WorldWideScience

Sample records for plasma enhanced chemical

  1. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  2. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  3. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    Science.gov (United States)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  4. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    Science.gov (United States)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  5. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  6. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  7. Simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors

    OpenAIRE

    Lorant, Christophe; Descamps, Pierre; De Wilde, Juray; 1st BeLux workshop on “Coating, Materials, surfaces and Interfaces

    2014-01-01

    The simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors is challenging due to the coupling of the fluid dynamics, the chemical reactions and the electric field and the stiffness of the resulting mathematical system. The model equations and the rigorous model reduction to reduce the stiffness are addressed in this paper. Considering pure nitrogen plasma, simulations with two configurations are discussed.

  8. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    Science.gov (United States)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  9. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  10. Carbon nanofiber growth in plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Denysenko, I.; Ostrikov, K.; Cvelbar, U.; Mozetic, M.; Azarenkov, N. A.

    2008-10-01

    A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication.

  11. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......, and it increased the barrier property of the modified low-density polyethylene, polyethylene terephthalate, and polylactide by 96.48%, 99.69%, and 99.25%, respectively....

  12. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  13. Chemical Structure of Carbon Nitride Films Prepared by MW-ECR Plasma Enhanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    XUJun,GAOPeng; DINGWan-yu; LIXin; DENGXin-lu; DONGChuang

    2004-01-01

    Amorphous carbon nitride thin films were prepared by plasma-enhanced DC magnetron sputtering using twinned microwave electron cyclotron resonance plasma sources. Chemical structure of deposited films was investigated using X-ray photoelectron spectroscopy and Fourier transtorm infrared spectroscopy. The results indicate that the deposition rate is strongly affected by direct current bias, and the films are mainly composed of a single amorphous carbon nitride phase with N/C ratio close to C3N4, and the bonding is predominantly of C-N type.

  14. Plasma-Enhanced Chemical Vapor Deposition as a Method for the Deposition of Peptide Nanotubes

    Science.gov (United States)

    2013-09-17

    peptide nanotubes, plasma-enhanced chemical vapor deposition, nano assembly 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Using physical vapor deposition ( PVD ) well-ordered assemblies of peptide nanotubes (PNTs) composed of dipeptide subunits are obtained on various...for the deposition of thin films (Figure 1b). A. B. Figure 1. (a) Illustration of physical vapor deposition ( PVD ) process of diphenylalanine

  15. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  16. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    Science.gov (United States)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  17. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  18. Synthesis of carbon nanotube array using corona discharge plasma-enhanced chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corona discharge plasma-enhanced chemical vapor deposition with the features of atmospheric pressure and low temperature has been developed to synthesize the carbon nanotube array. The array was synthesized from methane and hydrogen mixture in anodic aluminum oxide template channels in that cobalt was electrodeposited at the bottom. The characterization results by the scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy indicate that the array consists of carbon nanotubes with the diameter of about 40 nm and the length of more than 4 -m, and the carbon nanotubes are mainly restrained within the channels of templates.

  19. Deposition of electrochromic tungsten oxide thin films by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Henley, W.B.; Sacks, G.J. [Univ. of South Florida, Tampa, FL (United States). Center of Microelectronics

    1997-03-01

    Use of plasma-enhanced chemical vapor deposition (PECVD) for electrochromic WO{sub 3} film deposition is investigated. Oxygen, hydrogen, and tungsten hexafluoride were used as source gases. Reactant gas flow was investigated to determine the effect on film characteristics. High quality optical films were obtained at deposition rates on the order of 100 {angstrom}/s. Higher deposition rates were attainable but film quality and optical coherence degraded. Atomic emission spectroscopy (AES), was used to provide an in situ assessment of the plasma deposition chemistry. Through AES, it is shown that the hydrogen gas flow is essential to the deposition of the WO{sub 3} film. Oxygen gas flow and tungsten hexafluoride gas flow must be approximately equal for high quality films.

  20. High quality plasma-enhanced chemical vapor deposited silicon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, T.J.; Chapple-Sokol, J. (IBM General Technology Division, Hopewell Junction, NY (United States))

    1993-07-01

    The qualities of plasma-enhanced chemical vapor deposited (PECVD) silicon nitride films can be improved by increasing the deposition temperature. This report compares PECVD silicon nitride films to low pressure chemical vapor deposited (LPCVD) films. The dependence of the film properties on process parameters, specifically power and temperature, are investigated. The stress is shown to shift from tensile to compressive with increasing temperature and power. The deposition rate, uniformity, wet etch rate, index of refraction, composition, stress, hydrogen content, and conformality are considered to evaluate the film properties. Temperature affects the hydrogen content in the films by causing decreased incorporation of N-H containing species whereas the dependence on power is due to changes in the gas-phase precursors. All PECVD film properties, with the exception of conformality, are comparable to those of LPCVD films.

  1. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  2. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  3. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  4. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  5. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  6. MICROSTRUCTURE OF SiOx:H FILMS PREPARED BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    MA ZHI-XUN; LIAO XIAN-BO; KONG GUANG-LIN; CHU JUN-HAO

    2000-01-01

    The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (a-SiOx:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx :H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O3. The Raman scattering results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

  7. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  8. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  10. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  11. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  12. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Hawker, Morgan J; Pegalajar-Jurado, Adoracion; Fisher, Ellen R

    2014-10-21

    Bioresorbable polymers such as poly(ε-caprolactone) (PCL) have a multitude of potential biomaterial applications such as controlled-release drug delivery and regenerative tissue engineering. For such biological applications, the fabrication of porous three-dimensional bioresorbable materials with tunable surface chemistry is critical to maximize their surface-to-volume ratio, mimic the extracellular matrix, and increase drug-loading capacity. Here, two different fluorocarbon (FC) precursors (octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO)) were used to deposit FC films on PCL scaffolds using plasma-enhanced chemical vapor deposition (PECVD). These two coating systems were chosen with the intent of modifying the scaffold surfaces to be bio-nonreactive while maintaining desirable bulk properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were deposited on both the exterior and interior of PCL scaffolds and that deposition behavior is PECVD system specific. Scanning electron microscopy data confirmed that FC film deposition yielded conformal rather than blanket coatings as the porous scaffold structure was maintained after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) demonstrate that the cells do not attach after 72 h and that the scaffolds are noncytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D polymeric scaffolds using PECVD to fabricate 3D bio-nonreactive materials.

  13. Luminescent Nanocrystalline Silicon Carbide Thin Film Deposited by Helicon Wave Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Wan-bing; YU Wei; WU Li-ping; CUI Shuang-kui; FU Guang-sheng

    2006-01-01

    Hydrogenated nanocrystalline silicon carbide (SiC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.

  14. Plasma Enhanced Chemical Vapor Deposition Nanocrystalline Tungsten Carbide Thin Film and Its Electro-catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    Huajun ZHENG; Chunan MA; Jianguo HUANG; Guohua LI

    2005-01-01

    Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20~35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).

  15. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  16. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  17. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  18. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-Fei; DING Shi-Jin; ZHANG Wei; ZHANG Jian-Yun; WANGJi-Tao; WEI William Lee

    2000-01-01

    Fluorine doped silicon dioxide (SiOF) thin films have been prepared by plasma enhanced chemical vapor depo sition. The Fourier transform infrared spectrometry (FTIR) spectra of SiOF films are deliberated to reveal the structure change of SiO2 and the mechanism of dielectric constant reduction after doping fluorine. When F is doped in SiO2 films, the Si-O stretching absorption peak will have a blue-shift due to increase of the partial charge of the O atom. The FTIR spectra indicate that some Si-OH components in the thin film can be removed after doping fluorine. These changes reduce the ionic and orientational polarization, and result in the reduction in dielectric constant of the film. According to Gaussian fitting, it is found that the Si-F2 bonds will appear in the SiOF film with increase of the fluorine content. The Si-F2 structures are liable to react with water, and cause the same increase of absorbed moisture in the film.

  19. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    Science.gov (United States)

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  20. Growth of nanocrystalline silicon carbide thin films by plasma enhanced chemical vapor deposition

    CERN Document Server

    Lee, S W; Moon, J Y; Ahn, S S; Kim, H Y; Shin, D H

    1999-01-01

    Nanocrystalline silicon carbide thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH sub 4 , CH sub 4 , and H sub 2 gases. The effects of gas mixing ratio (CH sub 4 /SiH sub 4), deposition temperature, and RF power on the film properties have been studied. The growth rate, refractive index, and the optical energy gap depends critically on the growth conditions. The dependence of the growth rate on the gas flow ratio is quite different from the results obtained for the growth using C sub 2 H sub 2 gas instead of CH sub 4. As the deposition temperature is increased from 300 .deg. C to 600 .deg. C, hydrogen and carbon content in the film decreases and as a result the optical gap decreases. At the deposition temperature of 600 .deg. C and RF power of 150 W, the film structure si nanocrystalline, As the result of the nanocrystallization the dark conductivity is greatly improved. The nanocrystalline silicon carbide thin films may be used for large area optoelectronic devices...

  1. Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties

    Science.gov (United States)

    Merenkov, Ivan S.; Kosinova, Marina L.; Maximovskii, Eugene A.

    2017-05-01

    Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.

  2. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    Science.gov (United States)

    Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah

    2015-02-01

    Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.

  3. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  4. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  5. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Peralvarez, M; Carreras, Josep; Navarro-Urrios, D; Lebour, Y; Garrido, B [MIND, IN2UB, Department of Electronics, University of Barcelona, C/Marti i Franques 1, PL2, E-08028 Barcelona (Spain); Barreto, J; DomInguez, C [IMB-CNM, CSIC, Bellaterra, E-08193 Barcelona (Spain); Morales, A, E-mail: mperalvarez@el.ub.e [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2009-10-07

    An in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current-voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, {approx}10{sup -3}%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO{sub 2} stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.

  6. Plasma enhanced chemical vapor deposition of iron doped thin dioxide films, their structure and photowetting effect

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: anna.sobczyk-guzenda@p.lodz.pl [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Owczarek, S.; Szymanowski, H. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Wypych-Puszkarz, A. [Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz (Poland); Volesky, L. [Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Gazicki-Lipman, M. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2015-08-31

    Radio frequency plasma enhanced chemical vapor deposition (RF PECVD) technique was applied for the purpose of deposition of iron doped titanium dioxide coatings from a gaseous mixture of oxygen with titanium (IV) chloride and iron (0) pentacarbonyl. Glass slides and silicon wafers were used as substrates. The coatings morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental and chemical composition was studied with the help of X-ray energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy, respectively, while their phase composition was analyzed with the Raman spectroscopy. For the determination of the film optical properties, ultraviolet (UV–Vis) spectroscopy techniques were used. Iron content in the range of 0.07 to 11.5 at.% was found in the coatings. FTIR studies showed that iron was built-in in the structure of TiO{sub 2} matrix. Surface roughness, assessed with the SEM and AFM techniques, increases with an increasing content of this element. Trace amounts of iron resulted in a lowering of an absorption threshold of the films and their optical gap, but the tendency was reversed for high concentrations of that element. The effect of iron doping on UV photowettability of the films was also studied and, for coatings containing up to 5% of iron, it was stronger than that exhibited by pure TiO{sub 2}. - Highlights: • Iron doped TiO{sub 2} films were deposited with the PECVD method. • Differences of surface morphology of the films with different iron content were shown. • Depending on the iron content, the film structure is either amorphous or crystalline. • A parabolic character of the optical gap dependence on the concentration of iron was observed. • Up to a concentration of 5% of iron, doped TiO{sub 2} films exhibit a super-hydrophilic effect.

  7. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    Science.gov (United States)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  8. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Seop; Choi, Changrok; Kim, Soo Heon; Choi, Kun oh [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeong Min [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University College of Medicine, Cheonan 330-715 (Korea, Republic of); Yeo, Sanghak [R and D Center, ELBIO Incorporation, 426-5 Gasan-dong Geumchun-gu, Seoul (Korea, Republic of); Park, Heonyong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-11-01

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH{sub 3}) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH{sub 3}) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  9. Effect of plasma parameters on characteristics of silicon nitride film deposited by single and dual frequency plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Sahu, B. B.; Yin, Yongyi; Han, Jeon G.

    2016-03-01

    This work investigates the deposition of hydrogenated amorphous silicon nitride films using various low-temperature plasmas. Utilizing radio-frequency (RF, 13.56 MHz) and ultra-high frequency (UHF, 320 MHz) powers, different plasma enhanced chemical vapor deposition processes are conducted in the mixture of reactive N2/NH3/SiH4 gases. The processes are extensively characterized using different plasma diagnostic tools to study their plasma and radical generation capabilities. A typical transition of the electron energy distribution function from single- to bi-Maxwellian type is achieved by combining RF and ultra-high powers. Data analysis revealed that the RF/UHF dual frequency power enhances the plasma surface heating and produces hot electron population with relatively low electron temperature and high plasma density. Using various film analysis methods, we have investigated the role of plasma parameters on the compositional, structural, and optical properties of the deposited films to optimize the process conditions. The presented results show that the dual frequency power is effective for enhancing dissociation and ionization of neutrals, which in turn helps in enabling high deposition rate and improving film properties.

  10. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  11. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    Science.gov (United States)

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  12. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  13. Characteristics of silicon nitride deposited by VHF (162 MHz)-plasma enhanced chemical vapor deposition using a multi-tile push-pull plasma source

    Science.gov (United States)

    Kim, Ki Seok; Sirse, Nishant; Kim, Ki Hyun; Rogers Ellingboe, Albert; Kim, Kyong Nam; Yeom, Geun Young

    2016-10-01

    To prevent moisture and oxygen permeation into flexible organic electronic devices formed on substrates, the deposition of an inorganic diffusion barrier material such as SiN x is important for thin film encapsulation. In this study, by a very high frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source, SiN x layers were deposited with a gas mixture of NH3/SiH4 with/without N2 and the characteristics of the plasma and the deposited SiN x film as the thin film barrier were investigated. Compared to a lower frequency (60 MHz) plasma, the VHF (162 MHz) multi-tile push-pull plasma showed a lower electron temperature, a higher vibrational temperature, and higher N2 dissociation for an N2 plasma. When a SiN x layer was deposited with a mixture of NH3/SiH4 with N2 at a low temperature of 100 °C, a stoichiometric amorphous Si3N4 layer with very low Si-H bonding could be deposited. The 300 nm thick SiN x film exhibited a low water vapor transmission rate of 1.18  ×  10-4 g (m2 · d)-1, in addition to an optical transmittance of higher than 90%.

  14. High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.

  15. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  16. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  17. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  18. Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Long; Liu Feng-Zhen; Zhu Mei-Fang; Liu Jin-Long

    2012-01-01

    The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated.The plasma ignition condition is modified by varying the ratio of SiH4 to H2 (RH).For plasma ignited with a constant gas ratio,the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Hα to SiH(IHα/IsiH) at the initial stage,which leads to a thick amorphous incubation layer.For the ignition condition with a profiling RH,the higher IHα/IsiH values are realized.By optimizing the RH modulation,a uniform crystallinity along the growth direction and a denser μc-Si:H film can be obtained.However,an excessively high IHα/IsiH* may damage the interface properties,which is indicated by capacitance-voltage (C-V) measurements.Well controlling the ignition condition is critically important for the applications of Si thin films.

  19. Highly Uniform Wafer-scale Synthesis of α-MoOsub>3sub> by Plasma Enhanced Chemical Vapor Deposition.

    Science.gov (United States)

    Kim, HyeongU; Son, Juhyun; Kulkarni, Atul; Ahn, Chisung; Kim, Ki Seok; Shin, Dongjoo; Yeom, Geun; Kim, Taesung

    2017-03-20

    Molybdenum oxide (MoOsub>3sub>) has gained immense attention because of its high electron mobility, wide band gap, and excellent optical and catalytic properties. However, the synthesis of uniform and large-area MoOsub>3sub> is challenging. Here, we report the synthesis of wafer-scale α-MoO3 by plasma oxidation of Mo-deposited on Si/SiOsub>2sub>. Mo was oxidized by Osub>2sub> plasma in a plasma enhanced chemical vapor deposition (PECVD) system at 150 °C. Mo was oxidized by Osub>2sub> plasma in a PECVD system at 150 °C. It was found that the synthesized α-MoOsub>3sub> had a highly uniform crystalline structure. For the as-synthesized α-MoOsub>3sub> sensor, we observed a current change when the relative humidity was increased from 11% to 95%. The sensor was exposed to different humidity levels with fast recovery time of about 8 s. Hence this feasibility study shows that MoOsub>3sub> synthesized at low temperature can be utilized for the gas sensing applications by adopting flexible device technology.

  20. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  1. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Wen-Juan; XIE Fen-Yan; CHEN Qiang; WENG Jing

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  2. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    Science.gov (United States)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (˜0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  3. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    Science.gov (United States)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  4. Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition.

    Science.gov (United States)

    Stoica, Adrian; Manakhov, Anton; Polčák, Josef; Ondračka, Pavel; Buršíková, Vilma; Zajíčková, Renata; Medalová, Jiřina; Zajíčková, Lenka

    2015-06-12

    Recently, diamondlike carbon (DLC) thin films have gained interest for biological applications, such as hip and dental prostheses or heart valves and coronary stents, thanks to their high strength and stability. However, the biocompatibility of the DLC is still questionable due to its low wettability and possible mechanical failure (delamination). In this work, DLC:N:O and DLC: SiOx thin films were comparatively investigated with respect to cell proliferation. Thin DLC films with an addition of N, O, and Si were prepared by plasma enhanced CVD from mixtures of methane, hydrogen, and hexamethyldisiloxane. The films were optically characterized by infrared spectroscopy and ellipsometry in UV-visible spectrum. The thickness and the optical properties were obtained from the ellipsometric measurements. Atomic composition of the films was determined by Rutherford backscattering spectroscopy combined with elastic recoil detection analysis and by x-ray photoelectron spectroscopy. The mechanical properties of the films were studied by depth sensing indentation technique. The number of cells that proliferate on the surface of the prepared DLC films and on control culture dishes were compared and correlated with the properties of as-deposited and aged films. The authors found that the level of cell proliferation on the coated dishes was high, comparable to the untreated (control) samples. The prepared DLC films were stable and no decrease of the biocompatibility was observed for the samples aged at ambient conditions.

  5. A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-12-01

    Vertically aligned single wall carbon nanotubes (SWCNTs) with large scale control of diameter, length and alignment have successfully been grown by plasma enhanced chemical vapor deposition (PECVD) system. The nickel (Ni) as catalyst deposited on silicon (Si) substrate was used to grow the SWCNTs. Field emission (FE) characteristics of the as grown SWCNTs were measured using indigenously designed setup in which a diode is configured in such a way that by applying negative voltage on the copper plate (cathode) with respect to stainless steel anode plate, current density can be recorded. To measure the FE characteristics, SWCNTs film pasted on the copper plate with silver epoxy was used as electron emitter source. The effective area of anode was ∼78.5 mm2 for field emission measurements. The emission measurements were carried out under high vacuum pressure of the order of 10-6 Torr to minimize the electron scattering and degradation of the emitters. The distance between anode and cathode was kept 500 μm (constant) during entire field emission studies. The grown SWCNTs are excellent field emitters, having emission current density higher than 25 mA/cm2 at turn-on field 1.3 V/μm. In order to enhance the field emission characteristics, the as grown SWCNTs have been treated under nitrogen (N2) plasma for 5 min and again field emission characteristics have been measured. The N2 plasma treated SWCNTs show a good enhancement in the field emission properties with emission current density 81.5 mA/cm2 at turn on field 1.2 V/μm. The as-grown and N2 plasma treated SWCNTs were also characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectrometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS).

  6. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, K. J.

    1992-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  7. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  8. Microstructural modification of nc-Si/SiO{sub x} films during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.W. [State Key Laboratory of Silicon Materials Science, Zhejiang University, Hangzhou 310027 (China)

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiO{sub x} film matrix, indicating the potential application in Si-based optoelectronic integrity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  10. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers.

    Science.gov (United States)

    James, Robinson; Pasquale, Frank L; Kelber, Jeffry A

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.

  11. Growth of carbon nanofibers in plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Denysenko, Igor; Ostrikov, Kostya; Tam, Eugene

    2008-10-01

    A theoretical model describing the plasma-assisted growth of carbon nanofibers with metal catalyst particles on top is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters such us the surface diffusion growth rate, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon on the catalyst surface, and the surface coverages, have been studied. It has been found how these parameters depend on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface. The optimum conditions under which a low-temperature plasma environment can benefit the carbon nanofiber growth are formulated. It has been also found how the plasma environment affects the temperature distribution over the length of the carbon nanofibers. Conditions when the temperature of the catalyst nanoparticles is higher than the temperature of the substrate holder are determined. The results here are in a good agreement with the available experimental data on the carbon nanofiber growth and can be used for optimizing synthesis of nanoassemblies in low-temperature plasma-assisted nanofabrication.

  12. Catalytic Carbon Submicron Fabrication Using Home-Built Very-High Frequency Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Sukirno

    2008-09-01

    Full Text Available In this research, carbon nanotubes (CNT fabrication is attempted by using existing home-made Plasma Enhanced Chemical Vapour Deposition (PECVD system. The fabrication is a catalytic growth process, which Fe catalyst thin film is grown on the Silicon substrate by using dc-Unbalanced Magnetron Sputtering method. By using methane (CH4 as the source of carbon and diluted silane (SiH4 in hydrogen as the source of hydrogen with 10:1 ratio, CNT fabrications have been attempted by using Very High Frequency PECVD (VHF-PECVD method. The fabrication processes are done at relatively low temperature, 250oC, but with higher operated plasma frequency, 70 MHz. Recently, it is also been attempted a fabrication process with only single gas source, but using one of the modification of the VHF-PECVD system, which is by adding hot-wire component. The attempt was done in higher growth temperature, 400oC. Morphological characterizations, by using Scanning Electron Micrograph (SEM and Scanning Probe Microscopy (SPM, as well as the composition characterization, by using Energy Dispersion Analysis by X-Ray (EDAX, show convincing results that there are some signatures of CNT present.

  13. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    Science.gov (United States)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  14. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  15. Plasma-enhanced chemical vapor deposition of low- loss as-grown germanosilicate layers for optical waveguides

    Science.gov (United States)

    Ay, Feridun; Agan, Sedat; Aydinli, Atilla

    2004-08-01

    We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43x1022 cm-3 down to below 0.06x1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 sccm. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=632.8 nm were found to increase from are 0.20 +/- 0.02 to 6.46 +/- 0.04 dB/cm as the germane flow rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=1550 nm were found to decrease from 0.32 +/- 0.03 down to 0.14 +/- 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices.

  16. SiC-Si[sub 3]N[sub 4] composite coatings produced by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gerretsen, J. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kirchner, G. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kelly, T. (Irish Science and Technology Agency, Dublin (Ireland)); Mernagh, V. (Irish Science and Technology Agency, Dublin (Ireland)); Koekoek, R. (Tempress, Hoogeveen (Netherlands)); McDonnell, L. (Tekscan Ltd., Cork (Ireland))

    1993-10-08

    Silicon carbonitride coatings have been produced by plasma-enhanced chemical vapour deposition (CVD) on AISI 440C steel in a hot-wall reactor at 250 C from a mixture of SiH[sub 4], N[sub 2]-NH[sub 3] and C[sub 2]H[sub 4], and analysed by electron probe microanalysis and Rutherford backscattering spectroscopy-elastic recoil detection. Coatings with different ratios of silicon carbide to silicon nitride and silicon suband superstoichiometries have been deposited. Stoichiometric coatings show a maximum in their mechanical properties. Depending on the SiC-to-Si[sub 3]N[sub 4] ratio, the Knoop hardness values vary between 1500 and 2800 HK[sub 0.025]. Internal stress is low at a level of 100-300 MPa. The pinhole density is less than 2 cm[sup -2]. The fracture toughness as determined from indention tests is 4 MPa m[sup 1/2]. Linear polarization testing results show excellent protection of the substrate material against chemically aggressive media as compared with conventional CVD. (orig.)

  17. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  18. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  19. Glutamate biosensor based on carbon nanowalls grown using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Tomatsu, Masakazu; Hiramatsu, Mineo; Kondo, Hiroki; Hori, Masaru

    2015-09-01

    Carbon nanowalls (CNWs) are composed of few-layer graphene standing almost vertically on the substrate. Due to the large surface area of vertical nanographene network, CNWs draw attention as platform for electrochemical sensing, biosensing and energy conversion applications. In this work, CNWs were grown on nickel substrate using inductively coupled plasma with methane/Ar mixture. After the CNW growth, the surface of CNWs was oxidized using Ar atmospheric pressure plasma to obtain super-hydrophilic surface. For the biosensing application, the surface of CNWs was decorated with platinum (Pt) nanoparticles by the reduction of hydrogen hexachloroplatinate (IV) solution. The resultant Pt particle size was estimated to be 3-4 nm. From the XPS analysis, pure Pt existed without being oxidized on the CNW surface. Electrochemical surface area of the Pt catalyst was evaluated by cyclic voltammetry. Pt-decorated CNWs will be used as an electrode for electrochemical glutamate biosensing. L-glutamate is one of the most important in the mammalian central nervous system, playing a vital role in many physiological processes. Nanoplatform based on vertical nanographene offers great promise for providing a new class of nanostructured electrodes for electrochemical sensing.

  20. Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Mayuri, E-mail: kawata@mail.tagen.tohoku.ac.jp; Ojiro, Yoshihiro; Ogawa, Shuichi; Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Masuzawa, Tomoaki; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka 181-8585 (Japan)

    2014-03-15

    Photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD), a process in which photoelectrons emitted from a substrate irradiated with ultraviolet light are utilized as a trigger for DC discharge, was investigated in this study; specifically, the DC discharge characteristics of PA-PECVD were examined for an Si substrate deposited in advance through hot-filament chemical vapor deposition with a nitrogen-doped diamond layer of thickness ∼1 μm. Using a commercially available Xe excimer lamp (hν = 7.2 eV) to illuminate the diamond surface with and without hydrogen termination, the photocurrents were found to be 3.17 × 10{sup 12} and 2.11 × 10{sup 11} electrons/cm{sup 2}/s, respectively. The 15-fold increase in photocurrent was ascribed to negative electron affinity (NEA) caused by hydrogen termination on the diamond surfaces. The DC discharge characteristics revealed that a transition bias voltage from a Townsend-to-glow discharge was considerably decreased because of NEA (from 490 to 373 V for H{sub 2} gas and from 330 to 200 V for Ar gas), enabling a reduction in electric power consumption needed to synthesize diamond films through PA-PECVD. In fact, the authors have succeeded in growing high-quality diamond films of area 2.0 cm{sup 2} at 540 °C with a discharge power of only 1.8 W, plasma voltage of 156.4 V, and discharge current of 11.7 mA under the glow discharge of CH{sub 4}/H{sub 2}/Ar mixed gases. In addition to having only negligible amounts of graphite and amorphous carbon, the diamond films exhibit a relatively high diamond growth rate of 0.5 μm/h at temperatures as low as 540 °C, which is attributed to Ar{sup +} ions impinging on the diamond surface, and causing the removal of hydrogen atoms from the surface through sputtering. This process leads to enhanced CH{sub x} radical adsorption, because the sample was applied with a negative potential to accelerate photoelectrons in PA-PECVD.

  1. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  2. Bamboo and herringbone shaped carbon nanotubes and carbon nanofibres synthesized in direct current-plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Zhang, Lu; Chen, Li; Wells, Torquil; El-Gomati, Mohamed

    2009-07-01

    Carbon nanotubes with different structures were catalytically synthesized on Ni coated SiO2/Si substrate in a Direct Current Plasma Enhanced Chemical Vapour Deposition system, in which C2H2 acted as the carbon source and NH3 as the etchant gas. A Scanning Electron Microscope study showed that carbon nanotubes were all vertically aligned with respect to the substrate, with diameters ranging from 10 nm to 200 nm. Different sizes of Ni catalyst particles were observed on the tips of carbon nanotubes. Transmission Electron Microscopy was used to study the morphology of the grown tubes and the results obtained show that the diameters and structures of these carbon nanotubes were closely correlated to the sizes and structures of the Ni nanoparticles. Two main structures namely bamboo shaped carbon nanotubes and herringbone shaped carbon nanofibres were found on the same sample. It is suggested that by controlling the pre-growth condition, desired structure of carbon nanotubes or carbon nanofibres could be produced for practical applications.

  3. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength.

    Science.gov (United States)

    Bruno, F; Guidice, M D; Recca, R; Testa, F

    1991-11-01

    Good optical-quality SiON layers deposited upon a SiO(2) buffer layer placed upon silicon wafers have been obtained by using plasma-enhanced chemical vapor deposition from SiH(4), NH(3), and N(2)O. Optical planar waveguides with a thickness of 5 microm and a refractive index of 1.470 have been deposited and investigated in the wavelength region of 1.3-1.6 microm. Three absorption bands at 1.40, 1.48, and 1.54 microm have been detected and interpreted as Si-OH, N-H, and Si-H vibrational modes, respectively. Absorption losses of 3.8 dB/cm at 1.4 microm and 3.2 dB/cm at 1.51 microm have been measured. A mild annealing at approximately 800 degrees C completely removes the band at 1.40 microm, whereas strong reduction of absorption at 1.51 microm requires 3 h of annealing at 1100 degrees C. As a result, propagation losses of 0.36 to 0.54 dB/cm have been measured at 1.54-microm wavelength.

  4. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    Science.gov (United States)

    Salar Elahi, A.; Agah, K. Mikaili; Ghoranneviss, M.

    CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs.

  5. Plasma-enhanced Chemical Vapordeposition SiO2 Film after Ion Implantation Induces Quantum Well Intermixing

    Institute of Scientific and Technical Information of China (English)

    PENG Jucun; WU Boying; CHEN Jie; ZHAO Jie; WANG Yongchen

    2006-01-01

    A method of QWI ( quantum well intermixing) realizing through plasma-enhanced chemical vapordepositiom (PECVD) SiO2 film following ion implantation was investigated. PECVD 200 nm SiO2 film after 160 keV phosphorus(P) ion implantation was performed to induce InP-based multiple-quantum-well (MQW) laser structural intermixing, annealing process was carried out at 780 ℃ for 30 seconds under N2 flue, the blue shift ofphotoluminescence (PL) peak related to implanted dose: 1 × 1011 , 1 × 1012, 1 × 1013 ,3 × 1013 , 7 × 1013 ion/ cm2 is 22 nm, 65 nm, 104 nm, 109 nm, 101 nm, respectively. Under the same conditions, by comparing the blue shift of PL peak with P ion implantation only, slight differentiation between the two methods was observed, and results reveal that the defects in the implanting layers generated by ion implantation are much more than those in SiO2 film. So, the blue shift results mainly from ion implantation. However , SiO2 film also may promote the quantum well intermixing.

