WorldWideScience

Sample records for plasma acetate metabolism

  1. Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Nørregaard, Lasse; Solem, Christian

    2014-01-01

    transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant...... physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.......Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300...

  2. Acetate metabolism in Methanothrix soehngenii

    NARCIS (Netherlands)

    Jetten, M.S.M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of

  3. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  4. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Science.gov (United States)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  5. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men

    DEFF Research Database (Denmark)

    van der Beek, Christina M; Canfora, Emanuel E; Lenaerts, Kaatje

    2016-01-01

    , circulating hormones or inflammatory markers. In conclusion distal colonic acetate infusions affected whole-body substrate metabolism, with a pronounced increase in fasting fat oxidation and plasma PYY. Modulating colonic acetate may be a nutritional target to treat or prevent metabolic disorders.......Gut microbial-derived short-chain fatty acids (SCFA) are believed to affect host metabolism and cardiometabolic risk factors. The present study aim was to investigate the effects of proximal and distal colonic infusions with the SCFA acetate on fat oxidation and other metabolic parameters in men...... in the colon for three consecutive test days, enabling colonic acetate (100 or 180 mmol/l) or placebo infusion during fasting conditions and after an oral glucose load (postprandial). Fat oxidation and energy expenditure were measured using an open-circuit ventilated hood system and blood samples were...

  6. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  7. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Lidia De Riccardis

    2016-12-01

    Full Text Available Glatiramer acetate (GA; Copaxone is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS. Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  8. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients.

    Science.gov (United States)

    De Riccardis, Lidia; Ferramosca, Alessandra; Danieli, Antonio; Trianni, Giorgio; Zara, Vincenzo; De Robertis, Francesca; Maffia, Michele

    2016-12-01

    Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4 + , the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4 + T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs) and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4 + T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4 + T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  9. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  10. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  11. Aspects of plasma triglyceride metabolism in children

    NARCIS (Netherlands)

    P.P. Forget

    1975-01-01

    textabstractThis thesis aimed at investigating some aspects of plasma triglyceride metabolism in children. In the introduction general aspects of plasma triglyceride metabolism are presented. Chapter 1 reviews recent litterature data on the intravenous fat tolerance test and on plasma postheparin

  12. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  13. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    Six strains of thermophilic anaerobic acetate-utilizing methanogens were isolated from different full-scale thermophilic biogas plants in China and Denmark. The strain isolated from the Chinese biogas plant was designated KN-6P and the isolates from the Danish full-scale biogas plants were......, utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...... designated HG-1P, LVG-4P R1-1P, SO-2P and V-1P. The isolates were characterized morphologically and physiologically, and their immunological and phylogenetic relatedness to already known isolated strains were established. All isolated strains were identified as organisms belonging to genus Methanosarcina...

  14. Positron emission tomography with [11C]-acetate for evaluation of myocardial oxidative metabolism. Clinical use

    International Nuclear Information System (INIS)

    Litvinova, I.S.; Litvinov, M.M.; Rozhkova, G.G.; Leont'eva, I.V.; Sebeleva, I.A.; Tumanyan, M.R.; Koledinskij, D.G.; Sukhorukov, V.S.

    2001-01-01

    The diagnostic potentials of positron emission tomography (PET) with [ 11 C]-acetate as applied to mitochondrial disorders in children with cardiomyopathies (CMP) are evaluated. PET examinations are performed in 17 patients of the mean age of 7.5 ± 3.1 years with CMP. A dynamic study with [ 11 C]-acetate is conducted to evaluate the Krebs cycle activity. The experiments have indicated to a fewer accumulation of [ 11 C]-acetate and to its slower clearance in the ischemic zone as compared with the normal myocardium. The Krebs cycle activity has been reduced. By means of PET with [ 11 C]-acetate the oxidation rate constant of the Krebs cycle and the [ 11 C]-acetate-activity clearance half-time can be quantified. This makes possible to assess the extent of oxidative metabolism malfunction, including the case of perfusion reduction [ru

  15. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  16. Hormone and glucose metabolic effects of compound cyproterone acetate in women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Ba Ya; Zhao Jinping; Halike, A.

    2008-01-01

    To investigate the clinical efficacy of compound cyproterone acetate(CPY) in the treatment of polycystic ovarian syndrome(PCOS) and study hormone and glucose metabolic effects, thirty-five PCOS patients were treated by compound cyproterone acetate for 3 cycles. The serum LH, FSH and T levels, fasting glucose and fasting insulin were determined before and after 3 cycle's treatment. The results showed that 34 patients had regular menses during CPY therapy. The hirsute and acne score decreased significantly(P 0.05). The results indicate that the compound cyproterone acetate had anti-androgenic effects on PCOS patients and improved their endocrine function and clinical syndrome. (authors)

  17. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  19. In vivo incorporation of 1-14C-acetate into liver and plasma lipids of postnatally overfed rats

    International Nuclear Information System (INIS)

    Aust, L.; Noack, R.; Borchardt, M.; Akademie der Wissenschaften der DDR, Berlin-Buch. Forschungszentrum fuer Molekularbiologie und Medizin)

    1982-01-01

    Postnatal overnutrition due to breeding of rats in small nests (4 pups per dam) leads to distinct metabolic changes in later life stages even in conditions of ad libitum feeding. At an age of 5 months rats from small nests differ from those of large nests (14 pups per dam) in a significant higher level of liver triglycerides and cholesterol esters, whereas changes in plasma lipids concern only the increased cholesterol ester fraction. The relative distribution of in vivo incorporated 1- 14 C-acetate into liver lipids shows a higher moiety in the triglyceride fraction of animals from small nests but no changes of the relative distribution of activity among lipid fractions of plasma. These changes of lipid metabolism are discussed in relation to the development of an obese state of postnatally overfed animals. (author)

  20. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  1. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    Science.gov (United States)

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    Science.gov (United States)

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  3. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  4. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome

    DEFF Research Database (Denmark)

    Perry, Rachel J; Peng, Liang; Barry, Natasha A

    2016-01-01

    Obesity, insulin resistance and the metabolic syndrome are associated with changes to the gut microbiota; however, the mechanism by which modifications to the gut microbiota might lead to these conditions is unknown. Here we show that increased production of acetate by an altered gut microbiota i...

  5. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  6. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography

    International Nuclear Information System (INIS)

    Brown, M.A.; Myears, D.W.; Bergmann, S.R.

    1988-01-01

    Noninvasive quantification of regional myocardial metabolism would be highly desirable to evaluate pathogenetic mechanisms of heart disease and their response to therapy. It was previously demonstrated that the metabolism of radiolabeled acetate, a readily utilized myocardial substrate predominantly metabolized to carbon dioxide (CO2) by way of the tricarboxylic acid cycle, provides a good index of oxidative metabolism in isolated perfused rabbit hearts because of tight coupling between the tricarboxylic acid cycle and oxidative phosphorylation. In the present study, in a prelude to human studies, the relation between myocardial clearance of carbon-11 (11C)-labeled acetate and myocardial oxygen consumption was characterized in eight intact dogs using positron emission tomography. Anesthetized dogs were studied during baseline conditions and again during either high or low work states induced pharmacologically. High myocardial extraction and rapid blood clearance of tracer yielded myocardial images of excellent quality. The turnover (clearance) of 11C radioactivity from the myocardium was biexponential with the mean half-time of the dominant rapid phase averaging 5.4 +/- 2.2, 2.8 +/- 1.3 and 11.1 +/- 1.3 min in control, high and low work load studies, respectively. No significant difference was found between the rate of clearance of 11C radioactivity from the myocardium measured noninvasively with positron emission tomography and the myocardial efflux of 11CO2 measured directly from the coronary sinus. The rate of clearance of the 11C radioactivity from the heart correlated closely with myocardial oxygen consumption (r = 0.90, p less than 0.001) as well as with the rate-pressure product (r = 0.95, p less than 0.001). Hence, the rate of oxidation of 11C-acetate can be determined noninvasively with positron emission tomography, providing a quantitative index of oxidative metabolism under diverse conditions

  7. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.

