasma treated and oxalyl chloride functionalized PCL membranes were acquired using pyrolysis GC/MS and ESCA analysis. High-resolution AFM images revealed that nanopatterns were more affected than micropatterns by plasma treatments. AFM images recorded with amino-functionalized tips presented increased size of the features on the surface that suggests higher density of the carboxyls on the nanotopographical elements. Low-pressure water/O(2)-plasma-treated and oxalyl chloride functionalized samples were biologically activated with insulin and/or heparin biosignal molecules using a PEO (polyoxyethylene bis amine) spacer. The success of the immobilization process was checked qualitatively by ESCA analysis. In addition, fluorescent labeling techniques were used for the quantitative determination of immobilized biomolecules. Cell-culture experiments indicated that biomolecule immobilization onto PCL scaffolds was effective on L929 cell adhesion and proliferation, especially in the presence of heparin.

  19. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2012-07-01

    PIP2 and PIP3 are implicated in a wide variety of cellular signaling pathways at the plasma membrane. We have used STORM imaging to localize clusters of PIP2 and PIP3 to distinct nanoscale regions within the plasma membrane of PC12 cells. With anti-phospholipid antibodies directly conjugated with AlexaFluor 647, we found that PIP2 clusters in membrane domains of 64.5±27.558 nm, while PIP3 clusters had a size of 125.6±22.408 nm. With two color direct STORM imaging we show that >99% of phospholipid clusters have only one or other phospholipid present. These results indicate that lipid nano-domains can be readily identified using super-resolution imaging techniques, and that the lipid composition and size of clusters is tightly regulated.

  20. Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane.

    Science.gov (United States)

    Reintsch, Wolfgang E; Mandato, Craig A; McCrea, Pierre D; Fagotto, François

    2008-09-01

    The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.

  1. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    Science.gov (United States)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  2. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Charles, C [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Ramdutt, D [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Brault, P [GREMI-CNRS Laboratory, University of Orleans, BP 6744, F-45067, Orleans (France); Caillard, A [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Bulla, D [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Boswell, R [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Rabat, H [GREMI-CNRS Laboratory, University of Orleans, BP 6744, F-45067, Orleans (France); Dicks, A [School of Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-05-15

    A low energy ({approx}30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 10{sup 9}-10{sup 10} cm{sup -3} range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm{sup -2}, and which results from the combination of an ion energy dose (up to 3.8 J cm{sup -2}) and a photon (mostly UV) energy dose (up to 1.3 J cm{sup -2}). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  3. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    Science.gov (United States)

    Charles, C.; Ramdutt, D.; Brault, P.; Caillard, A.; Bulla, D.; Boswell, R.; Rabat, H.; Dicks, A.

    2007-05-01

    A low energy (~30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 109-1010 cm-3 range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm-2, and which results from the combination of an ion energy dose (up to 3.8 J cm-2) and a photon (mostly UV) energy dose (up to 1.3 J cm-2). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  4. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  5. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    Science.gov (United States)

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  6. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    Science.gov (United States)

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  7. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli.

    Science.gov (United States)

    Nenninger, Anja; Mastroianni, Giulia; Robson, Alexander; Lenn, Tchern; Xue, Quan; Leake, Mark C; Mullineaux, Conrad W

    2014-06-01

    Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.

  8. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    Science.gov (United States)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  9. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    OpenAIRE

    Ilya Borisov; Anna Ovcharova; Danila Bakhtin; Stepan Bazhenov; Alexey Volkov; Rustem Ibragimov; Rustem Gallyamov; Galina Bondarenko; Rais Mozhchil; Alexandr Bildyukevich; Vladimir Volkov

    2017-01-01

    For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf) hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm) were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4). Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughne...

  10. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    Science.gov (United States)

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  11. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    Science.gov (United States)

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  12. Effects of vitamin E supplementation on plasma membrane permeabilization and fluidization induced by chlorpromazine in the rat brain.

    Science.gov (United States)

    Maruoka, Nobuyuki; Murata, Tetsuhito; Omata, Naoto; Takashima, Yasuhiro; Fujibayashi, Yasuhisa; Wada, Yuji

    2008-03-01

    Neurotransmitter receptors play a key role in most research on antipsychotic drugs, but little is known about the effects of these drugs on the plasma membrane in the central nervous system. Therefore, we investigated whether chlorpromazine (CPZ), a typical phenothiazine antipsychotic drug, affects the plasma membrane integrity in the rat brain, and if so, whether these membrane alterations can be prevented by dietary supplementation with vitamin E, which has been shown to be an antioxidant and also a membrane-stabilizer. Leakage of [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG)-6-phosphate from rat striatal slices and decrease in 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy were used as indexes for plasma membrane permeabilization and fluidization, respectively. CPZ induced leakage of [(18)F]FDG-6-phosphate from striatal slices, and the leakage was delayed in the vitamin E-supplemented group compared to that in the normal diet group. The decrease in plasma membrane anisotropy induced by CPZ was significantly attenuated by vitamin E supplementation. Chronic treatment with alpha-phenyl-N-tert-butyl nitrone, a free radical scavenger, had no effect on CPZ-induced plasma membrane permeabilization, and the treatment with CPZ did not induce lipid peroxidation. CPZ can reduce plasma membrane integrity in the brain, and this reduction can be prevented by vitamin E via its membrane-stabilizing properties, not via its antioxidant activity.

  13. PERVAPORATION PROPERTIES OF PDMS MEMBRANES CURED WITH DIFFERENT CROSS-LINKING REAGENTS FOR ETHANOL CONCENTRATION FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Xia Zhan; Ji-ding Li; Jun-qi Huang; Cui-xian Chen

    2009-01-01

    Ethanol perm-selective PDMS/PVDF composite membranes were prepared by curing polydimethylsiloxane (PDMS) with various cross-linking reagents, such as tetraethoxylsilane (TEOS), γ-aminopropyltriethoxylsilane (APTEOS), phenyltrimethoxylsilane (PTMOS) and octyltrimethoxylsilane (OTMOS) as well. The cross-linking density and surface properties of the PDMS active layer were adjusted by varying cross-linking reagents. The pervaporation performance of PDMS membranes cured with different cross-linking reagents was investigated in detail. As temperature increased, the total flux of the four kinds of membranes all increased exponentially, and the separation factor followed a reversed order. The increase of thickness of PDMS layers depressed the total flux of composite membranes and had no obvious effect on selectivity of ethanol. It was found that the composite membrane cured by PTMOS showed much better separation performance compared with other membranes. A resistance-in-series model was used to investigate and estimate the overall mass transfer coefficients and boundary layer mass transfer coefficients of ethanol and water according to experimental results. The measured diffusivities of ethanol and water in PDMS membranes had a magnitude of 10-10 m2·s-1 and 10-11 m2·s-1 at 313.15 K, respectively.

  14. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  15. [Healing of osseous defects by guided bone regeneration using ribose cross linked collagen membranes].

    Science.gov (United States)

    Tal, H

    2004-07-01

    The ultimate goal of periodontal therapy has long been the complete regeneration of the periodontal attachment apparatus. Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) are two regenerative procedures which converted this goal from a dream to reality. In search of a biocompatible resorbable tissue barrier, collagen, being a natural protein and a weak antigen, has attracted much interest and became the focus of much intention during the 80's and the 90's. The understanding that cross linking of collagen with aldehyde sugars, especially ribose, produces collagen which is highly resistant to resorption in vivo led to the development of a "natural" Crossed-Linked Collagen Barrier (CB-SX). Animal and Human studies have shown that the newly developed membrane is biocompatible, remains intact in the tissues 6 months and more, and results in impressive guided tissue/bone regeneration. Spontaneous early exposure of the membrane is common but the healing potential of the resulted tissue dehiscence is favorable with no tendency for bacterial infection. The commercial version of the CB-SX is especially suitable for GBR procedures; it is highly recommended that the gingival flaps involved will properly be released, will lack tension, and be thoroughly sutured.