  6. Mechanical and piezoresistive properties of thin silicon films deposited by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition at low substrate temperatures

    Science.gov (United States)

    Gaspar, J.; Gualdino, A.; Lemke, B.; Paul, O.; Chu, V.; Conde, J. P.

    2012-07-01

    This paper reports on the mechanical and piezoresistance characterization of hydrogenated amorphous and nanocrystalline silicon thin films deposited by hot-wire chemical vapor deposition (HWCVD) and radio-frequency plasma-enhanced chemical vapor deposition (PECVD) using substrate temperatures between 100 and 250 °C. The microtensile technique is used to determine film properties such as Young's modulus, fracture strength and Weibull parameters, and linear and quadratic piezoresistance coefficients obtained at large applied stresses. The 95%-confidence interval for the elastic constant of the films characterized, 85.9 ± 0.3 GPa, does not depend significantly on the deposition method or on film structure. In contrast, mean fracture strength values range between 256 ± 8 MPa and 600 ± 32 MPa: nanocrystalline layers are slightly stronger than their amorphous counterparts and a pronounced increase in strength is observed for films deposited using HWCVD when compared to those grown by PECVD. Extracted Weibull moduli are below 10. In terms of piezoresistance, n-doped radio-frequency nanocrystalline silicon films deposited at 250 °C present longitudinal piezoresistive coefficients as large as -(2.57 ± 0.03) × 10-10 Pa-1 with marginally nonlinear response. Such values approach those of crystalline silicon and of polysilicon layers deposited at much higher temperatures.

  7. Study of barrier properties and chemical resistance of recycled PET coated with amorphous carbon through a plasma enhanced chemical vapour deposition (PECVD) process.

    Science.gov (United States)

    Cruz, S A; Zanin, M; Nerin, C; De Moraes, M A B

    2006-01-01

    Many studies have been carried out in order to make bottle-to-bottle recycling feasible. The problem is that residual contaminants in recycled plastic intended for food packaging could be a risk to public health. One option is to use a layer of virgin material, named functional barrier, which prevents the contaminants migration process. This paper shows the feasibility of using polyethylene terephthalate (PET) recycled for food packaging employing a functional barrier made from hydrogen amorphous carbon film deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. PET samples were deliberately contaminated with a series of surrogates using a FDA protocol. After that, PET samples were coated with approximately 600 and 1200 Angstrons thickness of amorphous carbon film. Then, the migration tests using as food simulants: water, 10% ethanol, 3% acetic acid, and isooctane were applied to the sample in order to check the chemical resistance of the new coated material. After the tests, the liquid extracts were analysed using a solid-phase microextraction device (SPME) coupled to GC-MS.

  8. Comparison of hafnium silicate thin films on silicon (1 0 0) deposited using thermal and plasma enhanced metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Vishwanathan; Bhandari, Harish; Klein, Tonya M

    2002-11-01

    Hafnium silicate thin films were deposited by metal organic chemical vapor deposition (MOCVD) on Si at 400 deg. C using hafnium (IV) t-butoxide. Films annealed in O{sub 2} were compared to as-deposited films using X-ray photoelectron spectroscopy and X-ray diffraction. Hafnium silicate films were deposited by both thermal and plasma enhanced MOCVD using 2% SiH{sub 4} in He as the Si precursor. An O{sub 2} plasma increased Si content to as much as {approx}26 at.% Si. Both thermal and plasma deposited Hf silicates are amorphous as deposited, however, thermal films exhibit crystallinity after anneal. Surface roughness as measured by atomic force microscopy was found to be 1.1 and 5.1 nm for MOCVD hafnium silicate and plasma enhanced MOCVD hafnium silicate, respectively.

  9. Surface physical-morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabrics for inkjet printing

    Science.gov (United States)

    Fang, Kuanjun; Zhang, Chunming

    2009-06-01

    Without any preprocessing, polyester fabric has lower ability to hold on water due to the smooth morphology and chemistry property of polyester fibers. Therefore, patterns directly printed with pigment inks have poor color yields and easily bleed. In this paper, atmospheric pressure plasma was used to pretreat polyester fabric in order to provide an active surface for the inkjet printing. The results showed that surface-modified polyester fabrics could obtain the effects of features with enhanced color yields and excellent pattern sharpness. SEM images indicated that the rough surface of plasma treated fibers could provide more capacities for the fabric to capture inks and also facilitate the penetration of colorant particles into the polyester fabric. XPS analysis revealed that air + 50%Ar plasma introduced more oxygen-containing groups onto the fabric surface than air plasma. Although AFM images indicated that etching effects generated by air plasma treatments were more evident, the air/Ar plasma treated sample has higher K/ S value and better color performance. These studies have also shown that the chemical modification of plasma appears to be relatively more significant for improving the effect of inkjet printing.

  10. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  11. Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    杨武保; 王久丽; 张谷令; 范松华; 刘赤子; 杨思泽

    2003-01-01

    In this paper, the structures, optical and mechanical properties of diamond-like carbon films are studied, which are prepared by a self-fabricated electron cyclotron resonance microwave plasma chemical vapour deposition method at room temperature in the ambient gases of mixed acetylene and nitrogen. The morphology and microstructure of the processed film are characterized by the atomic force microscope image, Raman spectra and middle Fourier transform infrared transmittance spectra, which reveal that there is an intertwisted fibrillar diamond-like structure in the film and the film is mainly composed of sp3 CH, sp3 C-C, sp2 C=C, C=N and C60. The film micro-hardness and bulk modulus are measured by a nano-indenter and the refractive constant and deposition rate are also calculated.

  12. Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC–ESI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianyang; Liu, Danting [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Xin, Baozhong; Cechner, Karen [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Xiang [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Wang, Heng, E-mail: Wang@ddcclinic.org [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Aimin, E-mail: a.zhou@csuohio.edu [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Center for Gene Regulation in Health and Diseases, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States)

    2016-07-27

    Gangliosides are found in abundance in the central nervous system of vertebrates. Their metabolic disruption and dysfunction are associated with various neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. In order to improve our understanding of the etiology of these diseases, analytical ganglioside assays with sufficient specificity and sensitivity in relevant biological matrices are required. In the present work we have developed and validated a reverse-phase ultra-performance liquid chromatography (UPLC)/tandem mass spectrometry (MS) method for determining monosialogangliosides GM1, GM2, and GM3 present in human plasma. Compared with our previous method, this method enhanced, by 15 fold, MS responses of the analytes by employing 2-(2-Pyridilamino)-ethylamine (PAEA) & 4-(4, 6-Dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)-based derivatization. The analytes and internal standards were derivatized with PAEA&DMTMM after extraction from plasma using a protein precipitation procedure. They were then purified using liquid–liquid partitioning. When the samples were then analyzed by UPLC-MS/MS with a multiple reaction monitoring (MRM) mode, we achieved superior sensitivity and specificity. This method was evaluated for extraction recovery, calibration linearity, precision, accuracy, and lower limit of quantification (LLOQ). The validated method was successfully applied to monitor monosialoganglioside levels in the plasma from patients with GM3 synthase deficiency. With significantly increased sensitivity, we have, for the first time, detected a significant amount of GM3 in the affected patients. - Highlights: • A UPLC/MS/MS method for analyzing monosialogangliosides GM1, GM2, and GM3 in human plasma was developed and validated. • PAEA&DMTMM-based derivatization greatly improved the sensitivity. • The method was applied to measure GM1, GM2, and GM3 in the plasma from the patients with GM3 synthase

  13. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  14. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    Science.gov (United States)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  15. Electron energy-loss spectroscopy analysis of low-temperature plasma-enhanced chemically vapor deposited a-C:H films

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Benson, D.K.; Tracy, C.E.; Kazmerski, L.L.; Wager, J.F.

    1989-05-01

    Electron energy-loss spectroscopy (EELS) has been applied to the analysis of a-C:H films grown on various substrates by a unique low-temperature (<100 /sup 0/C) plasma-enhanced chemical vapor deposition (PECVD) process using ethylene and hydrogen gases. EELS data are used to characterize the relative amounts of fourfold coordinated sp/sup 3/ carbon bonding to threefold coordinated sp/sup 2/ carbon bonding as well as the relative order/disorder due to substrate effects. Ellipsometric and transmission measurements provide optical constants for the PECVD a-C:H films.

  16. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hyuk; Castro, Edward Joseph; Hwang, Yong Gyoo; Lee, Choong Hun [Wonkwang University, Iksan (Korea, Republic of)

    2011-01-15

    In this work, few-layer graphene (FLG) was successfully grown on polycrystalline Ni a large scale by using DC plasma enhanced chemical vapor deposition (DC PE-CVD), which may serve as an alternative route in large-scale graphene synthesis. The synthesis time had an effect on the quality of the graphene produced. The applied DC voltage, on the other hand, influenced the minimization of the defect densities in the graphene grown. We also present a method of producing a free-standing polymethyl methacrylate (PMMA)/graphene membrane on a FeCl{sub 3(aq)} solution, which could then be transferred to the desired substrate.

  17. Mechanical alloying and sintering of aluminum reinforced with SiC nanopowders produced by plasma-enhanced chemical-vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J.; Fort, J.; Roura, P. [GRM, Dept. de Enginyeria Industrial, Universitat de Girona (Spain); Froyen, L. [MTM Katholieke Universiteit Leuven (Belgium); Viera, G.; Bertran, E. [FEMAN, Dept. Fisica Aplicada i Optica, Universitat de Barcelona (Spain)

    2000-07-01

    Nanometric powders of stoichiometric SiC have been synthesised by plasma-enhanced chemical-vapour deposition. These are constituted by amorphous particles with diameters ranging from 10 to 100 nm. Due to their high hydrogen content, a heat treatment at 900 C was needed to prevent spontaneous oxidation. The stabilized SiC powder was mechanically alloyed with aluminum particles of 40 {mu}m in diameter and the alloy was formed by hot isostatic sintering. The SiC content ranged from 0 to 5% in weight. A detailed analysis of the alloyed powder microstructure is presented as well as preliminary results concerning the mechanical properties after sintering. (orig.)

  18. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Pérez, Arllene M.; Renero, Francisco J.; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-01

    Optical, structural and electric properties of (a-(Si90Ge10)1-yBy:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10-3 to 101 Ω-1 cm-1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  19. Single liquid-source plasma enhanced metalorganic chemical vapor deposition of YBa sub 2 Cu sub 3 O sub 7-x thin films. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Gardiner, R.; Kirlin, P.S.; Boerstler, R.W.; Steinbeck, J.

    1992-07-29

    High quality YBa2Cu3O7-x films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd)n, (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction. measurements indicated that single phase, highly c-axis oriented YBa2Cu3O7-x was formed in-situ at a substrate temperature 680 degC. The as-deposited films exhibited a mirror-like surface, had transition temperature Tc = 89 K, Delta Tc < 1K, and Jc(77K) = 106 A/cm2. Plasma enhanced metalorganic chemical vapor deposition, YBCO, superconductors.

  20. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  1. Chemical Fractionation and Abundances in Coronal Plasma

    CERN Document Server

    Drake, J J

    2003-01-01

    Much of modern astrophysics is grounded on the observed chemical compositions of stars and the diffuse plasma that pervades the space between stars, galaxies and clusters of galaxies. X-ray and EUV spectra of the hot plasma in the outer atmospheres of stars have demonstrated that these environments are subject to chemical fractionation in which the abundances of elements can be enhanced and depleted by an order of magnitude or more. These coronal abundance anomalies are discussed and some of the physical mechanisms that might be responsible for producing them are examined. It is argued that coronal abundances can provide important new diagnostics on physical processes at work in solar and stellar coronae. It seems likely that other hot astrophysical plasmas will be subject to similar effects.

  2. Characterization of amorphous hydrogenated carbon formed by low-pressure inductively coupled plasma enhanced chemical vapor deposition using multiple low-inductance antenna units.

    Science.gov (United States)

    Tsuda, Osamu; Ishihara, Masatou; Koga, Yoshinori; Fujiwara, Shuzo; Setsuhara, Yuichi; Sato, Naoyuki

    2005-03-24

    Three-dimensional plasma enhanced chemical vapor deposition (CVD) of hydrogenated amorphous carbon (a-C:H) has been demonstrated using a new type high-density volumetric plasma source with multiple low-inductance antenna system. The plasma density in the volume of phi 200 mm x 100 mm is 5.1 x 10(10) cm(-3) within +/-5% in the lateral directions and 5.2 x 10(10)cm(-3) within +/-10% in the axial direction for argon plasma under the pressure of 0.1 Pa and the total power as low as 400 W. The uniformity of the thickness and refractive index is within +/-3.5% and +/-1%, respectively, for the a-C:H films deposited on the substrates placed on the six side walls, the top of the phi 60 mm x 80 mm hexagonal substrate holder in the pure toluene plasma under the pressure is as low as 0.04 Pa, and the total power is as low as 300 W. It is also found that precisely controlled ion bombardment by pulse biasing led to the explicit observation in Raman and IR spectra of the transition from polymer-like structure to diamond-like structure accompanied by dehydrogenation due to ion bombardment. Moreover, it is also concluded that the pulse biasing technique is effective for stress reduction without a significant degradation of hardness. The stress of 0.6 GPa and the hardness of 15 GPa have been obtained for 2.0 microm thick films deposited with the optimized deposition conditions. The films are durable for the tribology test with a high load of 20 N up to more than 20,000 cycles, showing the specific wear rate and the friction coefficient were 1.2 x 10(-7) mm3/Nm and 0.04, respectively.

  3. Enhanced incoherent scatter plasma lines

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

  4. Impact of Hydrocarbon Control in Ultraviolet-Assisted Restoration Process for Extremely Porous Plasma Enhanced Chemical Vapor Deposition SiOCH Films with k = 2.0

    Science.gov (United States)

    Kimura, Yosuke; Ishikawa, Dai; Nakano, Akinori; Kobayashi, Akiko; Matsushita, Kiyohiro; de Roest, David; Kobayashi, Nobuyoshi

    2012-05-01

    We investigated the effects of UV-assisted restoration on porous plasma-enhanced chemical vapor deposition (PECVD) SiOCH films with k = 2.0 and 2.3 having high porosities. By applying the UV-assisted restoration to O2-plasma-damaged films with k = 2.0 and 2.3, the recovery of the k-value was observed on the k = 2.3 film in proportion to -OH group reduction. However, the k = 2.0 film did not show recovery in spite of -OH group reduction. We found that hydrocarbon content in the k = 2.0 film was significantly increased by the UV-assisted restoration compared with the k = 2.3 film. According to these findings, we optimized the UV-assisted restoration to achieve improved controllability of the hydrocarbon uptake in the k = 2.0 film and confirmed the recovery of the k-value for O2-plasma-damaged film. Thus, adjusting the hydrocarbon uptake was crucial for restoring extremely porous SiOCH film.

  5. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  6. Deposition and Characterization of Nanocrystalline Diamond Films on Mirror-Polished Si Substrate by Biased Enhanced Microwave Plasma Chemical Vapor Deposition

    Science.gov (United States)

    Soga, T.; Sharda, T.; Jimbo, T.; Umeno, M.

    Hard and smooth nanocrystalline diamond (NCD) thin films were deposited on polished silicon substrates by biased enhanced growth in microwave plasma chemical vapor deposition. The films deposited with varying the methane concentration and biasing voltage were characterized by Raman spectroscopy, nano-indenter, x-ray diffraction and atomic force microscopy. Stress in the films increases with decreasing methane concentration in the gas-phase and with increasing biasing. The adhesion between NCD film and Si substrate is very strong sustaining the compressive stress as high as high as 85 GPa. It was hypothesized that hydrogen content of the films and graphitic content of the films are responsible in generating stress. The hardness is well correlated with the Raman peak intensity ratio of NCD peak to G peak.

  7. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  8. Effect of residual stresses on the strength, adhesion and wear resistance of SiC coatings obtained by plasma-enhanced chemical vapor deposition on low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kattamis, T.Z. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Chen, M. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Skolianos, S. (Aristoteles University, Thessaloniki (Greece)); Chambers, B.V. (Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States))

    1994-11-01

    Amorphous hydrogenated silicon carbide thin coatings were deposited on AISI 4340 low alloy steel wafers and thicker steel specimens by plasma-enhanced chemical vapor deposition. The cohesion of the coating, its adhesion to the substrate and its friction coefficient were evaluated by automatic scratch testing, and its wear resistance by pin-on-disk tribometry. During annealing, the residual stress attributed to hydrogen entrapment during deposition gradually changed from compressive to tensile and its rate of increase decreased with increasing annealing time. The cohesion and adhesion failure loads and the abrasive wear resistance decreased with decreasing residual compressive stress and increasing residual tensile stress. The friction coefficient between the coating surface and a diamond stylus decreased with increasing annealing time. ((orig.))

  9. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  10. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  11. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brunon, Celine [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Chadeau, Elise; Oulahal, Nadia [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Grossiord, Carol [Science et Surface, 64, Chemin des Mouilles, F-69130 Ecully (France); Dubost, Laurent [HEF, ZI SUD, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon (France); Bessueille, Francois [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Simon, Farida [TDV Industrie, 43 Rue du Bas des Bois, BP 121, F-53012 Laval Cedex (France); Degraeve, Pascal [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Leonard, Didier, E-mail: didier.leonard@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France)

    2011-07-01

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of {approx} 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  12. Properties of silicon nitride thin overlays deposited on optical fibers — Effect of fiber suspension in radio frequency plasma-enhanced chemical vapor deposition reactor

    Energy Technology Data Exchange (ETDEWEB)

    Śmietana, M., E-mail: M.Smietana@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Dominik, M.; Myśliwiec, M.; Kwietniewski, N. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Mikulic, P. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada); Witkowski, B.S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-666 (Poland); Bock, W.J. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada)

    2016-03-31

    This work discusses the effect of sample suspension in radio frequency plasma-enhanced chemical vapor deposition process on properties of the obtained overlays. Silicon nitride (SiN{sub x}) overlays were deposited on flat silicon wafers and cylindrical fused silica optical fibers. The influence of the suspension height and fiber diameter on SiN{sub x} deposition rate is investigated. It has been found that thickness of the SiN{sub x} overlay significantly increases with suspension height, and the deposition rate depends on fiber dimensions. Moreover, the SiN{sub x} overlays were also deposited on long-period gratings (LPGs) induced in optical fiber. Measurements of the LPG spectral response combined with its numerical simulations allowed for a discussion on properties of the deposited overlay. The measurements have proven higher overlay deposition rate on the suspended fiber than on flat Si wafer placed on the electrode. Results of this work are essential for precise tuning of the functional properties of new generations of optical devices such as optical sensors, filters and resonators, which typically are based on optical fibers and require the overlays with well defined properties. - Highlights: • The effect of optical fiber suspension in plasma process is discussed. • The deposition rate of silicon nitride (SiN{sub x}) overlay depends on fiber dimensions. • Thickness of the SiN{sub x} overlay strongly increases with suspension height. • Measurements and simulations of long-period grating confirms experimental results.

  13. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  14. Characterization of the SiO2 film deposited by using plasma enhanced chemical vapor deposition (PECVD with TEOS/N2/O2

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2013-12-01

    Full Text Available The purpose of this study was to examine how certain parameters like temperature, pressure, and gas composition affect the characteristics of SiO2 film by Plasma Enhanced Chemical Vapor Deposition (PECVD. We used of low temperature and an inductively coupled plasma (ICP for various with gas mixtures of TEOS/N2/O2 at a given RF power and dc bias voltage. For the gas mixture with 40 sccm of N2 in TEOS, 100 standard cubic centimeters per minute (sccm of N2, and 500 sccm of O2, transparent and scratch-resistant SiO2 could be deposited with a deposition rate of 30 nm/min when RF power of 500 W and a dc-bias voltage of 350V were applied. The characteristics of the deposited SiO2, such as the composition, the binding energy, etc. were compared with the SiO2 deposited by using thermal CVD and evaporation. It was found that the SiO2 deposited by PECVD with TEOS/N2/O2 exhibited properties typical of SiO2 deposited applying thermal CVD and evaporation. The surface roughness of the 100 nm-thick SiO2 deposited by PECVD was similar to that of the substrate.

  15. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    Science.gov (United States)

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  16. Impact of In doping on GeTe phase-change materials thin films obtained by means of an innovative plasma enhanced metalorganic chemical vapor deposition process

    Science.gov (United States)

    Szkutnik, P. D.; Aoukar, M.; Todorova, V.; Angélidès, L.; Pelissier, B.; Jourde, D.; Michallon, P.; Vallée, C.; Noé, P.

    2017-03-01

    We investigated the deposition and the phase-change properties of In-doped GeTe thin films obtained by plasma enhanced metalorganic chemical vapor deposition and doped with indium using a solid delivery system. The sublimated indium precursor flow rate was calculated as a function of sublimation and deposition parameters. Indium related optical emission recorded by means of optical emission spectroscopy during deposition plasma allowed proposing the dissociation mechanisms of the [In(CH3)2N(CH3)2]2 solid precursor. In particular, using an Ar + H2 + NH3 deposition plasma, sublimated indium molecules are completely dissociated and do not induce by-product contamination by addition of nitrogen or carbon in the films. X-ray photoelectron spectroscopy evidences the formation of In-Te bonds in amorphous as-deposited In-doped GeTe films. The formation of an InTe phase after 400 °C annealing is also evidenced by means of X-ray diffraction analysis. The crystallization temperature Tx, deduced from monitoring of optical reflectivity of In-doped GeTe films with doping up to 11 at. % slightly varies as a function of the In dopant level with a decrease of Tx down to a minimum value for an In doping level of about 6-8 at. %. In this In doping range, the structure of crystallized In-GeTe films changes and is dominated by the presence of a crystalline In2Te3 phase. Finally, the Kissinger activation energy for crystallization Ea is showing to monotonically decrease as the indium content in the GeTe film is increased indicating a promising effect of In doping on crystallization speed in memory devices while keeping a good thermal stability for data retention.

  17. Effects of boron addition on a-Si{sub 90}Ge{sub 10}:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Arllene M [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Universidad Popular Autonoma del Estado de Puebla (UPAEP), 21 Sur 1103 Colonia Santiago, CP 72160, Puebla, Puebla (Mexico); Renero, Francisco J [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Zuniga, Carlos [Instituto Nacional de AstrofIsica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Torres, Alfonso [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Santiago, Cesar [Universidad Politecnica de Tulancingo, Prolongacion Guerrero 808 Colonia Caltengo, CP 43626, Tulancingo, Hidalgo (Mexico)

    2005-06-29

    Optical, structural and electric properties of (a-(Si{sub 90}Ge{sub 10}){sub 1-y}B{sub y}:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10{sup -3} to 10{sup 1} {omega}{sup -1} cm{sup -1} when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  18. Platinum thin films with good thermal and chemical stability fabricated by inductively coupled plasma-enhanced atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo-Heng [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China); Huang, Hung Ji, E-mail: hjhuang@itrc.narl.org.tw [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China); Huang, Sheng-Hsin [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Hsiao, Chien-Nan [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China)

    2014-09-01

    The inductively coupled plasma-enhanced atomic layer deposition (PEALD) method was used to fabricate ultrathin and smooth Pt thin films at low temperatures without the use of a Pt seed layer. The Pt thin metal films deposited at 200 °C onto Si and glass substrates exhibited high conductivities (< 12 μΩ cm for films with a thickness greater than 8 nm) and thermal stabilities resembling those of the bulk material. The measured density of the deposited Pt thin films was 20.7 ± 6 g/cm{sup 3}. X-ray photoelectron spectra of the films showed clear 4f peaks (74.3 eV (4f{sub 5/2}) and 71.1 eV (4f{sub 7/2})), and X-ray diffraction measurements showed the (111) peak of the fcc structure. The deposited Pt layers were in crystal form. The 25.5-nm Pt films coated onto 170-nm-wide trench structures (aspect ratio of 3.5:1) exhibited good step coverage. The PEALD-deposited Pt thin films were chemically stable under high-temperature light illumination and could serve as catalysts under strongly alkaline conditions (pH = 12) during the long-term oxidization of ammonium ions. - Highlights: • Inductively coupled plasma applied to enhance atomic layer deposition (PEALD) • Smooth Pt films fabricated by PEALD at low temperature • 8-nm Pt shows clear metal peaks in XPS and XRD. • 8-nm Pt shows low electrical resistivity of 16 μΩ cm. • 8-nm Pt shows stability under strong light and pH = 12 wash by NH{sub 4}{sup +}/NaOH solution.

  19. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  20. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  1. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    of the gas flow. Above a certain flow rate the intensity saturates, since the deposition process is limited by the power input. At low flow rates a large fraction of the feed gas is dissociated and the deposition is limited by the supply of feed gas. A relationship was found for the intensity of the CH 431...... in the process gas. The initial OH intensity was dependent on the ultimate vacuum prior to the plasma cleaning. A correlation was found between the vanishing of the OH line and the appearance of characteristic emission lines From sputtered electrode material....

  2. Si nanowires grown by Al-catalyzed plasma-enhanced chemical vapor deposition: synthesis conditions, electrical properties and application to lithium battery anodes

    Science.gov (United States)

    Toan, Le Duc; Moyen, Eric; Zamfir, Mihai Robert; Joe, Jemee; Kim, Young Woo; Pribat, Didier

    2016-01-01

    Silicon nanowires have been synhesized using Al as a catalyst. Silane (SiH4) diluted in H2 carrier gas was employed as Si precursor in a plasma enhanced chemical vapor deposition system operated at various temperatures (450 °C and 550 °C). Those growth temperatures, which are lower than the eutectic temperature in the Al-Si system (577 °C) suggests a vapor-solid-solid growth mechanism. Four point resistance measurements and back-gated current-voltage measurements indicated that silicon nanowires were heavily doped (p type), with a doping concentration of a few 1019 cm-3. We have measured hole mobility values of ˜16 cm2 V-1 s-1 at 450 °C and ˜30 cm2 V-1 s-1 at 550 °C. Transmission electron microscope analyses showed that the silicon nanowires were highly twinned even when they grow epitaxially on (111) Si substrates. We have also evaluated the use of those highly doped Si nanowires for lithium-ion battery anodes. We have observed a good cycling behavior during the first 65 charge-discharge cycles, followed by a slow capacity decay. After 150 cycles at a charge-discharge rate of 0.1 C, the electrode capacity was still 1400 mAh g-1. The ageing mechanism seems to be related to the delamination of the SiNWs from the stainless steel substrate on which they were grown.

  3. SiO{sub 2}/TiO{sub 2} thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Holgado, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain)]. E-mail: arge@icmse.csic.es; Girardeau, T. [Laboratoire de Metallurgie Physique de Poitiers, UMR 6630 CNRS, Bat SP2MI BP 30179, 86962-Futuroscope-Chasseneuil Cedex (France)

    2006-04-03

    SiO{sub 2}/TiO{sub 2} optical thin films with variable compositions have been prepared by ion beam induced and plasma enhanced chemical vapour deposition (IBICVD and PECVD). While the films obtained by IBICVD were very compact, the PECVD ones with a high content of Ti presented a columnar microstructure. The formation of Si-O-Ti bonds and a change in the environment around titanium from four- to six-coordinated has been proved by vibrational and X-ray absorption spectroscopies. The refractive index increased with the titanium content from 1.45 to 2.46 or 2.09 for, respectively, the IBICVD and PECVD films. Meanwhile, the band gap decreased, first sharply and then more smoothly up to the value of pure TiO{sub 2}. It is concluded that the optical properties of SiO{sub 2}/TiO{sub 2} thin films can be properly tailored by using these two procedures.

  4. Optical and morphological properties of SiN{sub x}/Si amorphous multilayer structures grown by Plasma Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santana, G.; Melo, O. de; Monroy, B.M.; Fandino, J.; Ortiz, A.; Alonso, J.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, A.P. 70-360, Coyoacan (Mexico); Aguilar-Hernandez, J.; Cruz, F.; Contreras-Puentes, G. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional; Edificio 9, U.P.A.L.M. (Mexico)

    2005-08-01

    Very thin layers of Si were grown in between silicon nitride layers using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique and SiH{sub 2}Cl{sub 2}/H{sub 2}/NH{sub 3} mixtures. Deposition conditions were selected to favor Si cluster formation. Room Temperature Photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical and structural properties of the films. Scanning Electron Microscopy (SEM) of the cross section of cleaved samples allowed to observe a clear pattern of Si clusters embedded in the SiN matrix. The UV-VIS absorption spectra present two band edges. We assume that the higher band gap is due to the amorphous Si clusters. RT-PL spectra are characterized by two broad bands: one centered at 1.5 eV and the other at 2.1 eV. The broad luminescence centered at 2.1 eV could be associated with the higher band gap observed in absorption spectrum. After vacuum annealing of the samples at 400 and ordm;C, the band at 2.1 eV disappears. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Growth of Ge nanoparticles on SiO{sub 2}/Si interfaces during annealing of plasma enhanced chemical vapor deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Foss, S. [Department of Physics, University of Oslo, PO Box 1048-Blindern, N-0316 (Norway)]. E-mail: stefoss@fys.uio.no; Finstad, T.G. [Department of Physics, University of Oslo, PO Box 1048-Blindern, N-0316 (Norway); Dana, A. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Aydinli, A. [Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2007-06-04

    Multilayer germanosilicate (Ge:SiO{sub 2}) films have been grown by plasma enhanced chemical vapor deposition. Each Ge:SiO{sub 2} layer is separated by a pure SiO{sub 2} layer. The samples were heat treated at 900 deg. C for 15 and 45 min. Transmission electron microscopy investigations show precipitation of particles in the layers of highest Ge concentration. Furthermore there is evidence of diffusion between the layers. This paper focuses mainly on observed growth of Ge particles close to the interface, caused by Ge diffusion from the Ge:SiO{sub 2} layer closest to the interface through a pure SiO{sub 2} layer and to the interface. The particles grow as spheres in a direction away from the interface. Particles observed after 15 min anneal time are 4 nm in size and are amorphous, while after 45 min anneal time they are 7 nm in size and have a crystalline diamond type Ge structure.