    Science.gov (United States)

    Peebo, Karl; Valgepea, Kaspar; Nahku, Ranno; Riis, Gethe; Oun, Mikk; Adamberg, Kaarel; Vilu, Raivo

    2014-06-01

    Elimination of acetate overflow in aerobic cultivation of Escherichia coli would improve many bioprocesses as acetate accumulation in the growth environment leads to numerous negative effects, e.g. loss of carbon, inhibition of growth, target product synthesis, etc. Despite many years of studies, the mechanism and regulation of acetate overflow are still not completely understood. Therefore, we studied the growth of E. coli K-12 BW25113 and several of its mutant strains affecting acetate-related pathways using the continuous culture method accelerostat (A-stat) at various specific glucose consumption rates with the aim of diminishing acetate overflow. Absolute quantitative exo-metabolome and proteome analyses coupled to metabolic flux analysis enabled us to demonstrate that onset of acetate overflow can be postponed and acetate excretion strongly reduced in E. coli by coordinated activation of phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) and tricarboxylic acid (TCA) cycles. Fourfold reduction of acetate excretion (2 vs. 8 % from total carbon) at fastest growth compared to wild type was achieved by deleting the genes responsible for inactivation of acetyl-CoA synthetase protein (pka) and TCA cycle regulator arcA. The Δpka ΔarcA strain did not accumulate any other detrimental by-product besides acetate and showed identical μ max and only ~5 % lower biomass yield compared to wild type. We conclude that a fine-tuned coordination between increasing the recycling capabilities of acetate in the PTA-ACS node through a higher concentration of active acetate scavenging Acs protein and downstream metabolism throughput in the TCA cycle is necessary for diminishing overflow metabolism of acetate in E. coli and achieving higher target product production in bioprocesses.

  8. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  9. Surface display for metabolic engineering of industrially important acetic acid bacteria

    Directory of Open Access Journals (Sweden)

    Marshal Blank

    2018-04-01

    Full Text Available Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF was used to deliver alkaline phosphatase (PhoA to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.

  10. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis

    International Nuclear Information System (INIS)

    Schumann, W.C.; Magnusson, I.; Chandramouli, V.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1991-01-01

    To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, [2-14C]acetate, [2-14C]ethanol, and [1-14C]ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With [2-14C]acetate and [2-14C]ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of [2-14C]acetate being primarily in liver. Therefore, [2-14C]acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from [2-14C]acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. [1,3-14C]Acetone formation from the [2-14C]acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after [1-14C]ethanol administration

  11. New Perspectives on Acetate and One-Carbon Metabolism in the Methanoarchaea

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, James [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-20

    Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to bicarbonate. Although widespread in prokaryotes of the domains Bacteria and Archaea, few have been investigated and the physiological functions are largely unknown. Carbonic anhydrases are of biotechnological interest for carbon dioxide capture and sequestration at point sources. Prokaryotes encode three independently evolved classes. The alpha-class is restricted to a few pathogens and the other two are uniformly distributed in phylogenetically and physiologically diverse species. Although wide-spread in prokaryotes, only three gamma-class enzymes have been biochemically characterized and the physiological functions have not been investigated. The gamma-class is prominent in anaerobic acetate-utilizing methane-producing species of the genus Methanosarcina that encode three subclasses. Enzymes from two of the subclasses, Cam and CamH from Methanosarcina thermophila, have been characterized and found to utilize iron in the active site which is the first example of an iron-containing carbonic anhydrase. No representative of the third subclass has been isolated, although this subclass constitutes the great majority of the β-class. This grant application proposed to characterize gamma-class carbonic anhydrases from diverse anaerobic prokaryotes from the domains Bacteria and Archaea to broaden the understanding of this enzyme. In particular, the three subclasses present the genetically tractable acetate-utilizing methanogen Methanosarcina acetivorans will be investigated to extend studies of acetate and one-carbon metabolism in this species. A genetic approach will be taken to ascertain the physiological functions. It is also proposed to delve deeper into the mechanism of Cam from M. thermophila, the archetype of the gamma-class, via a high resolution neutron structure and kinetic analysis of site-specific amino acid replacement variants. In the course of the investigation, goals were added to

  12. Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model

    DEFF Research Database (Denmark)

    Flori, Alessandra; Liserani, Matteo; Frijia, Francesca

    2015-01-01

    Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fat...

  13. Identification and induction of cytochrome P450s involved in the metabolism of flavone-8-acetic acid in mice

    OpenAIRE

    Pham, Minh Hien; Rhinn, Hervé; Auzeil, Nicolas; Regazzetti, Anne; Harami, Djamel Eddine; Scherman, Daniel; Chabot, Guy G.

    2011-01-01

    The metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly responsible for its potent anticancer activity in mice. The purpose of this study was to identify the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3′,4′-dihydrodiol-FAA, 5,6-epoxy-FAA, 4′-OH-FAA, 3′-OH-FAA, 3′,4′-epoxy-FAA and 6-OH-FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone...

  14. CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans.

    Science.gov (United States)

    Kim, Jeong Nam; Burne, Robert A

    2017-04-01

    In the dental caries pathogen Streptococcus mutans , phosphotransacetylase (Pta) and acetate kinase (Ack) convert pyruvate into acetate with the concomitant generation of ATP. The genes for this pathway are tightly regulated by multiple environmental and intracellular inputs, but the basis for differential expression of the genes for Pta and Ack in S. mutans had not been investigated. Here, we show that inactivation in S. mutans of ccpA or codY reduced the activity of the ackA promoter, whereas a ccpA mutant displayed elevated pta promoter activity. The interactions of CcpA with the promoter regions of both genes were observed using electrophoretic mobility shift and DNase protection assays. CodY bound to the ackA promoter region but only in the presence of branched-chain amino acids (BCAAs). DNase footprinting revealed that the upstream region of both genes contains two catabolite-responsive elements ( cre1 and cre2 ) that can be bound by CcpA. Notably, the cre2 site of ackA overlaps with a CodY-binding site. The CcpA- and CodY-binding sites in the promoter region of both genes were further defined by site-directed mutagenesis. Some differences between the reported consensus CodY binding site and the region protected by S. mutans CodY were noted. Transcription of the pta and ackA genes in the ccpA mutant strain was markedly different at low pH relative to transcription at neutral pH. Thus, CcpA and CodY are direct regulators of transcription of ackA and pta in S. mutans that optimize acetate metabolism in response to carbohydrate, amino acid availability, and environmental pH. IMPORTANCE The human dental caries pathogen Streptococcus mutans is remarkably adept at coping with extended periods of carbohydrate limitation during fasting periods. The phosphotransacetylase-acetate kinase (Pta-Ack) pathway in S. mutans modulates carbohydrate flux and fine-tunes the ability of the organisms to cope with stressors that are commonly encountered in the oral cavity. Here, we

  15. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells.

    Directory of Open Access Journals (Sweden)

    Jakub Orzechowski Westholm

    Full Text Available Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.

  16. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans.

    Science.gov (United States)

    Smith, Gordon I; Jeukendrup, Asker E; Ball, Derek

    2007-07-01

    We conducted this study to quantify the oxidation of exogenous acetate and to determine the effect of increased acetate availability upon fat and carbohydrate utilization in humans at rest. Eight healthy volunteers (6 males and 2 females) completed 2 separate trials, 7 d apart in a single-blind, randomized, crossover design. On each occasion, respiratory gas and arterialized venous blood samples were taken before and during 180 min following consumption of a drink containing either sodium acetate (NaAc) or NaHCO3 at a dose of 2 mmol/kg body mass. Labeled [1,2 -13C] NaAc was added to the NaAc drink to quantify acetate oxidation. Both sodium salts induced a mild metabolic alkalosis and increased energy expenditure (P < 0.05) to a similar magnitude. NaHCO3 ingestion increased fat utilization from 587 +/- 83 kJ/180 min to 693 +/- 101 kJ/180 min (P = 0.01) with no change in carbohydrate utilization. Following ingestion of NaAc, the amount of fat and carbohydrate utilized did not differ from the preingestion values. However, oxidation of the exogenous acetate almost entirely (90%) replaced the additional fat that had been oxidized during the bicarbonate trial. We determined that 80.1 +/- 2.3% of an exogenous source of acetate is oxidized in humans at rest. Whereas NaHCO3 ingestion increased fat oxidation, a similar response did not occur following NaAc ingestion despite the fact both sodium salts induced a similar increase in energy expenditure and shift in acid-base balance.

  18. Free and proteic aminoacids from acetate 14C metabolism in detached leaves of coffee plant

    International Nuclear Information System (INIS)

    Brasil, O.G.; Crocomo, O.J.