  16. A sandwich enzyme-linked immunosorbent assay for the quantification of insoluble membrane and scaffold proteins.

    Science.gov (United States)

    Geumann, Constanze; Grønborg, Mads; Hellwig, Michaela; Martens, Henrik; Jahn, Reinhard

    2010-07-15

    Enzyme-linked immunosorbent assays (ELISAs) are applied for the quantification of a vast diversity of small molecules. However, ELISAs require that the antigen is present in a soluble form in the sample. Accordingly, the few ELISAs described so far targeting insoluble proteins such as integral membrane and scaffold proteins have been restricted by limited extraction efficiencies and the need to establish an individual solubilization protocol for each protein. Here we describe a sandwich ELISA that allows the quantification of a diverse array of synaptic membrane and scaffold proteins such as munc13-1, gephyrin, NMDA R1 (N-methyl-d-aspartate receptor subunit 1), synaptic vesicle membrane proteins, and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). The assay is based on initial solubilization by the denaturing detergent sodium dodecyl sulfate (SDS), followed by partial SDS removal using the detergent Triton X-100, which restores antigenicity while keeping the proteins in solution. Using recombinant standard proteins, we determined assay sensitivities of 78ng/ml to 77pg/ml (or 74-0.1fmol). Calibration of the assay using both immunoblotting and mass spectroscopy revealed that in some cases correction factors need to be included for absolute quantification. The assay is versatile, allows parallel processing and automation, and should be applicable to a wide range of hitherto inaccessible proteins.

  17. Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3.

    Directory of Open Access Journals (Sweden)

    Mathias Gehrmann

    Full Text Available BACKGROUND: Human tumors differ from normal tissues in their capacity to present Hsp70, the major stress-inducible member of the HSP70 family, on their plasma membrane. Membrane Hsp70 has been found to serve as a prognostic indicator of overall patient survival in leukemia, lower rectal and non small cell lung carcinomas. Why tumors, but not normal cells, present Hsp70 on their cell surface and the impact of membrane Hsp70 on cancer progression remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Although Hsp70 has been reported to be associated with cholesterol rich microdomains (CRMs, the partner in the plasma membrane with which Hsp70 interacts has yet to be identified. Herein, global lipid profiling demonstrates that Hsp70 membrane-positive tumors differ from their membrane-negative counterparts by containing significantly higher amounts of globotriaoslyceramide (Gb3, but not of other lipids such as lactosylceramide (LacCer, dodecasaccharideceramide (DoCer, galactosylceramide (GalCer, ceramide (Cer, or the ganglioside GM1. Apart from germinal center B cells, normal tissues are Gb3 membrane-negative. Co-localization of Hsp70 and Gb3 was selectively determined in Gb3 membrane-positive tumor cells, and these cells were also shown to bind soluble Hsp70-FITC protein from outside in a concentration-dependent manner. Given that the latter interaction can be blocked by a Gb3-specific antibody, and that the depletion of globotriaosides from tumors reduces the amount of membrane-bound Hsp70, we propose that Gb3 is a binding partner for Hsp70. The in vitro finding that Hsp70 predominantly binds to artificial liposomes containing Gb3 (PC/SM/Chol/Gb3, 17/45/33/5 confirms that Gb3 is an interaction partner for Hsp70. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of Gb3 enables anchorage of Hsp70 in the plasma membrane of tumors and thus they might explain tumor-specific membrane localization of Hsp70.

  18. The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol.

    Science.gov (United States)

    Cantu, Jody C; Tarango, Melissa; Beier, Hope T; Ibey, Bennett L

    2016-11-01

    Previous work from our laboratory demonstrated nanopore formation in cell membranes following exposure to nanosecond pulsed electric fields (nsPEF). We observed differences in sensitivity to nsPEF in both acute membrane injury and 24h lethality across multiple cells lines. Based on these data, we hypothesize that the biological response of cells to nsPEF is dependent on the physical properties of the plasma membrane (PM), including regional cholesterol content. Results presented in this paper show that depletion of membrane cholesterol disrupts the PM and increases the permeability of cells to small molecules, including propidium iodide and calcium occurring after fewer nsPEF. Additionally, cholesterol depletion concurrently decreases the "dose" of nsPEF required to induce lethality. In summary, the results of the current study suggest that the PM cholesterol composition is an important determinant in the cellular response to nsPEF. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Chun-Keng; Bai, Feng-Wu; An, Li-Jia

    2005-09-01

    A combination of three amino acids including 1.0 g/L isoleucine, 0.5 g/L methionine and 2.0 g/L phenylalanine was found to enhance ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. When subjected to 20% (V/V) ethanol for 9 h at 30 degrees C, all cells died whereas 57% remained viable for the cells grown in the presence of the three amino acids. Based on the analysis of protein amino acid composition of plasma membranes and the determination of plasma membrane fluidity by measuring fluorescence anisotropy using diphenylhexatriene as a probe, it was found that the significantly increased ethanol tolerance of cells grown with the three amino acids was due to the incorporation of the supplementary amino acids into the plasma membranes, thus resulting in enhanced ability of the plasma membranes to efficiently counteract the fluidizing effect of ethanol when subjected to ethanol stress. This is the first time to report that plasma membrane fluidity can be influenced by protein amino acid composition of plasma membranes.

  20. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma

    Science.gov (United States)

    Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios

    2016-10-01

    Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).

  1. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function.

    Science.gov (United States)

    Desai, Aditya J; Miller, Laurence J

    2017-07-10

    Drug development targeting GPCRs often utilizes model heterologous cell expression systems, reflecting an implicit assumption that the membrane environment has little functional impact on these receptors or on their responsiveness to drugs. However, much recent data have illustrated that membrane components can have an important functional impact on intrinsic membrane proteins. This review is directed toward gaining a better understanding of the structure of the plasma membrane in health and disease, and how this organelle can influence GPCR structure, function and regulation. It is important to recognize that the membrane provides a potential mode of lateral allosteric regulation of GPCRs and can affect the effectiveness of drugs and their biological responses in various disease states, which can even vary among individuals across the population. The type 1 cholecystokinin receptor is reviewed as an exemplar of a class A GPCR that is affected in this way by changes in the plasma membrane. © 2017 The British Pharmacological Society.

  2. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao;

    2008-01-01

    . The produced cross-linked membranes show increased mechanical strength, making it possible to achieve higher phosphoric acid doping levels and therefore higher proton conductivity. Oxidative stability is significantly improved and thermal stability is sufficient in a temperature range of up to 250 degrees C, i......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP...

  3. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  4. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  5. Chromium(VI)-induced Production of Reactive Oxygen Species, Change of Plasma Membrane Potential and Dissipation of Mitochondria Membrane Potential in Chinese Hamster Lung Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To examine whether Reactive Oxygen Species (ROS) is generated, and whether plasma membrane potential and mitochondrial membrane potential are depolarized in Chinese Hamster Lung (CHL) cell lines exposed to Cr (VI). Methods CHL cells were incubated with Cr(VI) at 10 μmol/L, 2.5 μmol/L, 0.65 μmol/L for 3 and 6 hours, respectively. The production of ROS was performed by using 2,7_dichlorofluorescin diacetate; The changes in plasma membrane potential were estimated using fluorescent cationic dye DiBAC4; And the changes in mitochondria membrane potential were estimated using fluorescent dye Rhodamine 123. Results The ROS levels in CHL cells increased in all treated groups compared with the control group (P<0.01); The plasma membrane potential and mitochondrial membrane potential in CHL cells dissipated after incubated with Cr(VI) at 10 μmol/L for 3 hours and 6 hours (P<0.01), at 2.5 μmol/L for 6 hours (P<0.01 or 0.05). Conclusion Cr(VI) causes the dissipation of plasma membrane potential and mitochondrial membrane potential in CHL cell cultures, and Cr(VI)_induced ROS may play a role in the injuries.

  6. Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links

    Science.gov (United States)

    Armstrong, John W.; Estabrook, Frank B.

    2011-01-01

    Space weather is described as the variability of solar wind plasma that can disturb satellites and systems and affect human space exploration. Accurate prediction requires information of the heliosphere inside the orbit of the Earth. However, for predictions using remote sensing, one needs not only plane-of-sky position but also range information the third spatial dimension to show the distance to the plasma disturbances and thus when they might propagate or co-rotate to create disturbances at the orbit of the Earth. Appropriately processed radio signals from spacecraft having communications lines-of-sight passing through the inner heliosphere can be used for this spacetime localization of plasma disturbances. The solar plasma has an electron density- and radio-wavelength-dependent index of refraction. An approximately monochromatic wave propagating through a thin layer of plasma turbulence causes a geometrical-optics phase shift proportional to the electron density at the point of passage, the radio wavelength, and the thickness of the layer. This phase shift is the same for a wave propagating either up or down through the layer at the point of passage. This attribute can be used for space-time localization of plasma irregularities. The transfer function of plasma irregularities to the observed time series depends on the Doppler tracking mode. When spacecraft observations are in the two-way mode (downlink radio signal phase-locked to an uplink radio transmission), plasma fluctuations have a two-pulse response in the Doppler. In the two-way mode, the Doppler time series y2(t) is the difference between the frequency of the downlink signal received and the frequency of a ground reference oscillator. A plasma blob localized at a distance x along the line of sight perturbs the phase on both the up and down link, giving rise to two events in the two-way tracking time series separated by a time lag depending the blob s distance from the Earth: T2-2x/c, where T2 is the

  7. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity.