  6. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    Science.gov (United States)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  7. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  8. Effects of annealing temperature on crystallisation kinetics and properties of polycrystalline Si thin films and solar cells on glass fabricated by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tao Yuguo, E-mail: yuguo.tao@hotmail.com [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Varlamov, Sergey; Jin, Guangyao [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Wolf, Michael; Egan, Renate [CSG Solar Pty Ltd, Sydney, NSW (Australia)

    2011-10-31

    Solid-phase crystallisation of Si thin films on glass fabricated by plasma enhanced chemical vapour deposition is compared at different annealing temperatures. Four independent techniques, optical transmission microscopy, Raman and UV reflectance spectroscopy, and X-ray diffraction, are used to characterise the crystallisation kinetics and film properties. The 1.5 {mu}m thick films with the n+/p-/p+ solar cell structure have incubation times of about 300, 53, and 14 min and full crystallisation times of about 855, 128, and 30 min at 600 deg. C, 640 deg. C, and 680 deg. C respectively. Estimated activation energies for incubation and crystal growth are 2.7 and 3.2 eV respectively. The average grain size in the resulting polycrystalline Si films measured from scanning electron microscopy images gradually decreases with a higher annealing temperature and the crystal quality becomes poorer according to the Raman, UV reflection, and X-ray diffraction results. The dopant activation and majority carrier mobilities in heavily doped n+ and p+ layers are similar for all crystallisation temperatures. Both the open-circuit voltage and the spectral response are lower for the cells crystallised at higher temperatures and the minority carrier diffusion lengths are shorter accordingly although they are still longer than the cell thickness for all annealing temperatures. The results indicate that shortening the crystallisation time by merely increasing the crystallisation temperature offers little or no merits for PECVD polycrystalline Si thin-film solar cells on glass.

  9. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  10. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    Science.gov (United States)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  11. Plasma enhanced chemical vapor deposition of Cr{sub 2}O{sub 3} thin films using chromium hexacarbonyl (Cr(CO){sub 6}) precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinwen [Center for Materials for Information Technology and Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States)], E-mail: wang006@bama.ua.edu; Gupta, Arunava; Klein, Tonya M. [Center for Materials for Information Technology and Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2008-09-01

    Chromium oxide (Cr{sub 2}O{sub 3}) thin films have been deposited by plasma enhanced chemical vapor deposition on c-cut sapphire (Al{sub 2}O{sub 3}) and oxidized silicon substrates at temperatures between 250 and 400 deg. C using the precursor chromium hexacarbonyl (Cr(CO){sub 6}). The film growth rate ranges between 5 and 14 A/min, with the growth rate going through a maximum at 300 deg. C before decreasing at higher temperature, suggesting the presence of competing deposition and desorption reaction channels. Scanning electron microscope images indicate that the density of grains and film crystallinity increases with increasing substrate temperatures, while atomic force microscopy shows an overall decrease in film roughness with increasing temperature. Normal {theta} - 2{theta} Bragg X-ray diffraction results show that films deposited on SiO{sub 2} are polycrystalline, while those on sapphire have a preferred (0 0 0 l) orientation. The epitaxial nature of the film growth on Al{sub 2}O{sub 3} has been confirmed from the symmetry of off-axis X-ray scans.

  12. Tribological properties and thermal stability of hydrogenated, silicon/nitrogen-coincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Nakazawa, Hideki; Okuno, Saori; Magara, Kohei; Nakamura, Kazuki; Miura, Soushi; Enta, Yoshiharu

    2016-12-01

    We have deposited hydrogenated, silicon/nitrogen-incorporated diamond-like carbon (Si-N-DLC) films by plasma-enhanced chemical vapor deposition using hexamethyldisilazane [((CH3)3Si)2NH; HMDS] as the Si and N source, and compared the tribological performance and thermal stability of the Si-N-DLC films with those of hydrogenated, Si-incorporated DLC (Si-DLC) films prepared using dimethylsilane [SiH2(CH3)2] as the Si source. The deposited films were annealed at 723-873 K in air atmosphere. The friction coefficients of hydrogenated DLC films after annealing significantly increased at the initial stages of friction tests. On the other hand, the friction coefficients of the Si-N-DLC films deposited at an HMDS flow ratio [HMDS/(HMDS+CH4)] of 2.27% remained low after the annealing even at 873 K. We found that the wear rate of the Si-N-DLC film deposited at 2.27% and -1000 V remained almost unchanged after the annealing at 873 K, whereas that of the Si-DLC film with a similar Si fraction deposited at -1000 V significantly increased after the annealing at 773 K.

  13. Hydrogenated amorphous carbon-nitride films deposited on Si(100) by direct-current saddle-field plasma-enhanced chemical-vapor deposition

    CERN Document Server

    Jang, H K; Lee, Y S; Whangbo, S W; Whang, C N; Yoo, Y Z; Kim, H G

    1999-01-01

    Hydrogenated amorphous carbon nitride [a-C:H(N)] films were deposited using dc saddle-field plasma-enhanced chemical-vapor deposition. The structural and the compositional changes induced in the films by the different flow-rate ratios of N sub 2 to CH sub 4 (n sub N sub 2 /n sub C sub H sub sub 4) were investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The deposition rate of the films abruptly decreased upon increasing the n sub N sub 2 /n sub C sub H sub sub 4 ratio. However, for n sub N sub 2 /n sub C sub H sub sub 4 >0.5, the deposition rate slightly decreased with increasing n sub N sub 2 /n sub C sub H sub sub 4. The ratio of N to C (N/C) of the films saturated to 0.25 with increasing n sub N sub 2 /n sub C sub H sub sub 4. The numbers of N-H and C ident to N bonds in the films increased with increasing n sub N sub 2 /n sub C sub H sub sub 4 , but the number of C-H bonds decreased. The optical band-gap energy of the films decreased from 2.53 eV to 2.3 eV as t...

  14. Chemically enhanced in situ recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sale, T. [CH2M Hill, Denver, CO (United States); Pitts, M.; Wyatt, K. [Surtek, Inc., Golden, CO (United States)] [and others

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  15. Synthesis, structural and field emission properties of multiwall carbon nanotube-graphene-like nanocarbon hybrid films grown by microwave plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chockalingam, Sreekumar, E-mail: sreekuc@nplindia.org [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bisht, Atul [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Kesarwani, A.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, B.P. [Physics and Engineering of Carbon, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Chand, Jagdish [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-04-15

    Multiwall carbon nanotube (MWCNT)-graphene-like nanocarbon hybrid films were directly deposited on nickel substrate without any pre-treatment in a single-step by microwave plasma enhanced chemical vapor deposition (MW PECVD) technique at 600 °C. The effects of hydrogen partial pressure on the growth of MWCNT-graphene-like nanocarbon hybrid films and their structural, morphological and field emission properties were investigated. High resolution scanning electron microscope revealed MWCNT structure. High resolution transmission electron microscope images and Raman spectra revealed graphene-like nanocarbon film. Raman spectra showed 2D, G, D and D + G peaks at approximately 2690, 1590, 1350 and 2930 cm{sup −1}, respectively. The minimum threshold field for electron emission was found to be 3.6 V/μm corresponding to 1 μA/cm{sup 2} current density for the MWCNT-graphene-like nanocarbon hybrid film deposited at 20 Torr pressure whereas the maximum current density of 0.12 mA/cm{sup 2} and field enhancement factor of ∼3356 was obtained for the sample deposited at 5 Torr pressure. - Highlights: • MWCNT-graphene-like nanocarbon hybrid films were synthesized by MWPECVD technique. • Effect of pressure on the structural and field emission properties has been studied. • FESEM revealed MWCNT and HRTEM revealed graphene-like nanocarbon film structure. • Minimum E{sub T} = 3.6 V/μm with β = 3164 has been obtained in the film deposited at 20 Torr. • Maximum J = 0.12 mA/cm{sup 2} with β = 3356 has been obtained in the film deposited at 5 Torr.

  16. High-temperature degradation in plasma-enhanced chemical vapor deposition Al{sub 2}O{sub 3} surface passivation layers on crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kühnhold, Saskia [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Saint-Cast, Pierre; Kafle, Bishal; Hofmann, Marc [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Colonna, Francesco [Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Zacharias, Margit [Department of Microsystems Engineering IMTEK, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2014-08-07

    In this publication, the activation and degradation of the passivation quality of plasma-enhanced chemical vapor deposited aluminum oxide (Al{sub 2}O{sub 3}) layers with different thicknesses (10 nm, 20 nm, and 110 nm) on crystalline silicon (c-Si) during long and high temperature treatments are investigated. As indicated by Fourier Transform Infrared Spectroscopy, the concentration of tetrahedral and octahedral sites within the Al{sub 2}O{sub 3} layer changes during temperature treatments and correlates with the amount of negative fixed charges at the Si/Al{sub 2}O{sub 3} interface, which was detected by Corona Oxide Characterization of Semiconductors. Furthermore, during a temperature treatment at 820 °C for 30 min, the initial amorphous Al{sub 2}O{sub 3} layer crystallize into the γ-Al{sub 2}O{sub 3} structure and was enhanced by additional oxygen as was proven by x-ray diffraction measurements and underlined by Density Functional Theory simulations. The crystallization correlates with the increase of the optical density up to 20% while the final Al{sub 2}O{sub 3} layer thickness decreases at the same time up to 26%. All observations described above were detected to be Al{sub 2}O{sub 3} layer thickness dependent. These observations reveal novel aspects to explain the temperature induced passivation and degradation mechanisms of Al{sub 2}O{sub 3} layers at a molecular level like the origin of the negative fixe charges at the Si/SiO{sub x}/Al{sub 2}O{sub 3} interface or the phenomena of blistering. Moreover, the crystal phase of Al{sub 2}O{sub 3} does not deliver good surface passivation due to a high concentration of octahedral sites leading to a lower concentration of negative fixed charges at the interface.

  17. Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in

    2012-11-01

    Structural and optical properties of the amorphous silicon carbide (a-SiC:H) thin films deposited by radio frequency plasma enhanced chemical vapour deposition method from a mixture of silane (SiH{sub 4}) and methane (CH{sub 4}) diluted in argon (Ar) have been studied with variation of Ar dilution from 94% to 98.4%. It is observed that nanocrystalline silicon starts to form within the a-SiC:H matrix by increasing the dilution to 96%. With further increase in Ar dilution to 98% formation of the silicon nanocrystals (nc-Si) with variable size is enhanced. The optical band gap (E{sub g}) of the a-SiC:H film decreases from 2.0 eV to 1.9 eV with increase in Ar dilution from 96% to 98% as the a-SiC:H films gradually become Si rich. On increasing the Ar dilution further to 98.4% leads to the appearance of crystalline silicon quantum dots (c-Si q-dots) of nearly uniform size of 3.5 nm. The quantum confinement effect is apparent from the sharp increase in the E{sub g} value to 2.6 eV. The phase transformation phenomenon from nc-Si within the a-SiC:H films to Si q-dot were further studied by high resolution transmission electron microscopy and the grazing angle X-ray diffraction spectra. A relaxation in the lattice strain has been observed with the formation of Si q-dots.

  18. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  19. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    Science.gov (United States)

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  20. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  1. Impacts of light illumination on monocrystalline silicon surfaces passivated by atomic layer deposited Al2O3 capped with plasma-enhanced chemical vapor deposited SiN x

    Science.gov (United States)

    Lin, Fen; Toh, Mei Gi; Thway, Maung; Li, Xinhang; Nandakumar, Naomi; Gay, Xavier; Dielissen, Bas; Raj, Samuel; Aberle, Armin G.

    2017-08-01

    In this work, we investigate the impact of light illumination on crystalline silicon surfaces passivated with inline atomic layer deposited aluminum oxide capped with plasma-enhanced chemical vapor deposited silicon nitride. It is found that, for dedicated n-type lifetime samples under illumination, there is no light induced degradation (LID) but enhanced passivation. The lifetime increase happened with a much faster speed compared to the lifetime decay during dark storage, resulting in the overall lifetime enhancement for actual field application scenarios (sunshine during the day and darkness during the night). In addition, it was found that the lifetime enhancement is spectrally dependent and mainly associated with the visible part of the solar spectrum. Hence, it has negligible impact for such interfaces applied on the rear of the solar cells, for example p-type aluminum local back surface field (Al-LBSF) cells.

  2. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  3. Intermediate mass dilepton production during the chemical equilibration of quark gluon plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The production of dileptons from the chemically equilibrating quark gluon plasma in the intermediate mass region has been studied. Comparing with the calculated results based on the thermodynamic equilibrium system of quark gluon plasma, it has been found that the quark phase of the chemically equilibrating system gives rise to an even larger enhancement of the dileptons production. Therefore, such an enhancement of dilepton production may signal the formation of quark gluon plasma.

  4. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  5. Plasma environment during hot cathode direct current discharge plasma chemical vapor deposition of diamond films

    Institute of Scientific and Technical Information of China (English)

    朱晓东; 詹如娟; 周海洋; 胡敏; 温晓辉; 周贵恩; 李凡庆

    1999-01-01

    The plasma characteristics have been investigated in situ by using optical emission spectroscopy (OES) and the Langmuir probe during hot cathode direct current discharge plasma chemical vapor deposition of diamond films. The changes of atomic H and CH radical in the ground state have been calculated quantitatively according to the results of OES and the Langmuir probe measurement as discharge current density varied. It is shown that atomic H and CH radicals both in the ground state and in the excited state increase with the enhancement of the discharge current density in the plasma. The electron density and CH emission intensity increase linearly with the enhancement of discharge current densities. The generation of different carbon-containing radicals is related to the elevation of electron temperature. Combining the growth process of diamond films and the diagnostic results, it is shown that atomic H in the excited state may improve the diamond growth efficiently, and the increase of electron temperat

  6. Surface functionalization of PET fabric with atmospheric pressure plasma enhanced chemical vapor deposition%常压等离子体增强化学气相沉积法表面功能化聚酯织物

    Institute of Scientific and Technical Information of China (English)

    K. H. Kale; S. S. Palaskar; 刘鹏(译); 罗艳(校)

    2012-01-01

    Plasma technology is emerging as a novel and environmentally friendly technology for surface modification of textile materials. It is possible to deposit very thin film with specific functional properties on the surface of textiles. The current study describes a novel approach for surface modification of 100% polyester textiles with plasma enhanced chemical vapor deposition (PECVD). The chemical and structural nature of plasma polymers deposited at the surface of the samples with respect to discharge power was studied with FTIR spectroscopy. The functional property i. e. water repellency imparted was determined with spray test and contact angle measurement.%对于纺织材料的表面改性来说,等离子体技术正成为一种新兴且环境友好的技术。等离子体技术在纺织品表面可沉积具有特殊功能的薄膜。阐述了一种常压等离子体增强化学气相沉积法表面改性100%聚酯织物的新型方法。通过傅里叶变换红外光谱研究了沉积于样品表面上相对于放电功率的等离子体聚合物化学和结构性质。采用雾化试验和接触角测量赋予织物诸如疏水等的功能特性。

  7. Frequency-dependent capacitance-voltage and conductance-voltage characteristics of low-dielectric-constant SiOC(-H) thin films deposited by using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Young; Lee, Heang Seuk; Woo, Jong Kwan; Choi, Chi Kyu; Lee, Kwang Man; Hyun, Myung Taek [Jeju National University, Jeju (Korea, Republic of); Navamathavan, Rangaswamy [Chonbuk National University, Chonju (Korea, Republic of)

    2010-12-15

    We report on the electrical characteristics of the metal-insulator-semiconductor (MIS) structure of low-dielectric-constant SiOC(-H) films. SiOC(-H) thin films were deposited on p-Si(100) substrates by using a plasma-enhanced chemical vapor deposition (PECVD) system. The frequency dependence of the capacitance-voltage (C-V) and the conductance-voltage (G/{omega}-V) characteristics of the A1/SiOC(-H)/p-Si(100)/Al MIS structures was analyzed. C-V and G/{omega}-V measurements were carried out over a frequency range of 1 kHz to 5 MHz. Based on our analysis, the C-V and the G/{omega}-V characteristics confirmed that the surface states and the series resistance were important parameters that strongly influenced the electrical properties of the A1/SiOC(-H)/p-Si(100)/Al MIS structures.

  8. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    Energy Technology Data Exchange (ETDEWEB)

    Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  9. Electrical properties of plasma-deposited silicon oxide clarified by chemical modeling

    NARCIS (Netherlands)

    Kovalgin, A.Y.; Boogaard, A.; Brunets, I.; Aarnink, A.A.I.; Wolters, R.A.M.

    2009-01-01

    Our study is focused on Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon dioxide films at low temperatures (< 150 oC) using Inductively Coupled (IC) High-Density (HD) plasma source. We recently fabricated Thin Film Transistors (TFTs) with high-quality ICPECVD gate oxides, which exhibited

  10. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  11. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  12. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    Science.gov (United States)

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  13. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  14. Plasma-enhanced microwave solid-state synthesis of cadmium sulfide: reaction mechanism and optical properties.

    Science.gov (United States)

    Du, Ke-zhao; Chaturvedi, Apoorva; Wang, Xing-zhi; Zhao, Yi; Zhang, Ke-ke; Iqbal Bakti Utama, M; Hu, Peng; Jiang, Hui; Xiong, Qi-hua; Kloc, Christian

    2015-08-14

    CdS synthesis by plasma-enhanced microwave physical vapor transport (PMPVT) has been developed in this work. The photoluminescence (PL), absorbance, Raman spectra and the mechanism of CdS crystal growth have been investigated. Furthermore, plasma-enhanced microwave chemical vapour transport (PMCVT) synthesis of CdS with additional chemical transport agents has been explored. In addition, other II-VI chalcogenides were also synthesized by PMPVT.

  15. Surface chemistry of the preferred (111) and (220) crystal oriented microcrystalline Si films by radio-frequency plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Daisuke; Koshino, Hideto; Tang, Zeguo; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Sakura (Japan)

    2011-10-15

    The surface chemistry of the preferentially (111) and (220) crystal orientated chlorinated hydrogenated microcrystalline silicon ({mu}c-Si:H:Cl) films was studied using a rf PE-CVD of a dichlorosilane (SiH{sub 2}Cl{sub 2}) and H{sub 2} mixture. The growing surface for the preferentially (220) crystal oriented {mu}c-Si:H:Cl films included much voids and dangling bonds, whereas the growing surface with the preferential (111) crystal orientation was chemically stable relatively. These findings suggest that the sticking process of deposition precursors and/or the reconstruction of Si clusters within the sub-surface determine the preferential crystal orientation. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Enhancement of pulverized coal combustion by plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [University of Rouen, Rouen (France)

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  17. Combustion Enhancement with a Silent Discharge Plasma

    Science.gov (United States)

    Rosocha, Louis

    2003-10-01

    It is well known that the application of an external electric field to a flame can affect its propagation speed, stability, and combustion chemistry (Lawton & Weinberg 1969). External electrodes, arc discharges, and plasma jets have been employed to allow combustible gas mixtures to operate outside their flammability limits by gas heating, injection of free radicals, and field-promoted flame stabilization (Yagodnikov & Voronetskii 1994). Other investigators have carried out experiments with silent electrical discharges applied to propagating flames (Inomata et al 1983, Kim et al 2003). These have demonstrated that the flame propagation velocity is actually decreased (combustion retarded) when a silent discharge is applied directly to the flame region, but that the flame propagation velocity is increased (combustion promoted) when a silent discharge is applied to the unburned gas mixture upstream of a flame. Two other recent works have considered the possibility of combustion enhancement in aircraft gas turbine engine combustor mixers by using a plasma-generating fuel nozzle, that employs an electric-arc or microwave plasma generator, to produce dissociated fuel or ionized fuel (Johnson et al 2001); and pulsed corona-enhanced detonation of fuel-air mixtures in jet engines (Wang et al 2003). In contrast to these prior works, we have employed a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals or other active species in a gas stream before the fuel is mixed with an oxidizer and combusted. In experiments reported here, a cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks are observed (e.g., propane fragments decrease and water and carbon dioxide increase). This indicates that the combustion process is

  18. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.

    Science.gov (United States)

    Cojocaru, C S; Senger, A; Le Normand, F

    2006-05-01

    Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.

  19. Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiO{sub x}N{sub y}/SiO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hartel, A.M., E-mail: andreas.hartel@imtek.uni-freiburg.de [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany); Hiller, D.; Gutsch, S. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany); Loeper, P. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Estrade, S. [MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); TEM-MAT, SCT- UB, Sole i Sabaris 1, 08028 Barcelona (Spain); Peiro, F.; Garrido, B. [MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Zacharias, M. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany)

    2011-10-31

    Size controlled silicon nanocrystals (SiNC) in silicon oxynitride matrix were prepared using plasma enhanced chemical vapor deposition. The as-deposited superlattices (SLs) and the corresponding bulk films were treated by thermal annealing. Hydrogen effusion was performed during the heating up by choosing a sufficiently low heating ramp. The phase separation of the layers into SiNCs and surrounding oxynitride matrix was studied at temperatures of up to 1150 {sup o}C. The influence of the annealing temperature on SiO{sub x}N{sub y}/SiO{sub 2} - SLs with varying SiO{sub x}N{sub y} layer thickness was investigated by several analytical techniques including variable angle spectroscopic ellipsometry, photoluminescence (PL) spectroscopy, x-ray photoelectron spectroscopy, Fourier transform infrared spectrometry (FTIR) and transmission electron microscopy (TEM). Before annealing FTIR investigations show in addition to the expected Si-O bonds also the formation of nitrogen and hydrogen related bonds. The shift of the Si-O-Si stretching vibration to higher wave numbers after annealing indicates phase separation. The disappearance of the hydrogen related bonds indicates the hydrogen effusion. The PL signal is rising significantly with increasing annealing temperature and the PL peak position is strongly related to the thickness of the SiO{sub x}N{sub y} sublayers due to quantum confinement effects. TEM investigations confirm the size-controlled growth of SiNCs within the oxynitride matrix. The role of incorporated nitrogen and hydrogen is discussed.

  20. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  1. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  2. Nanodispersed Oxides-Plasma-Chemical Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    Gheorghi VISSOKOV; Katerina ZAHARIEVA

    2007-01-01

    We discuss the plasma-chemical synthesis and the properties of transition metals oxides, Al2O3, SiO2, rare-earth oxides, oxides for ceramics and metal-ceramics, and oxides used as catalysts. Bearing in mind the indisputable advantages of using plasma-chemically synthesized nanodispersed oxides for the needs of various industrial fields, we set out to review the articles published in the past few years devoted to the problems of plasma-chemical synthesis and characterization of nanodispersed oxides.

  3. Characteristics of carbon coatings on optical fibers prepared by radio-frequency plasma enhanced chemical vapor deposition with different H{sub 2}/C{sub 2}H{sub 2} ratios

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hung-Chien; Yu, Jen-Feng [Department of Materials Science and Engineering, National Chung Hsing University 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Shiue, Sham-Tsong, E-mail: stshiue@dragon.nchu.edu.t [Department of Materials Science and Engineering, National Chung Hsing University 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Lin, Hung-Yi [Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2010-10-01

    Characteristics of carbon coatings on optical fibers prepared by radio-frequency plasma enhanced chemical vapor deposition with different H{sub 2}/C{sub 2}H{sub 2} ratios are investigated. Five kinds of carbon coatings are prepared with H{sub 2}/C{sub 2}H{sub 2} ratios of 2, 4, 6, 8, and 10. Experimental results show that the deposition rate and surface roughness of carbon coatings decrease as the H{sub 2}/C{sub 2}H{sub 2} ratio increases. When the H{sub 2}/C{sub 2}H{sub 2} ratio changes from 2 to 8, the increase of H{sub 2}/C{sub 2}H{sub 2} ratios detrimentally yields sp{sup 3} carbon atoms and sp{sup 3}-CH{sub 3} bonds in the carbon coatings. However, when the H{sub 2}/C{sub 2}H{sub 2} ratio exceeds 8, the hydrogen retards the growth of the graphite structure. Moreover, the redundant hydrogen radicals favor bonding with the dangling bonds in the coating surface. Therefore, when the H{sub 2}/C{sub 2}H{sub 2} ratio increases from 8 to 10, the amounts of sp{sup 3} carbon atoms and sp{sup 3}-CH{sub 3} bonds in the carbon coatings increase. At an H{sub 2}/C{sub 2}H{sub 2} ratio of 8, the carbon coating exhibits excellent water-repellency and thermal-loading resistance, and so this ratio is the best for producing a hermetically sealed optical fiber coating.

  4. Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Funde, A.M.; Bakr, Nabeel Ali; Kamble, D.K. [School of Energy Studies, University of Pune, Pune 411 007 (India); Hawaldar, R.R.; Amalnerkar, D.P. [Center for Materials for Electronics Technology (C-MET), Panchawati, Pune 411 008 (India); Jadkar, S.R. [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India)

    2008-10-15

    Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (Si-H) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (Si-H) to di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2}){sub n} complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size {proportional_to}7.67 nm having good degree of crystallinity ({proportional_to}84%) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Aa/s). (author)

  5. Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.P. [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wang, F.H., E-mail: fansen@dragon.nchu.edu.t [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wu, J.Y.; Kung, C.Y.; Liu, H.W. [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2010-10-01

    Aluminum doped zinc oxide (AZO) thin films prepared by radio-frequency (RF) magnetron sputtering at various RF power were treated by hydrogen plasma to enhance the characteristics for transparent electrode applications. The hydrogen plasma treatment was carried out at 300 {sup o}C in a plasma enhanced chemical vapor deposition system. X-ray diffraction analysis shows that all AZO films have a (002) preferred orientation and film crystallinity seems no significant change after plasma treatment. The plasma treatment not only significantly decreases film resistivity but enhances electrical stability as aging in air ambient. The improved electrical properties are due to desorption of weakly bonded oxygen species, formation of Zn-H type species and passivation of deep-level defects during plasma treatment.

  6. On the Plasma-Chemical Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    G. Vissokov; Iv. Grancharov; Tsv. Tsvetanov

    2003-01-01

    This paper presents an overview of nanopowders preparation using low-temperature plasma (LTP). LTP with its unique processing capabilities provides an attractive and chemically unspecific route for powder synthesis. Nanopowders such as oxides, nitrides, carbides, catalysts and other nanopowders have been successfully synthesized in LTP reactors based on high intensity arcs, plasma jets and radio-frequency (r. f.) inductively coupled discharges.

  7. The shear viscosity of gauge theory plasma with chemical potentials

    CERN Document Server

    Benincasa, P; Naryshkin, R; Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman

    2007-01-01

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  8. The shear viscosity of gauge theory plasma with chemical potentials

    Science.gov (United States)

    Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman

    2007-02-01

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  9. Plasma-enhanced Deposition of Nano-Structured Carbon Films

    Institute of Scientific and Technical Information of China (English)

    Yang Qiaoqin (杨巧勤); Xiao Chijin (肖持进); A. Hirose

    2005-01-01

    By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD).Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310 ℃~550 ℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260 ℃.

  10. Chemical enhanced recovery of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Soveran, D.W.; Scoular, R.J.; Kurucz, L.; Renouf, G.; Verkoczy, B. [Saskatchewan Research Council, Regina, SK (Canada)

    2003-09-01

    A unique chemical/emulsion enhanced oil recovery (EOR) process was laboratory tested to determine its suitability for field demonstration purposes in 3 heavy oil reservoirs in the Lloydminster area of Saskatchewan. The promising chemical agents for the process were identified and optimized. The 3 reservoirs selected represented a cross-section of crude oil qualities typical for the region. The ultimate objective was to develop a process to replace waterflooding as the standard for post-primary production. Several modified core screening tests were conducted to formulate a chemical mixture for the lowest viscosity crude oil. This proved to be the best candidate among the 3 reservoirs. The mixture resulted in additional oil recovery of 26 per cent original oil in place, which is better than a typical waterflood. Two conventional core displacement tests confirmed the success of the modified core flood method. A new polymer was then used in combination with the new coreflood method to produce an additional oil recovery of 30 per cent. Laboratory studies indicate that the lowest viscosity crude oil field is a good candidate for the chemical EOR field study. Results show that the method can recover even the most highly viscous crude oil at a cost below C$10 per barrel. The field shows good potential for chemical EOR even though produced water from the reservoir formed heavy precipitate. 3 tabs., 6 figs.

  11. Plasma enhanced vortex fluidic device manipulation of graphene oxide.

    Science.gov (United States)

    Jones, Darryl B; Chen, Xianjue; Sibley, Alexander; Quinton, Jamie S; Shearer, Cameron J; Gibson, Christopher T; Raston, Colin L

    2016-08-25

    A vortex fluid device (VFD) with non-thermal plasma liquid processing within dynamic thin films has been developed. This plasma-liquid microfluidic platform facilitates chemical processing which is demonstrated through the manipulation of the morphology and chemical character of colloidal graphene oxide in water.

  12. Drag force of Anisotropic plasma at finite U(1) chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Long; Ge, Xian-Hui [Shanghai University, Department of Physics, Shanghai (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Yau Shing Tung Center, Hsinchu (China); National Center for Theoretical Science, Hsinchu (China)

    2016-05-15

    We perform the calculation of the drag force acting on a massive quark moving through an anisotropic N = 4 SU(N) Super Yang-Mills plasma in the presence of a U(1) chemical potential. We present the numerical results for any value of the anisotropy and arbitrary direction of the quark velocity with respect to the direction of the anisotropy. We find the effect of the chemical potential or charge density will enhance the drag force for our charged solution. (orig.)

  13. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  14. Photoluminescence of amorphous carbon films fabricated by layer-by-layer hydrogen plasma chemical annealing method

    Institute of Scientific and Technical Information of China (English)

    徐骏; 黄晓辉; 李伟; 王立; 陈坤基

    2002-01-01

    A method in which nanometre-thick film deposition was alternated with hydrogen plasma annealing (layer-by-layermethod) was applied to fabricate hydrogenated amorphous carbon films in a conventional plasma-enhanced chemicalvapour deposition system. It was found that the hydrogen plasma treatment could decrease the hydrogen concentrationin the films and change the sp2/sp3 ratio to some extent by chemical etching. Blue photoluminescence was observed atroom temperature, as a result of the reduction of sp2 clusters in the films.