    1981-01-01

    The acetate 14 C was studied as the forerunner of proteic and free aminoacids in detached leaves of coffee (coffea arabica L.cv. Mundo Novo). The detached leaves were incubated with acetate -1- 14 C and -2- 14 C during several times (15, 30, 45, 60, 90, 120, 150 and 180 minutes), out of luminosity. The ethanol 80% soluble fraction gave origin to free aminoacid after ion - exchange chromatography. The insoluble fraction through acid hydrolisis furnished proteic aminoacids. The data showed that the acetate molecules contributed for the aminoacids molecules structure, methylic carbon being more incorporated than the carboxylic carbon. (Author) [pt

  19. Microsomal metabolism of trenbolone acetate metabolites: Transformation product formation and bioactivity.

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbo...

  20. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  1. Metabolism of [14C]indole-3-acetic acid by the cortical and stelar tissues of Zea mays L. roots

    International Nuclear Information System (INIS)

    Nonhebel, H.M.; Hillman, J.R.; Crozier, A.; Wilkins, M.B.

    1985-01-01

    Reverse-phase high-performance liquid chromatography was used to analyse 14 C-labelled metabolites of idole-3-acetic acid (IAA) formed in the cortical and stelar tissues of Zea mays roots. After a 2-h incubation in [ 14 C]IAA, stelar segments had metabolised between 1-6% of the methanol-extractable radioactivity compared with 91-92% by the cortical segments. The pattern of metabolites produced by cortical segments was similar to that produced by intact segments bathed in aqueous solutions of [ 14 C]IAA. In contrast, when IAA was supplied in agar blocks to stelar tissue protruding from the basal ends of segments, negligible metabolism was evident. On the basis of its retention characteristics both before and after methylation, the major metabolite of [ 14 C]IAA in Zea mays root segments was tentatively identified by high-performance liquid chromatography as oxindole-3-acetic acid. (orig.)

  2. Disposition of isoflupredone acetate in plasma, urine and synovial fluid following intra-articular administration to exercised Thoroughbred horses.

    Science.gov (United States)

    Knych, Heather K; Harrison, Linda M; White, Alexandria; McKemie, Daniel S

    2016-01-01

    The use of isoflupredone acetate in performance horses and the scarcity of published pharmacokinetic data necessitate further study. The objective of the current study was to describe the plasma pharmacokinetics of isoflupredone acetate as well as time-related urine and synovial fluid concentrations following intra-articular administration to horses. Twelve racing-fit adult Thoroughbred horses received a single intra-articular administration (8 mg) of isoflupredone acetate into the right antebrachiocarpal joint. Blood, urine and synovial fluid samples were collected prior to and at various times up to 28 days post drug administration. All samples were analyzed using liquid chromatography-Mass Spectrometry. Plasma data were analyzed using a population pharmacokinetic compartmental model. Maximum measured plasma isoflupredone concentrations were 1.76 ± 0.526 ng/mL at 4.0 ± 1.31 h and 1.63 ± 0.243 ng/mL at 4.75 ± 0.5 h, respectively, for horses that had synovial fluid collected and for those that did not. The plasma beta half-life was 24.2 h. Isoflupredone concentrations were below the limit of detection in all horses by 48 h and 7 days in plasma and urine, respectively. Isoflupredone was detected in the right antebrachiocarpal and middle carpal joints for 8.38 ± 5.21 and 2.38 ± 0.52 days, respectively. Results of this study provide information that can be used to regulate the use of intra-articular isoflupredone in the horse. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Effect of cadmium on lipid metabolism of brain. In vivo incorporation of labelled acetate into lipids

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, S; Gill, K D; Nath, R

    1987-01-01

    The effect of early postnatal cadmium exposure on the in vivo incorporation of (1-/sup 14/C) sodium acetate into various lipid classes of the weanling rat brain was studied. A stimulated incorporation of the label was observed in total lipids, phospholipids, cholesterol, cerebrosides and sulphatides of the brain of Cd-exposed animals compared to controls.

  4. Rapid measurement of 13C-enrichment of acetic, propionic and butyric acids in plasma with solid phase microextraction coupled to gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Moreau, N.M.; Delepee, R.; Maume, D.; Le Bizec, B.; Nguyen, P.G.; Champ, M.M.; Martin, L.J.; Dumon, H.J.

    2004-01-01

    An analytical procedure based on solid phase microextraction (SPME) has been developed to quantify [1- 13 C]-labelled short-chain fatty acids (SCFAs)--mainly acetic, propionic and butyric acids--in a small volume (120 μl) of deproteinised plasma (corresponding to 200 μl of raw plasma) by gas chromatography-mass spectrometry (GC-MS) analysis. Simultaneous SCFA extraction was optimal after 5 min using a 75 μm Carboxen/polydimethylsiloxane-coated fiber. The base peak of the three analytes has been characterised by middle-resolution mass spectrometry (R>6000). All these data allowed the specificity reinforcement of the measure. The validation of the method also considered the linearity and the repeatability of the [ 13 C]SCFA measurements by SPME-GC-MS. Results were linear in a range from 5 to 100 mol% of [ 13 C]SCFA enrichment and the method provided a good intra-day (R.S.D. 13 C]butyric acid) by cecal infusion before blood sampling in portal vein. Results of [1- 13 C]butyric acid enrichment showed an excellent correlation (r 2 =0.9832; n=30) with data obtained on the same samples using a previously published procedure based on diethyl extraction and derivatisation before GC-MS analyses. SPME coupled to GC-MS appears to be a powerful analytical tool for the direct isotopic measurements of low deproteinised plasma volume avoiding consequently preliminary treatment such as extraction or derivatisation. The presented method could be of great interest for real time [ 13 C]SCFA plasma determination of in metabolic in vivo studies in small animal models

  5. GPIHBP1 and Plasma Triglyceride Metabolism.

    Science.gov (United States)

    Fong, Loren G; Young, Stephen G; Beigneux, Anne P; Bensadoun, André; Oberer, Monika; Jiang, Haibo; Ploug, Michael

    2016-07-01

    GPIHBP1, a GPI-anchored protein in capillary endothelial cells, is crucial for the lipolytic processing of triglyceride-rich lipoproteins (TRLs). GPIHBP1 shuttles lipoprotein lipase (LPL) to its site of action in the capillary lumen and is essential for the margination of TRLs along capillaries - such that lipolytic processing can proceed. GPIHBP1 also reduces the unfolding of the LPL catalytic domain, thereby stabilizing LPL catalytic activity. Many different GPIHBP1 mutations have been identified in patients with severe hypertriglyceridemia (chylomicronemia), the majority of which interfere with folding of the protein and abolish its capacity to bind and transport LPL. The discovery of GPIHBP1 has substantially revised our understanding of intravascular triglyceride metabolism but has also raised many new questions for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    2014-01-01

    (NCFM) on the intestinal metabolome (jejunum, caecum, and colon) in mice by comparing NCFM mono-colonized (MC) mice with GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice...... by deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α...

  7. Disposition of methylprednisolone acetate in plasma, urine, and synovial fluid following intra-articular administration to exercised thoroughbred horses.

    Science.gov (United States)

    Knych, H K; Harrison, L M; Casbeer, H C; McKemie, D S

    2014-04-01

    Methylprednisolone acetate (MPA) is commonly administered to performance horses, and therefore, establishing appropriate withdrawal times prior to performance is critical. The objectives of this study were to describe the plasma pharmacokinetics of MPA and time-related urine and synovial fluid concentrations following intra-articular administration to sixteen racing fit adult Thoroughbred horses. Horses received a single intra-articular administration of MPA (100 mg). Blood, urine, and synovial fluid samples were collected prior to and at various times up to 77 days postdrug administration and analyzed using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Maximum measured plasma MPA concentrations were 6.06 ± 1.57 at 0.271 days (6.5 h; range: 5.0-7.92 h) and 6.27 ± 1.29 ng/mL at 0.276 days (6.6 h; range: 4.03-12.0 h) for horses that had synovial fluid collected (group 1) and those that did not (group 2), respectively. The plasma terminal half-life was 1.33 ± 0.80 and 0.843 ± 0.414 days for groups 1 and 2, respectively. MPA was undetectable by day 6.25 ± 2.12 (group 1) and 4.81 ± 2.56 (group 2) in plasma and day 17 (group 1) and 14 (group 2) in urine. MPA concentrations in synovial fluid remained above the limit of detection (LOD) for up to 77 days following intra-articular administration, suggesting that plasma and urine concentrations are not a good indicator of synovial fluid concentrations. © 2013 John Wiley & Sons Ltd.

  8. Relationship between plasma and tissue parameters of leucine metabolism

    International Nuclear Information System (INIS)

    Vazquez, J.A.; Paul, H.S.; Adibi, S.A.