  8. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling.

    Science.gov (United States)

    You, Changjiang; Marquez-Lago, Tatiana T; Richter, Christian Paolo; Wilmes, Stephan; Moraga, Ignacio; Garcia, K Christopher; Leier, André; Piehler, Jacob

    2016-12-01

    The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.

  9. Diminished swelling of cross-linked aromatic oligoamide surfaces revealing a new fouling mechanism of reverse-osmosis membranes.

    Science.gov (United States)

    Ying, Wang; Kumar, Rajender; Herzberg, Moshe; Kasher, Roni

    2015-06-02

    Swelling of the active layer of reverse osmosis (RO) membranes has an important effect on permeate water flux. The effects of organic- and biofouling on the swelling of the RO membrane active layer and the consequent changes of permeate flux are examined here. A cross-linked aromatic oligoamide film that mimics the surface chemistry of an RO polyamide membrane was synthesized stepwise on gold-coated surfaces. Foulant adsorption to the oligoamide film and its swelling were measured with a quartz crystal microbalance, and the effects of fouling on the membrane's performance were evaluated. The foulants were extracellular polymeric substances (EPS) extracted from fouled RO membranes and organic compounds of ultrafiltration permeate (UFP) from a membrane bioreactor used to treat municipal wastewater. The adsorbed foulants affected the swelling of the cross-linked oligoamide film differently. EPS had little effect on the swelling of the oligoamide film, whereas UFP significantly impaired swelling. Permeate flux declined more rapidly under UFP fouling than it did under EPS. Foulant adsorption was shown to diminish swelling of the aromatic oligoamide surfaces. Among the already known RO membrane fouling mechanisms, a novel RO fouling mechanism is proposed, in which foulant-membrane interactions hinder membrane swelling and thus increase hydraulic resistance.

  10. Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells

    Science.gov (United States)

    Wang, Jing; Zhao, Chengji; Lin, Haidan; Zhang, Gang; Zhang, Yang; Ni, Jing; Ma, Wenjia; Na, Hui

    Sulfonated poly (arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes have been prepared as proton exchange membranes for applications in direct methanol fuel cells (DMFCs). Multilayered polyelectrolyte complexes (PECs) which applied as methanol barrier agents are prepared by alternate deposition of the oppositely charged amino-containing poly (ether ether ketone) (Am-PEEK) and the highly sulfonated SPAEK-C via a layer-by-layer method. The cross-linked PEC (c-PEC) is derived from a simple heat-induced cross-linking reaction between Am-PEEK and SPAEK-C. Fourier transform infrared spectroscopy confirms that Am-PEEK and SPAEK-C are assembled successfully in the multilayers. The morphology of the membranes is studied by scanning electron microscopy, which shows the presence of the thin layers coated on the SPAEK-C membrane. After PEC and c-PEC modification, the methanol permeability decreases obviously when compared to that of the pristine membrane. Notably, improved proton conductivities are obtained for the PEC modified membranes in comparison with the pristine membrane. Moreover, the selectivity of these modified membranes is one order of magnitude higher than that of Nafion 117. The thermal stability, oxidative stability, water uptake and swelling of PEC and c-PEC modified membranes are also investigated.

  11. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  12. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David L. Springer

    2004-01-01

    Full Text Available To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap. Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  13. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane.

    Science.gov (United States)

    Brameshuber, Mario; Weghuber, Julian; Ruprecht, Verena; Gombos, Imre; Horváth, Ibolya; Vigh, László; Eckerstorfer, Paul; Kiss, Endre; Stockinger, Hannes; Schütz, Gerhard J

    2010-12-31

    The plasma membrane has been hypothesized to contain nanoscopic lipid platforms, which are discussed in the context of "lipid rafts" or "membrane rafts." Based on biochemical and cell biological studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition, and heterogeneity. We present here a method that allows for the first time the direct imaging of nanoscopic long-lived platforms with raft-like properties diffusing in the live cell plasma membrane. Our method senses these platforms by their property to assemble a characteristic set of fluorescent marker proteins or lipids on a time scale of seconds. A special photobleaching protocol was used to reduce the surface density of labeled mobile platforms down to the level of well isolated diffraction-limited spots without altering the single spot brightness. The statistical distribution of probe molecules per platform was determined by single molecule brightness analysis. For demonstration, we used the consensus raft marker glycosylphosphatidylinositol-anchored monomeric GFP and the fluorescent lipid analog BODIPY-G(M1), which preferentially partitions into liquid-ordered phases. For both markers, we found cholesterol-dependent homo-association in the plasma membrane of living CHO and Jurkat T cells in the resting state, thereby demonstrating the existence of small, mobile, long-lived platforms containing these probes. We further applied the technology to address structural changes in the plasma membrane during fever-type heat shock: at elevated temperatures, the glycosylphosphatidylinositol-anchored monomeric GFP homo-association disappeared, accompanied by an increase in the expression of the small heat shock protein Hsp27.

  14. Molecular recognition based iron removal from human plasma with imprinted membranes.

    Science.gov (United States)

    Yavuz, H; Andaç, M; Uzun, L; Say, R; Denizli, A

    2006-09-01

    The aim of this study is to prepare ion-imprinted poly(2-hydroxyethyl methacrylate) (HEMA) based membranes which can be used for the selective removal of Fe3+ ions from Fe3+-overdosed human plasma. N-methacryloyl-(L)-glutamic acid (MAGA) was chosen as the ion-complexing monomer. In the first step, Fe3+ was complexed with MAGA and then, the Fe3+-imprinted poly(HEMA-MAGA) membranes were prepared by UV-initiated photo-polymerization of HEMA and MAGA-Fe3+ complex in the presence of an initiator (benzoyl peroxide). After that, the template (i.e., Fe3+ ions) was removed by using 0.1 M EDTA solution at room temperature. The specific surface area of the Fe3+-imprinted poly(HEMA-MAGA) membranes was found to be 49.2 m2/g and the swelling ratio was 92%. According to the elemental analysis results, the polymeric membranes contained 145.7 micromol MAGA/g polymer. The maximum adsorption capacity was 164.2 micromol Fe3+/g membrane. The relative selectivity coefficients of ion-imprinted membranes for Fe3+/Zn2+ and Fe3+/Cr3+ were 12.6 and 62.5 times greater than the non-imprinted matrix, respectively. The Fe3+-imprinted poly(HEMA-MAGA) membranes could be used many times without decreasing their Fe3+ adsorption capacities significantly.

  15. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases

    DEFF Research Database (Denmark)

    Olsen, Lars Folke; Andersen, Ann Zahle; Lunding, Anita

    2009-01-01

    We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethylo......We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3......,3'-diethyloxacarbocyanine iodide. The responses of glycolytic and membrane potential oscillations to a number of inhibitors of glycolysis, mitochondrial electron flow, and mitochondrial and plasma membrane H(+)-ATPase were investigated. Furthermore, the glycolytic flux was determined as the rate of production of ethanol...... in a number of different situations (changing pH or the presence and absence of inhibitors). Finally, the intracellular pH was determined and shown to oscillate. The results support earlier work suggesting that the coupling between glycolysis and mitochondrial membrane potential is mediated by the ADP...

  16. Parallel artificial liquid membrane extraction of acidic drugs from human plasma.

    Science.gov (United States)

    Roldán-Pijuán, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-04-01

    The new sample preparation concept "Parallel artificial liquid membrane extraction (PALME)" was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual wells in a 96-well donor plate and diluted with HCl to protonate the acidic drugs. The acidic drugs were extracted as protonated species from the individual plasma samples, through corresponding artificial liquid membranes each comprising 2 μL of dihexyl ether, and into corresponding acceptor solutions each comprising 50 μL of 25 mM ammonia solution (pH 10). The liquid membranes and the acceptor solutions were located in a 96-well filter plate, which was sandwiched with the 96-well donor plate during extraction. Parallel extraction of several samples was performed for 15 to 60 min, followed by high-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive extraction was accomplished from plasma. Linearity was obtained for all six drugs in the range 0.025-10 μg/mL, with r (2) values ranging between 0.998 and 1.000. Precision data were in the range 3-22% RSD, and accuracy data were within 72-130% with spiked plasma samples. Based on the current experiences, PALME showed substantial potential for future high-throughput bioanalysis of non-polar acidic drugs.

  17. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    Science.gov (United States)

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  18. The effect of Amaranth oil on monolayers of artificial lipids and hepatocyte plasma membranes with adrenalin-induced stress.