  15. Chemical enhancement of metallized zinc anode performance

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J. [J.E. Bennett Consultants, Inc., Chardon, OH (United States)

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  16. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  17. The shear viscosity of gauge theory plasma with chemical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@perimeterinstitute.ca; Naryshkin, Roman [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Physics Department, Taras Shevchenko Kiev National University, Prosp. Glushkova 6, Kiev 03022 (Ukraine)

    2007-02-08

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  18. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    Science.gov (United States)

    Kan, C. W.; Lam, Y. L.; Yuen, C. W. M.; Luximon, A.; Lau, K. W.; Chen, K. S.

    2013-06-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  19. Generator of chemically active low-temperature plasma

    Science.gov (United States)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  20. Plasma enhanced diamond deposition on steel and Si substrates

    Institute of Scientific and Technical Information of China (English)

    Y.S. Li; Y. Tang; W. Chen; Q. Yang; C. Xiao; A. Hirose

    2009-01-01

    Diamond growth on Fe-Cr-Al-Si steel and Si substrates was comparatively investigated in microwave plasma enhanced chemical vapor deposition (MPCVD) reactor with different deposition parameters. Adherent nanocrystalline diamond films were directly deposited on this steel substrate under a typical deposition condition, whereas microcrystalline diamond films were produced on Si wafer. With increasing CH4 concentration, reaction pressure, or the total gas flow rate, the quality of nanocrystalline diamond films formed on Fe-Cr-Al-Si substrates is gradually deteriorated in terms of density and adhesion. This impaired diamond quality on steels is primarily associated with a combined effect by the substrate composition and the specific process conditions that favor excessive nucleation of diamond.

  1. Absorption and desorption mass transfer rates in chemically enhanced reactive systems. Part I : Chemical enhancement factors

    NARCIS (Netherlands)

    Hamborg, Espen S.; Versteeg, Geert F.

    2012-01-01

    The chemical enhancement factors have been measured in a controlled environment for absorption and desorption mass transfer processes in aqueous 2.0 M MDEA solutions at temperatures of 298.15, 313.15, and 333.15 K and the loading of CO2 ranging from 0 to 0.8 in a batch-operated stirred tank reactor.

  2. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  3. Mechanism of plasma ignition in electrothermal-chemical launcher

    Directory of Open Access Journals (Sweden)

    Yong Jin

    2016-04-01

    Full Text Available Plasma generator is a core component in an electrothermal-chemical (ETC launcher. Its work state directly influences the launch efficiency of a system. The interaction between plasma and propellants is a very important mechanism in ETC technology. Based on the transient radiation model and open air plasma jet experiment, the mechanism of plasma ignition process is analyzed. Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation. But it needs enough time to maintain the high energy flow to make self-sustained combustion of solid propellant grains. Because of the limited space characteristics of transient radiation, the near-field propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion. The far-field propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion. Experiments show that plasma jet always has a high flow velocity in the area of the cartridge. Compared with conventional ignition, the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA plasma via energy skin effect of propellant grains, pre-heat temperature mechanism and high efficient jet diffusion.

  4. Mechanism of plasma ignition in electrothermal-chemical launcher

    Institute of Scientific and Technical Information of China (English)

    Yong JIN; Yan-jie NI; Hai-yuan LI; Bao-ming LI

    2016-01-01

    Plasma generator is a core component in an electrothermal-chemical (ETC) launcher. Its work state directly influences the launch efficiency of a system. The interaction between plasma and propellants is a very important mechanism in ETC technology. Based on the transient radiation model and open air plasma jet experiment, the mechanism of plasma ignition process is analyzed. Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation. But it needs enough time to maintain the high energy flow to make self-sustained combustion of solid propellant grains. Because of the limited space characteristics of transient radiation, the near-field propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion. The far-field propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion. Experiments show that plasma jet always has a high flow velocity in the area of the cartridge. Compared with conventional ignition, the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA) plasma via energy skin effect of propellant grains, pre-heat temperature mechanism and high efficient jet diffusion.

  5. Decomposition of Chemical Chain Molecules with Atmospheric Pressure Plasma

    Science.gov (United States)

    Tansli, Murat; Tasal, Erol

    2016-10-01

    Chemical chain molecules' decomposition is an interesting subject area for the atmospheric pressure plasma applications. The effects of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)Diazenyl)Benzene-1,3,-Diol molecule at room temperature are investigated. This molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule will be very harmful and danger. We suggest a different, easy and useful decomposing method for such molecules. Atmospheric pressure plasma jet was principally treated for this decomposing of the molecule. Fourier transform infrared spectrometry (FT-IR) was used to characterization of the molecule after the plasma application to molecule in liquid phase with ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency - 24 kHz and voltage - 12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of molecule have been examined after applying (duration: 3 minutes) the atmospheric pressure plasma jet. The molecule was broken at 6C-7N =8N-9C stretching peak after the plasma treatment. The new plasma photo-products for ethanol and methanol solutions were produced as 6C-7N-8N =9C (strong, varying) and 12C =17O (strong, wide) stretching peaks.

  6. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  7. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    Science.gov (United States)

    Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima

    2016-04-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.

  8. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    Science.gov (United States)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  9. Hot-electron refluxing enhanced relativistic transparency of overdense plasmas

    CERN Document Server

    Yu, Yong; Chen, Zi-Yu; Wang, Jia-Xiang; Zhu, Wen-Jun

    2013-01-01

    A new phenomenon of enhancing the relativistic transparency of overdense plasmas by the influence of hot-electron refluxing has been found via particle-in-cell simulations. When a p-polarized laser pulse, with intensity below the self-induced-transparency (SIT) threshold, obliquely irradiates a thin overdense plasma, the initially opaque plasma would become transparent after a time interval which linearly relies on the thickness of the plasma. This phenomenon can be interpreted by the influence of hot-electron refluxing. As the laser intensity is higher than the SIT threshold, the penetration velocity of the laser in the plasma is enhanced when the refluxing is presented. Simulation data with ion motion considered is also consistent with the assumption that hot-electron refluxing enhances transparency. These results have potential applications in laser shaping.

  10. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  11. Enhancement of NOx and hydrocarbon conversion in plasma-activated catalysis

    Science.gov (United States)

    Graham, Bill; Adress, Wahmeed; Goguet, Alexandre; Yang, Hui; De Rosa, Fabio; Hardacre, Christopher; Stere, Cristina

    2016-09-01

    Atmospheric pressure, non-thermal plasma-activated-catalysis is showing real promise in a number of applications. Here we report on how electrical, visible and FTIR spectroscopy and mass spectroscopy measurements in a kHz atmospheric pressure He plasma jet coupled with a Ag/Al2O3 catalyst allowed us produce and confirm a strong enhancement of both NOx and hydrocarbon conversion at a measured gas temperature of <= 250° C. How these and other measurements have provided an insight into the fundamental physical and chemical processes in the plasma environment that have helped us move to a more efficient system and other processes will be discussed.

  12. Transport and chemical loss rates in Saturn's inner plasma disk

    Science.gov (United States)

    Holmberg, M. K. G.; Wahlund, J.-E.; Vigren, E.; Cassidy, T. A.; Andrews, D. J.

    2016-03-01

    The Kronian moon Enceladus is constantly feeding its surrounding with new gas and dust, from cryovolcanoes located in its south polar region. Through photoionization and impact ionization of these neutrals, a plasma disk is created, which mainly contains hydrogen ions and water group ions. This paper investigates the importance of ion loss by outward radial transport and ion loss by dissociative recombination, which is the dominant chemical loss process in the inner plasma disk. We use plasma densities derived from several years of measurements by the Cassini Radio and Plasma Wave Science electric field power spectral density and Langmuir probe to calculate the total flux tube content NL2. Our calculation shows that NL2 agrees well with earlier estimates within dipole L shell 8. We also show that loss by transport dominates chemical loss between L shells 4 and 10. Using extrapolation of available measurements, we extend the study to include L shells 2.5 to 4. The results indicate that loss by transport dominates chemical loss also between L shells 2.5 and 4. The loss rate by transport is around five times larger at L shell 5, and the difference increases as L7.7 beyond L = 5, for the net ion population. Chemical loss may still be important for the structure of the plasma disk in the region closest to Enceladus (around ±0.5 RS) at 3.95 RS (1 RS = Saturn's equatorial radius = 60,268 km), since the transport and chemical loss rates only differ by a factor of ˜2 in this region. We also derive the total plasma content of the plasma disk between L shells 4 and 10 to be 1.9 × 1033 ions and the total ion source rate for the same region to be 5.8 × 1027 s-1. The estimated equatorial ion production rate P ranges from 2.6 × 10-5 cm-3 s-1 (at L = 10) to 1.1 × 10-4 cm-3 s-1 (at L = 4.8). The net mass loading rate is derived to be 123 kg/s for L shells 4 to 10.

  13. Investigation of opening switch mechanisms based on chemically reactive plasmas

    Science.gov (United States)

    Lapatovich, W. P.; Piejak, R. B.; Proud, J. M.

    1985-11-01

    An investigation of discharge-induced chemical reactions resulting in high-density product vapors containing strongly attaching gases has been conducted to evaluate the feasibility and potential of such reactions in rapid opening plasma switches. This new concept of employing such reactions to limit and/or interrupt large currents on a microsecond time scale was studied in two element (electrodeless and electroded) devices and in three element (electroded) devices. Bimolecular and unimolecular reactions were considered. The plasma reaction between AlCl sub 3 and SiO sub 2 was studied. The electrical properties of one of the reaction products (SiCl sub 4) is reported.

  14. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  15. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L L; Hou, X M; Li, G D [Department of Inorganic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai, 200433 (China); Jiang, J; Liang, Y Y; Xin, X [Department of Physics and Mathematics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433 (China)], E-mail: cuilili39@hotmail.com, E-mail: JJiang0827@hotmail.com

    2008-12-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  16. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  17. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  18. Reduction of chlorine radical chemical etching of GaN under simultaneous plasma-emitted photon irradiation

    Science.gov (United States)

    Liu, Zecheng; Imamura, Masato; Asano, Atsuki; Ishikawa, Kenji; Takeda, Keigo; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2017-08-01

    Surface chemical reactions on the GaN surface with Cl radicals are thermally enhanced in the high-temperature Cl2 plasma etching of GaN, resulting in the formation of etch pits and thereby, a roughened surface. Simultaneous irradiation of ultraviolet (UV) photons in Cl2 plasma emissions with wavelengths of 258 and 306 nm reduces the surface chemical reactions because of the photodissociation of both Ga and N chlorides, which leads to a suppression of the increase in surface roughness. Compared with Si-related materials, we point out that photon-induced reactions should be taken into account during the plasma processing of wide-bandgap semiconductors.

  19. Basic analytical investigation of plasma-chemically modified carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Bubert, H.; Ai, X.; Haiber, S.; Heintze, M.; Brueser, V.; Pasch, E.; Brandl, W.; Marginean, G

    2002-10-15

    The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.

  20. Chemical Applications for Enhanced World Security

    Energy Technology Data Exchange (ETDEWEB)

    Leibman, Christopher Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-19

    The purpose of this project is to reduce complexity of chemical analysis by combining chemical and physical processing steps into on package; develop instrumentation that cost less and is easy to use in a field laboratory by non-experts; and develop this "chemical application" so uranium enrichment can be measured onsite, eliminating the need for radioactive sample transport.

  1. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma

    Science.gov (United States)

    Junkar, Ita; Kulkarni, Mukta; Drašler, Barbara; Rugelj, Neža; Recek, Nina; Drobne, Damjana; Kovač, Janez; Humpolicek, Petr; Iglič, Aleš; Mozetič, Miran

    2016-06-01

    In the present study the biological response to various nanotopographic features after gaseous plasma treatment were studied. The usefulness of nanostructured surfaces for implantable materials has already been acknowledged, while less is known on the combined effect of nanostructured plasma modified surfaces. In the present work the influence of oxygen plasma treatment on nanostructured titanium oxide (TiO2) surfaces was studied. Characterization of the TiO2 surface chemical composition and morphological features was analyzed after plasma modification by x-ray photoelectron spectroscopy and by scanning electron microscopy while surface wettability was studied with measuring the water contact angle. Cell adhesion and morphology was assessed from images taken with scanning electron microscopy, whereas cell viability was measured with a calorimetric assay. The obtained results showed that oxygen plasma treatment of TiO2 nanotube surfaces significantly influences the adhesion and morphology of osteoblast-like cells in comparison to untreated nanostructured surfaces. Marked changes in surface composition of plasma treated surfaces were observed, as plasma treatment removed hydrocarbon contamination and removed fluorine impurities, which were present due to the electrochemical anodization process. However no differences in wettability of untreated and plasma treated surfaces were noticed. Treatment with oxygen plasma stimulated osteoblast-like cell adhesion and spreading on the nanostructured surface, suggesting the possible use of oxygen plasma surface treatment to enhance osteoblast-like cell response.

  2. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  3. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  4. Enhancing Thai Students' Learning of Chemical Kinetics

    Science.gov (United States)

    Chairam, Sanoe; Somsook, Ekasith; Coll, Richard K.

    2009-01-01

    Chemical kinetics is an extremely important concept for introductory chemistry courses. The literature suggests that instruction in chemical kinetics is often teacher-dominated at both the secondary school and tertiary levels, and this is the case in Thailand--the educational context for this inquiry. The work reported here seeks to shift students…

  5. Destruction of Hazardous Industrial Chemicals Using an Arcjet Plasma Torch*

    Science.gov (United States)

    Fleddermann, C. B.; Snyder, H. R.; Gahl, J. M.

    1996-10-01

    A small-scale thermal plasma torch has been used for the disposal of hazardous industrial chemicals including alcohols, ketones, and chlorinated hydrocarbons. The plasma jet is operated at currents up to 200 Amperes and waste flow rates up to 600 ml/hr. Argon is used as the plasma gas with oxygen added to the reactor to alter the reaction chemistry. Destruction of the waste and by-product formation are monitored using a residual gas analyzer, and the temperature of the plasma plume is measured using an enthalpy probe. The by-products of the destruction of acetone are primarily carbon dioxide, carbon monoxide, and small amounts of hydrocarbons. Adding oxygen to the reactor increases the production of carbon dioxide and significantly decreases the amount of acetone in the exhaust gases. This reactor has achieved greater than 99 percent destruction efficiency for acetone when oxygen is added to the reaction mixture at an arcjet current of 75 Amperes, with similar destruction efficiencies observed for ethanol and trichloroethylene. *Supported by the U.S. DOE through the WERC program administered by New Mexico State University.

  6. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  7. Analytical model of plasma-chemical etching in planar reactor

    Science.gov (United States)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  8. Enhancement of food safety – antimicrobial effectiveness of cold plasma treatments

    Directory of Open Access Journals (Sweden)

    Irina SMEU

    2014-08-01

    Full Text Available Cold plasma treatment proved to be a flexible, efficient, chemical-free antimicrobial process and it can represent an easy to use sanitizing method for the food industry that does not require special temperature, humidity or pressure conditions. This paper reviews the classification of plasma and the main cold plasma generating devices used in the recent years to enhance food safety. A research of available literature was also conducted to identify the antimicrobial mode of action of cold plasma treatment as well as advantages and key limitations of this technique when applied to different food products such as fruits, vegetables, meat and milk. The study revealed that further development of this method will have to be carried out, allowing better understanding of the complex interactions during applications and its restrictions, as well as practice outlook.

  9. Mathematical simulation of plasma-chemical coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Messerle, A.V. [Bauman State Technical University, Moscow (Russian Federation)

    2004-02-01

    A mathematical model that describes the conversion of a coal-dust flow in a cylindrical plasma reactor is presented. The model describes a two-phase (coal particles + air) chemically reacting flow, which propagates in a channel with or without an internal heat source (an electric arc, a plasmatron torch, or exothermic chemical reactions). The model is based on the assumption that the process is quasi-stationary and one-dimensional; coal particles are taken as isothermal, and ash is assumed to be an inert component. The model represents the composition of coals by their organic and mineral constituents. The model was implemented as a pro-ram for personal computers; calculations performed with the use of this program are in satisfactory agreement with experimental data.

  10. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge and a gliding...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  11. Enhancement of space plasma images by complex wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vitor Moura; Domingues, Margarete Oliveira; Mendes, Odim, E-mail: vitor.souza@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Pagamisse, Aylton [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil). Fav. de Ciencias e Tecnologia; Stenborg, Guilhermo Adrian [College of Science, George Mason University, Fairfax, VA (United States)

    2015-10-15

    The Sun is a natural laboratory for plasma processes. A myriad of instruments aboard satellites and on ground record(ed) the plasma emission in different ranges of the electromagnetic spectrum to help understand such processes. In particular, in the outer part of the solar atmosphere, the solar corona, we can observe a multitude of electrodynamical phenomena. There, the faint corona emission and the associated dynamic plasma structures (e.g., coronal mass ejections - CMEs) recorded in white light images can be used as basis for some insight of this physical scenario. In order to characterize the dynamics and morphology of such structures in a better way, it seems crucial that some features of those images should be enhanced. To deal with this need, a new approach using a complex wavelet transform methodology was developed. With the proposed methodology, we can highlight the plasma ejections improving the identification of those structures. (author)

  12. Plasma Treated TiO2 Nanoparticles for Dispersion Enhancement

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; LI Chun; ZHANG Jing

    2009-01-01

    TiO2 nanoparticles were treated in a fluidized reactor by introducing Hexamethyldisiloxane(HMDSO)plasma monomer.The organic HMDSO-polymer vapor was condensed on the nanoparticles and lowered their surface energy.This plasma treatment was harmless to the crystal lattice of the TiO2 nanoparticles.The treated nanoparticles were mixed in glycol solutions and polymerized into TiO2-polyester composites for studying the effect of plasma deposition on dispersion.It Was found that the dispersion of the TiO2 nanoparticles in both glycol and the polyester matrix Was significantly improved due to lower surface energy and HMDSO plasma treatment, as from ultraviolet absorbency measurements and scanning electron microscopy observation.The theory of colloid stability successfully explained the dispersion enhancement of TiO2 nanoparticles in glycol.

  13. On the generation of magnetic field enhanced microwave plasma line

    Science.gov (United States)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  14. Experiments on chemically enhanced immiscible fluid displacements

    Science.gov (United States)

    Soori, Tejaswi; Ward, Thomas

    2016-11-01

    This talk focuses on experiments conducted by displacing a vegetable oil within a capillary tube (diameter forms a stable micro-emulsion. We estimate the shear viscosity of the emulsion as a function of alkali and aqueous/oil concentrations. Separately we attempt to measure the average bulk diffusion coefficient of the emulsion in both phases which is necessary to estimate the Péclet number (Pé) and subsequent mass transport phenomena. American Chemical Society Petroleum Research Fund.

  15. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  16. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  17. Enhancing the Undergraduate Computing Experience in Chemical Engineering CACHE Corporation

    Science.gov (United States)

    Edgar, Thomas F.

    2006-01-01

    This white paper focuses on the integration and enhancement of the computing experience for undergraduates throughout the chemical engineering curriculum. The computing experience for undergraduates in chemical engineering should have continuity and be coordinated from course to course, because a single software solution is difficult to achieve in…

  18. Mass and Heat Transfer Enhancement of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.

  19. Plasma-enhanced synthesis of surfaces that kill bacteria on contact

    Science.gov (United States)

    Jampala, Soujanya Naga

    High incidences of microbial contamination and infections are a major concern in all existing and evolving technologies of medicine and biology. The propensity towards infections is directly related to bacterial colonization and biofilms on surfaces. This dissertation presents the development of surfaces that can kill bacteria on contact by using cold plasma technology. Quaternary ammonium (QA) groups are known to exhibit antibacterial characteristics in water-based environments. To overcome the limitations of residual toxicity, alternative strategies involving covalent attachment of QA groups to metallic and cellulosic surfaces have been developed. Low pressure, non-equilibrium plasma-enhanced functionalization and subsequent ex situ chemical reactions were designed for step-by-step "bottom-up" chemical synthesis of QA groups covalently anchored to surfaces. The plasma processes under selected discharge parameters generated structure- and functionality-controlled crosslinked networks of macromolecular layers with high concentrations of reactive amine groups. Subsequent derivatization of the plasma-deposited films with alkyl halides yielded surface-bound QA groups rendering surfaces with high bactericidal efficacy against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. Stainless steel and cotton surfaces sequentially treated with ethylene diamine plasma, n-hexyl bromide and methyl iodide exhibited at least 99.9% and 98% kill of S. aureus and K. pneumoniae respectively. The influence of chemical architecture of QA groups with different alkyl substituents on the efficacy of bactericidal surfaces was quantified. Results from this work will permit the development of novel plasma-aided technologies for the synthesis of antibacterial surfaces with potential biomedical applications. The cold plasma approach can be used on any solid material surfaces including polymers, metals, ceramics and semiconductors.

  20. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge%The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    杨旗; 胡辉; 陈卫鹏; 许杰; 张锦丽; 吴双

    2011-01-01

    By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.

  1. Equatorial plasma bubbles with enhanced ion and electron temperatures

    Science.gov (United States)

    Park, Jaeheung; Min, Kyoung Wook; Kim, Vitaly P.; Kil, Hyosub; Su, Shin-Yi; Chao, Chi Kuang; Lee, Jae-Jin

    2008-09-01

    While the ion and electron temperatures inside equatorial plasma bubbles (EPBs) are normally lower than those in an ambient plasma, bubbles with enhanced temperatures (BETs) are found occasionally in the topside ionosphere. Here we report the characteristics of BETs identified from observations of the first Republic of China Satellite (ROCSAT-1), the first Korea Multi-purpose Satellite (KOMPSAT-1), and the Defense Meteorological Satellite Program (DMSP) F15 during the solar maximum period between 2000 and 2001. The oxygen ion fraction inside the BETs, which was no lower than that of the ambient ionosphere, was similar to the case of ordinary low-temperature EPBs. These observations indicate that the BETs and low-temperature EPBs detected on the topside were produced by the upward drift of low-density plasma from lower altitudes. The feature that distinguishes BETs from normal EPBs is the occurrence of an unusually fast poleward field-aligned plasma flow relative to the ambient plasma. The BETs occurred preferentially around geomagnetic latitudes of 10° in the summer hemisphere, where the ambient ion and electron temperatures are lower than those in the conjugate winter hemisphere. The occurrence of BETs did not show any notable dependence on geomagnetic activities. The characteristics of the BETs suggest that the BETs were produced by adiabatic plasma heating associated with a fast poleward oxygen ion transport along magnetic flux tubes.

  2. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    Science.gov (United States)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  3. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces.

    Science.gov (United States)

    Jampala, Soujanya N; Sarmadi, M; Somers, E B; Wong, A C L; Denes, F S

    2008-08-19

    We have investigated bottom-up chemical synthesis of quaternary ammonium (QA) groups exhibiting antibacterial properties on stainless steel (SS) and filter paper surfaces via nonequilibrium, low-pressure plasma-enhanced functionalization. Ethylenediamine (ED) plasma under suitable conditions generated films rich in secondary and tertiary amines. These functional structures were covalently attached to the SS surface by treating SS with O 2 and hexamethyldisiloxane plasma prior to ED plasma treatment. QA structures were formed by reaction of the plasma-deposited amines with hexyl bromide and subsequently with methyl iodide. Structural compositions were examined by electron spectroscopy for chemical analysis and Fourier transform infrared spectroscopy, and surface topography was investigated with atomic force microscopy and water contact angle measurements. Modified SS surfaces exhibited greater than a 99.9% decrease in Staphylococcus aureus counts and 98% in the case of Klebsiella pneumoniae. The porous filter paper surfaces with immobilized QA groups inactivated 98.7% and 96.8% of S. aureus and K. pneumoniae, respectively. This technique will open up a novel way for the synthesis of stable and very efficient bactericidal surfaces with potential applications in development of advanced medical devices and implants with antimicrobial surfaces.

  4. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  5. Enhanced field emission of plasma treated multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Ruchita T.; More, Mahendra A. [Department of Physics, Center for Advanced Studies in Material Science and Condensed Matter Physics, S P Pune University, Pune 411007 (India); Gelamo, Rogerio V. [Instituto de Ciências Tecnológicas e Exatas, UFTM, Uberaba, Minas Gerais 38025-180 (Brazil); Late, Dattatray J., E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra (India); Rout, Chandra Sekhar, E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, Odisha (India)

    2015-09-21

    Electron emission properties of multilayer graphene (MLG) prepared by a facile exfoliation technique have been studied. Effect of CO{sub 2} Ar, N{sub 2}, plasma treatment was studied using Raman spectroscopy and investigated for field emission based application. The CO{sub 2} plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm{sup 2} at an applied field of 0.35 V/μm. Further the plasma treated MLG exhibits excellent current stability at a lower and higher emission current value.

  6. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Ying-Hua Pan

    2014-01-01

    Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.

  7. Structural, Mechanical and Optical Properties of Plasma-chemical Si-C-N Films

    Directory of Open Access Journals (Sweden)

    A.O. Kozak

    2014-11-01

    Full Text Available An influence of the substrate temperature in the range of 40-400 °C on the properties of the Si-C-N films deposited by plasma enhanced chemical vapor deposition (PECVD technique using hexamethyldisilazane is analyzed. Study of the structure, chemical bonding, surface morphology, mechanical properties and energy gap of the obtained films was carried out using X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, optical measurements and nanoindentation. It was established that all the films were X-ray amorphous and had low surface roughness. Intensive hydrogen effusion from the films takes place, when substrate temperature increases up to 400 °C, which promotes a decrease of roughness and an increase in hardness and Young modules more than twice.

  8. Front surface structured targets for enhancing laser-plasma interactions

    Science.gov (United States)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  9. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  10. Combustion Enhancement Using a Silent Discharge Plasma Reactor

    Science.gov (United States)

    Rosocha, Louis; Platts, David; Coates, Don; Stange, Sy

    2003-10-01

    Electric fields affect flame propagation speed, stability, and combustion chemistry. External electrodes, arc discharges, and plasma jets have been used to combust gas mixtures outside their flammability limits. Experiments with silent electrical discharges (SEDs) and propagating flames have shown that flame propagation velocity is actually decreased (combustion retarded) when an SED is applied directly to the flame region, but velocity is increased (combustion promoted) when applied to the unburned gas mixture upstream of a flame. More recent work has proposed electric arc/microwave-driven plasma-generating fuel nozzles to produce dissociated fuel or ionized fuel for aircraft gas turbine engine combustor mixers. In contrast to prior works, we have used a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals/active species in a gas stream before the fuel is mixed with an oxidizer and combusted. A cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks for fuel and combustion products are observed (i.e., combustion is enhanced). Results of changes in the degree of combustion will be discussed in terms of variations in the plasma specific energy.

  11. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface profilometry. The ex

  12. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Science.gov (United States)

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  13. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  14. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rimpelová, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Kasálková, Nikola Slepičková; Slepička, Petr [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Lemerová, Helena [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Švorčík, Václav [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic)

    2013-04-01

    The cell–material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules. - Graphical abstract: High density polyethylene scaffolds (PE) were modified by deposition to Ar plasma. These surface reactive PE were further grafted with biomolecules to enhance cell attachment and proliferation. The changes in surface physico-chemical properties (hydrophilicity, morphology, roughness) of PE were measured. The effects of used substrates on the adhesion and growth of mouse embryonic fibroblasts were determined by a five-day cell culture study. The method for significant biocompatibility improvement was presented. Highlights: ► Argon plasma treatment altered polyethylene surface morphology and roughness ► Plasma treatment reduced contact angle of polyethylene ► Grafting of polyethylene with biomolecules further reduced contact angle ► Plasma treatment and peptide grafting increased polyethylene biocompatibility.

  15. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    Science.gov (United States)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  16. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  17. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  18. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia.

    Directory of Open Access Journals (Sweden)

    Miao Zheng

    Full Text Available To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts.The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h.After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h.The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.

  19. Numerical simulation of chemical processes in helium plasmas in atmosphere environment

    Institute of Scientific and Technical Information of China (English)

    欧阳建明; 郭伟; 王龙; 邵福球

    2005-01-01

    A model is built to study chemical processes in plasmas generated in helium with trace amounts of air at atmospheric pressure or low pressures. The plasma lifetimes and the temporal evolutions of the main charged species are presented. The plasma lifetimes are longer than that in air plasma at atmospheric pressure, but this is not true at low pressures. The electron number density does not strictly obey the exponential damping law in a longer period.

  20. Evaluation of chemical enhancers in the transdermal delivery of lidocaine.

    Science.gov (United States)

    Lee, Philip J; Ahmad, Naina; Langer, Robert; Mitragotri, Samir; Prasad Shastri, V

    2006-02-03

    The effect of various classes of chemical enhancers was investigated for the transdermal delivery of the anesthetic lidocaine across pig and human skin in vitro. The lipid disrupting agents (LDA) oleic acid, oleyl alcohol, butenediol, and decanoic acid by themselves or in combination with isopropyl myristate (IPM) showed no significant flux enhancement. However, the binary system of IPM/n-methyl pyrrolidone (IPM/NMP) improved drug transport. At 2% lidocaine dose, this synergistic enhancement peaked at 25:75 (v/v) IPM:NMP with a steady state flux of 57.6 +/- 8.4 microg cm(-2) h(-1) through human skin. This observed flux corresponds to a four-fold enhancement over a 100% NMP solution and over 25-fold increase over 100% IPM at the same drug concentration (p enhancement due to LDA. These findings allow a more rational approach for designing oil-based formulations for the transdermal delivery of lidocaine free base and similar drugs.

  1. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    Science.gov (United States)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  2. Dilepton production as a useful probe of quark gluon plasma with temperature dependent chemical potential quark mass

    Science.gov (United States)

    Kumar, Yogesh; Singh, S. Somorendro

    2016-07-01

    We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.

  3. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  4. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  5. Evolution of plasma parameters in a He - N2/Ar magnetic pole enhanced inductive plasma source

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Zakaullah, M.; Abrar, M.

    2016-02-01

    A magnetic pole enhanced inductively coupled H e - N2/A r plasma is studied at low pressure, to monitor the effects of helium mixing on plasma parameters like electron number density (ne) , electron temperature (Te) , plasma potential (Vp ) , and electron energy probability functions (EEPFs). An RF compensated Langmuir probe is employed to measure these plasma parameters. It is noted that electron number density increases with increasing RF power and helium concentration in the mixture, while it decreases with increase in filling gas pressure. On the other hand, electron temperature shows an increasing trend with helium concentration in the mixture. At low RF powers and low helium concentration in the mixture, EEPFs show a "bi-Maxwellian" distribution with pressure. While at RF powers greater than 50 W and higher helium concentration in the mixture, EEPFs evolve into "Maxwellian" distribution. The variation of skin depth with RF power and helium concentration in the mixture, and its relation with EEPF are also studied. The effect of helium concentrations on the temperatures of two electron groups ( Tb u l k and Tt a i l ) in the "bi-Maxwellian" EEPFs is also observed. The temperature of low energy electron group ( Tb u l k) shows significant increase with helium addition, while the temperature of tail electrons ( Tt a i l) increases smoothly as compared to ( Tb u l k).