    1986-01-01

    Using a primed continuous infusion of [1- 14 C] leucine, the authors investigated parameters of leucine metabolism in plasma, expired air, and tissues of fed and 48-hour starved rats. The ratios of muscle/plasma specific activity of α-ketoisocaproate (KIC) in fed and starved rats, respectively were not significantly different from one (1.07 +/- 0.14 and 0.97 +/- 0.10, mean +/- SE, 7 rats). The ratio of muscle/plasma specific activity of leucine was also not significantly different from one (0.86 +/- 0.11) in fed rats, but was significantly lower than one (0.80 +/- 0.07) in starved rats. The rate of leucine oxidation was approximately 32% higher when calculated based on plasma KIC rather than leucine specific activity. However, starvation significantly increased the rate of leucine oxidation with either specific activity. The rate of leucine incorporation into whole body protein was unaffected by starvation (32.7 +/- 3.5 vs 36.1 +/- 2.5 μmol/100 g/h), but the incorporation into total protein of liver (1350 +/- 140 vs 780 +/- 33 nmol) and of skeletal muscle (1940 +/- 220 vs 820 +/- 60 nmol) was significantly decreased. The authors conclude that a) leucine or KIC specific activity in muscle is better predicted by plasma KIC than leucine specific activity, and b) the tracer infusion technique is valid for the study of leucine oxidation but not for leucine incorporation into whole body protein

  9. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  10. Estimation of chromium-51 ethylene diamine tetra-acetic acid plasma clearance: A comparative assessment of simplified techniques

    International Nuclear Information System (INIS)

    Picciotto, G.; Cacace, G.; Mosso, R.; De Filippi, P.G.; Cesana, P.; Ropolo, R.

    1992-01-01

    Chromium-51 ethylene diamine tetra-acetic acid ( 51 Cr-EDTA) total plasma clearance was evaluated using a multi-sample method (i.e. 12 blood samples) as the reference compared with several simplified methods which necessitated only one or few blood samples. The following 5 methods were evaluated: Terminal slope-intercept method with 3 blood samples, simplified method of Broechner-Mortensen and 3 single-sample methods (Constable, Christensen and Groth, Tauxe). Linear regression analysis was performed. Standard error of estimate, bias and imprecision of different methods were evaluated. For 51 Cr-EDTA total plasma clearance greater than 30 ml.min -1 , the results which most approximated the reference source were obtained by the Christensen and Groth method at a sampling time of 300 min (inaccuracy of 4.9%). For clearances between 10 and 30 ml.min -1 , single-sample methods failed to give reliable results. Terminal slope-intercept and Broechner-Mortensen methods were better, with inaccuracies of 17.7% and 16.9%, respectively. Although sampling times at 180, 240 and 300 min are time-consuming for patients, 51 Cr-EDTA total plasma clearance can be accurately calculated for values greater than 10 ml.min -1 using the Broechner-Mortensen method. In patients with clearance greater than 30 ml.min -1 , single-sample techniques provide a good alternative to the multi-sample method; the choice of the method to be used depends on the degree of accuracy required. (orig.)

  11. A UFLC/MS/MS method for simultaneous quantitation of alisol A and alisol B 23-acetate from Alisma orientale (Sam. Juz. in rat plasma

    Directory of Open Access Journals (Sweden)

    Yaowen Zhang

    2014-10-01

    Full Text Available A sensitive and reliable ultra fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS method has been developed and validated for simultaneous quantitation of alisol A and alisol B 23-acetate from Alisma orientale (Sam. Juz. in rat plasma using diazepam as an internal standard (IS. The plasma samples were extracted by liquid–liquid extraction with methyl tert-butyl ether and separated on a Venusil MP C18 column (100 mm × 2.1 mm, 3.0 mm (Venusil, China using gradient elution with the mobile phase consisting of methanol and 0.1% acetic acid in water at a flow rate of 0.4 ml/min. The two analytes were monitored with positive electrospray ionization by multiple reaction monitoring mode (MRM. The lower limit of quantitation was 5.00 ng/ml for alisol A and 5.00 ng/ml for alisol B 23-acetate. The calibration curves were linear in the range of 5.00–2500 ng/ml for alisol A and 5–2500 ng/ml for alisol B 23-acetate. The mean extraction recoveries were above 63.8% for alisol A and 68.0% for alisol B 23-acetate from biological matrixes. Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria (15%. The validated method was successfully applied to the pharmacokinetic study of alisol A and alisol B 23-acetate in rat plasma after oral administration of alcohol extract of Alismatis Rhizoma.

  12. Vitamin E plasma kinetics in swine show low bioavailability and short half-life of -α-tocopheryl acetate.

    Science.gov (United States)

    van Kempen, T A T G; Reijersen, M H; de Bruijn, C; De Smet, S; Michiels, J; Traber, M G; Lauridsen, C

    2016-10-01

    Vitamin E is important for animal production because of its effects on health and product quality, but the amount and form required remains controversial. Our objective was to quantify the absolute bioavailability of oral -α-tocopheryl acetate (α-TAc) in swine (22 ± 1 kg and 8 wk old, fitted with jugular catheters) adapted to a diet supplemented with 75 mg/kg -α-TAc; 75 mg/kg was chosen because this level represents the nonweighted average inclusion level in piglet diets across Western key swine-producing countries. For this, a 350-g test meal (6% fat) was supplied at time 0 containing 75 mg deuterated (D9) -α-TAc to 9 animals, and 8 animals received an intravenous () dose containing deuterated (D6) RRR-α-tocopherol (α-T) at one-eighth the oral dose and a test meal without supplemental vitamin E. Plasma samples (12 to 13 per animal) were obtained at incremental intervals over 75 h for analysis of deuterated α-T using liquid chromatography-tandem mass spectrometry. Surprisingly, the i.v. dose rapidly disappeared from plasma and then reappeared. The half-life for this first peak was only 1.7 ± 0.3 min. The second peak had an appearance rate (Ka) of 0.10 ± 0.06 d and a half-life of 5.9 ± 1.2 h. Oral dosing resulted, after a lag of 56 min, in a Ka of 0.91 ± 0.21 d and a half-life of 2.6 ± 0.8 h. The bioavailability for oral α-TAc was 12.5%, whereas the area under the curve was only 5.4%. This low bioavailability, small area under the curve, and short half-life are likely because of various factors, that is, the use of only 6% fat in the diet, the use of the acetate ester and , and the high dose relative to requirements. In conclusion, i.v. dosed vitamin E shows both a rapid and a very slow pool, whereas orally dosed vitamin E shows a single slow pool. The oral material has a very short half-live (44% of i.v. or 2.6 h), low bioavailability (12.5%), and a very small area under the curve (5.4%), bringing into question the efficacy of typical doses of vitamin

  13. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  14. Effect of x irradiation on the biochemical maturation of rat cerebellum: Metabolism of [14C]glucose and [14C]acetate

    International Nuclear Information System (INIS)

    Patel, A.J.; Balazs, R.

    1975-01-01

    The effect was studied of selective x-irradiation of the cerebellum (100 R daily in the first 10 days after birth) on the maturation of glucose metabolism and the development of metabolic compartmentation, in 10-, 16-, and 23-day-old rats by using, respectively, [2- 14 C]glucose and [1- 14 C] acetate (40 μ Ci/100 g body weight each) as precursors. At day 10 significant changes, in comparison with the unirradiated controls, were observed: aspartate and γ-aminobutyrate, respectively, contained 36 percent and 64 percent more and glutamine 42 percent less glucose-carbon combined in amino acids; the glutamine/glutamate specific radioactivity ratio (RSA) was 25 percent less, and the conversion of both glucose and acetate carbons into acid-insoluble constituents was markedly reduced. However, in the postirradiation period both the conversion of glucose carbon into amino acids, and the RSA of glutamine after the administration of [ 14 C]acetate increased in a more or less normal fashion, although certain quantitative differences were noted. It seems, therefore, that the normal progress of biochemical differentiation was only affected to a small degree by the irradiation of the cerebellum, although the treatment interfered severely with cell proliferation. (U.S.)

  15. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness

    DEFF Research Database (Denmark)

    Dullaart, Robin P F; Plomgaard, Peter; de Vries, Rindert

    2009-01-01

    BACKGROUND: Apolipoprotein (apo) M may exert anti-atherogenic properties in experimental studies. Its hepatic gene expression may be linked to glucose and lipid metabolism. Plasma apoM is decreased in obese mouse models. We hypothesized that plasma apoM is lower in metabolic syndrome (Met...