    Science.gov (United States)

    Yelisyeyeva, O P; Semen, K O; Ostrovska, G V; Kaminskyy, D V; Sirota, T V; Zarkovic, N; Mazur, D; Lutsyk, O D; Rybalchenko, K; Bast, A

    2014-03-15

    In this paper the oil from seeds of Amaranthus cruentus L. (AmO) was shown to be an efficient modulator of the physical chemical properties of artificial lipid and rat hepatocyte plasma membranes. AmO improved the membrane stability, their stress resistance and the adsorption of neurotensin to plasma membranes with the distinct biphasic interactions being observed even after adrenalin stress exposure. The analysis of pro-/antioxidant balance in rat blood revealed a mild prooxidant activity after AmO intake, which was accompanied by accumulation of oxidative destruction products in plasma membranes. This prooxidant action of AmO was corroborated in vitro in an adrenalin autooxidation model. On the other hand, the observed improved resistance to adrenalin stress in AmO supplemented rats was associated with an antioxidant response in blood and plasma membrane studies. The AmO effects can be attributed to the modulation of the metabolic pathways involved into oxygen and free radical homeostasis.

  19. Temperature-Induced Protein Conformational Changes in Barley Root Plasma Membrane-Enriched Microsomes

    Science.gov (United States)

    Caldwell, Charles R.

    1987-01-01

    The membrane-bound proteins of barley (Hordeum vulgare L. cv Conquest) root plasma membrane-enriched microsomes displayed fluorescence typical of protein-associated trytophan residues. The protein fluorescence intensity was sensitive to variations in sample temperature. The temperature-induced decline in protein fluorescence intensity was nonlinear with slope discontinuities at about 12 and 32°C. Detergents at levels above their critical micelle concentration enhanced protein fluorescence. Glutaraldehyde reduced protein fluorescence. Protein fluorescence polarization increased at temperatures above 30°C. Both the rate of tryptophan photoionization and the fluorescence intensity of the photoionization products suggested alterations in membrane protein conformation between 12 and 32°C. The quenching of the intrinsic protein fluorescence by acrylamide and potassium iodide indicated changes in accessibility of the extrinsic agents to the protein tryptophan residues beginning at about 14°C. The results indicate thermally induced changes in the dynamics of the membrane proteins over the temperature range of 12 to 32°C which could account for the complex temperature dependence of the barley root plasma membrane ATPase. PMID:16665545

  20. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering.

    Science.gov (United States)

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-09-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).

  1. Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles.

    Science.gov (United States)

    Yao, Cuiping; Rahmanzadeh, Ramtin; Endl, Elmar; Zhang, Zhenxi; Gerdes, Johannes; Hüttmann, Gereon

    2005-01-01

    Irradiation of nanoabsorbers with pico- and nanosecond laser pulses could result in thermal effects with a spatial confinement of less than 50 nm. Therefore absorbing nanoparticles could be used to create controlled cellular effects. We describe a combination of laser irradiation with nanoparticles, which changes the plasma membrane permeability. We demonstrate that the system enables molecules to penetrate impermeable cell membranes. Laser light at 532 nm is used to irradiate conjugates of colloidal gold, which are delivered by antibodies to the plasma membrane of the Hodgkin's disease cell line L428 and/or the human large-cell anaplastic lymphoma cell line Karpas 299. After irradiation, membrane permeability is evaluated by fluorescence microscopy and flow cytometry using propidium iodide (PI) and fluorescein isothiocyanate (FITC) dextran. The fraction of transiently permeabilized and then resealed cells is affected by the laser parameter, the gold concentration, and the membrane protein of the different cell lines to which the nanoparticles are bound. Furthermore, a dependence on particle size is found for these interactions in the different cell lines. The results suggest that after optimization, this method could be used for gene transfection and gene therapy.

  2. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    Science.gov (United States)

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  3. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets.

    Science.gov (United States)

    Dionisio, Natalia; Galán, Carmen; Jardín, Isaac; Salido, Ginés M; Rosado, Juan A

    2011-03-01

    STIM1 is a transmembrane protein essential for the activation of store-operated Ca²+ entry (SOCE), a major Ca²+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca²+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca²+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca²+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca²+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn²+ entry, which was inhibited by increasing concentrations of extracellular Ca²+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca²+ entry induced by extracellular Ca²+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca²+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca²+ mediated by the interaction between plasma membrane-located STIM1 and Orai1. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Stanton Peter G

    2011-05-01

    Full Text Available Abstract Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL 11 regulates human endometrial epithelial cells (hEEC adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2 and flotillin-1 (FLOT1, were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle. Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary h

  5. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  6. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Directory of Open Access Journals (Sweden)

    Ilya Borisov

    2017-02-01

    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  7. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    Science.gov (United States)

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water.

  8. Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

    Science.gov (United States)

    Sweet, W D; Schroeder, F

    1986-10-15

    The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.

  9. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    Science.gov (United States)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  10. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma

    DEFF Research Database (Denmark)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine

    2016-01-01

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solv...... matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines....

  11. Effects of Calcium on ATPase Activity and Lipid Composition of Plasma Membranes from Wheat Roots Under Aluminum Stress

    Institute of Scientific and Technical Information of China (English)

    HE Long-fei; SHEN Zhen-guo; LIU You-liang

    2003-01-01

    Effects of calcium on ATPase activities, lipid contents, and fatty acid compositions of plasma membrane from wheat roots were assayed under aluminum stress. The results showed that the increase of calcium concentration in the nutrient solution increased the activity of H+-ATPase and the phospholipid content, decreased the activity of Ca2+-ATPase and the galactolipid of plasma membrane. Owing to the decrease of linolenic acid content, the index of unsaturated fatty acid (IUFA) and index of double bond (DBI) decreased in Altas66. The IUFA and DBI of plasma membrane from Scout66 roots increased because its linolenic acid content increased obviously and its palmitic acid content decreased apparently.

  12. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    Science.gov (United States)

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  13. A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma.

    Science.gov (United States)

    Grant, Ryan; Ansa-Addo, Ephraim; Stratton, Dan; Antwi-Baffour, Samuel; Jorfi, Samireh; Kholia, Sharad; Krige, Lizelle; Lange, Sigrun; Inal, Jameel

    2011-08-31

    The methods of Plasma Membrane-derived Vesicle (PMV) isolation and quantification vary considerably in the literature and a new standard needs to be defined. This study describes a novel filtration method to isolate PMVs in plasma, which avoids high speed centrifugation, and to quantify them using a Becton Dickinson (BD) FACS Calibur™ flow cytometer, as annexin V-positive vesicles, larger than 0.2 μm in diameter. Essentially microvesicles (which comprise a mixture of PMVs and exosomes) from citrate plasma were sonicated to break up clumped exosomes, and filtered using Millipore 0.1 μm pore size Hydrophilic Durapore membranes in Swinnex 13 mm filter holders. Phosphatidylserine-positive PMVs detected with annexin V-PE were quantified using combined labelling and gating strategies in conjunction with Polysciences Polybead Microspheres (0.2 μm) and BDTrucount tubes. The PMV absolute count was calculated on the analysis template using the Trucount tube lot number information and expressed in PMV count/ml. Having estimated a normal reference range (0.51×10(5)-2.82×10(5) PMVs/ml) from a small sample of human donors, using the developed method, the effect of certain variables was investigated. Variations such as freezing of samples and gender status did not significantly alter the PMV absolute count, and with age plasma PMV levels were only marginally reduced. Smokers appeared to have reduced PMV levels. Nicotine, as for calpeptin was shown to dose-dependently (from 10 up to 50 μM) reduce levels of early apoptosis in THP-1 monocytes and to decrease the level of PMV release. Fasting individuals had 2-3 fold higher PMV absolute counts compared to non-fasting subjects.

  14. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.

  15. p95-APP1 links membrane transport to Rac-mediated reorganization of actin

    DEFF Research Database (Denmark)

    Di Cesare, A; Paris, S; Albertinazzi, C

    2000-01-01

    Motility requires protrusive activity at the cellular edge, where Rho family members regulate actin dynamics. Here we show that p95-APP1 (ArfGAP-putative, Pix-interacting, paxillin-interacting protein 1), a member of the GIT1/PKL family, is part of a complex that interacts with Rac. Wild-type and......Motility requires protrusive activity at the cellular edge, where Rho family members regulate actin dynamics. Here we show that p95-APP1 (ArfGAP-putative, Pix-interacting, paxillin-interacting protein 1), a member of the GIT1/PKL family, is part of a complex that interacts with Rac. Wild...... and localizes to endosomal compartments, thus identifying p95-APP1 as a molecular link between actin organization, adhesion, and membrane transport during cell motility....