  6. Novel chemical permeation enhancers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2014-04-01

    Full Text Available Transdermal drug delivery has been accepted as a potential non-invasive route of drug administration, with advantages of prolonged therapeutic action, decreased side effect, easy use and better patient compliance. However, development of transdermal products is primarily hindered by the low permeability of the skin. To overcome this barrier effect, numerous new chemicals have been synthesized as potential permeation enhancers for transdermal drug delivery. In this review, we presented an overview of the investigations in this field, and further implications on selection or design of suitable permeation enhancers for transdermal drug delivery were also discussed.

  7. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  8. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating.

    Science.gov (United States)

    Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo

    2011-06-01

    Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.

  9. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  10. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution

    Science.gov (United States)

    Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

    2014-07-01

    Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

  11. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    Science.gov (United States)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  12. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    Science.gov (United States)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  13. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    Science.gov (United States)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  14. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  15. Synergistic effects of ethosomes and chemical enhancers on enhancement of naloxone permeation through human skin.

    Science.gov (United States)

    Xu, D H; Zhang, Q; Feng, X; Xu, X; Liang, W Q

    2007-04-01

    The purpose of this study was to investigate the effects of ethosomes, chemical enhancers and their binary combination on the in vitro permeability enhancement of naloxone through human skin. Franz diffusion cells were used for the percutaneous absorption studies. Propylene glycol (PG), N,N-dimethyl formamide (N,N-DMF), N,N-dimethyl acetamide (N,N-DMA), dimethyl sulfoxide (DMSO), Azone and polyethylene glycol 400 (PEG400), were chosen as the chemical enhancers. Naloxone ethosomes showed 11.68 times increase in steady-state flux compared to phosphate buffered solution (PBS). Ethosomes in combination with chemical enhancers synergistically increased (p ethosomal form dramatically enhanced the skin permeation of naloxone in vitro compared with ethosomes (steady-state flux: 96.75 +/- 5.70 microg x cm(-2) x h(-1) vs 20.56 +/- 1.67 microg x cm(-2) x h(-1)). Ethosomal carrier and enhancers accumulated in the skin after 24 h were greater than that of PBS.

  16. A new modular multichamber plasma enhanced chemical vapor deposition system

    Science.gov (United States)

    Madan, A.; Rava, P.; Schropp, R. E. I.; von Roedern, B.

    1993-06-01

    The present work reports on a new modular UHV multichamber PECVD system with characteristics which prevent both the incorporation of residual impurities and cross contamination between different layers. A wide range of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) materials have been produced and single junction pin solar cells with an efficiency greater than 10% have been readily obtained with little optimization. The system contains three UHV modular process zones (MPZ's); the MPZ's and a load lock chamber are located around a central isolation and transfer zone which contains the transport mechanism consisting of an arm with radial and linear movement. This configuration allows for introduction of the substrate into the MPZ's in any sequence so that any type of multilayer device can be produced. The interelectrode distance in the MPZ's can be adjusted between 1 and 5 cm. This has been found to be an important parameter in the optimisation of the deposition rate and of the uniformity. The multichamber concept also allows individually optimized deposition temperatures and interelectrode distances for the various layers. The system installed in Utrecht will be employed for further optimization of single junction solar cells and for research and development of stable a-Si:H tandem cells.

  17. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    Science.gov (United States)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  18. Metallo–organic compound-based plasma enhanced CVD of ZrO2 films for microelectronic applications

    Indian Academy of Sciences (India)

    S Chatterjee; S K Samanta; H D Banerjee; C K Maiti

    2001-12-01

    ZrO2 films on silicon wafer were deposited by microwave plasma enhanced chemical vapour deposition technique using zirconium tetratert butoxide (ZTB). The structure and composition of the deposited layers were studied by fourier transform infrared spectroscopy (FTIR). The deposition rates were also studied. MOS capacitors fabricated using deposited oxides were used to characterize the electrical properties of ZrO2 films. The films showed their suitability for microelectronic applications.

  19. Plasma-chemical Synthesis and Regeneration of Catalysts for CH4 Steam Conversion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We carried out experimental studies concerning the plasma-chemical synthesis(PCS) of a catalyst for CH4 steam conversion and designed and built the equipment for PCS and/ or regeneration of spent catalyst for CH4 steam conversion. Under the conditions of an electric-arc low-temperature plasma (LTP), we studied the Ni-O-Al system and performed a comprehensive physicochemical analysis of the ultradispersed product obtained. It's the first time worldwide when the conditions of plasma-chemical synthesis and/ or regeneration of CH4 steam conversion catalysts under the conditions of electric-arc LTP are investigated depending on the plasma-chemical process (PCP) parameters and the plasma-chemical reactor (PCP) type (with CW-"cold walls" Tw = 500 K or WW-"warm walls" Tw = 1500 K), samples with a specific surface of 120 m2/g are obtained. Plasma-chemically synthesized and/ or regenerated samples have a homogenous chemical composition similar to that the Girdller (USA) conventional industrial catalyst. It is empirically established that the optimal temperature range in PCR for synthesis of samples with maximum dispersity is (2000 ~ 3000) K. Results from investigation on dynamics and kinetics of plasma-chemically synthesized and / or regenerated catalysts for CH4 steam conversion show that under LTP conditions premises for the formation of catalyst compositions are established. They are reduced 3 to 4 times faster than their industrial analogues. High specific surface of the samples, homogenous composition, high rate of active chemical surface formed by reduction, faulty crystal lattice of catalytically active phases and mostly high catalytic activity make them a potential competitor with their industrial analogues for their probable production in catalyst shops.

  20. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  1. Photons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2005-01-01

    @@ We study hard photon production in a chemically equilibrating quark-gluon plasma at finite baryon density based on the Jüttner distribution of partons of the system. We find that the photon yield is a strongly increasing function of the initial quark chemical potential.

  2. Chemical erosion of different carbon composites under ITER-relevant plasma conditions

    NARCIS (Netherlands)

    Westerhout, J.; Borodin, D.; Al, R.S.; Brezinsek, S.; Hoen, Mhjt; Kirschner, A.; Lisgo, S.; van der Meiden, H. J.; Philipps, V.; van de Pol, M.J.; Shumack, A. E.; De Temmerman, G.; Vijvers, W. A. J.; Wright, G. M.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    We have studied the chemical erosion of different carbon composites in Pilot-PSI at ITER-relevant hydrogen plasma fluxes (similar to 10(24) m(-2) s(-1)) and low electron temperatures (T-e similar to 1 eV). Optical emission spectroscopy on the CH A-X band was used to characterize the chemical

  3. Chemically enhanced phytoextraction of lead-contaminated soils.

    Science.gov (United States)

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.

  4. Enhanced Avalanche Ionization by RF Fields Creating an Ultracold Plasma

    Science.gov (United States)

    Robinson, M. P.; Gallagher, T. F.; Laburthe Tolra, B.; Pillet, P.

    2001-05-01

    Ultracold plasmas have been shown to evolve from initially frozen Rydberg gases held in magneto-optical traps.(M.P. Robinson, B. Laburthe Tolra, Michael W. Noel, T.F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85), 4466 (2000) We report the enhancement of the avalanche ionization process by application of radiofrequency fields. An initial slow ionization rate is observed in the Rydberg sample due to black body ionization and ionizing collisions with hot Rydberg atoms. This produces an overall posititve space charge of cold ions as the hot electrons leave the sample. Once a threshold density of positive charges is built up, the hot electrons become trapped to the sample, leading to avalance ionization due to electron-Rydberg collisions. The mechanism of the ionization remains unclear. However, the application of radiofrequency fields, in the 1 V/cm, 100 MHz range, dramatically enhances the rate of avalanche ionization without changing the threshold density at which it occurs. Apparently, the limiting parameter is the rate of collisional ionization of Rydberg atoms by electrons.

  5. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  6. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  7. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop modified resorcinol-formaldehyde (R-F) resin with enhanced chemical/oxidative stability in conditions typically encountered in the remediation of radioactive waste tanks. R-F resin is a regenerable organic ion-exchanger developed at Savannah River Technology Center that is being considered for use in the selective removal of radioactive cesium from alkaline waste tank supernates at both the Hanford and Savannah River sites.

  8. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  9. Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition

    CERN Document Server

    Kim, H

    2002-01-01

    We have investigated the growth kinetics of plasma-enhanced Ti atomic layer deposition (ALD) using a quartz crystal microbalance. Ti ALD films were grown at temperatures from 20 to 200 deg. C using TiCl sub 4 as a source gas and rf plasma-produced atomic H as the reducing agent. Postdeposition ex situ chemical analyses of thin films showed that the main impurity is oxygen, mostly incorporated during the air exposure prior to analysis. The thickness per cycle, corresponding to the growth rate, was measured by quartz crystal microbalance as a function of various key growth parameters, including TiCl sub 4 and H exposure time, rf plasma power, and sample temperature. The growth rates were independent of TiCl sub 4 exposure above 1x10 sup 3 L, indicating typical ALD mode growth. The key kinetic parameters for Cl extraction reaction and TiCl sub 4 adsorption kinetics were obtained and the growth kinetics were modeled to predict the growth rates based upon these results. Also, the dependency of growth kinetics on d...

  10. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    Science.gov (United States)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  11. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found....... This relation suggest that the refractive index of oxy-nitride with a low nitrogen concentration is determined by the material density. It is suggested that the relative oxygen concentration in the gas flow is the major deposition characterization parameter, and that water vapor is the predominant reaction by...

  12. Plasma chemical production of stable isotopes of germanium from its fluorides

    Science.gov (United States)

    Kornev, Roman; Sennikov, Peter

    2016-08-01

    The reduction process of 72GeF4 in hydrogen plasma of RF-discharge (13.56 MHz) was experimentally investigated. It was found that 72Ge, polyfluorogermanes and gaseous HF were the main products of conversion. The behavior of the main electroactive impurities and of metal impurities in the process of hydrogen reduction of 72GeF4 was considered. Based on the data of emission spectroscopy of chemically active plasma, assumptions were made about the main plasma-chemical reactions responsible for the process of hydrogen reduction of 72GeF4. A single crystal of n-type with concentration of charge carriers of Czochralski method after the process of zone recrystallization of 72Ge. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  14. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  15. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Science.gov (United States)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  16. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    Science.gov (United States)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  17. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  18. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  19. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    .295, 0.385 and 0.447, respectively. This indicated that the plasma treatment oxidized and roughened the GFRP surface, and the ultrasonic irradiation further enhanced the oxidation. It is concluded that plasma treatment efficiency for adhesion improvement of GFRPs is enhanced by the ultrasonic irradiation.......During atmospheric pressure plasma treatment, reactive species generated in the plasma diffuse through a boundary gas layer which is adsorbed at the material surface. Many of the reactive species become inactivated before reaching the surface due to their short lifetime. The efficiency of plasma....... The surface characterizations were performed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force mictroscopy (AFM). O/C ratios at the GFRP surfaces before the treatments, after 30-s plasma treatment, and after 30-s plasma treatment with ultrasonic irradiation were 0...

  20. Chemical enhancement of fingermark in blood on thermal paper.

    Science.gov (United States)

    Hong, Sungwook; Seo, Jin Yi

    2015-12-01

    Chemical enhancement methods for fingermark in blood deposited on the surface of a thermal paper substrate were examined. The blood-sensitive reagents compared were LCV (leuco crystal violet), Amido black and Hungarian red. Fingermark in blood on the surface of thermal paper can be fixed with 2% 5-sulfosalicylic acid solution. LCV was found as an inadequate blood staining reagent because of bubbling, diffusion, and blurring on the surface of thermal paper. Hungarian red was also an inadequate blood staining reagent because excess Hungarian red on the surface of thermal paper was not washed away in the de-staining procedure. Amido black was the best staining reagent among three staining reagents compared. The maximum dilution ratio visible to the naked eye after Amido black staining was 1 in 80 for the thermally sensitive surface and 1 in 20 for the thermally non-sensitive surface.

  1. DEVELOPMENT OF HAZARDOUS SLUDGE SIMULANTS FOR ENHANCED CHEMICAL CLEANING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2010-04-12

    An Enhanced Chemical Cleaning (ECC) process is being developed by Savannah River Remediation (SRR) to aid in Savannah River Site (SRS) High-Level Waste (HLW) tank closure. After bulk waste removal, the ECC process can be used to dissolve and remove much of the remaining sludge from HLW tanks. The ECC process uses dilute oxalic acid (1 wt %) with in-line pH monitoring and control. The resulting oxalate is decomposed through hydroxylation using an Advanced Oxidation Process (AOP). Minimizing the amount of oxalic acid used for dissolution and the subsequent oxidative destruction of oxalic acid will minimize the potential for downstream impacts. Initial efficacy tests by AREVA demonstrated that previous tank heel simulants could be dissolved using dilute oxalic acid. The oxalate could be decomposed by an AOP that utilized ozone and ultraviolet (UV) light, and the resultant metal oxides and hydroxides could be separated out of the process.

  2. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  3. Diffusion in plasma: the Hall effect, compositional waves, and chemical spots

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,

  4. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  5. Strangeness enhancement at the hadronic chemical freeze-out

    CERN Document Server

    Sagun, V V; Bugaev, K A; Cleymans, J; Ivanytskyi, A I; Mishustin, I N; Nikonov, E G

    2014-01-01

    The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $\\gamma_{s}$ factor which gives us an opportunity to perform a high quality fit with $\\chi^2/dof \\simeq 63.5/55 \\simeq 1.15$ of the hadronic multiplicity ratios measured from the low AGS to the highest RHIC energies. In contrast to previous findings, at low energies we observe the strangeness enhancement instead of a suppression. In addition, the performed $\\gamma_{s}$ fit allows us to achieve the highest quality of the Strangeness Horn description with $\\chi^2/dof=3.3/14$. For the first time the top point of the Strangeness Horn is perfectly reproduced, which makes our theoretical horn as sharp as an experimental one. However, the $\\gamma_{s}$ fit approach does not sizably improve the description of the multi-strange baryons and antibaryons. Therefore, an apparent deviation of mu...

  6. Enhancement of electrical properties of polyimide films by plasma treatment

    Science.gov (United States)

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.

    2016-04-01

    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  7. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  8. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    Science.gov (United States)

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  9. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    Science.gov (United States)

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  10. Network structural analysis using directed graph for chemical reaction analysis in weakly-ionized plasmas

    Science.gov (United States)

    Nobuto, Kyosuke; Mizui, Yasutaka; Miyagi, Shigeyuki; Sakai, Osamu; Murakami, Tomoyuki

    2016-09-01

    We visualize complicated chemical reaction systems in weakly-ionized plasmas by analysing network structure for chemical processes, and calculate some indexes by assuming interspecies relationships to be a network to clarify them. With the current social evolution, the mean size of general data which we can use in computers grows huge, and significance of the data analysis increases. The methods of the network analysis which we focus on in this study do not depend on a specific analysis target, but the field where it has been already applied is still limited. In this study, we analyse chemical reaction systems in plasmas for configuring the network structure. We visualize them by expressing a reaction system in a specific plasma by a directed graph and examine the indexes and the relations with the characteristic of the species in the reaction system. For example, in the methane plasma network, the centrality index reveals importance of CH3 in an influential position of species in the reaction. In addition, silane and atmospheric pressure plasmas can be also visualized in reaction networks, suggesting other characteristics in the centrality indexes.

  11. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  12. A Review on Chemical Effects in Aqueous Solution induced by Plasma with Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical effects in different aqueous solutions induced by plasma with glow dis charge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..

  13. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    OpenAIRE

    Eva Tvrdá; Norbert Lukáč; Monika Schneidgenová; Jana Lukáčová; Csaba Szabó; Zofia Goc; Agnieszka Greń; Peter Massányi

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectro...

  14. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  15. Physical and chemical properties of dust produced in a N2-CH4 RF plasma discharge

    Science.gov (United States)

    Ouni, F.; Adande, G.; Thissen, R.; Alcouffe, G.; Szopa, C.; Schmitz-Afonso, I.; Laprévote, O.; Quirico, E.; Brissaud, O.; Carrasco, N.; Cernogora, G.

    2008-09-01

    Titan's atmospheric chemistry is simulated using a Capacitively Coupled Plasma discharge produced in a N2-CH4 mixture. The produced solid particles are analysed ex-situ. Chemical properties are deduced from: elemental composition, FTIR and LTQ-Orbitrap mass spectrometer. Optical properties are deduced from reflectivity in visible and IR range.

  16. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    Science.gov (United States)

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  17. Experimental Studies of Microwave Reflection and Attenuation by Plasmas Produced by Burning Chemicals in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhongcai; SHI Jiaming; WANG Jiachun

    2007-01-01

    A series of chemicals are designed and prepared.With the method of thermodynamics,the average electron densities of the plasmas generated by burning chemicals are calculated.The reflection and attenuation of the microwaves,in a frequency band of 2 GHz to 15 GHz,by the plasma are measured.The results of measurements indicate that the plasma can absorb the energies of the microwaves in a broad band and reflect them faintly.Moreover,theoretical discussion reveals that the electron-neutral collision is the major factor that results in the absorption in the wide band.By using Appleton equations,average collision frequencies and electron densities are calculated from the attenuations of microwaves.

  18. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  19. Growth of amorphous zinc tin oxide films using plasma-enhanced atomic layer deposition from bis(1-dimethylamino-2-methyl-2propoxy)tin, diethylzinc, and oxygen plasma

    Science.gov (United States)

    Han, Jeong Hwan; Lee, Byoung Kook; Jung, Eun Ae; Kim, Hyo-Suk; Kim, Seong Jun; Kim, Chang Gyoun; Chung, Taek-Mo; An, Ki-Seok

    2015-12-01

    Amorphous ZnSnOx (ZTO) films were prepared using plasma-enhanced atomic layer deposition (PEALD) in a temperature range of 100-200 °C. Metal-organic precursors of Sn(dmamp)2 (dmamp = bis(1-dimethylamino-2-methyl-2-propoxide) and diethylzinc were employed as sources of Sn and Zn, respectively, in combination with O2 plasma as a reactant. Sn levels in the ZTO films were controlled by varying the SnO2/ZnO cycle ratio from 0 to 8. According to the growth behaviour of the ZTO film by alternating SnO2 and ZnO PEALD cycles, it was observed that ZnO growth on Sn-rich ZTO film is retarded, whereas SnO2 growth is enhanced on Zn-rich ZTO film. The chemical states of the ZTO films were confirmed by X-ray photoelectron spectroscopy (XPS); the chemical compositions of the ZTO films were characterised by XPS depth profiling. Grazing-angle X-ray diffraction revealed that the PEALD ZTO films possess an amorphous structure, irrespective of Sn levels from 20 to 59 at.%. ZTO films with intermediate Sn at.% exhibited smooth surface morphology compared to binary ZnO and SnO2 films. Additionally, the step coverage of a ZTO film deposited on hole pattern with an aspect ratio of 8 and opening diameter of 110 nm was about 93%, suggesting the realisation of self-limited growth.

  20. Plasma cortisol levels in captive wild felines after chemical restraint

    Directory of Open Access Journals (Sweden)

    G.P. Nogueira

    1997-11-01

    Full Text Available Eight Panthera onca (Po, 13 Felis concolor (Fc, 7 Felis yagouaroundi (Fy, 7 Felis tigrina (Ft and 5 Felis pardalis (Fp specimens from São Paulo State zoos were used. All animals were restrained with darts containing 10 mg/kg ketamine and 1 mg/kg xylazine. Venous blood samples were collected as soon as possible (within 15-20 min and serum was frozen until the time for cortisol quantification. Cortisol was determined using a solid phase radioimmunoassay with an intra-assay coefficient of 8.51%. Data were analyzed statistically by the Kruskal-Wallis test, followed by Dunn's multiple comparisons test, and the one-sample t-test, with the level of significance set at P<0.05. Data are reported as means ± SEM. Cortisol levels differed among the captive felines: Po = 166 ± 33a, Fc = 670 ± 118b, Fy = 480 ± 83b, Ft = 237 ± 42ab, Fp = 97 ± 12a nmol/l (values followed by different superscript letters were significantly different (P<0.001. Since most of the veterinary procedures on these species involve chemical restraint, these results show the necessity of preventive measures in order to minimize the effect of restraint stress on more susceptible species

  1. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    Directory of Open Access Journals (Sweden)

    Marla J Steinbeck

    Full Text Available Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide and dihydrorhodamine (peroxide were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS

  2. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    Science.gov (United States)

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  3. Plasma-induced polymerization for enhancing paper hydrophobicity.

    Science.gov (United States)

    Song, Zhaoping; Tang, Jiebin; Li, Junrong; Xiao, Huining

    2013-01-30

    Hydrophobic modification of cellulose fibers was conducted via plasma-induced polymerization in an attempt to graft the hydrophobic polymer chains on paper surface, this increasing the hydrophobicity of paper. Two hydrophobic monomers, butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA), were grafted on cellulose fibers, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated. Contact-angle measurement, Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting and characterized the changes of the cellulose fiber after modification. The results showed that the hydrophobicity of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the paper surface reached up to 130°. The morphological differences between modified and unmodified samples were also revealed by SEM observation. The resulting paper is promising as a green-based packaging material.

  4. Plasma Treatment to Enhance Fuel Cell Water Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to further define the potential for plasma treatment technology, developed by the NASA Glenn Research Center (GRC) to modify and...

  5. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: CORROSION STUDIES RESULTS: FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-09-29

    dilute concentration environment resulted in carbon steel corrosion rates that were less than 150 mpy. These rates are manageable in that chemical cleaning processes could proceed for limited time without significant wall loss. Further optimization of the Alternative Enhance Chemical Cleaning (AECC) process should focus on testing in solutions of this dilute concentration and low temperature regime. (2) In general, for the nitric acid based reagent, the aluminum oxide phase environments resulted in higher corrosion rates than the iron oxide phase environments. (3) In general, for the sulfuric acid based reagent, the iron oxide phase environments resulted in higher corrosion rates than the aluminum oxide phase environments. (4) In general, for the nitric acid based reagent, the HM sludge simulant environments resulted in higher corrosion rates than the PUREX sludge simulant environments. This result agrees with the previous observation that the aluminum oxide phases are more aggressive than the iron oxide phase environments in the nitric acid reagent. (5) Pitting was more likely to occur in the sulfuric acid based reagents than in the nitric acid based reagents. (6) Pitting occurred only in the iron based pure oxide phases and the sludge simulants. No pitting was observed in the aluminum based pure oxide phases. (7) Pitting tended to occur more frequently in tests that involved the dilute mineral acid reagent. (8) Pitting was more severe at the higher temperature for a given mineral acid concentration. (9) Pitting was more severe at a higher mineral acid concentration for a given temperature. (10) Based on the combined results of the open circuit potential and cathodic polarization testing, there was a low propensity for hydrogen evolution in solutions where sludge has been dissolved.

  6. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect.

  7. The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis.

    Science.gov (United States)

    Choi, E H; Lee, S H; Ahn, S K; Hwang, S M

    1999-01-01

    The transdermal drug delivery (TDD) system has largely been divided into physical, biochemical and chemical methods. Recently, combinations of these methods were introduced for more effective delivery with less side effects. We performed this study to identify the effectiveness and mechanism of TDD using the physical method, 'iontophoresis', plus the chemical method, 'pretreatment with chemical enhancer'. The action sites of chemical enhancers in the stratum corneum (SC) were observed by electron microscope. We also studied whether this combined method synergistically impaired the skin barrier. To confirm the synergistic effect on skin penetration by this combined method, we measured the blood glucose level after insulin iontophoresis following a chemical enhancer pretreatment in rabbits. The results were that (1) dilatation of the intercellular lipid layers of the SC and lacunae was prominent in pretreatment with chemical enhancers inducing high transepidermal water loss (TEWL); (2) the skin barrier impairment, with repeated treatments showing an increased TEWL and also epidermal proliferation, was increased with the chemical enhancers that showed a high TEWL immediately after treatment; (3) the combination of chemical enhancer pretreatment and iontophoresis showed no synergistic impairment of the skin barrier, and (4) the chemical enhancer pretreatment with greater impairment of the skin barrier could increase the delivery of insulin by iontophoresis. The results showed that a combination of chemical enhancer pretreatment and iontophoresis could deliver drugs more effectively than iontophoresis alone. Our proposed theory is that iontophoretic drug delivery may be easier through the dilated intercellular spaces of the SC which have a lower electrical impedance following the chemical enhancer pretreatment. Because the effect and the side effects in the combination are decided by the chemical enhancer rather than iontophoresis, the development of proper chemical

  8. Enhanced photon emission and pair production in laser-irradiated plasmas

    Science.gov (United States)

    Wan, Feng; Lv, Chong; Jia, Moran; Xie, Baisong

    2017-07-01

    Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier ion mass can excite a higher and broader electrostatic field, which causes the enhancement of backward photon emission. The pair yields are then enhanced due to the increase of backwards photons colliding with the incoming laser pulse. By examining the density evolution and angle distribution of each particle species, the origin of pair yield enhancement is clarified.

  9. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.

    Science.gov (United States)

    Kocaman, Suheyla; Karaman, Mustafa; Gursoy, Mehmet; Ahmetli, Gulnare

    2017-03-01

    In this study, surface-modified grinded coconut waste (CW) particles were used as bio-fillers to prepare polymeric composite materials with enhanced properties. Epoxy resin modified with acrylated and epoxidized soybean oil (AESO) was used as the polymer matrix. Two different strategies, namely chemical treatment and plasma enhanced chemical vapor deposition (PECVD) were utilized to modify the surface of CW particles for using them as compatible bio-fillers in composite preparation. Chemical modification involved the treatment of CW particles in a highly alkali NaOH solution, while PECVD modification involved coating of a thin film of hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) around individual CW particle surfaces. Untreated and surface-modified CW particles were used in 10-50wt% for preparation of epoxy composites. FTIR analysis was performed to study the effect of modification on the structures of particles and as-prepared composites. The composite morphologies were investigated by XRD and SE. TGA test was conducted to study the thermal behavior of the composites. Also, the effects of CW particle surface modification on the mechanical and water sorption properties of epoxy resin composites were investigated in detail. It was observed that PECVD-treated CW particles had much more positive effects on the thermal, mechanical, wettability and flammability properties of composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Science.gov (United States)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  11. Comparative studies of chemically synthesized and RF plasma-polymerized poly(-toluidine)

    Indian Academy of Sciences (India)

    Shama Islam; G B V S Lakshmi; M Zulfequar; M Husain; Azher M Siddiqui

    2015-04-01

    Poly(-toluidine) (POT) polymer was synthesized by chemical method and RF plasma polymerization at a radio frequency (RF) power input of 15 W on ultrasonically cleaned glass and silicon wafer substrates. These samples were characterized by DC conductivity measurements, UV–visible, XRD and FTIR techniques. The DC-conductivity was measured at 410 K, which was found to increase by two orders of magnitude for thin film as compared to pellet samples. It has been observed that the activation energy increases for RF plasma-polymerized POT. Transmission and reflectance spectra were studied for measuring optical constants like absorption coefficient (), extinction coefficient (), optical band gap (g), Urbach energy (e), and refractive index (). From XRD studies, one can infer that the samples grown by both the methods are amorphous in nature. The results indicate that the structures of plasma-polymerized POT are rather different from polymers synthesized by conventional chemical methods, due to a higher degree of cross-linking and branching reactions in plasma polymerization. This makes them suitable for various electroactive devices. A higher and more stable conductivity can be obtained with RF plasma-polymerized POT which is much smoother and more uniform.

  12. The Process of Plasma Chemical Photoresist Film Ashing from the Surface of Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siarhei Bordusau

    2013-01-01

    Full Text Available At present, the research for finding new technical methods of treating materials with plasma, including the development of energy and resource saving technologies for microelectronic manufacturing, is particularly actual.In order to improve the efficiency of microwave plasma chemical ashing of photoresist films from the surface of silicon wafers a two-stage process of treating was developed. The idea of the developed process is that wafers coated with photoresist are pre-heated by microwave energy. This occurs because the microwave energy initially is not spent on the excitation and maintenance of a microwave discharge but it is absorbed by silicon wafers which have a high tangent of dielectric losses. During the next step after the excitation of the microwave discharge the interaction of oxygen plasma with a pre-heated photoresist films proceeds more intensively. The delay of the start of plasma forming process in the vacuum chamber of a plasmatron with respect to the beginning of microwave energy generation by a magnetron leads to the increase of the total rate of photoresist ashing from the surface of silicon wafers approximately 1.7 times. The advantage of this method of microwave plasma chemical processing of semi-conductor wafers is the possibility of intensifying the process without changing the design of microwave discharge module and without increasing the input microwave power supplied into the discharge.

  13. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    The removal of cutin and epicuticular waxes of wheat straw by PAP (plasma assisted pretreatment) was investigated. Wax removal was observed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) as chemical change on the surface of most intensively pretreated samples as well...... as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  14. A New Type of Multielements-Doped, Carbon-based Materials Characterized by High-thermoconductiv ity, Low Chemical Sputtering, Low RES Yield and Exposure to Plasma

    Institute of Scientific and Technical Information of China (English)

    许增裕; 刘翔; 谌继明; 王明旭; 宋进仁; 翟更太; 李承新

    2002-01-01

    Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.

  15. A New Type of Multielements—Dpoed.Carbon—based Materials Characterized by High—Thermoconductivity,Low Chemical Syputtering.Low RES Yield and Exposure to Plasma

    Institute of Scientific and Technical Information of China (English)

    许增裕; 宋进仁; 等

    2002-01-01

    Low-Z materials,such as carbon-based materials and Be,are major plasma-facing material (PFM) for current,even in future fusion devices.In this paper,new type of multielement-doped carbon-based materials developed are presented along with experimental results of their properties,The results indicate a decrease in chemical sputtering yield by one order of magnitude.a decrease in both thermal shock resistance and radiation-enhanced sublimation,an evidently lower temperature desorption spectrum ,and combined properties of exposing to plasma.