  16. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... resulted in acetate, CO2, and acetoin replacing formate and ethanol as end products. Under microaerobic conditions, growth came to a gradual halt, although more than 60% of the glucose was still left. A decline in growth was not observed during microaerobic cultivation when acetate was added to the medium...

  17. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Jefferson S. de; Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Oliveira, Fernando J.S. [Petroleo Brasileiro S.A., Gerencia de Meio Ambiente, Rio de Janeiro, RJ (Brazil); Frescura, Vera L.A.; Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil)

    2012-11-15

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L{sup -1} HNO{sub 3} solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for {sup 75}As and {sup 82}Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 ({sup 208}Pb) for CFN and MN, 107 ({sup 107}Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 ({sup 82}Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 ({sup 52}Cr) in acetic acid solutions, arising from the formation of {sup 40}Ar{sup 12}C{sup +}. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes

  18. Flavanol plasma bioavailability is affected by metabolic syndrome in rats

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A.

    2017-01-01

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state

  19. Radioimmunological determination of plasma androstenione and dehydroepiandrosterone levels in hirsute women before and during therapy using cyproterone acetate and ethinyl estradiol

    International Nuclear Information System (INIS)

    Holzer, R.

    1982-01-01

    Plasma androstendione and dehydroepiandrosterone levels were determined in 54 hirsute women before and after treatment with cyproterone acetate and ethinyl estradiol. Anderostenione levels were, on an average, significantly higher than in normal control persons (1.97+-0.97 ng/ml as compared to 1.54+-0.46 ng/ml) while the dehydroepiandrosterone levels were nearly twice as high (9.99+-5.71 ng/ml as compared to 5.17+-1.98 ng/ml). Increased cortisol and 17-ketosteroid levels were recorded only in a few women with raised androgen levels. The improved clinical picture after therapy was not in all cases accompanied by lower hormone levels. On the other hand, lower hormone levels were measured also in women who did not improve. There appears to be no close correlation between the clinical picture and the plasma androstendione and dehydroepiandrosterone levels. (orig./MG) [de

  20. Identification of metabolically active methanogens in anaerobic digester by DNA Stable-Isotope Probing using 13C-acetate

    Directory of Open Access Journals (Sweden)

    V. Gowdaman

    2015-04-01

    Full Text Available Anaerobic digestion is gaining enormous attention due to the ability to covert organic wastes into biogas, an alternative sustainable energy. Methanogenic community plays a significant role in biogas production and also for proficient functioning of the anaerobic digester. Therefore, this study was carried out to investigate the methanogen diversity of a food waste anaerobic digester. After endogenous respiration, the digester samples were supplemented with isotopes of acetate to enrich methanogen population, and were analyzed using DNA-SIP (Stable-Isotope Probing. Following separation and fractionation of heavy (13C and light (12C DNA, PCR amplification was carried out using archaeal 16S rRNA gene followed by DGGE analysis. Sequencing of the prominent DGGE bands revealed the dominance of Methanocorpusculum labreanum species belonging to hydrogenotrophic Methanomicrobiales, which can produce methane in the presence of H2/CO2 and requires acetate for its growth. This is the first instance where Methanocorpusculum labreanum is being reported as a dominant species in an anaerobic digester operative on food waste.

  1. Test-retest repeatability of myocardial oxidative metabolism and efficiency using standalone dynamic 11C-acetate PET and multimodality approaches in healthy controls.

    Science.gov (United States)

    Hansson, Nils Henrik; Harms, Hendrik Johannes; Kim, Won Yong; Nielsen, Roni; Tolbod, Lars P; Frøkiær, Jørgen; Bouchelouche, Kirsten; Poulsen, Steen Hvitfeldt; Wiggers, Henrik; Parner, Erik Thorlund; Sörensen, Jens

    2018-05-31

    Myocardial efficiency measured by 11 C-acetate positron emission tomography (PET) has successfully been used in clinical research to quantify mechanoenergetic coupling. The objective of this study was to establish the repeatability of myocardial external efficiency (MEE) and work metabolic index (WMI) by non-invasive concepts. Ten healthy volunteers (63 ± 4 years) were examined twice, one week apart, using 11 C-acetate PET, cardiovascular magnetic resonance (CMR), and echocardiography. Myocardial oxygen consumption from PET was combined with stroke work data from CMR, echocardiography, or PET to obtain MEE and WMI for each modality. Repeatability was estimated as the coefficient of variation (CV) between test and retest. MEE CMR , MEE Echo , and MEE PET values were 21.9 ± 2.7%, 16.4 ± 3.7%, and 23.8 ± 4.9%, respectively, P PET values were 4.42 ± 0.90, 4.07 ± 0.63, and 4.58 ± 1.13 mmHg × mL/m 2  × 10 6 , respectively, P = .45. Repeatability for MEE CMR was superior compared with MEE Echo but did not differ significantly compared with MEE PET (6.3% vs 12.9% and 9.4%, P = .04 and .25). CV values for WMI CMR , WMI Echo , and WMI PET were 10.0%, 14.8%, and 12.0%, respectively, (P = .53). Non-invasive measurements of MEE using 11 C-acetate PET are highly repeatable. A PET-only approach did not differ significantly from CMR/PET and might facilitate further clinical research due to lower costs and broader applicability.

  2. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    Science.gov (United States)

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  3. Changes in Growth, Auxin- and Ribonucleic Acid Metabolism in Wheat Coleoptile Sections Following Pulse Treatment with Indole-3-Acetic Acid

    DEFF Research Database (Denmark)

    Truelsen, T.A.; Galston, A.W.

    1966-01-01

    after the pretreatment showed that the attered growth patterns could be ascribed to declining auxin content with time, but not to thc actual concentration in the sections. The results indicate that the metabolic activation brought about by IAA leads to its own disappearance. Such a phenomenon...

  4. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  5. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    Science.gov (United States)

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  6. Phytosterol supplementation does not affect plasma antioxidant capacity in patients with metabolic syndrome.

    Science.gov (United States)

    Sialvera, Theodora-Eirini; Koutelidakis, Antonios E; Richter, Dimitris J; Yfanti, Georgia; Kapsokefalou, Maria; Micha, Renata; Goumas, Giorgos; Diamantopoulos, Emmanouil; Zampelas, Antonis

    2013-02-01

    Several studies have observed decreased levels of lipophilic antioxidants after supplementation with phytosterols and stanols. The aim of this study was to examine the effect of phytosterol supplementation on plasma total antioxidant capacity in patients with metabolic syndrome. In a parallel arm, randomized placebo-controlled design, 108 patients with metabolic syndrome were assigned to consume yogurt beverage which provided 4 g of phytosterols per day or yogurt beverage without phytosterols. The duration of the study was 2 months and the patients in both groups followed their habitual westernized type diet. Blood samples were drawn at baseline and after 2 months, and the total antioxidant capacity of plasma was measured using the ferric reducing antioxidant power of plasma and oxygen radical absorbance capacity assays. After 2 months of intervention, plasma total antioxidant capacity did not differ between and within the intervention and the control groups. Phytosterol supplementation does not affect plasma antioxidant status.

  7. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan

    Directory of Open Access Journals (Sweden)

    Ivan Orlandi

    2014-11-01

    Full Text Available During growth on fermentable substrates, such as glucose, pyruvate, which is the end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via acetaldehyde and acetate, or in mitochondria by direct oxidative decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC is responsible for pyruvate transport into mitochondrial matrix space. During chronological aging, yeast cells which lack the major structural subunit Mpc1 display a reduced lifespan accompanied by an age-dependent loss of autophagy. Here, we show that the impairment of pyruvate import into mitochondria linked to Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates through the malic enzyme-dependent alternative route. In such a way, the TCA cycle operates in a “branched” fashion to generate pyruvate and is depleted of intermediates. Mutant cells cope with this depletion by increasing the activity of glyoxylate cycle and of the pathway which provides the nucleocytosolic acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the mitochondria which, in turn, undergo severe damage. These acquired traits in concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant during chronological aging. Conversely, the activation of the carnitine shuttle by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the short-lived phenotype of the mutant.

  8. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    Science.gov (United States)

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  9. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  10. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  11. Plasma metabolism of apolipoprotein A-IV in humans

    International Nuclear Information System (INIS)

    Ghiselli, G.; Krishnan, S.; Beigel, Y.; Gotto, A.M. Jr.