  16. A comparative study of the plasma membrane permeabilization and fluidization induced by antipsychotic drugs in the rat brain

    OpenAIRE

    Murata, Tetsuhito; Maruoka, Nobuyuki; Omata, Naoto; Takashima, Yasuhiro; Fujibayashi, Yasuhisa; Yonekura, Yoshiharu; Wada, Yuji

    2007-01-01

    We compared the potency of the interaction of three antipsychotic drugs, i.e., chlorpromazine (CPZ), haloperidol (HAL) and sulpiride (SUL), with the plasma membrane in the rat brain. CPZ loading ( 100 M) dose-dependently increased both membrane permeability (assessed as [18F]2-fluoro-2-deoxy-D-glucose-6-phosphate release from brain slices) and membrane fluidity (assessed as the reduction in the plasma membrane anisotropy of 1,6-diphenyl-1,3,5-hexatriene). On the other hand, a higher concent...

  17. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  18. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes.

    Science.gov (United States)

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-02-29

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co(2+) released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes.

  19. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

    Science.gov (United States)

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B; Narayanaswamy, Pradeep; Wenk, Markus R; Nakatsu, Fubito; De Camilli, Pietro

    2015-07-24

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.

  20. Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering.

    Science.gov (United States)

    Chen, Jun; Yao, Mingdong; Pagba, Cynthia V; Zheng, Yang; Fei, Liping; Feng, Zhaochi; Barry, Bridgette A

    2015-01-01

    In photosynthesis, photosystem II (PSII) harvests sunlight with bound pigments to oxidize water and reduce quinone to quinol, which serves as electron and proton mediators for solar-to-chemical energy conversion. At least two types of quinone cofactors in PSII are redox-linked: QA, and QB. Here, we for the first time apply 257-nm ultraviolet resonance Raman (UVRR) spectroscopy to acquire the molecular vibrations of plastoquinone (PQ) in PSII membranes. Owing to the resonance enhancement effect, the vibrational signal of PQ in PSII membranes is prominent. A strong band at 1661 cm(-1) is assigned to ring CC/CO symmetric stretch mode (ν8a mode) of PQ, and a weak band at 469 cm(-1) to ring stretch mode. By using a pump-probe difference UVRR method and a sample jet technique, the signals of QA and QB can be distinguished. A frequency difference of 1.4 cm(-1) in ν8a vibrational mode between QA and QB is observed, corresponding to ~86 mV redox potential difference imposed by their protein environment. In addition, there are other PQs in the PSII membranes. A negligible anharmonicity effect on their combination band at 2130 cm(-1) suggests that the 'other PQs' are situated in a hydrophobic environment. The detection of the 'other PQs' might be consistent with the view that another functional PQ cofactor (not QA or QB) exists in PSII. This UVRR approach will be useful to the study of quinone molecules in photosynthesis or other biological systems.

  1. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The central nervous system (CNS insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP. MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  2. A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5.

    Science.gov (United States)

    Spomer, Lina; Gertzen, Christoph G W; Schmitz, Birte; Häussinger, Dieter; Gohlke, Holger; Keitel, Verena

    2014-02-07

    The C terminus of G protein-coupled receptors (GPCRs) is important for G protein-coupling and activation; in addition, sorting motifs have been identified in the C termini of several GPCRs that facilitate correct trafficking from the endoplasmic reticulum to the plasma membrane. The C terminus of the GPCR TGR5 lacks any known sorting motif such that other factors must determine its trafficking. Here, we investigate deletion and substitution variants of the membrane-proximal C terminus of TGR5 with respect to plasma membrane localization and function using immunofluorescence staining, flow cytometry, and luciferase assays. Peptides of the membrane-proximal C-terminal variants are subjected to molecular dynamics simulations and analyzed with respect to their secondary structure. Our results reveal that TGR5 plasma membrane localization and responsiveness to extracellular ligands is fostered by a long (≥ 9 residues) α-helical stretch at the C terminus, whereas the presence of β-strands or only a short α-helical stretch leads to retention in the endoplasmic reticulum and a loss of function. As a proof-of-principle, chimeras of TGR5 containing the membrane-proximal amino acids of the β2 adrenergic receptor (β2AR), the sphingosine 1-phosphate receptor-1 (S1P1), or the κ-type opioid receptor (κOR) were generated. These TGR5β2AR, TGR5S1P1, or TGR5κOR chimeras were correctly sorted to the plasma membrane. As the exchanged amino acids of the β2AR, the S1P1, or the κOR form α-helices in crystal structures but lack significant sequence identity to the respective TGR5 sequence, we conclude that the secondary structure of the TGR5 membrane-proximal C terminus is the determining factor for plasma membrane localization and responsiveness towards extracellular ligands.

  3. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization

    DEFF Research Database (Denmark)

    Schiøtt, Morten; Romanowsky, Shawn M; Bækgaard, Lone

    2004-01-01

    Ca(2+) signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca(2+) signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome...... and a high frequency of aborted fertilization, resulting in a >80% reduction in seed set. These findings identify a plasma membrane Ca(2+) transporter as a key regulator of pollen development and fertilization in flowering plants....

  4. Stable inhibition of brain synaptic plasma membrane calcium ATPase in rats anesthetized with halothane.

    Science.gov (United States)

    Franks, J J; Horn, J L; Janicki, P K; Singh, G

    1995-01-01

    The authors recently showed that plasma membrane Ca(2+)-ATPase (PMCA) activity in cerebral synaptic plasma membrane (SPM) is diminished in a dose-related fashion during exposure in vitro to halothane, isoflurane, xenon, and nitrous oxide at clinically relevant partial pressures. They have now extended their work to in vivo studies, examining PMCA pumping in SPM obtained from control rats decapitated without anesthetic exposure, from rats decapitated during halothane anesthesia, and from rats decapitated after recovery from halothane anesthesia. Three treatment groups were studied: 1) C, control rats that were decapitated without anesthetic exposure, 2) A, anesthetized rats exposed to 1 minimum effective dose (MED) for 20 min and then decapitated, and 3) R, rats exposed to 1 MED for 20 min and then decapitated after recovery from anesthesia, defined as beginning to groom. Plasma membrane Ca(2+)-ATPase pumping and Ca(2+)-dependent ATPase hydrolytic activity, as well as sodium-calcium exchanger activity and Na+-K+-ATPase hydrolytic activity, were assessed in cerebral SPM. In addition, halothane effect on smooth endoplasmic reticulum Ca(2+)-ATPase (SERCA) was examined. Plasma membrane Ca(2+)-ATPase transport of Ca2+ into SPM vesicles from anesthetized rats was reduced to 71% of control (P SPM from rats killed while anesthetized with halothane, compared with rats killed without anesthesia or after recovery from anesthesia. The studies described in this report, in conjunction with previously reported inhibition of PMCA activity in vitro by a wide range of anesthetic agents, indicate a relationship between inhibition of PMCA and action of inhalational anesthetics.

  5. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    Directory of Open Access Journals (Sweden)

    Farzaneh Eskandari

    2016-01-01

    Full Text Available Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control, spermatozoa treated with silymarin (20 μM + sodium arsenite (10 μM for 180 min, spermatozoa treated with sodium arsenite (10 μM for 180 min and spermatozoa treated with silymarin (20 μM for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001 and acrosome integrity (p< 0.05 of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001 ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group showed a significant (p< 0.001 decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05 increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  6. Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera

    OpenAIRE

    Aslam, Usman; Khatoon,Asia; Cheema,Hafiza Masooma Naseer; Bashir, Aftab

    2013-01-01

    Calotropis procera, commonly known as “milkweed”, possesses long seed trichomes for seed dispersal and has the ability to survive under harsh conditions such as drought and salinity. Aquaporins are water channel proteins expressed in all land plants, divided into five subfamilies plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like proteins (NIPs), small basic intrinsic proteins (SIPs), and the unfamiliar X intrinsic proteins (XIPs). PIPs constitute the l...

  7. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.

    Science.gov (United States)

    Mason, A Brett; Allen, Kenneth E; Slayman, Carolyn W

    2006-08-18

    Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.

  8. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.