  16. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    Science.gov (United States)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  17. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.

    Science.gov (United States)

    Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C

    2004-03-05

    Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.

  18. PumpKin: A tool to find principal pathways in plasma chemical models

    Science.gov (United States)

    Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.

    2014-10-01

    PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.

  19. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  20. Atmospheric pressure plasma enhanced spatial ALD of silver

    NARCIS (Netherlands)

    Van Den Bruele, F.J.; Smets, M.; Illiberi, A.; Creyghton, Y.; Buskens, P.; Roozeboom, F.; Poodt, P.

    2014-01-01

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity a

  1. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology i

  2. Atmospheric pressure plasma enhanced spatial ALD of silver

    NARCIS (Netherlands)

    Van Den Bruele, F.J.; Smets, M.; Illiberi, A.; Creyghton, Y.; Buskens, P.; Roozeboom, F.; Poodt, P.

    2014-01-01

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity a

  3. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology i

  4. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology

  5. Improving plasma resistance and lowering roughness in an ArF photoresist by adding a chemical reaction inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Jinnai, Butsurin; Uesugi, Takuji; Koyama, Koji; Samukawa, Seiji [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi [Yokohama Research Laboratories, Mitsubishi Rayon Co., Ltd., 10-1 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053 (Japan); Momose, Hikaru, E-mail: samukawa@ifs.tohoku.ac.j [Corporate Research Laboratories, Mitsubishi Rayon Co. Ltd., 2-1 Miyuki-cho, Otake, Hiroshima 739-0693 (Japan)

    2010-11-24

    Major challenges associated with 193 nm lithography using an ArF photoresist are low plasma resistance and roughness formation in the ArF photoresist during plasma processes. We have previously found decisive factors affecting the plasma resistance and roughness formation in an ArF photoresist: plasma resistance is determined by UV/VUV radiation, and roughness formation is dominated by chemical reactions. In this study, based on our findings on the interaction between plasma radiation species and ArF photoresist polymers, we proposed an ArF photoresist with a chemical reaction inhibitor, which can trap reactive species from the plasma, and characterized the performances of the resultant ArF photoresist through neutral beam experiments. Hindered amine light stabilizers, i.e. 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (HO-TEMPO), were used as the chemical reaction inhibitor. Etching rates of the ArF photoresist films were not dependent on the HO-TEMPO content in the irradiations without chemical reactions or under UV/VUV radiation. However, in the irradiation with chemical reactions, the etching rates of the ArF photoresist films decreased as the HO-TEMPO content increased. In addition, the surface roughness decreased with the increase in the additive amount of chemical reaction inhibitor. According to FTIR analysis, a chemical reaction inhibitor can inhibit the chemical reactions in ArF photoresist films through plasma radicals. These results indicate that a chemical reaction inhibitor is effective against chemical reactions, resulting in improved plasma resistance and less roughness in an ArF photoresist. These results also support our suggested mechanism of plasma resistance and roughness formation in an ArF photoresist.

  6. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability

    Science.gov (United States)

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores th...

  7. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability

    Science.gov (United States)

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores th...

  8. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  9. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  10. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  11. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  12. Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 马志斌; 王传新; 满卫东

    2005-01-01

    Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.

  13. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  14. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    Science.gov (United States)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  15. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  16. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  17. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Wang, Zhecun; Li, Xiaoyu; Zhang, Lifang

    2015-07-01

    Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (sbnd COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that sbnd COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which gives beneficial information of its potential use in orthopedic or dental implants.

  18. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  19. Enhanced adhesion over aluminum solid substrates by controlled atmospheric plasma deposition of amine-rich primers.

    Science.gov (United States)

    Petersen, Julien; Fouquet, Thierry; Michel, Marc; Toniazzo, Valérie; Dinia, Aziz; Ruch, David; Bomfim, João A S

    2012-02-01

    Controlled chemical modification of aluminum surface is carried by atmospheric plasma polymerization of allylamine. The amine-rich coatings are characterized and tested for their behavior as adhesion promoter. The adhesion strength of aluminum-epoxy assemblies is shown to increase according to primary amino group content and coating thickness, which in turn can be regulated by plasma power parameters, allowing tailoring the coating chemical properties. The increase in adherence can be correlated to the total and primary amino group contents in the film, indicating covalent bonding of epoxy groups to the primer as the basis of the mechanical improvement.

  20. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    Science.gov (United States)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  1. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma)

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, Jérémy, E-mail: jeremy.peyroux@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Dubois, Marc, E-mail: marc.dubois@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Tomasella, Eric, E-mail: eric.tomasella@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Petit, Elodie, E-mail: elodie.petit@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Flahaut, Delphine, E-mail: delphine.flahaut@univ-pau.fr [Université de Pau et des Pays de l’Adour, IPREM/ECP (UMR 5254), Hélioparc, 2 av. Pierre Angot, 64053 Pau cedex 9 (France)

    2014-10-01

    Graphical abstract: - Highlights: • Two different surface treatment processes were investigated in this work. • Both processes drastically change the composition induced on the surfaces. • Direct fluorination is identified as an efficient way to adjust surface properties. • Plasma processes result in a specific enhancement of the surface properties. • The pristine polymer surface has been successfully improved. - Abstract: Before considering their combination on commercial packaging films, two surface treatments processes were investigated. Indeed, direct fluorination and plasma processes are currently recognized as effective processes to improve polymer surface properties. The aim of this first work is to elucidate mechanisms that occur on the treated surface. The modifications of the surface layer were characterized using various complementary spectroscopy techniques such as Fourier Transform Infrared (FTIR) spectroscopy, high resolution solid state Nuclear Magnetic Resonance (NMR) with {sup 19}F nucleus which are suitable to determine the nature of bonding and specific groups formed during the process. X-ray Photoelectron Spectroscopy (XPS) was also achieved to extract the surface chemical compositions. In addition, surface properties of the treated films were studied by specific measurements of surface energy in order to reveal surface parameters such as rugosity and chemical composition which could be adjusted. All these results underline that the layer induced regardless of the two processes plays a key role in the enhancement of the surface properties.

  2. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuhe, E-mail: zyh1120@hotmail.co.jp [School of Stomatology, China Medical University, Shen Yang (China); Wang Wei; Jia Xingya [School of Stomatology, China Medical University, Shen Yang (China); Akasaka, Tsukasa [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan); Liao, Susan [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Watari, Fumio [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Deposition of Titanium Carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method. Black-Right-Pointing-Pointer The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance. Black-Right-Pointing-Pointer Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. - Abstract: Deposition of titanium carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method using a TiCl{sub 4} + CH{sub 4} + H{sub 2} gas mixture. Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. X-ray diffraction (XRD) showed that the specimen was consisted of TiC and Ti. Carbide layer of about 6 {mu}m thickness was observed on the cross section of the specimen by scanning electron microscopy (SEM). The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance.

  3. Controlled chemical and morphological surface modifications via pulsed plasma polymerizations: Synthesis of ultrahydrophobic surfaces

    Science.gov (United States)

    Qiu, Haibo

    The RF plasma polymerization of saturated linear and cyclic perfluoroalkane monomers and vinyl acetic acid were studied in this dissertation. Film chemical compositions, deposition rates, surface wettabilities and morphologies were characterized as functions of various plasma processing conditions. Large progressive changes in chemical compositions with sequential variations in plasma duty cycle were demonstrated in polymerization of both perfluoroalkane and vinyl acetic acid monomers. As anticipated, polymer films obtained from the perfluorocarbon monomers exhibited a general trend towards more linear structures with decreasing plasma duty cycles. However, completely unexpectedly, ultrahydrophobic films were obtained from some of these monomers under restricted duty cycle and power input conditions. SEM and XPS characterizations revealed that a rough, fibrous-like surface morphology is responsible for this ultrahydrophobicity, as opposed to unusual chemical compositions. The growth of the fibrous surface is believed to arise from nucleation and hillock-like growth patterns on selectively activated sites of the growing polymer film. Surface mobility of plasma generated reactive species apparently plays an important role in the growth of the fibrous ultrahydrophobic surfaces, as shown by substrate temperature studies. Additionally, the present study revealed a number of interesting new observations of significant differences in the chemical compositions and deposition rates of polymer films obtained from the diverse range of perfluorocarbon monomers employed in this work. The ultrahydrophobic fluorocarbon films discovered in this investigation were evaluated for use in several biomaterial applications. The results obtained show excellent marine antifouling properties for these surfaces, as documented in ocean testing experiments. These surfaces have also been shown to be useful in controlling protein and peptide surface adsorptions, as well as in the inflammatory

  4. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system

    Energy Technology Data Exchange (ETDEWEB)

    Fendrych, Frantisek; Taylor, Andrew; Peksa, Ladislav; Kratochvilova, Irena; Kluiber, Zdenek; Fekete, Ladislav [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, CZ-18221 Prague 8 (Czech Republic); Vlcek, Jan [Department of Physics and Measurement, Institute of Chemical Technology Prague, Technicka 5, CZ-16628 Prague 6 (Czech Republic); Rezacova, Vladimira; Petrak, Vaclav [Faculty of Biomedical Engineering, Czech Technical University, Sitna 3105, CZ-27201 Kladno 2 (Czech Republic); Liehr, Michael [Leybold Optics Dresden GmbH, Zur Wetterwarte 50, D-01109 Dresden (Germany); Nesladek, Milos, E-mail: fendrych@fzu.c [IMOMEC division, IMEC, Institute for Materials Research, University Hasselt, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2010-09-22

    Industrial applications of plasma-enhanced chemical vapour deposition (CVD) diamond grown on large area substrates, 3D shapes, at low substrate temperatures and on standard engineering substrate materials require novel plasma concepts. Based on the pioneering work of the group at AIST in Japan, the high-density coaxial delivery type of plasmas has been explored (Tsugawa et al 2006 New Diamond Front. Carbon Technol. 16 337-46). However, an important challenge is to obtain commercially interesting growth rates at very low substrate temperatures. In this work we introduce the concept of novel linear antenna sources, designed at Leybold Optics Dresden, using high-frequency pulsed MW discharge with a high plasma density. This type of pulse discharges leads to the preparation of nanocrystalline diamond (NCD) thin films, compared with ultra-NCD thin films prepared in (Tsugawa et al 2006 New Diamond Front. Carbon Technol. 16 337-46). We present optical emission spectroscopy data for the CH{sub 4}-CO{sub 2}-H{sub 2} gas chemistry and we discuss the basic properties of the NCD films grown.

  5. Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing

    Science.gov (United States)

    Guo, Bihong; Li, Shaopeng; Song, Lusheng; Yang, Mo; Zhou, Wenfei; Tyagi, Deependra; Zhu, Jinsong

    2015-08-01

    A plasma-treated ultrathin polystyrene (PS) film surface was explored as a simple, robust, and low-cost surface chemistry solution for protein biosensing applications. This surface could dramatically improve the binding efficiency of the protein-protein interactions, which is defined as the binding signal per immobilized ligand. The PS-modified protein biosensor was readily fabricated by spin coating and plasma treatment. Various parameters for fabrication, including the concentration of the PS solution, rate of spin coating, and duration of plasma treatment, were systematically optimized based on the improvement of fluorescence signal yielded by the microfluidic network-aided fluorescence immunoassay. The performance of the label-free protein detection on the optimized surfaces was further evaluated by surface plasmon resonance imaging (SPRi). PS surfaces with optimal fabrication parameters exhibited up to an 620% enhancement of the protein binding response and approximately 210% of the protein binding per immobilized protein ligand compared with a self-assembled monolayer (SAM) surface of 11-mercapto undecanoic acid (MUA). The relationship between the fabrication parameters used and changes to the surface chemistry and the morphological properties were characterized with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). It was revealed that the morphological changes observed in the plasma-treated PS film were the dominant factor for the improvement of the protein bioassay performance, rather than the chemical changes.

  6. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    -treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 degrees C-150 degrees C). Results showed that thermo-chemical pretreatment has high effect...

  7. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.TRESSAUD; C.LABRUG(E)RE; E.DURAND; C.BRIGOULEIX; H.ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4Fs rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  8. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.; TRESSAUD; C.; LABRUGèRE; E.; DURAND; C.; BRIGOULEIX; H.; ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8 and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4F8 rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  9. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  10. Plasma-polymerized thiophene films for enhanced rubber steel bonding

    Science.gov (United States)

    Delattre, James L.; d'Agostino, Riccardo; Fracassi, Francesco

    2006-03-01

    Thin films of plasma-polymerized thiophene (PPTh) were deposited on cold-rolled steel substrates to improve adhesion to rubber compounds. PPTh films were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy. The ratio of carbon-to-sulfur found in PPTh films is 4:1, suggesting the monomer structure is generally intact, which was supported by FT-IR absorptions characteristic of polymerized thiophene rings. However, some fragmentation did occur to give acetylenic and aliphatic groups. Steel-rubber adhesion measurements, performed in accordance with the ASTM 429-B peel test, strongly depended on cleaning and pretreatment methods as well as film thickness. Best results were obtained on polished steel samples that were cleaned with acid, pretreated with a hydrogen/argon plasma, then coated with 50 Å of PPTh film. These samples exhibited a peel force of 14.3 N/mm, which is comparable to that of polished brass control samples. Depth-profiling XPS analysis of the rubber-steel interface showed the existence of an iron sulfide layer which is likely responsible for the strong adhesion.

  11. Dileptons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density

    Institute of Scientific and Technical Information of China (English)

    GUAN Na-Na; HE Ze-Jun; LONG Jia-Li; CAI Xiang-Zhou

    2008-01-01

    We perform a complete calculation for the delepton production from the processes q(q-) →l(l-), Compton-like (qg→ql(l-),(q-)g→ql(l-)), q(q-)→gl(l-), gluon fusion g(g-)→c(c-), annihilation q(q-)→c(c-) as well as multiple scattering of quarks in a chemically equilibrating quark-gluon plasma system at finite baryon density. It is found that quark-antiquark annihilation,Compton-like, gluon fusion and multiple scattering of quarks give important contribution. Moreover, the increase of the quark phase life-time with increasing initial quark chemical potential makes the dilepton yield as an increasing function of the initial quark chemical potential.

  12. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    McConnell, Joseph R; Lamorey, Gregg W; Lambert, Steven W; Taylor, Kendrick C

    2002-01-01

    Impurities trapped in ice sheets and glaciers have the potential to provide detailed, high temporal resolution proxy information on paleo-environments, atmospheric circulation, and environmental pollution through the use of chemical, isotopic, and elemental tracers. We present a novel approach to ice-core chemical analyses in which an ice-core melter is coupled directly with both an inductively coupled plasma mass spectrometer and a traditional continuous flow analysis system. We demonstrate this new approach using replicated measurements of ice-core samples from Summit, Greenland. With this method, it is possible to readily obtain continuous, exactly coregistered concentration records for a large number of elements and chemical species at ppb and ppt levels and at unprecedented depth resolution. Such very-high depth resolution, multiparameter measurements will significantly expand the use of ice-core records for environmental proxies.

  13. Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-ul-Islam, M.; Zakaullah, M.

    2017-03-01

    This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.

  14. Enhancement of photocatalytic activity of TiO2 by plasma irradiation

    Science.gov (United States)

    Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ishida, Tomoya; Kitaoka, Daiki

    2016-10-01

    In this study, plasma irradiations to titanium were conducted to enhance the photocatalytic activity of titanium oxide. When titanium is exposed to He plasmas, various morphology changes occur as forming nano-bubbles near the surface. Photocatalytic activity of the oxidized helium plasma irradiated titanium samples with nano-cones and microstructures were assessed by the hydrogen production from aqueous methanol solution. It is shown that the He plasma irradiation increases the photocatalytic activity more than double. Moreover, nitrogen mixture plasma irradiation to titanium (oxide) was conducted for doping nitrogen, which has been regarded as method to create visible light reactivity. It is shown from X-ray photoelectron spectroscopy (XPS) analysis that nitrogen doping has been successfully conducted under specific conditions.

  15. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  16. Decomposition treatment of SO2F2 using packed bed DBD plasma followed by chemical absorption.

    Science.gov (United States)

    Nie, Yong; Zheng, Qifeng; Liang, Xiaojiang; Gu, Dayong; Lu, Meizhen; Min, Min; Ji, Jianbing

    2013-07-16

    The technology of packed bed dielectric barrier discharge (DBD) plasma followed by a chemical absorption has been developed and was found to be an efficient way for decomposition treatment of sulfuryl fluoride (SO2F2) in simulated residual fumigant. The effects of energy density, initial SO2F2 concentration, and residence time on the removal efficiency of SO2F2 for the DBD plasma treatment alone were investigated. It was found that the SO2F2 could be removed completely when initial volume concentration, energy density, and residence time were 0.5%, 33.9 kJ/L, and 5.1 s, respectively. The removal mechanism of SO2F2 in the packed bed DBD reactor was discussed. Based on the detailed analysis of SO2F2 molecular stability and its exhaust products in the DBD plasma reactor, it was concluded that the energetic electrons generated in the packed bed DBD reactor played a key role on the removal of SO2F2, and the major decomposition products of SO2F2 detected were SO2, SiF4, and S (Sulfur). Among these products, SiF4 was formed by the F atom reacted with the filler-quartz glass beads (SiO2) in the packed bed DBD reactor. Aqueous NaOH solution was used as the chemical absorbent for the gaseous products of SO2F2 after plasma pretreatment. It was found that the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.

  17. A Chemical Stability Study of Trimethylsilane Plasma Nanocoatings for Coronary Stents

    Science.gov (United States)

    Jones, John Eric; Yu, Qingsong; Chen, Meng

    2016-01-01

    In this study, trimethylsilane (TMS) plasma nanocoatings were deposited onto 316L stainless steel coupons in direct current (DC) and radio frequency (RF) glow discharges and additional NH3/O2 plasma treatment to tailor the coating surface properties. The chemical stability of the plasma nanocoatings were evaluated after 12 week (~3 month) storage under dry condition (25 °C) and immersion in simulated body fluid (SBF) at 37 °C. It was found that nanocoatings did not impact surface roughness of underlying stainless steel substrates. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize surface chemistry and compositions. Both DC and RF TMS plasma nanocoatings had Si– and C– rich composition; and the O– and N– contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Contact angle measurements showed that DC TMS nanocoating with NH3/O2 treatment generated very hydrophilic surfaces. DC TMS nanocoatings with NH3/O2 treatment showed minimal surface chemistry change after 12 week immersion in SBF. However, nitrogen functionalities on RF-TMS coating with NH3/O2 post treatment were not as stable as in DC case. Cell culture studies revealed that the surfaces with DC coating and NH3/O2 post treatment demonstrated substantially improved proliferation of endothelial cells over the 12 week storage period at both dry and wet conditions, as compared to other coated surfaces. Therefore, DC nanocoatings with NH3/O2 post treatment may be chemically stable for long-term properties, including shelf-life storage and exposure to the bloodstream for coronary stent applications. PMID:27712432

  18. Enhancement of Limb Growth by Non-Thermal Plasma Generated Reactive Species

    Science.gov (United States)

    Shainsky, N.; Steinbeck, M.; Fridman, G.; Fridman, A.; Friedman, G.; Freeman, T.

    2013-09-01

    Introduction: The goal of this investigation was to examine the effect of Dielectric Barrier Discharge plasma on mouse autopod differentiation and growth. In this study we hypothesized that NT-plasma can be used to promote redox dependent changes in differentiation pathways and enhance developmental signaling? Methods: Approximately 1 hour after isolation, NT-plasma or sham plasma treatment was applied to the right or left limb, respectively. The medium was changed daily thereafter for the 4-6 days of culture. NT-plasma treatment: pulsed (1000 Hz) voltage of 17 - 25 kV magnitude (peak to peak), a 1 μs pulse width and a rise time of 5 V/ns between the quartz-insulated high voltage electrode and the sample undergoing treatment. Results: A single 10 second NT-plasma treatment promoted development of mouse autopods as compared to the sham control contralateral limb. NT-plasma accelerated digit growth in both E14.5 and E12.5 autopods. Inhibitors were used to determine the role of ROS and RNS in mediating NT-plasma accelerated autopod development. Treatment with these agents stunted autopod morphogenesis NT-plasma treatment partially rescued development. Discussion: Our findings highlight the capability of NT-plasma to activate ROS-dependent cell signaling cascades within developing autopod tissue. In fact, the effect of NT-plasma may indeed extend beyond ROS sensitive signaling as NT-plasma exposure seems to stimulate some growth even in the presence of antioxidant induced stunting. This work was supported by NIH Grants 1 R01 EB 013011 - 01 (Freeman and G. Fridman).

  19. First plasma operation of the enhanced JET vertical stabilisation system

    NARCIS (Netherlands)

    Rimini, F. G.; Crisanti, F.; Albanese, R.; Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T.; Coccorese, V.; De Tommasi, G.; P. de Vries,; Lomas, P. J.; Maviglia, F.; Neto, A.; Nunes, I.; Pironti, A.; Ramogida, G.; Sartori, F.; Shaw, S. R.; Tsalas, M.; Vitelli, R.; Zabeo, L.

    2011-01-01

    A project dedicated to the enhancement of the JET vertical stabilization system was launched in 2006, including an upgrade of the Power Supply of the Radial Field Amplifier, of hardware and software of the vertical stabilization control system. The main aim was to double the JET capability in stabil

  20. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investiga

  1. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gerrit; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  3. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  4. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    Science.gov (United States)

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  5. Atmospheric pressure plasma enhanced spatial ALD of silver

    Energy Technology Data Exchange (ETDEWEB)

    Bruele, Fieke J. van den, E-mail: Fieke.vandenBruele@tno.nl; Smets, Mireille; Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands); Creyghton, Yves [TNO, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Buskens, Pascal [TNO, Rondom 1, 5612 AP Eindhoven, The Netherlands and DWI Leibniz-Institut für Interaktive Materialien, Aachen (Germany); Roozeboom, Fred [TNO, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands and Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2015-01-15

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity as revealed by resistivity values as low as 18 μΩ cm and C- and F-levels below detection limits of energy dispersive x-ray analysis. The growth of the silver films starts through the nucleation of islands that subsequently coalesce. The authors show that the surface island morphology is dependent on surface diffusion, which can be controlled by temperature within the deposition temperature range of 100–120 °C.

  6. Enhanced chemical reactivity of graphene induced by mechanical strain.

    Science.gov (United States)

    Bissett, Mark A; Konabe, Satoru; Okada, Susumu; Tsuji, Masaharu; Ago, Hiroki

    2013-11-26

    Control over chemical reactivity is essential in the field of nanotechnology. Graphene is a two-dimensional atomic sheet of sp(2) hybridized carbon with exceptional properties that can be altered by chemical functionalization. Here, we transferred single-layer graphene onto a flexible substrate and investigated the functionalization using different aryl diazonium molecules while applying mechanical strain. We found that mechanical strain can alter the structure of graphene, and dramatically increase the reaction rate, by a factor of up to 10, as well as increase the final degree of functionalization. Furthermore, we demonstrate that mechanical strain enables functionalization of graphene for both p- and n-type dopants, where unstrained graphene showed negligible reactivity. Theoretical calculations were also performed to support the experimental findings. Our findings offer a simple approach to control the chemical reactivity of graphene through the application of mechanical strain, allowing for a tuning of the properties of graphene.

  7. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  8. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  9. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    Science.gov (United States)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  10. A combination of CO{sub 2} laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Wang, Zhecun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-07-30

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO{sub 2} laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which

  11. Plasma-chemical simulation of negative corona near the inception voltage

    Science.gov (United States)

    Pontiga, Francisco; Duran-Olivencia, Francisco J.; Castellanos, Antonio

    2013-09-01

    The spatiotemporal development of Trichel pulses in oxygen between a spherical electrode and a grounded plane has been simulated using a fluid approximation that incorporates the plasma chemistry of the electrical discharge. Elementary plasma processes, such as ionization, electron attachment, electron detachment, recombination between ions and chemical reactions between neutral species, are all included in a chemical model consisting of 55 reactions between 8 different species (electrons, O2+,O2-,O3-,O-, O2, O, O3). Secondary emission at the cathode by the impact of positive ions and photons is also considered. The spatial distribution of species is computed in three dimensions (2D-axysimmetrical) by solving Poisson's equation for the electric field and the continuity equations for the species, with the inclusion of the chemical gain/loss rate due to the particle interaction. The results of the simulation reveal the interplay between the different negative ions during the development of every Trichel pulse, and the rate of production of atomic oxygen and ozone by the corona discharge. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  12. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa.

    Science.gov (United States)

    Tvrdá, Eva; Lukáč, Norbert; Schneidgenová, Monika; Lukáčová, Jana; Szabó, Csaba; Goc, Zofia; Greń, Agnieszka; Massányi, Peter

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P Zn were positively correlated with the motility and antioxidant parameters (P < 0.05; P < 0.01; P < 0.001). Inversely, K exhibited the positive associations with malondialdehyde (P < 0.05). This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  13. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    Directory of Open Access Journals (Sweden)

    Eva Tvrdá

    2013-01-01

    Full Text Available Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn, basic motility characteristics (motility and progressive motility, and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P<0.01; P<0.001, while higher MDA concentration and activity of enzymatic antioxidants were recorded in the cell lysates (P<0.01; P<0.001. Na, Fe, Cu, Mg, and Zn were positively correlated with the motility and antioxidant parameters (P<0.05; P<0.01; P<0.001. Inversely, K exhibited the positive associations with malondialdehyde (P<0.05. This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  14. Pulsed plasma chemical synthesis of SixCyOz composite nanopowder

    Science.gov (United States)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2017-05-01

    SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.

  15. Science Sampler: Enhancing Student Understanding of Physical and Chemical Changes

    Science.gov (United States)

    McIntosh, Julie; White, Sandra; Suter, Robert

    2009-01-01

    Students within the Findlay, Ohio, City School District, as well as students across the country, struggle with understanding physical and chemical changes. Therefore, in this article, the authors suggest some standards-based activities to clarify misconceptions and provide formative assessments to measure your students' progress as they determine…

  16. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  17. Cylindrical dielectric barrier discharge plasma catalytic effect on chemical methods of silver nano-particle production

    Science.gov (United States)

    Bahrami, Zahra; Khani, Mohammad Reza; Shokri, Babak

    2016-11-01

    In this study, cylindrical dielectric barrier discharge plasma was used to study the catalytic effect on chemical methods of silver nano-particles for the first time. In this method, the processing time is short and the temperature of reaction is low. Also, the reactor is very simple, inexpensive, and accessible. In this work, pure AgNO3 as the precursor agent and poly vinyl pyrrolidone as the macromolecular surfactant were dissolved in ethanol as the solvent. UV-Vis and XRD were used to identify the colloidal and powder nano-particles, respectively. Optical emission spectroscopy was also used to identify the active species in plasma. Effects of gas flow rate, voltage, volume of solution, and processing time were also studied. Moreover, TEM and SEM images presented the mean diameter of nano-particle size around 10 to 20 nm. The results have been very promising.

  18. Hydrogen Plasma Durability of Chemically Treated SnO2 Thin Films

    Science.gov (United States)

    Kawabata, Keishi; Tanaka, Takeshi; Hirose, Masataka

    1993-10-01

    The chemical stability of SnO2 surfaces against hydrogen plasma exposure has been studied by treating a SnO2/glass system either in steam at a substrate temperature of 200 and 400°C or in ethyl alcohol at 200 and 400°C, or by fluorinating the surface at 400°C in an NF3+O2 gas mixture. Also, an electroplated Zn layer on SnO2 has been oxidized at 400°C. X-ray photoelectron spectroscopy of such surfaces has revealed that the reduction reaction of the SnO2 surface exposed to hydrogen plasma is dramatically suppressed by the steam treatment at 400°C.

  19. Holographic dual of a boost-invariant plasma with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2010-12-15

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  20. Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory

    Directory of Open Access Journals (Sweden)

    Estella T. Njoyim

    2016-01-01

    Full Text Available This work focuses on the study of the chemical reactivity of an advanced oxidation process (AOP, called the plasma technique, in order to prevent industrial effluent from pollution and better cope to several damage of environment. The oxidizing and acidifying properties of an electric discharge of the gliding arc plasma and its application to a target which is a real effluent (wastewater from Brasseries du Cameroun -Bafoussam plant fascinated this study. Samples were collected from the central collecting point (CCP of the effluent. The collected effluent samples were analyzed by volumetric and instrumental methods, and then exposed to the gliding discharge during specific time periods of 3-60 min to exhibit the desired decontamination effects. At the end of 60 min of exposure time to the discharge, 52.22% and 50.19% obtained respectively to abatement of turbidity and rate of fall in absorbance. This reduction can be explained by the fact that the coloured compounds were degraded and this degradation gave rise to the transparent appearance observed. After stopping the discharge process, the abatement percentage of BOD5, COD and TOC, were obtained at the same time (60min with values of 52.05%, 68.63% and 69.37% respectively. These results reflect the considerable reduction of the pollution load of the wastewaters collected from CCP of the brewery. These results showed that the effectiveness of the gliding arc plasma depends not only on the physico-chemical parameters of the target, but also on the exposure time and concluded that the non-thermal plasma process alone provides good reduction of organic pollutants in wastewater. Moreover, the phenomenon of post- discharge, even though not studied in details demonstrated that, after switching the discharge, the evolution of parameters such as pH, electrical conductivity and TDS increase.

  1. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain.

    Science.gov (United States)

    Ibrahim, Sarah A; Li, S Kevin

    2010-01-04

    Previously, chemical enhancer-induced permeation enhancement on human stratum corneum (SC) lipoidal pathway at enhancer thermodynamic activities approaching unity in the absence of cosolvents (defined as Emax) was determined and hypothesized to be related to the enhancer solubilities in the SC lipid domain. The objectives of the present study were to (a) quantify enhancer uptake into SC lipid domain at saturation, (b) elucidate enhancer mechanism(s) of action, and (c) study the SC lipid phase behavior at Emax. It was concluded that direct quantification of enhancer uptake into SC lipid domain using intact SC was complicated. Therefore a liposomal model of extracted human SC lipids was used. In the liposome study, enhancer uptake into extracted human SC lipid liposomes (EHSCLL) was shown to correlate with Emax. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to evaluate lipid phase alterations in enhancer-treated intact SC. IR spectra demonstrated an increase in the lipid domain fluidity and DSC thermograms indicated a decrease in the phase transition temperature with increasing Emax. These results suggest that the enhancer mechanism of action is through enhancer intercalation into SC intercellular lipids and subsequent lipid lamellae fluidization related to enhancer lipid concentration.