    1986-01-01

    As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125 I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125 I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day

  12. Metabolism of oxycodone in human hepatocytes from different age groups and prediction of hepatic plasma clearance

    Directory of Open Access Journals (Sweden)

    Timo eKorjamo

    2012-01-01

    Full Text Available Oxycodone is commonly used to treat severe pain in adults and children. It is extensively metabolized in the liver in adults, but the maturation of metabolism is not well understood. Our aim was to study the metabolism of oxycodone in cryopreserved human hepatocytes from different age groups (3 days, 2 and 5 months, 4 years, adult pool and predict hepatic plasma clearance of oxycodone using these data. Oxycodone (0.1, 1 and 10 µM was incubated with hepatocytes for 4 hours, and 1 µM oxycodone also with CYP3A inhibitor ketoconazole (1 µM. Oxycodone and noroxycodone concentrations were determined at several time points with liquid chromatography-mass spectrometry. In vitro clearance of oxycodone was used to predict hepatic plasma clearance, using the well-stirred model and published physiological parameters. Noroxycodone was the major metabolite in all batches and ketoconazole inhibited the metabolism markedly in most cases. A clear correlation between in vitro oxycodone clearance and CYP3A4 activity was observed. The predicted hepatic plasma clearances were typically much lower than the published median total plasma clearance from pharmacokinetic studies. In general, this in vitro to in vivo extrapolation method provides valuable information on the maturation of oxycodone metabolism that can be utilized in the design of clinical pharmacokinetic studies in infants and young children.

  13. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study

    DEFF Research Database (Denmark)

    Jørgenrud, Benedicte; Stene, Lars C; Tapia, German

    2017-01-01

    Aims: The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Method: Up to four longitudinal plasma samples from age 3 months from case......, and lower levels of methionine and 3,4-dihydroxybutyric acid at 3 months of age. Conclusions: Plasma levels of several small, polar metabolites changed with age during early childhood, independent of later islet autoimmunity status and sex. Breastfeeding was associated with higher levels of branched......-chain amino acids, and lower levels of methionine and 3,4-dihydroxybutyric acid....

  14. Structural and metabolic heterogeneity of plasma low density lipoproteins in nonhuman primates

    International Nuclear Information System (INIS)

    Marzetta, C.A.

    1986-01-01

    To test the hypothesis that a variety of precursor particles secreted by the liver could result in heterogeneity of LDL products in plasma, the metabolic fate of selected radiolabeled hepatic lipoproteins evaluated was determined in vivo. The hepatic lipoproteins evaluated were isolated from liver perfusate and were triglyceride-rich VLDL (d < 1.006 or d < 1.017) and phospholipid-rich LDL (1.017 < d < 1.049 or 1.030 < d < 1.063). Radiolabeled autologous plasma LDL were injected into recipient animals together with the radiolabeled hepatic lipoproteins. Density gradient ultracentrifugation and gel filtration were used to characterize the distribution of radiolabeled lipoproteins in the plasma at selected times after injection. A variety of hepatic lipoproteins were precursors to lipoproteins that resembled plasma LDL. Between 22 to 80% of the injected dose of radiolabeled hepatic lipoprotein apo B-100 was converted to plasma LDL-like particles, regardless of the type of hepatic lipoprotein injected. A kinetic model was generated to describe the metabolic behavior of hepatic VLDL-derived and plasma LDL-derived apo B-100 radioactivity. Both models required multiple metabolic pools to fit the data. Hepatic VLDL-derived apo B-100 radioactivity was metabolized rapidly into various kinds of LDL subfractions. This rapid conversion of hepatic VLDL apo B-100 to LDL apo B-100 may be analogous to the portion of plasma VLDL that gets converted to LDL without passing through the delipidation cascade that has been described in humans and has been termed direct LDL production

  15. Metabolic patterns of 14C incorporation by selected vascular plants following field incubations with acetate-2-14C in two plant successional stages in Glacier Bay, Alaska

    International Nuclear Information System (INIS)

    Wu, Pei-Hsing Lin

    1975-01-01

    Metabolic patterns of some vascular plants (Dryas sp., Vaccinium sp., Salix sp., Alnus sp., Epilobium sp.), occurring in successional habitats, following acetate-2- 14 C incubations in the field were demonstrated for the first time. Relative radioactivity within the alcoholic soluble fraction of each species reflects its distribution in successional communities. A high level of 14 C-sugars was present in the plants of the pioneer community; on the other hand a high level of 14 C-organic acids was present in the plants of the forest community. Three patterns, based on the relative activities of the sugar- and organic acid-pools were noted which correspond to the range and the frequency of occurrence of each species in the successional stages. Only two types of 14 C-amino acid levels were noted corresponding to the range of distribution. Plants having less than 10% relative radioactivity in amino acid-pools had a limited range of distribution and reside in only one habitat; plants having more than 10% radioactivity showed wider ranges of distribution occurring in at least two habitats. (auth.)

  16. Metabolism of all-trans-retinoic acid and all-trans-retinyl acetate. Demonstration of common physiological metabolites in rat small intestinal mucosa and circulation

    International Nuclear Information System (INIS)

    Cullum, M.E.; Zile, M.H.

    1985-01-01

    The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [ 3 H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. These data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin

  17. Genetic architecture of plasma adiponectin overlaps with the genetics of metabolic syndrome-related traits

    NARCIS (Netherlands)

    P. Henneman (Peter); Y.S. Aulchenko (Yurii); R.R. Frants (Rune); I.V. Zorkoltseva (Irina); M.C. Zillikens (Carola); M. Frölich (Marijke); B.A. Oostra (Ben); J.A.P. Willems van Dijk (Ko); P. Tikka-Kleemola (Päivi)

    2010-01-01

    textabstractOBJECTIVE - Adiponectin, a hormone secreted by adipose tissue, is of particular interest in metabolic syndrome, because it is inversely correlated with obesity and insulin sensitivity. However, it is not known to what extent the genetics of plasma adiponectin and the genetics of obesity

  18. Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate

    Science.gov (United States)

    Deelchand, Dinesh K.; Nelson, Christopher; Shestov, Alexander A.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-02-01

    In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.

  19. Correlation of plasma B-type natriuretic peptide levels with metabolic risk markers.

    Science.gov (United States)

    Ahued-Ortega, José Armando; León-García, Plácido Enrique; Hernández-Pérez, Elizabeth

    2018-04-17

    Natriuretic peptide type B (BNP) is a marker of myocardium injury. This peptide has been associated with metabolic risk markers, although controversy exists in this regard. The aim of the present study was to determine the correlation of plasma BNP levels with metabolic risk parameters. A retrospective, observational study that included 152 patients, who were classified according to their clinical diagnosis as patients with metabolic syndrome. Plasma BNP levels and clinical metabolic parameters were assessed by using Spearmańs rank correlation coefficient. A significant inverse association with weight (r=-.408; p<.0001) and BMI (r=-.443; p<.001) was obtained. While a positive significant association with systolic pressure (r=.324; p<.001) was observed. A significant decrease was found in BNP levels and components of metabolic syndrome. (p<.05). Based on the results from this study, we can conclude that BNP determination could be an adequate metabolic marker. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  20. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids.

    Science.gov (United States)

    Gallagher, Austin J; Skubel, Rachel A; Pethybridge, Heidi R; Hammerschlag, Neil

    2017-01-01

    Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species ( n  = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

  1. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.

    Science.gov (United States)

    Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi

    2015-07-01

    Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with

  2. Synthesis, Characterization, and Preclinical Evaluation of New Thiazolidin-4-ones Substituted with p-Chlorophenoxy Acetic Acid and Clofibric Acid against Insulin Resistance and Metabolic Disorder

    Directory of Open Access Journals (Sweden)

    Vasantharaju S. Gowdra

    2014-01-01

    Full Text Available We synthesized twenty thiazolidin-4-one derivatives, which were then characterized by standard chromatographic and spectroscopic methods. From the in vitro glucose uptake assay, two compounds behaved as insulin sensitizers, where they enhanced glucose uptake in isolated rat diaphragm. In high-carbohydrate diet-induced insulin resistant mice, these two thiazolidin-4-ones attenuated hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and glucose intolerance. They raised the plasma leptin but did not reverse the diabetes-induced hypoadiponectinemia. Additionally, compound 3a reduced adiposity. The test compounds were also able to reverse the disturbed liver antioxidant milieu. To conclude, these two novel thiazolidin-4-ones modulated multiple mechanisms involved in metabolic disorders, reversing insulin resistance and thus preventing the development of type-2 diabetes.