    Science.gov (United States)

    Park, Kyu-Sang; Jo, Inho; Pak, Kim; Bae, Sung-Won; Rhim, Hyewhon; Suh, Suk-Hyo; Park, Jin; Zhu, Hong; So, Insuk; Kim, Ki Whan

    2002-01-01

    We investigated the effects of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore and uncoupler of mitochondrial oxidative phosphorylation in mitochondria, on plasma membrane potential and ionic currents in bovine aortic endothelial cells (BAECs). The membrane potential and ionic currents of BAECs were recorded using the patch-clamp technique in current-clamp and voltage-clamp modes, respectively. FCCP activated ionic currents and depolarized the plasma membrane potential in a dose-dependent manner. Neither the removal of extracellular Ca2+ nor pretreatment with BAPTA/AM affected the FCCP-induced currents, implying that the currents are not associated with the FCCP-induced intracellular [Ca2+]i increase. FCCP-induced currents were significantly influenced by the changes in extracellular or intracellular pH; the increased proton gradient produced by lowering the extracellular pH or intracellular alkalinization augmented the changes in membrane potential and ionic currents caused by FCCP. FCCP-induced currents were significantly reduced under extracellular Na+-free conditions. The reversal potentials of FCCP-induced currents under Na+-free conditions were well fitted to the calculated equilibrium potential for protons. Interestingly, FCCP-induced Na+ transport (subtracted currents, I(control)- I(Na+-free) was closely dependent on extracellular pH, whereas FCCP-induced H+transport was not significantly affected by the absence of Na+. These results suggest that the FCCP-induced ionic currents and depolarization, which are strongly dependent on the plasmalemmal proton gradient, are likely to be mediated by both H+ and Na+ currents across the plasma membrane. The relationship between H+ and Na+ transport still needs to be determined.

  9. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane.

    Science.gov (United States)

    Gordon, Sharona E; Senning, Eric N; Aman, Teresa K; Zagotta, William N

    2016-02-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane.

  10. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment.

    Science.gov (United States)

    Yu, Hai-Yin; He, Xiao-Chun; Liu, Lan-Qin; Gu, Jia-Shan; Wei, Xian-Wen

    2007-12-01

    Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. The polypropylene hollow fiber microporous membranes (PPHFMMs) were surface modified by N(2) low-temperature plasma treatment to improve the antifouling characteristics. Morphological changes on the membrane surface were characterized by field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurements. The static water contact angle of the modified membrane reduced obviously; the relative pure water flux of the modified membranes increased with the increase of plasma treatment time. To assess the relation between plasma treatment and membrane fouling in a submerged membrane bioreactor (SMBR), filtration of activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 90 h, flux recoveries for the N(2) plasma-treated PPHFMM for 8 min were 62.9% and 67.8% higher than those of the virgin membrane after water and NaOH cleaning. The irreversible fouling resistance decreased after plasma treatment.

  11. THE RELATIONSHIPS BETWEEN PLASMA CHOLESTEROL、TRIGLYCERIDE、HIGH DENSITY LIPOPROTEIN AND ION TRANSPORT ENZYMES IN ERYTHROCYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    符云峰; 王素敏; 卢振敏; 李红

    2002-01-01

    Objective To investigate the relationships between levels of plasma cholesterol (Ch), triglyceride (TG)、high density lipoprotein(HDL) and ion transport enzyme activities in red cell membranes of essential hypertensive patients.Methods Plasma Ch, TG, HDL-c, activites of Na+ -K+ -ATPase and Ca2+-ATPase, Ca2+-binding capacity of interior membrane surface, and membrane Ch, phospholipid(PL) were measured in 32 normotensive (NT) subjects and 55 essential hypertensive patients(HT).Results ①Mean artery pressure(MAP), plasma Ch、TG and membrane Ch levels, and membrane cholesterol/phospholipid(C/P) molar ratio were significantly increased compared with those in NT group, respectively; ②The plasma HDL-c level, the activities of Na+-K+-ATPase and Ca2+-ATPase, and the Ca2+-binding capacity of the interior membrane surface in HT group were significantly lower than those in NT group, respectively.Conclusion The depressed activities of Na+-K+-ATPase and Ca2+-ATPase, and Ca2+-binding capacity of the interior surface in cell membranes are the major evidence of ion transport abnormalities in essential hypertension. The plasma TG and membrance C/P molar ratio-dependent changes in membrane microviscosity seem to be responsible for the modulation of particular ion transport pathways.

  12. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    Science.gov (United States)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  13. Contribution of plasma membrane Ca2+ ATPase to cerebellar synapse function

    Institute of Scientific and Technical Information of China (English)

    Helena; Huang; Raghavendra; Y; Nagaraja; Molly; L; Garside; Walther; Akemann; Thomas; Knpfel; Ruth; M; Empson

    2010-01-01

    The cerebellum expresses one of the highest levels of the plasma membrane Ca2+ATPase,isoform 2 in the mammalian brain.This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex;i.e. the Purkinje neurons(PNs) .Here we review recent evidence,including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2(PMCA2) knockout mouse,to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour.These studies have also revealed that deletionof PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development,they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.

  14. Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits.

    Science.gov (United States)

    Herst, Patries M; Perrone, Gabriel G; Dawes, Ian W; Bircham, Peter W; Berridge, Michael V

    2008-09-01

    Most investigations into plasma membrane electron transport (PMET) in Saccharomyces cerevisiae have focused on the inducible ferric reductase responsible for iron uptake under iron/copper-limiting conditions. In this paper, we describe a PMET system, distinct from ferric reductase, which reduces the cell-impermeable water-soluble tetrazolium dye, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium monosodium salt (WST-1), under normal iron/copper conditions. WST-1/1-methoxy-phenazine methosulphate reduction was unaffected by anoxia and relatively insensitive to diphenyleneiodonium. Dye reduction was increased when intracellular NADH levels were high, which, in S. cerevisiae, required deletion of numerous genes associated with NADH recycling. Genome-wide screening of all viable nuclear gene-deletion mutants of S. cerevisiae revealed that, although mitochondrial electron transport per se was not required, the presence of several nuclear and mitochondrially encoded subunits of respiratory complexes III and IV was mandatory for PMET. This suggests some form of interaction between components of mitochondrial and plasma membrane electron transport. In support of this, mitochondrial tubular networks in S. cerevisiae were shown to be located in close proximity to the plasma membrane using confocal microscopy.

  15. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin.

  16. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane.

    Science.gov (United States)

    Witzel, Sabine; Zimyanin, Vitaly; Carreira-Barbosa, Filipa; Tada, Masazumi; Heisenberg, Carl-Philipp

    2006-12-04

    Wnt11 is a key signal, determining cell polarization and migration during vertebrate gastrulation. It is known that Wnt11 functionally interacts with several signaling components, the homologues of which control planar cell polarity in Drosophila melanogaster. Although in D. melanogaster these components are thought to polarize cells by asymmetrically localizing at the plasma membrane, it is not yet clear whether their subcellular localization plays a similarly important role in vertebrates. We show that in zebrafish embryonic cells, Wnt11 locally functions at the plasma membrane by accumulating its receptor, Frizzled 7, on adjacent sites of cell contacts. Wnt11-induced Frizzled 7 accumulations recruit the intracellular Wnt signaling mediator Dishevelled, as well as Wnt11 itself, and locally increase cell contact persistence. This increase in cell contact persistence is mediated by the local interaction of Wnt11, Frizzled 7, and the atypical cadherin Flamingo at the plasma membrane, and it does not require the activity of further downstream effectors of Wnt11 signaling, such as RhoA and Rok2. We propose that Wnt11, by interacting with Frizzled 7 and Flamingo, modulates local cell contact persistence to coordinate cell movements during gastrulation.

  17. Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake.

    Directory of Open Access Journals (Sweden)

    Míriam Rodríguez-Vázquez

    2015-06-01

    Full Text Available Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP. We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them.

  18. Relationship between plasma membrane Ca2+-ATPase activity and acrosome reaction in guinea pig sperm

    Institute of Scientific and Technical Information of China (English)

    李明文; 陈大元

    1996-01-01

    The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of C

  19. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  20. Plasma membrane is the site of productive HIV-1 particle assembly.

    Directory of Open Access Journals (Sweden)

    Nolwenn Jouvenet

    2006-12-01

    Full Text Available Recently proposed models that have gained wide acceptance posit that HIV-1 virion morphogenesis is initiated by targeting the major structural protein (Gag to late endosomal membranes. Thereafter, late endosome-based secretory pathways are thought to deliver Gag or assembled virions to the plasma membrane (PM and extracellular milieu. We present several findings that are inconsistent with this model. Specifically, we demonstrate that HIV-1 Gag is delivered to the PM, and virions are efficiently released into the extracellular medium, when late endosome motility is abolished. Furthermore, we show that HIV-1 virions are efficiently released when assembly is rationally targeted to the PM, but not when targeted to late endosomes. Recently synthesized Gag first accumulates and assembles at the PM, but a proportion is subsequently internalized via endocytosis or phagocytosis, thus accounting for observations of endosomal localization. We conclude that HIV-1 assembly is initiated and completed at the PM, and not at endosomal membranes.