  2. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  3. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  4. Nonthermal atmospheric pressure plasma enhances mouse limb bud survival, growth, and elongation.

    Science.gov (United States)

    Chernets, Natalie; Zhang, Jun; Steinbeck, Marla J; Kurpad, Deepa S; Koyama, Eiki; Friedman, Gary; Freeman, Theresa A

    2015-01-01

    The enhanced differentiation of mesenchymal cells into chondrocytes or osteoblasts is of paramount importance in tissue engineering and regenerative therapies. A newly emerging body of evidence demonstrates that appendage regeneration is dependent on reactive oxygen species (ROS) production and signaling. Thus, we hypothesized that mesenchymal cell stimulation by nonthermal (NT)-plasma, which produces and induces ROS, would (1) promote skeletal cell differentiation and (2) limb autopod development. Stimulation with a single treatment of NT-plasma enhanced survival, growth, and elongation of mouse limb autopods in an in vitro organ culture system. Noticeable changes included enhanced development of digit length and definition of digit separation. These changes were coordinated with enhanced Wnt signaling in the distal apical epidermal ridge (AER) and presumptive joint regions. Autopod development continued to advance for approximately 144 h in culture, seemingly overcoming the negative culture environment usually observed in this in vitro system. Real-time quantitative polymerase chain reaction analysis confirmed the up-regulation of chondrogenic transcripts. Mechanistically, NT-plasma increased the number of ROS positive cells in the dorsal epithelium, mesenchyme, and the distal tip of each phalange behind the AER, determined using dihydrorhodamine. The importance of ROS production/signaling during development was further demonstrated by the stunting of digital outgrowth when anti-oxidants were applied. Results of this study show NT-plasma initiated and amplified ROS intracellular signaling to enhance development of the autopod. Parallels between development and regeneration suggest that the potential use of NT-plasma could extend to both tissue engineering and clinical applications to enhance fracture healing, trauma repair, and bone fusion.

  5. Localized microwave pulsed plasmas for ignition and flame front enhancement

    Science.gov (United States)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow

  6. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on mesoporous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx (x=0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds covalently with nitrogen in all the carbon nitrogen nanotube films.

  7. Chemical Equilibration and Dilepton Production of Quark-Gluon Plasma at RHIC Energies

    Institute of Scientific and Technical Information of China (English)

    龙家丽; 贺泽君; 马国亮; 马余刚; 刘波

    2004-01-01

    An evolution model of the chemically equilibrating quark-gluon plasma system has been established based on the Jiittner distribution function of partons. By studying the dilepton production of the system, we find that due to high initial temperature, large gluon density of the system as well as large gluon fusion gg → c(c-) cross section in the intermediate mass region, a dominant contribution to dileptons with intermediate masses is provided by quark-antiquark annihilation qq → l(l-) and, especially, thermal charmed quarks from the gluon fusion gg → c(c-) and quark-antiquark annihilation qq → c(c-).

  8. Chemically produced tungsten-praseodymium oxide composite sintered by spark plasma sintering

    Science.gov (United States)

    Ding, Xiao-Yu; Luo, Lai-Ma; Lu, Ze-Long; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2014-11-01

    Pr2O3 doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV0.2 of Pr2O3/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr2O3/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W-1 wt% Pr2O3 composites decreased with the same trend, was above 150 W/m K.

  9. Evolution of plasma parameters in an Ar-N2/He inductive plasma source with magnetic pole enhancement

    Science.gov (United States)

    Maria, Younus; N, U. Rehman; M, Shafiq; M, Naeem; M, Zaka-Ul-Islam; M, Zakaullah

    2017-02-01

    Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-N2/He mixture plasma. Electron density ({n}{{e}}) and temperature ({T}{{e}}), excitation temperature ({T}{{exc}}), plasma potential ({V}{{p}}), skin depth (δ ) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that {n}{{e}} increases while {T}{{e}} decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail’ of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian’ distribution at low RF powers and higher pressure in a pure {{{N}}}2 discharge. However, it evolves into a ‘Maxwellian’ distribution at RF powers greater than 70 W for pure {{{N}}}2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian’ EEPF is examined. The temperature of the low-energy electron group {T}{{L}} shows a decreasing trend with argon addition until the ‘thermalization’ of the two temperatures occurs, while the temperature of high-energy electrons {T}{{H}} decreases continuously.

  10. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas.

    Science.gov (United States)

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Ashfold, Michael N R; Mankelevich, Yuri A

    2016-11-03

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1-6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  11. Enhancement of Hevea brasiliensis properties through chemical application

    Directory of Open Access Journals (Sweden)

    ROSZAINI KADIR

    Full Text Available ABSTRACT The effects of four different types of bleaching agents (hydrogen peroxide, sodium hypochlorite, sodium chlorite and oxalic acid mixed together with 2% boron-based preservative (Celbor SP were studied on green sawn rubberwood. Two concentration levels (1% and 2% of were used. Whitish values (W and colour changes (ΔE of sawn rubberwood were assessed before and after chemical treatment using a colour meter. Preliminary observation indicated that timber treated with 1% and 2% hydrogen peroxide produced better and more homogeneous colour properties. Hydrogen peroxide treated timber gave higher whitish values (6.23 and 9.91 for 1% and 2% solution, respectively and lower colour changes (8.49 and 5.51 for 1% and 2% solution, respectively when compared to the other three chemicals. Evaluation on the effects of bleaching (hydrogen peroxide with a higher level of concentration on physical, mechanical and biological properties of rubberwood also have been determined in this study.

  12. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  13. Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bihong [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Li, Shaopeng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Song, Lusheng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Yang, Mo; Zhou, Wenfei; Tyagi, Deependra [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); University of Chinese Academy of Sciences, Yuquan Rd., 19(A), Beijing 100049 (China); Zhu, Jinsong, E-mail: jizhu88@gmail.com [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China)

    2015-08-01

    Highlights: • A simple and robust plasma-treated ultrathin polystyrene film surface was developed for protein biosensing. • The surface was optimized by evaluating up to 120 types of fabrication parameters with high-throughput analytical methods. • The optimized surface showed a 620% improvement of the protein detection signal and 210% protein binding per immobilized protein ligand compared with a self-assembled monolayer surface. - Abstract: A plasma-treated ultrathin polystyrene (PS) film surface was explored as a simple, robust, and low-cost surface chemistry solution for protein biosensing applications. This surface could dramatically improve the binding efficiency of the protein–protein interactions, which is defined as the binding signal per immobilized ligand. The PS-modified protein biosensor was readily fabricated by spin coating and plasma treatment. Various parameters for fabrication, including the concentration of the PS solution, rate of spin coating, and duration of plasma treatment, were systematically optimized based on the improvement of fluorescence signal yielded by the microfluidic network-aided fluorescence immunoassay. The performance of the label-free protein detection on the optimized surfaces was further evaluated by surface plasmon resonance imaging (SPRi). PS surfaces with optimal fabrication parameters exhibited up to an 620% enhancement of the protein binding response and approximately 210% of the protein binding per immobilized protein ligand compared with a self-assembled monolayer (SAM) surface of 11-mercapto undecanoic acid (MUA). The relationship between the fabrication parameters used and changes to the surface chemistry and the morphological properties were characterized with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). It was revealed that the morphological changes observed in the plasma-treated PS film were the dominant factor for the

  14. Mixtures of Estrogenic Chemicals Enhance Vitellogenic Response in Sea Bass

    OpenAIRE

    Correia, AD; Freitas, S.; Scholze, M; Gonçalves, J; Booij, P.; Lamoree, MH; Mañanós, E; Reis-Henriques, MA

    2007-01-01

    BACKGROUND: The potential impact of natural and synthetic estrogens on aquatic ecosystems has attracted considerable attention because it is currently accepted that their joint effects are more severe when they are present in mixtures. Although it is well-known that they occur as mixtures in the marine environment, there is little information about the combined effects of estrogenic chemicals on marine biota. OBJECTIVE: In 14-day tests with juvenile sea bass, we analyzed singly and in combina...

  15. Plasma chemical reduction of model corrosion brass layers prepared in soil

    Science.gov (United States)

    Radkova, Lucie; Mikova, Petra; Prikryl, Radek; Krcma, Frantisek

    2016-08-01

    The brass plates of (50 × 10 × 1) mm3 were prepared with model corrosion layer because the real archaeological artifacts could be damaged during the method optimization. Samples corroded naturally more than 2 years in the soil. Excavated samples were treated in the low pressure (150 Pa) quartz glass plasma reactor (90 cm long and 9.5 cm in diameter) which was surrounded by two external copper electrodes supplied by radio-frequency generator (13.56 MHz). The experiments were carried out in a hydrogen-argon gas mixture at mass flows of 30 sccm for hydrogen and 20 sccm for argon for 90 min. The plasma power was 100, 200, 300 and 400 W in continuous and pulsed mode. Maximum sample temperature was set at 120 °C. The whole process was monitored by optical emission spectroscopy and the obtained data were used to calculate the relative intensity of OH radicals and rotational temperature. The results showed that the higher power had the greater maximum intensity of the OH radicals and rapidly degraded the corrosion layer. Corrosion layer was not completely removed during the reduction, but due to the reactions which occur in the plasma corrosion layer became brittle and after plasma chemical treatment can be removed easily. Finally, the SEM-EDX analysis of the surface composition confirmed removal of chlorine and oxygen from the corrosion products layers. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  16. Growth enhancement effects of radish sprouts: atmospheric pressure plasma irradiation vs. heat shock

    Science.gov (United States)

    Sarinont, T.; Amano, T.; Kitazaki, S.; Koga, K.; Uchida, G.; Shiratani, M.; Hayashi, N.

    2014-06-01

    We compare growth enhancement effects due to atmospheric air dielectric barrier discharge plasma irradiation and heat shock to seeds of radish sprouts (Raphanus sativus L.). Interactions between radicals and seeds in a short duration of 3 min. lead to the growth enhancement of radish sprouts in a long term of 7 days and the maximum average length is 3.7 times as long as that of control. The growth enhancement effects become gradually weak with time, and hence the ratio of the average length for plasma irradiation to that for control decreases from 3.7 for the first day to 1.3 for 7 day. The average length for heat shock of 60°C for 10 min. and 100°C for 3 min. is longer than that for control, and the maximum average length is 1.3 times as long as that of control. Heat shock has little contribution to the growth enhancement due to plasma irradiation, because the maximum temperature due to plasma irradiation is less than 60°C.

  17. Enhanced toroidal flow stabilization of edge localized modes with increased plasma density

    Science.gov (United States)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2017-09-01

    Toroidal flow alone is generally thought to have an important influence on tokamak edge pedestal stability, even though theoretical analysis often predicts merely a weak stabilizing effect of toroidal flow on the edge localized modes (ELMs) in experimental parameter regimes. For the first time, we find from two-fluid MHD calculations that such a stabilization, however, can be significantly enhanced by increasing the edge plasma density. Our finding resolves a long-standing mystery whether or how toroidal rotation can indeed have an effective influence on ELMs, and explains why the ELM mitigation and suppression by toroidal rotation are more favorably achieved in higher collisionality regime in recent experiments. The finding suggests a new control scheme on modulating toroidal flow stabilization of ELMs with plasma density, along with a new additional constraint on the optimal level of plasma density for the desired edge plasma conditions.

  18. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    Science.gov (United States)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  19. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  20. Enhancement-mode AlGaN/GaN HEMTs fabricated by fluorine plasma treatment

    Institute of Scientific and Technical Information of China (English)

    Quan Si; Hao Yue; Ma Xiaohua; Xie Yuanbin; Ma Jigang

    2009-01-01

    The fabrication of enhancement-mode A1GaN/GaN HEMTs by fluorine plasma treatment on sapphire substrates is reported. A new method is used to fabricate devices with different fluorine plasma RF power treatments on one wafer to avoid differences between different wafers. The plasma-treated gate regions of devices treated with different fluorine plasma RF powers were separately opened by a step-and-repeat system. The properties of these devices are compared and analyzed. The devices with 150 W fluorine plasma treatment power and with 0.6μm gate-length exhibited a threshold voltage of 0.57 V, a maximum drain current of 501 mA/mm, a maximumtransconductance of 210 m S/mm, a current gain cutoff frequency of 19.4 GHz and a maximum oscillation frequency of 26 GHz. An excessive fluorine plasma treatment power of 250 W results in a small maximum drain current, which can be attributed to the implantation of fluorine plasma in the channel.

  1. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  2. Electric field enhancement at multiple densities in laser-irradiated nanotube plasma

    Indian Academy of Sciences (India)

    U Chakravarty; P A Naik; P D Gupta

    2012-09-01

    The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse ($\\ll 1$ ps) is calculated. The hollowness of the nanotubes determines the field enhancement and the electron density at which such structures exhibit resonance. The electric field in a nanotube plasma is shown to be resonantly enhanced at multiple densities during the two phases of interaction: the ionization phase and the hydrodynamic expansion phase. It is further shown that by a proper choice of hollowness of the nanotubes, a continued occurrence of the resonance over a longer time can be achieved. These properties make nanotubes efficient absorbers of intense ultrashort laser pulses.

  3. Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin

    Directory of Open Access Journals (Sweden)

    Nelson Naveas, Vicente Torres Costa, Dario Gallach, Jacobo Hernandez-Montelongo, Raul Jose Martín Palma, Josefa Predenstinacion Garcia-Ruiz and Miguel Manso-Silván

    2012-01-01

    Full Text Available Porous silicon (PSi is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi for biological applications, which has several advantages over thermal stabilization (ToxPSi. The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26° and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi. All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces.

  4. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cossement, Damien, E-mail: damien.cossement@materianova.be [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Renaux, Fabian [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Thiry, Damien; Ligot, Sylvie [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Francq, Rémy; Snyders, Rony [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium)

    2015-11-15

    Graphical abstract: - Highlights: • Plasma polymer films have a chemical selectivity and a cross-linking degree which are known to vary in opposite trends. • Three plasma polymers families were used as model organic layers for cross-linking evaluation by ToF-SIMS and principal component analysis. • The data were cross-checked with related functional properties that are known to depend on the cross-linking degree (stability in solvent, mechanical properties, …). • The suggested cross-linking evaluation method was validated for different families of plasma polymers demonstrating that it can be seen as a “general” method. - Abstract: It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH{sub 2}-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (P{sub RF}), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high P{sub RF}. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with P{sub RF} excepted for the SH-PPF. These results have

  5. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Yano

    2016-12-01

    Full Text Available A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2 was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection.

  6. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid

    Science.gov (United States)

    Jothiramalingam Sankaran, Kamatchi; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2017-02-01

    Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.

  7. "Chemical" composition of the Quark-Gluon Plasma in relativistic heavy-ion collisions

    CERN Document Server

    Scardina, F; Plumari, S; Greco, V

    2012-01-01

    We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy Ion Collisions (uRHIC's) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a "chemical" equilibrium ratio between quarks and gluons strongly increasing as $T\\rightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHIC's a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $\\sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be essential for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthemore a bulk plasma made by mo...

  8. Surface chemical structure and doping characteristics of boron-doped Si nanowires fabricated by plasma doping

    Science.gov (United States)

    Oh, Seung-Hoon; Ma, Jin-Won; Bae, Jung Min; Kang, Yu-seon; Ahn, Jae-Pyung; Kang, Hang-Kyu; Chae, Jimin; Suh, Dongchan; Song, Woobin; Kim, Sunjung; Cho, Mann-Ho

    2017-10-01

    We investigated the conduction characteristics of plasma-doped Si nanowires (NWs) after various rapid thermal annealing (RTA) times. The plasma doping (PD) process developed a highly-deposited B layer at the NW surface. RTA process controls electrical conductivity by mediating the dopant diffusion from the surface layer. The surface chemical and substitutional states of the B plasma-doped Si NWs were analyzed by x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. To elucidate the detailed structure of the NWs, we analyzed the change in the optical phonon mode caused by the incorporated B atoms. For this purpose, we examined Fano resonance by the investigation of the asymmetry, line-width, and phonon wavenumber in Raman spectra. The changes in symmetry level of the Raman peak, phonon lifetime, and internal strain were closely related to the number of electrically activated borons, which was drastically increased with RTA time. The change in electrical and optical characterizations related to the doping characteristics of the NWs was investigated using a 4-point probe and terahertz time-domain spectroscopy (THz-TDS). The resistivity of the NWs was 3000 times lower after the annealing process compared to that before the annealing process, which is well consistent with the optical conductivity data. The data provide the potential utility of PD in conformal doping for three-dimensional nanodevices.

  9. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  10. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  11. Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF{sub 6} based plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Perros, Alexander; Bosund, Markus; Sajavaara, Timo; Laitinen, Mikko; Sainiemi, Lauri; Huhtio, Teppo; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, P.O. Box 13500, FI-00076 Aalto (Finland); Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014, Jyvaeskylae,Finland (Finland); Department of Micro and Nanosciences, School of Electrical Engineering, Aalto University, P.O. Box 13500, FI-00076, Aalto (Finland)

    2012-01-15

    The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 deg. C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF{sub 6} and O{sub 2} under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film's removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF{sub x}{sup +} and O{sup +} chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF{sub 6} based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.

  12. Thrust Enhancement in Hypervelocity Nozzles by Chemical Catalysis

    Science.gov (United States)

    Singh, D. J.; Carpenter, Mark H.; Drummond, J. P.

    1997-01-01

    In the hypersonic flight regime, the air-breathing supersonic combustion ramjet (scramjet) has been shown to be a viable propulsion system. The current designs of scramjet engines provide performance benefits only up to a Mach number of 14. Performance losses increase rapidly as the Mach number increases. To extend the applicability of scram'jets beyond Mach 14, research is being conducted in the area of inlet and wave drag reduction, skin-friction and heat-transfer reduction, nozzle loss minimization, low-loss mixing, and combustion enhancement. For high Mach number applications, hydrogen is the obvious fuel choice because of its high energy content per unit mass in comparison with conventional fuels. These flight conditions require engines to operate at supersonic internal velocities, high combustor temperatures, and low static pressures. The high static temperature condition enhances the production of radicals such as H and OH, and the low-pressure condition slows the reaction rates, particularly the recombination reactions. High-temperature and low-pressure constraints, in combination with a small residence time, result in a radical-rich exhaust gas mixture exiting the combustor. At high Mach number conditions (due to low residence time), H and OH do not have enough time to recombine ; thus, a significant amount of energy is lost as these high-energy free radical are exhausted. The objective of the present study is to conduct a flowfield analysis for a typical nozzle geometry for NASP-type vehicle to assess for thrust enhancement in hypervelocity nozzles by substituting small amount of phosphine for hydrogen.

  13. Increased plasma levels of Lp(a) enhance the development of coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    LI Ying; XU Hong; ZHOU Qin; WANG Chang-yuan; LIU Yan-xia; LU Yuan-yuan; FAN Jiang-lin; SUN Hui-jun

    2008-01-01

    Objective To test the hypothesis that increased plasma levels of Lp(a) may enhance the development of atherosclerosis in the setting of hypercholesterolemia. Methods The plasma Lp(a) was analyzed by SDS-PAGE Western blotting and quantitated using specific ELISA kits. Plasma total cholesterol, triglycerides and HDL-cholesterol were determined using Wako assay kits. The left coronary artery was used for the evaluation of coronary atherosclerosis (stenosis %). For quantitative study of the lesions in coronary atherosclerosis, hematoxylin- eosin and Elastica - van Gieson staining were used. To study cellular components ( SMC vs. macrophages) and Lp(a) deposits in the lesions, immunohistochemical staining was performed and then image analysis system was used. Results Plasma total cholesterol, triglycerides, or HDL-C were not significantly different between transgenic (Trg) and nontransgenic (nonTrg) rabbits. Trg rabbits had 200 % increase in coronary stenosis caused by atherosclerosis. The lesions of Trg WHHL rabbits contained more SMCs and less macrophage than those of nonTrg WHHL rabbits. Conclusions The results suggest that increased plasma levels of Lp(a) enhance the development of coronary atherosclerosis.

  14. Plasma nano-modification of poly(ethylene terephthalate) fabric for pigment adhesion enhancement.

    Science.gov (United States)

    Pransilp, Porntepin; Kiatkamjornwong, Suda; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Poly(ethylene terephthalate) (PET) fabrics were modified by treating with radio frequency (RF) plasma of different gases, including argon (Ar), nitrogen (N2), oxygen (O2) and sulfur hexafluoride (SF6), under varied power (50-150 watt) and time period (0.5-20 min). Observations indicated that plasma has affected the morphology and roughness of PET fiber surface in the nano-scale level. After plasma treatment, test patterns were printed by inkjet printer directly onto the sample surface. The enhancement of color printing performance on PET fabric by plasma treatment was evaluated by color spectroscopy. The surface nano-modified PET fabrics by Ar, N2, O2, and SF6 plasmas all exhibited enhanced color yield. AFM, SEM, FTIR-ATR and XPS results suggested that the improved pigment color yield was neither clearly contributed by the wettability of the fabrics nor the polar group induced onto the fiber surfaces but rather mainly by the alteration of surface roughness.

  15. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma.

    Science.gov (United States)

    Khamsen, Natthaporn; Onwimol, Damrongvudhi; Teerakawanich, Nithiphat; Dechanupaprittha, Sanchai; Kanokbannakorn, Weerawoot; Hongesombut, Komsan; Srisonphan, Siwapon

    2016-08-01

    We designed a system to produce atmospheric hybrid cold-discharge plasma (HCP) based on microcorona discharge on a single dielectric barrier and applied it to inactivate microorganisms that commonly attach the rice seed husk. The cold-plasma treatment modified the surface of the rice seeds, resulting in accelerated germination and enhanced water imbibition. The treatment can operate under air-based ambient conditions without the need for a vacuum. The cold-plasma treatment completely inactivated pathogenic fungi and other microorganisms, enhancing the germination percentage and seedling quality. The final germination percentage of the treated rice seeds was ∼98%, whereas that of the nontreated seeds was ∼90%. Microcorona discharge on a single dielectric barrier provides a nonaggressive cold plasma that can be applied to organic materials without causing thermal and electrical damage. The hybrid nonthermal plasma is cost effective and consumes relatively little power, making it suitable for the surface sterilization and disinfection of organic and biological materials with large-scale compatibility.

  16. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  17. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO3 ceramic (Ca11Si4B2O22, B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca11Si4B2O22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  18. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts.

    Science.gov (United States)

    Rimpelová, Silvie; Kasálková, Nikola Slepičková; Slepička, Petr; Lemerová, Helena; Švorčík, Václav; Ruml, Tomáš

    2013-04-01

    The cell-material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules.

  19. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical release experiments to induce F region ionospheric plasma irregularities at the magnetic equator

    Science.gov (United States)

    Sultan, Peter Jared

    1994-01-01

    The largest-scale plasma instability that occurs naturally in the Earth's ionosphere is a turbulent upwelling of the equatorial F region known as equatorial spread-F (ESF). During an ESF event, high plasma density magnetic fluxtubes at the bottomside of the F region are thought to change places with lower plasma density flux-tubes from below in a Rayleigh-Taylor type (heavy fluid over light fluid) instability. This interchange creates a large-scale (10's of km) density perturbation locally, which rapidly penetrates through to the topside of the F region, creating a plume of cascading smaller-scale (meter to centimeter scale) irregularities from the sharp density gradients at the edges of the rising plasma 'bubble'. In a theoretical test of this overall scenario for ESF, a linear instability growth rate is derived following the magnetic fluxtube formalism of Haerendel. Using realistic atmospheric and ionospheric density model inputs, growth rates are calculated for a range of geophysical conditions. Time/altitude domains having positive growth rates are found to coincide with observed time/altitude patterns of ESF occurrence, thus supporting the fluxtube model. The physics also are tested experimentally by the deliberate creation of plasma bubbles in ambient ionospheres that the fluxtube model predicts are susceptible to the Rayleigh-Taylor instability. Two such artificial seed perturbations were generated during the 1990 NASA/Boston University CRRES-at-Kwajalein campaign, when clouds of sulfur hexafluoride (SF6) were released by sounding rockets to initiate plasma recombinations near the bottomside of the equatorial ionosphere. Multiple diagnostics (incoherent scatter radar, high frequency radar, optics, and satellite polarimeters at several sites) were used to monitor the prelaunch status of the ionosphere and the electron depleted regions that resulted from the chemical releases. Small ESF plumes were observed to form in the region of the artificial perturbation

  1. Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma

    DEFF Research Database (Denmark)

    Helgadottir, Saga; Pandit, Santosh; Mokkapati, Venkata R. S. S.

    2017-01-01

    for pathogenic bacteria. Cold Atmospheric Plasma (CAP) is known to be quite efficient in eradicating planktonic bacteria, but its effectiveness against biofilms has not been thoroughly investigated. The goal of this study was to evaluate the effect of exposure of CAP against mature biofilm for different time...... are pre-treated with vitamin C for 15 min before exposure to CAP, a significantly stronger bactericidal effect can be obtained. Vitamin C pretreatment enhances the bactericidal effect of cold plasma by reducing the viability from 10 to 2% in E. coli biofilm, 50 to 11% in P. aeruginosa, and 61 to 18% in S...

  2. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Science.gov (United States)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  3. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Venu, E-mail: venuanand@cense.iisc.ernet.in, E-mail: venuanand83@gmail.com; Shivashankar, S. A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012 (India); Nair, Aswathi R.; Mohan Rao, G. [Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), Bangalore 560012 (India)

    2015-08-31

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  4. Preparation and Characterization of DLC Films by Twinned ECR Microwave Plasma Enhanced CVD for Microelectromechanical Systems (MEMS) Applications

    Institute of Scientific and Technical Information of China (English)

    LI Xin; TANG Zhen-an; DENG Xin-lu; SHEN Yu-xiu; DING Hai-tao

    2004-01-01

    Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp3 and sp2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately 0.093nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.

  5. A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride.

    Science.gov (United States)

    Mutalik, Srinivas; Parekh, Harendra S; Davies, Nigel M; Udupa, Nayanabhirama

    2009-02-01

    The effects of chemical enhancers and sonophoresis on the transdermal permeation of tizanidine hydrochloride (TIZ) across mouse skin were investigated. Parameters including drug solubility, apparent partition coefficient (APC), drug permeation, and degradation in skin were determined. Low frequency ultrasound was also applied in the presence and absence of chemical enhancers to assess whether drug permeation improved. APC values indicated that TIZ preferentially partitions into intercellular spaces and does not form a reservoir, with the drug also exhibiting good enzymatic stability in skin. Most of the enhancers studied significantly increased the permeation rate of TIZ through full thickness mouse skin in comparison with TIZ formulated in phosphate buffer. Maximum enhancement was observed for TIZ formulated as a suspension in 50% v/v aqueous ethanol containing 5% v/v citral. Sonophoresis significantly (p synergistic effect was noted when sonophoresis was applied in the presence of chemical enhancers. The results suggest that the formulation of TIZ with an appropriate penetration enhancer may be useful in the development of a therapeutic system to deliver TIZ across the skin for a prolonged period, i.e. 24 hr. The application of ultrasound in association with chemical enhancers, such as the combination of 5% v/v citral in 50% v/v aqueous ethanol, could further serve as a non-oral and non-invasive drug delivery modality for the immediate therapeutic effect of muscle relaxants such as TIZ.

  6. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  7. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  8. Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultra-nanocrystalline hybrid diamond materials as cathodes.

    Science.gov (United States)

    Chang, Tinghsun; Lou, Shiucheng; Chen, Huangchin; Chen, Chulung; Lee, Chiyoung; Tai, Nyanhwa; Lin, Inan

    2013-08-21

    The properties of capacity-type microplasma devices were significantly enhanced due to the utilisation of hybrid diamond films as cathodes. The performance of the microplasma devices was closely correlated with the electron field emission (EFE) properties of the diamond cathode materials. The nanoemitters, which were prepared by growing duplex-structured diamond films [microcrystalline diamond (MCD)/ultra-nanocrystalline diamond (UNCD)] on Si-pyramid templates via a two-step microwave plasma enhanced chemical vapour deposition (MPE-CVD) process, exhibited improved EFE properties (E0 = 5.99 V μm(-1), J(e) = 1.10 mA cm(-2) at 8.50 V μm(-1) applied field), resulting in superior microplasma device performance (with a lower threshold field of 200 V mm(-1) and a higher plasma current density of 7.80 mA cm(-2)) in comparison with UNCD film devices prepared using a single-step MPE-CVD process. The superior EFE properties of the duplex-structured MCD-UNCD films relative to those of the UNCD films can be attributed to the unique granular structure of the diamond films. High-resolution transmission electron microscopy reveals that the MCD-UNCD films consisted of abundant graphitic phases located at the periphery of large diamond aggregates and at the boundaries between the ultra-small diamond grains. The presence of the graphite phase is presumed to be the prime factor that renders these films more conductive and causes these films to exhibit higher EFE properties, thus resulting in the improved plasma illumination properties of the microplasma devices.

  9. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids

    Science.gov (United States)

    Liang, Xiu; Liang, Benliang; Pan, Zhenghui; Lang, Xiufeng; Zhang, Yuegang; Wang, Guangsheng; Yin, Penggang; Guo, Lin

    2015-11-01

    Various graphene-based Au nanocomposites have been developed as surface-enhanced Raman scattering (SERS) substrates recently. However, efficient use of SERS has been impeded by the difficulty of tuning SERS enhancement effects induced from chemical and plasmonic enhancement by different preparation methods of graphene. Herein, we developed graphene-based Au hybrids through physical sputtering gold NPs on monolayer graphene prepared by chemical vapor deposition (CVD) as a CVD-G/Au hybrid, as well as graphene oxide-gold (GO/Au) and reduced-graphene oxide (rGO/Au) hybrids prepared using the chemical in situ crystallization growth method. Plasmonic and chemical enhancements were tuned effectively by simple methods in these as-prepared graphene-based Au systems. SERS performances of CVD-G/Au, rGO/Au and GO/Au showed a gradually monotonic increasing tendency of enhancement factors (EFs) for adsorbed Rhodamine 6G (R6G) molecules, which show clear dependence on chemical bonds between graphene and Au, indicating that the chemical enhancement can be steadily controlled by chemical groups in a graphene-based Au hybrid system. Most notably, we demonstrate that the optimized GO/Au was able to detect biomolecules of adenine, which displayed high sensitivity with a detection limit of 10-7 M as well as good reproducibility and uniformity.Various graphene-based Au nanocomposites have been developed as surface-enhanced Raman scattering (SERS) substrates recently. However, efficient use of SERS has been impeded by the difficulty of tuning SERS enhancement effects induced from chemical and plasmonic enhancement by different preparation methods of graphene. Herein, we developed graphene-based Au hybrids through physical sputtering gold NPs on monolayer graphene prepared by chemical vapor deposition (CVD) as a CVD-G/Au hybrid, as well as graphene oxide-gold (GO/Au) and reduced-graphene oxide (rGO/Au) hybrids prepared using the chemical in situ crystallization growth method. Plasmonic

  10. Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery.