  3. Synthesis, characterization, and preclinical evaluation of new thiazolidin-4-ones substituted with p-chlorophenoxy acetic acid and clofibric acid against insulin resistance and metabolic disorder.

    Science.gov (United States)

    Gowdra, Vasantharaju S; Mudgal, Jayesh; Bansal, Punit; Nayak, Pawan G; Manohara Reddy, Seethappa A; Shenoy, Gautham G; Valiathan, Manna; Chamallamudi, Mallikarjuna R; Nampurath, Gopalan K

    2014-01-01

    We synthesized twenty thiazolidin-4-one derivatives, which were then characterized by standard chromatographic and spectroscopic methods. From the in vitro glucose uptake assay, two compounds behaved as insulin sensitizers, where they enhanced glucose uptake in isolated rat diaphragm. In high-carbohydrate diet-induced insulin resistant mice, these two thiazolidin-4-ones attenuated hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and glucose intolerance. They raised the plasma leptin but did not reverse the diabetes-induced hypoadiponectinemia. Additionally, compound 3a reduced adiposity. The test compounds were also able to reverse the disturbed liver antioxidant milieu. To conclude, these two novel thiazolidin-4-ones modulated multiple mechanisms involved in metabolic disorders, reversing insulin resistance and thus preventing the development of type-2 diabetes.

  4. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1 : Growth on Mixtures of Acetate and Formate in Continuous Culture

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1979-01-01

    Growth of Pseudomonas oxalaticus in carbon- and energy-limited continuous cultures with mixtures of acetate and formate resulted in the simultaneous utilization of both substrates at all dilution rates tested. During growth on these mixtures, acetate repressed the synthesis of ribulosebisphosphate

  5. The plasma membrane as a capacitor for energy and metabolism

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  6. Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations.

    Science.gov (United States)

    Mehmood, Nasir; Husson, Eric; Jacquard, Cédric; Wewetzer, Sandra; Büchs, Jochen; Sarazin, Catherine; Gosselin, Isabelle

    2015-01-01

    Ionic liquids (ILs) are considered as suitable candidates for lignocellulosic biomass pretreatment prior enzymatic saccharification and, obviously, for second-generation bioethanol production. However, several reports showed toxic or inhibitory effects of residual ILs on microorganisms, plants, and animal cells which could affect a subsequent enzymatic saccharification and fermentation process. In this context, the impact of two hydrophilic imidazolium-based ILs already used in lignocellulosic biomass pretreatment was investigated: 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2]. Their effects were assessed on the model yeast for ethanolic fermentation, Saccharomyces cerevisiae, grown in a culture medium containing glucose as carbon source and various IL concentrations. Classical fermentation parameters were followed: growth, glucose consumption and ethanol production, and two original factors: the respiratory status with the oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) of yeasts which were monitored online by respiratory activity monitoring systems (RAMOS). In addition, yeast morphology was characterized by environmental scanning electron microscope (ESEM). The addition of ILs to the growth medium inhibited the OTR and switched the metabolism from respiration (conversion of glucose into biomass) to fermentation (conversion of glucose to ethanol). This behavior could be observed at low IL concentrations (≤5% IL) while above there is no significant growth or ethanol production. The presence of IL in the growth medium also induced changes of yeast morphology, which exhibited wrinkled, softened, and holed shapes. Both ILs showed the same effects, but [Emim][MeO(H)PO2] was more biocompatible than [Emim][OAc] and could be better tolerated by S. cerevisiae. These two imidazolium-derived ILs were appropriate candidates for useful pretreatment of lignocellulosic biomass in the

  7. Single-sample 99mTc-diethylenetriamine penta-acetate plasma clearance in advanced renal failure by the mean sojourn time approach.

    Science.gov (United States)

    Gref, Margareta C; Karp, Kjell H

    2009-03-01

    The single-sample Tc-diethylenetriamine penta-acetate (DTPA) clearance method by Christensen and Groth is recommended by the Radionuclides in Nephrourology Committee on Renal Clearance for use in adults with an estimated glomerular filtration rate (GFR) > or = 30 ml/min. The purpose of this study was to test a new Tc-DTPA single-sample low clearance formula for GFR lesser than 30 ml/min. Twenty-one adult patients (29 investigations) were included. Reference clearance was calculated with both Cr-EDTA and Tc-DTPA according to Brøchner-Mortensen with samples drawn between 3 and 24 h. Single-sample clearance was calculated from a 24 h sample using the low clearance formula(Equation is included in full-text article.) C(t) is the activity of the tracer in the plasma sample t minutes after the injection and Q0 is the injected amount. ECV is the extracellular volume in ml defined as the distribution volume of the tracer. ECV is estimated from the body surface area as ECV=8116.6xbody surface area-28.2. The mean difference between reference and Tc-DTPA single-sample clearance was -0.5 ml/min (SD 1.0 ml/min) for Tc-DTPA and -0.8 ml/min (SD 1.2 ml/min) for Cr-EDTA as reference clearance. In adult patients it is possible, even with GFR lesser than 30 ml/min, to get an accurate determination of Tc-DTPA plasma clearance from a single sample using the mean sojourn time approach. The blood sample should be obtained about 24 h after injection of the GFR tracer.

  8. Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler.

    Science.gov (United States)

    Linget, J M; du Vignaud, P

    1999-05-01

    A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.

  9. Metabolic profiling of human lung cancer blood plasma using 1H NMR spectroscopy

    Science.gov (United States)

    Kokova, Daria; Dementeva, Natalia; Kotelnikov, Oleg; Ponomaryova, Anastasia; Cherdyntseva, Nadezhda; Kzhyshkowska, Juliya

    2017-11-01

    Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for clinical metabolomics.

  10. Obesity Related Alterations in Plasma Cytokines and Metabolic Hormones in Chimpanzees

    Directory of Open Access Journals (Sweden)

    Pramod Nehete

    2014-01-01

    Full Text Available Obesity is characterized by chronic low-grade inflammation and serves as a major risk factor for hypertension, coronary artery disease, dyslipidemias, and type-2 diabetes. The purpose of this study was to examine changes in metabolic hormones, inflammatory cytokines, and immune function, in lean, overweight, and obese chimpanzees in a controlled environment. We observed increased plasma circulating levels of proinflammatory TH-1 cytokines, Interferon gamma, interleukin-6, interleukin-12p40, tumor necrosis factor, soluble CD40 ligand, and Interleukin-1β and anti-inflammatory TH-2 cytokines, Interleukin-4, Interleukin-RA, Interleukin-10, and Interleukin-13 in overweight and obese chimpanzees. We also observed increased levels of metabolic hormones glucagon-like-peptide-1, glucagon, connecting peptide, insulin, pancreatic peptide YY3–36, and leptin in the plasma of overweight and obese chimpanzees. Chemokine, eotaxin, fractalkine, and monocyte chemoattractant protein-1 were higher in lean compared to obese chimpanzees, while chemokine ligand 8 increased in plasma of obese chimpanzees. We also observed an obesity-related effect on immune function as demonstrated by lower mitogen induced proliferation, and natural killer activity and higher production of IFN-γ by PBMC in Elispot assay, These findings suggest that lean, overweight, and obese chimpanzees share circulating inflammatory cytokines and metabolic hormone levels with humans and that chimpanzees can serve as a useful animal model for human studies.

  11. Plasma and tissue osteopontin expression in cutaneous lichen planus and its relation to metabolic syndrome

    International Nuclear Information System (INIS)

    Awad, M.A.I.

    2015-01-01

    Lichen planus (LP) is a chronic inflammatory disease that affects the skin, mucous membranes and appendages. Although its pathogenesis is still unclear, some studies showed that autoreactive cytotoxic T lymphocytes are the effector cells which cause degeneration and destruction of keratinocytes. Osteopontin (OPN) is expressed during inflammation by natural killer cells, activated T cells and macrophages and classified as a T-helper type 1 (Th1) cytokine. Plasma OPN has been reported to be a potential clinical marker for prediction of atherosclerosis. The mean values of plasma and tissue OPN in the lesional skin of LP patients were significantly higher than that in the control group (P Values for both plasma and tissue OPN were < 0.001). Correlating levels of plasma OPN in the LP patients to metabolic syndrome parameters showed a statistically significant correlation with dyslipidemia and diabetes mellitus. In conclusion, levels of plasma and tissue OPN were higher in cutaneous lichen planus patients than controls and plasma OPN could be a marker for cardiovascular risk in these patients

  12. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-10-01

    Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Metabolic Acidosis or Respiratory Alkalosis? Evaluation of a Low Plasma Bicarbonate Using the Urine Anion Gap.