  1. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  2. Supramolecular organization of the sperm plasma membrane during maturation and capacitation

    Institute of Scientific and Technical Information of China (English)

    Roy Jones; Peter S. James; Liz Howes; Andreas Bruckbauer; David Klenerman

    2007-01-01

    Aim: In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Methods: Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Results: Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. Conclusion: A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.

  3. A model of plasma membrane flow and cytosis regulation in growing pollen tubes.

    Science.gov (United States)

    Chavarría-Krauser, Andrés; Yejie, Du

    2011-09-21

    A model of cytosis regulation in growing pollen tubes is developed and simulations presented. The authors address the question on the minimal assumptions needed to describe the pattern of exocytosis and endocytosis reported recently by experimental biologists. Biological implications of the model are also treated. Concepts of flow and conservation of membrane material are used to pose an equation system, which describes the movement of plasma membrane in the tip of growing pollen tubes. After obtaining the central equations, relations describing the rates of endocytosis and exocytosis are proposed. Two cytosis receptors (for exocytosis and endocytosis), which have different recycling rates and activation times, suffice to describe a stable growing tube. Simulations show a very good spatial separation between endocytosis and exocytosis, in which separation is shown to depend strongly on exocytic vesicle delivery. In accordance to measurements, most vesicles in the clear zone are predicted to be endocytic. Membrane flow is essential to maintain cell polarity, and bi-directional flow seems to be a natural consequence of the proposed mechanism. For the first time, a model addressing plasma membrane flow and cytosis regulation were posed. Therefore, it represents a missing piece in an integrative model of pollen tube growth, in which cell wall mechanics, hydrodynamic fluxes and regulation mechanisms are combined.

  4. New insights into the organization of plasma membrane and its role in signal transduction.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2015-01-01

    Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity.

  5. Plasma Membrane Na+-Coupled Citrate Transporter (SLC13A5 and Neonatal Epileptic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Yangzom D. Bhutia

    2017-02-01

    Full Text Available SLC13A5 is a Na+-coupled transporter for citrate that is expressed in the plasma membrane of specific cell types in the liver, testis, and brain. It is an electrogenic transporter with a Na+:citrate3− stoichiometry of 4:1. In humans, the Michaelis constant for SLC13A5 to transport citrate is ~600 μM, which is physiologically relevant given that the normal concentration of citrate in plasma is in the range of 150–200 μM. Li+ stimulates the transport function of human SLC13A5 at concentrations that are in the therapeutic range in patients on lithium therapy. Human SLC13A5 differs from rodent Slc13a5 in two important aspects: the affinity of the human transporter for citrate is ~30-fold less than that of the rodent transporter, thus making human SLC13A5 a low-affinity/high-capacity transporter and the rodent Slc13a5 a high-affinity/low-capacity transporter. In the liver, SLC13A5 is expressed exclusively in the sinusoidal membrane of the hepatocytes, where it plays a role in the uptake of circulating citrate from the sinusoidal blood for metabolic use. In the testis, the transporter is expressed only in spermatozoa, which is also only in the mid piece where mitochondria are located; the likely function of the transporter in spermatozoa is to mediate the uptake of citrate present at high levels in the seminal fluid for subsequent metabolism in the sperm mitochondria to generate biological energy, thereby supporting sperm motility. In the brain, the transporter is expressed mostly in neurons. As astrocytes secrete citrate into extracellular medium, the potential function of SLC13A5 in neurons is to mediate the uptake of circulating citrate and astrocyte-released citrate for subsequent metabolism. Slc13a5-knockout mice have been generated; these mice do not have any overt phenotype but are resistant to experimentally induced metabolic syndrome. Recently however, loss-of-function mutations in human SLC13A5 have been found to cause severe epilepsy

  6. Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications.

    Science.gov (United States)

    Alves, Anabela; Pinho, Elisabete D; Neves, Nuno M; Sousa, Rui A; Reis, Rui L

    2012-04-15

    The polysaccharide ulvan, composed of sulphated rhamnose, glucoronic and iduronic acids was used to produce polymeric membranes by solvent casting. As ulvan is soluble in water, a cross-linking step was necessary to render the membrane insoluble in water and stable at physiological conditions. Cross-linked ulvan membranes were characterized by FTIR, SEM, swelling behaviour was investigated and the mechanical performance assessed by quasi-static tensile testing. Furthermore, the ability and mechanism of sustained release of a model drug from ulvan membranes was investigated. Produced membranes revealed remarkable ability to uptake water (up to ∼1800% of its initial dry weight) and increased mechanical performance (1.76 MPa) related with cross-linking. On the other hand, medicated ulvan dressings demonstrate the potential as drug delivery devices. Using a model drug we have observed an initial steady release of the drug - of nearly 49% - followed by slower and sustained release up to 14 days. The properties of ulvan membranes herein revealed suggest a great potential of this natural sulphated polysaccharide as a wound dressing.

  7. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    Science.gov (United States)

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  8. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  9. One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction.

    Science.gov (United States)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund; Nováková, Lucie; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2017-02-01

    The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained in the pores of a thin polymeric membrane, a well-known extraction principle also used in hollow fiber liquid-phase microextraction (HF-LPME). However, the new PALME technique offers a more user-friendly setup in which the supported liquid membrane is incorporated in a 96 well plate system. Thus, high-throughput is achievable, in addition to the green chemistry offered by using PALME. The consumption of organic solvent is minimized to 3-5μL per sample. With a sample volume of 250μL and acceptor solution volume of 50μL, a maximal enrichment factor of five is achievable. Based on these parameters, a new method for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction was promoted by a carrier dissolved in the membrane, creating a temporary ion-pair complex between the hydrophilic drug and the carrier. As the model analytes were extracted directly into an aqueous solution, there was no need for evaporation of the extract before injection into LC-MS. Hence, the sample preparation is performed in one step. With optimized conditions, the extraction recoveries were in the range 50-89% from human plasma after 45min extraction. The data from the method evaluation were satisfactory and in line with current guidelines, and revealed an extraction method with substantial potential for high throughput bioanalysis of polar basic drugs.

  10. Phospholipid flippase associates with cisplatin resistance in plasma membrane of lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fusion of the liposomes containing N-(7-nitro-2, 1, 3-benzoxadiazol-4-yl)-i ,2-hexadecanoylSn-glycero-3-1abeled phosphatidylethanolamine (NBD-PE) with A549 and A549/DDP cells was performed, and the activity of the phospholipid flippase in the plasma membrane of the cells was measured by fluorescence intensity change of NBDPE in the outer membrane. When A549 or A549/DDP cells containing N BD-PE were incubated at 37 C for 0, 30, 60 and 90 min, the fluorescence intensities in the outer membrane of the cells were 0%, 1.4%, 2.9% and 7.8% for A59cells, and 0%, 10.5 %, 15. 5 % and 18.3 % for A549/DDP cells respectively, demonstrating that the phospholipid flippase was distributed in the plasma membrane of As49 cells, but its activity in the drug-resistant A549/DDP cells was much higher than that in the A549 cells. When the A549/DDP cells were incubated with a multidrug resistance reverse agent, verapamil, for 60 min at 37C, the results showed that the NBD-PE in outer membrane decreased by 25.0% compared with the control's. Furthermore, when A549/DDP cells were incubated with 25 μmol/L cisplatin, which is a specific anticancer drug, the flippase activity decreased by 31.6%, and it further decreased with the increase of cisplatin concentration, suggesting that phospholipid flippase in the membrane might be related to the cisplatin-resistance of human lung adenocarcinoma cancer cells.

  11. Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation

    Science.gov (United States)

    Suda, Yoshiyuki; Tero, Ryugo; Yamashita, Ryuma; Yusa, Kota; Takikawa, Hirofumi

    2016-03-01

    Plasma medicine is an emerging research field in which various applications of electrical discharge, especially in the form of nonequilibrium plasma at atmospheric pressure, are examined, for example, the application of plasma to biological targets for various purposes such as selective killing of tumor cells and blood stanching. We have focused on the behavior of an artificial cell membrane system at the solid-liquid interface. To evaluate the lateral lipid mobility, we measured the diffusion coefficient of the supported lipid bilayer (SLB) composed of dioleoylphosphatidylcholine with fluorescence recovery after photobleaching by confocal laser scanning microscopy. It was found that the diffusion coefficient was decreased by plasma irradiation and that the diffusion coefficient decreasing rate proceeded with increasing plasma power. We investigated the effects of stimulation with an equilibrium chemical, H2O2, on the SLB and confirmed that the diffusion coefficient did not change at least up to a H2O2 concentration of 5 mM. These results indicate that transient active species generated by plasma play critical roles in the reduction in SLB fluidity. The effects of the two generated major oxidized lipid species, hydroxyl- or hydroperoxy-phosphatidylcholine (PC) and acyl-chain-truncated PCs terminated with aldehyde or carboxyl group, on lateral lipid mobility are discussed.