    Science.gov (United States)

    Karande, Pankaj; Jain, Amit; Mitragotri, Samir

    2006-09-28

    Chemical permeation enhancers (CPEs) are known to increase skin permeability to therapeutic drugs. Single chemicals, however, offer limited enhancements of skin permeability. Mixtures of chemicals can overcome this limitation owing to their synergistic interactions. However, identification of potent mixtures of chemicals requires screening of a large number of formulations. Discovery of CPE mixtures can be significantly accelerated by identifying patterns that occur in the existing data on CPEs. In this study, we systematically mine through a huge database on skin permeabilizing effect of over 4000 binary formulations generated by high throughput screening and extract general principles that govern the effect of binary combinations of chemicals on skin's barrier properties. Potencies and synergies of these formulations are analyzed to identify the role played by the formulation composition and chemistry. The analysis reveals several intuitive but some largely non-intuitive trends. For example, formulations made from enhancer mixtures are most potent when participating moieties are present in nearly equal fractions. Methyl pyrrolidone, a small molecule, is particularly effective in forming potent and synergistic enhancer formulations, and zwitterionic surfactants are more likely to feature in potent enhancers. Simple but invaluable rules like these will provide guiding principles for designing libraries to further speed up the formulation discovery process.

  11. Application of surface-enhanced Raman in skin cancer by plasma

    Science.gov (United States)

    Yin, W. Z.; Guo, Z. Y.; Zhuang, Z. F.; Liu, S. H.; Xiong, K.; Chen, S. J.

    2012-05-01

    We have developed a mouse squamous cell carcinomas (SCC) model by diniethylbenzanthracene (DMBA) and ultraviolet (UVB). A silver colloid as SERS-active substrates is used for detecting the blood plasma of mouse. The relative intensity of the band at 942 and 1499 cm-1 is higher in SCC model than in healthy one. Therefore, it can be used as an important "fingerprint" in order to diagnose these diseases. Results show us how to get high signal-to-noise ratio of biological macromolecules surface-enhanced Raman scattering spectra in blood plasma. And also offer useful help for understanding the rich molecular structure information in biological tissues. It provides a molecular spectroscopy way for early detection of disease in blood plasma.

  12. Influence of ion species ratio on grid-enhanced plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    Wang Jiu-Li; Zhang Gu-Ling; Liu Yuan-Fu; Wang You-Nian; Liu Chi-Zi; Yang Si-Ze

    2004-01-01

    @@ Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N2+ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.

  13. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

    Directory of Open Access Journals (Sweden)

    Xinheng eYu

    2015-02-01

    Full Text Available Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogues regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  14. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts.

    Science.gov (United States)

    Yu, Xinheng; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  15. Enhancement of the power supply systems in RFX-mod towards 2 MA plasma current

    Energy Technology Data Exchange (ETDEWEB)

    Novello, Luca, E-mail: luca.novello@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); Zamengo, Andrea; Ferro, Alberto; Zanotto, Loris; Barp, Marco; Cavazzana, Roberto; Finotti, Claudio; Recchia, Mauro; Gaio, Elena [Consorzio RFX, Euratom-ENEA Association, Padova (Italy)

    2011-10-15

    The recent start-up improvements brought to RFX-mod have allowed increasing the plasma current in the range 1.7-1.9 MA, but still they proved to be not sufficient to routinely and reliably reach higher values of plasma current that would be very useful for the present studies on enhanced confinement. The need for higher poloidal flux variation together with the overabundant available toroidal flux has led to the study of a rearrangement of the power supply system with the aim of increasing the first at the expenses of the latter. Thanks to the flexibility of the power supply system, composed of modular thyristor converters, the rearrangement has been easily obtained and the resulting enhanced poloidal flux capability scenario described in the paper allows a two step plasma current ramp-up. In order to increase as much as possible the plasma current up to the nominal value of 2 MA it is necessary to fully exploit the thyristor converter power capability, in particular in the first ramp-up phase. In the paper a detailed verification of their maximum performance is presented. The first results obtained after power supply reconfiguration are very good, with plasma current kept constant at about 2 MA for 100 ms. The enabled operation at very high plasma current requires also an optimization of the magneto hydro dynamics (MHD) mode coil power supplies that are required to provide higher current values. Therefore a dedicated study of their control system has been worked out, which allowed understanding how to increase as much as possible the output current without losing the dynamic performance, so keeping the efficiency in the control of dominant and secondary modes, which is essential to obtain good and reproducible discharges.

  16. Consequences of plasma oxidation and vacuum annealing on the chemical properties and electron accumulation of In2O3 surfaces

    Science.gov (United States)

    Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel

    2016-12-01

    The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.

  17. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility.

    Science.gov (United States)

    Zhao, Xiaobing; Wang, Guocheng; Zheng, Hai; Lu, Zufu; Zhong, Xia; Cheng, Xingbao; Zreiqat, Hala

    2013-08-28

    Surface topography and chemistry have significant influences on the biological performance of biomedical implants. Our aim is to produce an implant surface with favorable biological properties by dual modification of surface chemistry and topography in one single simple process. In this study, because of its chemical stability, excellent corrosion resistance, and biocompatibility, titanium oxide (TiO2) was chosen to coat the biomedical Ti alloy implants. Biocompatible elements (niobium (Nb) and silicon (Si)) were introduced into TiO2 matrix to change the surface chemical composition and tailor the thermophysical properties, which in turn leads to the generation of topographical features under specific thermal history of plasma spraying. Results demonstrated that introduction of Nb2O5 resulted in the formation of Ti0.95Nb0.95O4 solid solution and led to the generation of nanoplate network structures on the composite coating surface. By contrast, the addition of SiO2 resulted in a hairy nanostructure and coexistence of rutile and quartz phases in the coating. Additionally, the introduction of Nb2O5 enhanced the corrosion resistance of TiO2 coating, whereas SiO2 did not exert much effect on the corrosion behaviors. Compared to the TiO2 coating, TiO2 coating doped with Nb2O5 enhanced primary human osteoblast adhesion and promoted cell proliferation, whereas TiO2 coatings with SiO2 were inferior in their bioactivity, compared to TiO2 coatings. Our results suggest that the incorporation of Nb2O5 can enhance the biological performance of TiO2 coatings by changing the surface chemical composition and nanotopgraphy, suggesting its potential use in modification of biomedical TiO2 coatings in orthopedic applications.

  18. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  19. Viewing the Chemical Evolution of the Quark-Gluon Plasma with Charge Balance Functions

    CERN Document Server

    Pratt, Scott

    2013-01-01

    Correlations from charge conservation are affected by when charge/anticharge pairs are created during the course of a relativistic heavy ion collision. For charges created early, balancing charges are typically separated by the order of one unit of spatial rapidity by the end of the collision, whereas those charges produced later in the collision are far more correlated. By analyzing correlations from STAR for different species, I show that one can distinguish the two separate waves of charge creation expected in a high-energy collision, one at early times when the QGP is formed and a second at hadronization. Further, I extract the density of up, down and strange quarks at in the QGP and find agreement at the 20% level with expectations for a chemically thermalized plasma.

  20. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    马旭村; 徐贵昌; 王恩哥

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on meso-porous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx( x = 0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds cova-lently with nitrogen in all the carbon nitrogen nanotube films.

  1. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  2. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  3. Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Jayasimhadri, M.; Singh, Niraj Kumar; Sharma, Sakshi; Haranath, D.; Srivastava, A. K.; Dhar, Ajay

    2015-06-01

    We report the thermoelectric properties of nanostructured Cu-deficient Cu2Se, which was synthesized by high energy ball milling followed by spark plasma sintering. Our method obtained a significant enhancement in the thermoelectric figure of merit (ZT), i.e., ~1.4 at 973 K, which was ~30% higher than its bulk counterpart. This enhancement in the thermoelectric performance was due mainly to a significant reduction in the lattice thermal conductivity, which was attributed to enhanced phonon scattering at various length scales by nanoscale defects as well as abundant nanograin boundaries. The nanoscale defects were characterized by transmission electron microscopy of the nanostructured Cu2-xSe samples, which formed the basis of the ZT enhancement.

  4. Synthesis of carbon nanotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    OpenAIRE

    Guláš, Michal; Cojocaru, Costel Sorin; Fleaca, Claudiu; Farhat, Samir; Veis, Pavel; Le Normand, Francois

    2008-01-01

    International audience; To support experimental investigations, a model based on ChemkinTM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase ...

  5. Synthesis of carbon nanbotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    Science.gov (United States)

    Guláš, M.; Cojocaru, C. S.; Fleaca, C. T.; Farhat, S.; Veis, P.; Le Normand, F.

    2008-09-01

    To support experimental investigations, a model based on Chemkin^TM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase activation sources and pressure is performed.

  6. Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses

    Science.gov (United States)

    Kumar, S.; Parola, A.; Di Trapani, P.; Jedrkiewicz, O.

    2017-06-01

    In this paper, we propose an approach to enhance the electron energy gain in standard laser-driven plasma wakefield accelerators, using accelerating Bessel pulses with tunable group velocity so to avoid electron dephasing. We use in the numerical simulations a one-dimensional theoretical model in the linear regime, taking advantage of the "diffraction-free" properties of the localized Bessel beam and thus neglecting transverse effects during the acceleration process. With a multistage tailoring approach, we show a gain enhancement of more than 100 with electron energies that may reach the GeV range over distances shorter than 1 m.

  7. Plasma-Enhanced Atmospheric-Pressure Spatial ALD of Al2O3 and ZrO2

    NARCIS (Netherlands)

    Creyghton, Y.; Illiberi, A.; Mione, M.; Boekel, W. van; Debernardi, N.; Seitz, M.; Bruele, F. van den; Poodt, P.; Roozeboom,F.

    2016-01-01

    Non-thermal plasma sources are known to lower the operation temperatures and widen the process windows in thermal ALD of thin-film materials. In spatial ALD, novel plasma sources with exceptional dimensional and chemical stability are required to provide the flow geometries optimized for efficient t

  8. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  9. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  10. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  11. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma.

    Science.gov (United States)

    Wongsagonsup, Rungtiwa; Deeyai, Panakamol; Chaiwat, Weerawut; Horrungsiwat, Sawanee; Leejariensuk, Kesini; Suphantharika, Manop; Fuongfuchat, Asira; Dangtip, Somsak

    2014-02-15

    Non-chemical modification of tapioca starch was investigated using jet atmospheric argon plasma treatment. Two forms of starch slurry, i.e. granular starch (G) and cooked starch (C), were jet-treated by argon plasma generated by supplying input power of 50 W (denoted as G50 and C50 samples) and 100 W (denoted as G100 and C100 samples) for 5 min. Physical, rheological, and structural characteristics of the modified starch were investigated. The G50 and C100 samples had lower paste clarity but higher thermal stability and performed stronger gels (G50 only) compared to their control counterparts. On the other hand, the analyzed properties of the G100 and C50 samples showed the opposite trend. FTIR and (1)H NMR results revealed that the relative areas of COC and OH peaks were changed after the treatment. Cross-linking reaction seemed to predominantly take place for the G50 and C100 samples, whereas depolymerization predominated for the G100 and C50 samples.

  12. Enhancement of developmental toxicity effects of chemicals by gestational stress. A review

    DEFF Research Database (Denmark)

    Hougaard, Karin S; Hansen, Åse Marie

    2007-01-01

    Risk assessment of developmental toxicants is almost exclusively based on single chemicals studied in animals under controlled experimental conditions, as to reduce stress. Although humans may be exposed simultaneously to numerous hazards, little is known about the interaction of prenatal chemica...... studies are recommended to investigate compounds, for which maternal stress was already proven as an enhancer, at lower dose levels. Interactive response seems to depend on stressor severity and timing of chemical exposure relative to maternal stress which should be further scrutinized....

  13. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  14. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  15. Applications of non-equilibrium plasma in chemical processes; Aplicaciones de plasmas de no-equilibrio en procesos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Patino, P.; Castro, A. [Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, P.O. Box 47102, Caracas 1041A (Venezuela)]. e-mail: ppatino@strix.ciens.ucv.ve

    2003-07-01

    By means of optical emission spectroscopy the population of O({sup 3}P) in a non-equilibrium, high voltage, oxygen plasma, and O({sup 3}P), H and OH in another of steam in radio frequency, have been followed. Reactions of both plasmas with liquid hydrocarbons have produced oxidation and/or hydrogenation, depending on the conditions of each one. (Author)

  16. The synergistic effect of ultrasound and chemical penetration enhancers on chorioamnion mass transport.

    Science.gov (United States)

    Azagury, Aharon; Khoury, Luai; Adato, Yair; Wolloch, Lior; Ariel, Ilana; Hallak, Mordechai; Kost, Joseph

    2015-02-28

    In our previous study we proposed the use of chemical penetration enhancers for noninvasive detection of fetus abnormalities that can also be utilized for direct fetal drug delivery. In an attempt to further increase the mass transport rate across the amniotic membrane, thus shortening the procedure and improving the applicability of the proposed procedure, the effect and mechanism of combining ultrasound exposure with chemical penetration enhancers' application were assessed. The combined effect was evaluated in vitro on post-delivery human amniotic membrane and ex vivo on rat's whole amniotic sac. Ultrasound effect has been assessed by dye experiments using a customized image analysis program. Additional insights of ultrasound effect's mechanism on biological membranes are presented. Previously we have determined that chemical penetration enhancers affect the fetal membranes via two mechanisms termed as 'extractors' and 'fluidizers'. In this study, we found that combining ultrasound with a 'fluidizer' CPE (e.g. bupivacaine) results in a synergistic enhancement (90-fold) of fetal membrane's mass transport, while combining ultrasound with 'extractors' (e.g. ethanol and NMP) results in an antagonistic effect. The combined procedure is faster and gain greater accuracy than the applications of sole chemical penetration enhancers.

  17. The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Cools, Pieter, E-mail: Pieter.cools@ugent.be; Van Vrekhem, Stijn; De Geyter, Nathalie; Morent, Rino

    2014-12-01

    Surface modification of polymers for biomedical applications is a thoroughly studied area. The goal of this paper is to show the use of atmospheric pressure plasma technology for the treatment of polyethylene shoulder implants. Atmospheric pressure plasma polymerization of methyl methacrylate will be performed on PE samples to increase the adhesion between the polymer and a PMMA bone cement. For the plasma polymerization, a dielectric barrier discharge is used, operating in a helium atmosphere at an ambient pressure. Parameters such as treatment time, monomer gas flow and discharge power are varied one at a time. Chemical and physical changes at the sample surface are studied making use of X-ray photoelectron spectroscopy and atomic force microscopy measurements. Coating thicknesses are determined by making use of optical reflectance spectroscopy. After characterization, the coated samples are incubated into a phosphate buffered saline solution for a minimum of one week at 37 °C, testing the coating stability when exposed to implant conditions. The results show that PMMA coatings can be deposited with a high degree of control in terms of chemical composition and layer thickness. - Highlights: • Medium pressure DBD successfully activates UHMWPE substrates. • Deposition of PMMA like film via atmospheric pressure DBD on activated UHMWPE • Fast deposition rate is confirmed via optical reflectance spectroscopy. • Relative stable coating found after tests in PBS solution and analysed via FT-IR.

  18. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  19. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  20. Enhanced photocatalytic properties of nanoclustered P-doped TiO2 films deposited by advanced atmospheric plasma jet.

    Science.gov (United States)

    Seo, Hyung-Kee; Elliott, C Michael; Ansari, S G

    2012-09-01

    A facile preparation of P-doped TiO2 nanoclusters onto fluorine-doped tin oxide (FTO) glass by an advanced atmospheric plasma jet (AAP jet) is reported here. Titanium tetrachloride (TiCl4) and phosphorus trichloride (PCl3) were used as precursors. Radio frequencies were used to generate plasma at fix powder with Argon as carrier gas. Films were deposited at 500 degrees C for 10 minutes. For comparison, as-prepared, annealed and deposited at 500 degrees C samples were studied for chemical/physical properties by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Optical properties were studied by using UV-Vis spectroscopy which indicated a reduction in optical band with P-doping. The rhodamine B (Rh-B) degradation by P-doped TiO2 deposited at 500 degrees C showed enhanced degradation efficiency than that of annealed TiO2. The suggested deposition method appears to be suitable for the synthesis of photocatalyst with proper control over dopants.

  1. Photon Production in a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density: Complete Leading Order Results

    Institute of Scientific and Technical Information of China (English)

    LONG Jia-Li; HE Ze-Jun; MA Yu-Gang

    2006-01-01

    @@ We investigate hard photon production of the near-collinear bremsstrahlung and a new process called the inelastic pair annihilation, fully including the LPM effect, in a chemically equilibrating quark-gluon plasma at finite baryon density, and find that the effect of the system evolution on the photon production and large contribution of the bremsstrahlung make the total photon yield of the two processes as a strongly increasing function of the initial quark chemical potential.

  2. Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect.

    Science.gov (United States)

    Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker

    2016-05-21

    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.

  3. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Science.gov (United States)

    Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A.

    2017-07-01

    Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH2-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH2-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH2-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH2-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation between early cell morphology and later differentiation stages. Taken together, these data encourage the use of the functionalization procedures here reported in further studies.

  4. Low-concentration chemical sensing using surface-enhanced coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Hua, Xia; Sinyukov, Alexander; Traverso, Andrew; Veronine, Dmitri; Wang, Kai; Xia, Hui; Yang, Wenlong; Yuan, Luqi; Sokolov, Alexei; Scully, Marlan

    2010-10-01

    Measurements of surface enhanced coherent anti-Stokes Raman spectra (CARS) of cyclohexane are carried out. Random aggregates of gold nanoparticles for field enhancement were deposited on a glass substrate and were characterized using atomic force microscopy (AFM). Surface enhancement of the CARS signal by gold nanoparticles is observed. This technique can be used to detect low amounts of chemicals with a higher sensitivity compared to the conventional surface-enhanced Raman spectroscopy (SERS). The lowest detected concentration of cyclohexane in a thin film of methanol was 1%. However, it was not possible to detect any signal from the same sample of cyclohexane without gold nanoparticles using conventional CARS technique. Therefore, surface enhancement is necessary to achieve higher spectroscopy sensitivity. Further studies of nanostructure-enhanced electrical fields are required to quantitatively understand the observed effects and will be performed in the future.

  5. Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Dan; Gou, Li; Ran, Junguo; Zhu, Hong; Zhang, Xiang

    2015-07-01

    Boron-doped nanocrystalline diamond (NCD) exhibits extraordinary mechanical properties and chemical stability, making it highly suitable for biomedical applications. For implant materials, the impact of boron-doped NCD films on the character of cell growth (i.e., adhesion, proliferation) is very important. Boron-doped NCD films with resistivity of 10-2 Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition (MPCVD) process with H2 bubbled B2O3. The crystal structure, diamond character, surface morphology, and surface roughness of the boron-doped NCD films were analyzed using different characterization methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope (SKFM). The cytotoxicity of films was studied by in vitro tests, including fluorescence microscopy, SEM and MTT assay. Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates. MG-63 cells adhered well and exhibited a significant growth on the surface of films, suggesting that the boron-doped NCD films were non-toxic to cells. supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (University of Electronic Science and Technology of China) (No. KFJJ201313)

  6. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  7. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  8. Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiao-Yu [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China); Lu, Ze-Long [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China)

    2014-11-15

    Highlights: • Wet chemical method was used to prepare highly uniform Pr{sub 2}O{sub 3} doped W–Pr{sub 2}O{sub 3} powder. • The Pr{sub 2}O{sub 3} particles significantly refine the grain size of tungsten alloy. • The tensile strength of Pr{sub 2}O{sub 3}/W samples were higher than those of pure W samples. - Abstract: Pr{sub 2}O{sub 3} doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV{sub 0.2} of Pr{sub 2}O{sub 3}/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr{sub 2}O{sub 3}/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W–1 wt% Pr{sub 2}O{sub 3} composites decreased with the same trend, was above 150 W/m K.

  9. Growth of graphene on Cu foils by microwave plasma chemical vapor deposition: The effect of in-situ hydrogen plasma post-treatment

    Science.gov (United States)

    Fang, Liping; Yuan, Wen; Wang, Bing; Xiong, Ying

    2016-10-01

    Microwave plasma chemical vapor deposition (MPCVD) is a promising method for the large-scale production of high-quality graphene. The aim of this work is to investigate the effect of in-situ hydrogen plasma post-treatment on the MPCVD-grown graphene films. By simply varying the duration time of in-situ hydrogen plasma, surface morphology, number of layers and defect density of as-grown graphene films can be manipulated. The role of hydrogen plasma can be proposed from our observations, promoting to further grow graphene films in the early stage and consequently acting as an etching agent to thin graphene films in the later stage. On the basis of above mechanism, monolayer graphene films with low defect density and smooth surface can be grown by adjusting the times of the growing step and the plasma post-treatment step. This additional in-situ hydrogen plasma post-treatment may be significant for growing well-defined graphene films with controllable defects and number of layers.

  10. Enhancement of corrosion resistance for plasma nitrided AISI 4140 steel by plain air plasma post-oxidizing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiqiang; Liu, Han; Ye, Xuemei [Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164 (China); Chai, Yating [Materials Research and Education Center, Auburn University, AL 36849 (United States); Hu, Jing, E-mail: jinghoo@126.com [Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164 (China); Materials Research and Education Center, Auburn University, AL 36849 (United States)

    2015-05-25

    Highlights: • Plain air was primarily used for plasma post-oxidation for AISI 4140 steel. • A thin iron oxide layer composed of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} was formed on top of the compound layer. • The ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} was closely related to the post-oxidizing conditions. • Post-oxidizing at 673 K for 60 min brought out highest ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} and optimum corrosion resistance. - Abstract: Plasma post-oxidizing was conducted immediately after plasma nitriding in the same equipment for AISI 4140 steel, and plain air was used as the oxygen bearing gas. The cross-sectional microstructures of the treated samples were observed by optical metallography and scanning electron microcopy (SEM), and the thickness of compound layer was measured accordingly. The phases were determined by X-ray diffraction (XRD), corrosion resistance was evaluated by electrochemical polarization, and the surface morphology before and after polarization test was also observed by SEM. Meanwhile, standard Gibbs free energy of the oxidation reactions existed in Fe–O system was calculated. The results show that a thin iron oxide layer composed of magnetite (Fe{sub 3}O{sub 4}) and hematite (Fe{sub 2}O{sub 3}) is formed on top of the compound layer during plasma post-oxidizing process, and the ratio of magnetite (Fe{sub 3}O{sub 4}) to hematite (Fe{sub 2}O{sub 3}) is depended on plasma post-oxidizing temperature and time. Highest ratio of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} is obtained while post-oxidizing at 673 K for 60 min due to lower standard Gibbs free energy and appropriate forming rate for the formation of Fe{sub 3}O{sub 4} at this temperature. The thin oxide layer brings out significant enhancement of corrosion resistance, especially at higher ratios of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3}, due to the dense and adherent characteristic of Fe{sub 3}O{sub 4} oxide. Surface images of the post-oxidizing specimen

  11. Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma

    Science.gov (United States)

    Kršková, Jana; Skácelová, Dana; Kováčik, Dušan; Ráhel', Jozef; Pret'o, Jozef; Černák, Mirko

    2016-08-01

    The surface of carbon-steel plates was modified by non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) in order to improve the adhesive properties to the NR (natural rubber) green rubber compound. The effect of different treatment times as well as different input power and frequency of supplied high voltage was investigated. The samples were characterized using contact angle and surface free energy measurement, measurement of adhesive properties, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical composition was studied by energy-dispersive X-ray spectroscopy (EDX). Significant increase in wettability was observed even after 2 s of plasma exposure. The surface modification was confirmed also by peel test, where the best results were obtained for 6 s of plasma treatment. In addition the ageing effect was studied to investigate the durability of modification, which is crucial for the industrial applications. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  12. Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge

    Science.gov (United States)

    Gogoi, D.; Choudhury, A. J.; Chutia, J.; Pal, A. R.; Dass, N. N.; Devi, D.; Patil, D. S.

    2011-10-01

    The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.

  13. Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, D.; Choudhury, A.J. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam (India); Chutia, J., E-mail: joyanti_c@sify.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam (India); Pal, A.R.; Dass, N.N. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam (India); Devi, D. [Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam (India); Patil, D.S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2011-10-15

    The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.

  14. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  15. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    Directory of Open Access Journals (Sweden)

    N. Okada

    2017-06-01

    Full Text Available We focused on inductively coupled plasma and reactive ion etching (ICP–RIE for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  16. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    Science.gov (United States)

    Okada, N.; Nojima, K.; Ishibashi, N.; Nagatoshi, K.; Itagaki, N.; Inomoto, R.; Motoyama, S.; Kobayashi, T.; Tadatomo, K.

    2017-06-01

    We focused on inductively coupled plasma and reactive ion etching (ICP-RIE) for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  17. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  18. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

    Indian Academy of Sciences (India)

    Bhabesh Kumar Nath; Aziz Khan; Joyanti Chutia; Arup Ratan Pal; Heremba Bailung; Neelotpal Sen Sarma; Devasish Chowdhury; Nirab Chandra Adhikary

    2014-12-01

    This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm-2 exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  19. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  20. Chemical sputtering of graphite by low temperature nitrogen plasmas at various substrate temperatures and ion flux densities

    NARCIS (Netherlands)

    Bystrov, K.; Morgan, T. W.; Tanyeli, I.; De Temmerman, G.; M. C. M. van de Sanden,

    2013-01-01

    We report measurements of chemical sputtering yields of graphite exposed to low temperature nitrogen plasmas. The influence of surface temperature and incoming ion energy on the sputtering yields has been investigated in two distinct ion flux density regimes. Sputtering yields grow consistently with

  1. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled da...

  2. Enhancement of x-ray yields from heteronuclear cluster plasmas irradiated by intense laser light

    Energy Technology Data Exchange (ETDEWEB)

    Jha, J; Mathur, D; Krishnamurthy, M [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)

    2005-09-28

    We report a new method to enhance the x-ray emission from nano-cluster plasmas formed upon irradiation by intense femtosecond-duration laser pulses. Our experiments demonstrate that when Ar clusters are doped with H{sub 2}O the time-integrated yield of Ar K x-ray emission is enhanced by approximately 12-fold in comparison to that obtained from pure Ar clusters under otherwise identical experimental conditions. A significant alteration in the time-dependent electron density is achieved by the presence of an H{sub 2}O dopant, and this could be the possible reason for the enhancement that is observed. (letter to the editor)

  3. Plasma induced tungsten doping of TiO2 particles for enhancement of photocatalysis under visible light

    OpenAIRE

    Ishida, Yohei; Motokane, Yasutomo; Tokunaga, Tomoharu; Yonezawa, Tetsu

    2015-01-01

    Here we report a novel method for modifying commercially available TiO2 nanoparticles by a microwave-induced plasma technique. After the plasma treatment TiO2 nanoparticles showed enhanced visible absorption due to the doped W atoms, and the photocatalytic methylene blue degradation above 440 nm was successfully improved.

  4. Plasma induced tungsten doping of TiO2 particles for enhancement of photocatalysis under visible light.

    Science.gov (United States)

    Ishida, Yohei; Motokane, Yasutomo; Tokunaga, Tomoharu; Yonezawa, Tetsu

    2015-10-14

    Here we report a novel method for modifying commercially available TiO2 nanoparticles by a microwave-induced plasma technique. After the plasma treatment TiO2 nanoparticles showed enhanced visible absorption due to the doped W atoms, and the photocatalytic methylene blue degradation above 440 nm was successfully improved.

  5. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    Science.gov (United States)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  6. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    DEFF Research Database (Denmark)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu;

    2015-01-01

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Ara...

  7. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    Science.gov (United States)

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312

  8. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    Science.gov (United States)

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.

  9. Zirconia coatings deposited by novel plasma-enhanced aerosol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Miszczak, Sebastian; Pietrzyk, Bozena; Kucharski, Daniel [Institute of Materials Science and Engineering, Lodz University of Technology (Poland)

    2016-05-15

    The sol-gel technique is well known and widely used for manufacturing coatings. An aerosol-gel method is a modification of the classic sol-gel process. Preparation of coatings by this technique involves the formation of an aerosol and its deposition on the coated surfaces, where the aerosol droplets merge into a continuous layer. In this work, an aerosol-gel routine, enhanced with a low-temperature plasma discharge, was used to produce zirconia coatings on different substrates. Low-temperature plasma was used for preactivation of substrate surfaces prior to the sol deposition, and for treatment of deposited layers. The obtained coatings were characterized using optical, electron (SEM), and atomic force (AFM) microscopes, a contact-angle device, a scratch tester, a grazing-incidence X-ray diffractometer (GIXRD), and an infrared spectrometer (FTIR). The results showed a significant influence of substrate plasma pretreatment on the formation and morphology of zirconia thin films. A noticeable effect of low-temperature plasma treatment on the structure and properties of the obtained coatings was also presented. These results allow possible applications of this method for the preparation of zirconia coatings on temperature-sensitive substrates to be predicted. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, S.S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Nayak, C.; Bhattacharyya, D.; Jha, S.N.; Tokas, R.B.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Biswas, A. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Rai, Sanjay [Indus Synchrotron Utilization Division, RRCAT, Indore 452013 (India); Thulasi Raman, K.H.; Rao, G.M. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Kumar, Niranjan [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2015-11-15

    Highlights: • YSZ films are deposited by RF plasma MOCVD using Zr(tod){sub 4} and Y(tod){sub 3} precursors. • Films are deposited under the influence of RF self-bias on the substrates. • Films are characterized by different techniques. • Films properties are dependent on yttria content and film structure. - Abstract: Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod){sub 3}), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod){sub 4}), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  11. Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: Gravimetric and electrochemical results

    Energy Technology Data Exchange (ETDEWEB)

    Boua