  12. Effect of Addition of Soybean Oil and Gamma-Ray Cross-linking on the Nanoporous HDPE Membrane

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2012-01-01

    Full Text Available A nanoporous high-density polyethylene (HDPE membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.

  13. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS

    DEFF Research Database (Denmark)

    Schneider, Falk; Waithe, Dominic; Clausen, Mathias P

    2017-01-01

    Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling, and they are suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy...... (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live cell plasma membrane and in actin cytoskeleton-free cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids...... forming immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules, and highlight a powerful experimental approach to decipher specific influences on molecular plasma...

  14. Complex formation between primycin and ergosterol: entropy-driven initiation of modification of the fungal plasma membrane structure

    National Research Council Canada - National Science Library

    Virág, Eszter; Pesti, Miklós; Kunsági-Máté, Sándor

    2012-01-01

    The interaction of the antibiotic primycin with the main fungal sterol, ergosterol, was investigated in vitro in order to monitor the effect of primycin on the fungal plasma membrane at the molecular level...

  15. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...

  16. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    Science.gov (United States)

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets.

  17. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane

    Science.gov (United States)

    Mohammadi, Tamimount; van Dam, Vincent; Sijbrandi, Robert; Vernet, Thierry; Zapun, André; Bouhss, Ahmed; Diepeveen-de Bruin, Marlies; Nguyen-Distèche, Martine; de Kruijff, Ben; Breukink, Eefjan

    2011-01-01

    Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes. PMID:21386816

  18. Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells

    Science.gov (United States)

    Schumacher, Kristopher R.; Popel, Aleksander S.; Anvari, Bahman; Brownell, William E.; Spector, Alexander A.

    2009-10-01

    Tethers are thin membrane tubes that can be formed when relatively small and localized forces are applied to cellular membranes and lipid bilayers. Tether pulling experiments have been used to better understand the fine membrane properties. These include the interaction between the plasma membrane and the underlying cytoskeleton, which is an important factor affecting membrane mechanics. We use a computational method aimed at the interpretation and design of tether pulling experiments in cells with a strong membrane-cytoskeleton attachment. In our model, we take into account the detailed information in the topology of bonds connecting the plasma membrane and the cytoskeleton. We compute the force-dependent piecewise membrane deflection and bending as well as modes of stored energy in three major regions of the system: body of the tether, membrane-cytoskeleton attachment zone, and the transition zone between the two. We apply our method to three cells: cochlear outer hair cells (OHCs), human embryonic kidney (HEK) cells, and Chinese hamster ovary (CHO) cells. OHCs have a special system of pillars connecting the membrane and the cytoskeleton, and HEK and CHO cells have the membrane-cytoskeleton adhesion arrangement via bonds (e.g., PIP2), which is common to many other cells. We also present a validation of our model by using experimental data on CHO and HEK cells. The proposed method can be an effective tool in the analyses of experiments to probe the properties of cellular membranes.

  19. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Cotter, Kristina; Capecci, Joseph; Sennoune, Souad; Huss, Markus; Maier, Martin; Martinez-Zaguilan, Raul; Forgac, Michael

    2015-02-06

    The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space. To test this hypothesis, we utilized two separate approaches to specifically inhibit plasma membrane V-ATPases. First, we stably transfected highly invasive MDA-MB231 cells with a V5-tagged construct of the membrane-embedded c subunit of the V-ATPase, allowing for extracellular expression of the V5 epitope. We evaluated the effect of addition of a monoclonal antibody directed against the V5 epitope on both V-ATPase-mediated proton translocation across the plasma membrane and invasion using an in vitro Matrigel assay. The addition of anti-V5 antibody resulted in acidification of the cytosol and a decrease in V-ATPase-dependent proton flux across the plasma membrane in transfected but not control (untransfected) cells. These results demonstrate that the anti-V5 antibody inhibits activity of plasma membrane V-ATPases in transfected cells. Addition of the anti-V5 antibody also inhibited in vitro invasion of transfected (but not untransfected) cells. Second, we utilized a biotin-conjugated form of the specific V-ATPase inhibitor bafilomycin. When bound to streptavidin, this compound cannot cross the plasma membrane. Addition of this compound to MDA-MB231 cells also inhibited in vitro invasion. These studies suggest that plasma membrane V-ATPases play an important role in invasion of breast cancer cells.

  20. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes.

    Science.gov (United States)

    Miller, Heather; Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Maugel, Timothy K; Andrews, Norma W; Song, Wenxia

    2015-12-21

    Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca(2+)-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR-lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte-mediated immune responses.

  1. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C

    1996-11-01

    In this study a highly biocompatible polymer membrane was prepared by surface modification. An artificial cornea was also developed for clinical applications. Silicone rubber (SR) membrane was grafted with hydrophilic monomers such as 2-hydroxyethyl methacrylate (HEMA) and acrylic acid by plasma induced grafted polymerization. Surface properties of the SR were characterized using secondary ions mass spectra, Fourier transform infrared/attenuated total reflection, and element spectra for chemical analysis. The corneal epithelial (CE) cell was cultured in vitro, and penetrating keratoplasty of albino rabbit cornea (in vivo) was performed to evaluate biological properties of modified SR membranes. The ability of the CE cell to attach onto various SR membranes was observed by inverted microscopy. The proliferation of CE cell was conducted in approximately 96 h. Experimental results indicated that the attachment and growth of CE onto SR-g-pHEMA (75 micrograms/ cm2) is enhanced. The morphologies of an attached CE cell are similar to those of a primary CE cell. In the in vivo study, the depth of anterior chamber was maintained 2 weeks after penetrating keratoplasty was performed with a SR grafted with pHEMA (210 micrograms/cm2). This phenomenon displayed a high biocompatibility of modified SR membrane with the CE cell. Furthermore, results in this study provide a valuable reference for application of the modified SR for an artificial cornea.

  2. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation.

    Science.gov (United States)

    Schuberth, Christian; Wedlich-Söldner, Roland

    2015-04-01

    The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.

  3. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function.

    Science.gov (United States)

    Ramachandran, Kapil V; Margolis, Seth S

    2017-04-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It is unclear how proteasomes are able to acutely regulate such processes, as this action is inconsistent with their canonical role in proteostasis. Here we describe a mammalian nervous-system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is closely associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of the membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked the production of extracellular peptides and attenuated neuronal-activity-induced calcium signaling. Moreover, we observed that membrane-proteasome-derived peptides were sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes function primarily to maintain proteostasis, and highlight a form of neuronal communication that takes place through a membrane proteasome complex.

  4. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Schütz, Jürg [CSIRO, Manufacturing Flagship, 75 Pigdons Road, 3216 Waurn Ponds, Victoria (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  5. Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

    Science.gov (United States)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2015-02-01

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF4 microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF4 plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF4 plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ∼0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF4 plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  6. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis

    NARCIS (Netherlands)

    Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rougé, P.; Pont-Lezica, R.; Canut, H.

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsi

  7. Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells

    NARCIS (Netherlands)

    Lauf, Undine; Giepmans, Ben N G; Lopez, Patricia; Braconnot, Sebastien; Chen, Shu-Chih; Falk, Matthias M

    2002-01-01

    Certain membrane channels including acetylcholine receptors, gap junction (GJ) channels, and aquaporins arrange into large clusters in the plasma membrane (PM). However, how these channels are recruited to the clusters is unknown. To address this question, we have investigated delivery of GJ channel

  8. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization

    NARCIS (Netherlands)

    Zelazny, E.; Borst, J.W.; Muylaert, M.; Batoko, H.; Hemminga, M.A.; Chaumont, F.

    2007-01-01

    Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient, Pf

  9. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    Science.gov (United States)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  10. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  11. Measuring distances between TRPV1 and the plasma membrane using a noncanonical amino acid and transition metal ion FRET

    OpenAIRE

    Zagotta, William N.; Gordon, Moshe T.; Senning, Eric N.; Munari, Mika A.; Gordon, Sharona E.

    2016-01-01

    Despite recent advances, the structure and dynamics of membrane proteins in cell membranes remain elusive. We implemented transition metal ion fluorescence resonance energy transfer (tmFRET) to measure distances between sites on the N-terminal ankyrin repeat domains (ARDs) of the pain-transducing ion channel TRPV1 and the intracellular surface of the plasma membrane. To preserve the native context, we used unroofed cells, and to specifically label sites in TRPV1, we incorporated a fluorescent...

  12. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.