    Science.gov (United States)

    Batlle, Daniel; Chin-Theodorou, Jamie; Tucker, Bryan M

    2017-09-01

    Hypobicarbonatemia, or a reduced bicarbonate concentration in plasma, is a finding seen in 3 acid-base disorders: metabolic acidosis, chronic respiratory alkalosis and mixed metabolic acidosis and chronic respiratory alkalosis. Hypobicarbonatemia due to chronic respiratory alkalosis is often misdiagnosed as a metabolic acidosis and mistreated with the administration of alkali therapy. Proper diagnosis of the cause of hypobicarbonatemia requires integration of the laboratory values, arterial blood gas, and clinical history. The information derived from the urinary response to the prevailing acid-base disorder is useful to arrive at the correct diagnosis. We discuss the use of urine anion gap, as a surrogate marker of urine ammonium excretion, in the evaluation of a patient with low plasma bicarbonate concentration to differentiate between metabolic acidosis and chronic respiratory alkalosis. The interpretation and limitations of urine acid-base indexes at bedside (urine pH, urine bicarbonate, and urine anion gap) to evaluate urine acidification are discussed. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  15. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  16. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun

    2014-08-01

    Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium

    International Nuclear Information System (INIS)

    Armbrecht, J.J.; Buxton, D.B.; Schelbert, H.R.

    1990-01-01

    Extraction and clearance kinetics of [1-11C]acetate were examined in 65 experiments in 30 open-chest dogs. Twenty-nine studies were performed at control, 13 during ischemia, eight after reperfusion, 13 during dipyridamole-induced hyperemia, and two during alteration of cardiac workload. [1-11C]acetate was injected directly into the left anterior descending coronary artery, and myocardial tissue-time activity curves were recorded with a gamma probe. The single-pass extraction fraction averaged 64.2 +/- 9.7% in control, 65.3 +/- 9.1% in ischemia, 70.0 +/- 4.4% in reperfusion, and 46.5 +/- 7.4% in dipyridamole-induced hyperemia groups. 11C clearance was biexponential in all cases. The rate constant k1 for the first rapid clearance phase correlated closely with myocardial oxygen consumption (r = 0.94) in control, ischemia, reperfusion, and dipyridamole-induced hyperemia groups. Monoexponential fitting of only the first linear part of the clearance curve yielded the rate constant kmono, which also correlated with myocardial oxygen consumption (r = 0.96). Arterial lactate concentrations and the amount of free fatty acid oxygen equivalents consumed by the myocardium were shown to have a small but statistically significant impact on the relation between [1-11C]acetate clearance rate constants and myocardial oxygen consumption. The fraction of 14CO2 activity contributing to overall 14C activity leaving the myocardium after simultaneous injection of [1-14C]acetate (n = 24) was relatively high in all cases , indicating that externally measured 11C clearance corresponds to CO2 production and thus to tricarboxylic acid cycle activity. In conclusion, the results validate the use of [1-11C]acetate as a tracer of oxidative myocardial metabolism for use with positron emission tomography

  18. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  19. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels.

  20. Unbiased plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans.

    Science.gov (United States)

    Shirolkar, Amey; Chakraborty, Sutapa; Mandal, Tusharkanti; Dabur, Rajesh

    2017-11-25

    Ayurveda, an ancient Indian medicinal system, has categorized human body constitutions in three broad constitutional types (prakritis) i.e. Vata, Pitta and Kapha. Analysis of plasma metabolites and related pathways to classify Prakriti specific dominant marker metabolites and metabolic pathways. 38 healthy male individuals were assessed for dominant Prakritis and their fasting blood samples were collected. The processed plasma samples were subjected to rapid resolution liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry (RRLC-ESI-QTOFMS). Mass profiles were aligned and subjected to multivariate analysis. Partial least square discriminant analysis (PLS-DA) model showed 97.87% recognition capability. List of PLS-DA metabolites was subjected to permutative Benjamini-Hochberg false discovery rate (FDR) correction and final list of 76 metabolites with p  2.0 was identified. Pathway analysis using metascape and JEPETTO plugins in Cytoscape revealed that steroidal hormone biosynthesis, amino acid, and arachidonic acid metabolism are major pathways varying with different constitution. Biological Go processes analysis showed that aromatic amino acids, sphingolipids, and pyrimidine nucleotides metabolic processes were dominant in kapha type of body constitution. Fat soluble vitamins, cellular amino acid, and androgen biosynthesis process along with branched chain amino acid and glycerolipid catabolic processes were dominant in pitta type individuals. Vata Prakriti was found to have dominant catecholamine, arachidonic acid and hydrogen peroxide metabolomics processes. The neurotransmission and oxidative stress in vata, BCAA catabolic, androgen, xenobiotics metabolic processes in pitta, and aromatic amino acids, sphingolipid, and pyrimidine metabolic process in kaphaPrakriti were the dominant marker pathways. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights

  1. Plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans

    Directory of Open Access Journals (Sweden)

    Amey Shirolkar

    2018-04-01

    Full Text Available Background: Ayurveda, an ancient Indian medicinal system, has categorized human body constitutions in three broad constitutional types (prakritis i.e. Vata, Pitta and Kapha. Objectives: Analysis of plasma metabolites and related pathways to classify Prakriti specific dominant marker metabolites and metabolic pathways. Materials and methods: 38 healthy male individuals were assessed for dominant Prakritis and their fasting blood samples were collected. The processed plasma samples were subjected to rapid resolution liquid chromatography–electrospray ionization–quadrupole time of flight mass spectrometry (RRLC–ESI–QTOFMS. Mass profiles were aligned and subjected to multivariate analysis. Results: Partial least square discriminant analysis (PLS-DA model showed 97.87% recognition capability. List of PLS-DA metabolites was subjected to permutative Benjamini–Hochberg false discovery rate (FDR correction and final list of 76 metabolites with p  2.0 was identified. Pathway analysis using metascape and JEPETTO plugins in Cytoscape revealed that steroidal hormone biosynthesis, amino acid, and arachidonic acid metabolism are major pathways varying with different constitution. Biological Go processes analysis showed that aromatic amino acids, sphingolipids, and pyrimidine nucleotides metabolic processes were dominant in kapha type of body constitution. Fat soluble vitamins, cellular amino acid, and androgen biosynthesis process along with branched chain amino acid and glycerolipid catabolic processes were dominant in pitta type individuals. Vata Prakriti was found to have dominant catecholamine, arachidonic acid and hydrogen peroxide metabolomics processes. Conclusion: The neurotransmission and oxidative stress in vata, BCAA catabolic, androgen, xenobiotics metabolic processes in pitta, and aromatic amino acids, sphingolipid, and pyrimidine metabolic process in kapha Prakriti were the dominant marker pathways. Keywords: Ayurveda, Prakriti, Human

  2. Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes.

    Science.gov (United States)

    Bringaud, F; Ebikeme, C; Boshart, M

    2010-08-01

    Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.

  3. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  4. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Energy Technology Data Exchange (ETDEWEB)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  5. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    International Nuclear Information System (INIS)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio; Polidori, M.C.; Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia; Morbelli, Silvia; Bossert, Irene; Fiorucci, Giuliana; Dottorini, Massimo Eugenio

    2014-01-01

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain 18 F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  6. Comparison of grass haylage digestibility and metabolic plasma profile in Icelandic and Standardbred horses.

    Science.gov (United States)

    Ragnarsson, S; Jansson, A

    2011-06-01

    The aim of the present study was to compare digestibility and metabolic response in Icelandic and Standardbred horses fed two grass haylages harvested at different stages of maturity. Six horses of each breed were used in a 24-day change-over design. A total collection of faeces was made on days 15-17 and 22-24. Blood samples were collected on day 24 of each period and analysed for total plasma protein (TPP), plasma urea, non-esterified fatty acids, cortisol and insulin concentration. There were no differences in digestibility coefficients of crude protein, neutral detergent fibre or energy between breeds but organic matter digestibility was higher in the Standardbred horses. On both haylages, the Icelandic horses gained weight whereas the Standardbred horses lost weight. The Icelandic horses had higher TPP, plasma insulin and lower plasma urea concentrations. Our results indicate that the Icelandic horse may be more prone to maintain positive energy balance in relation to the Standardbred horse, but there were no indication of a better digestive capacity in the Icelandic horses. © 2010 Blackwell Verlag GmbH.

  7. DYNAMIC OF CHANGES OF BLOOD PLASMA ENERGY METABOLISM PARAMETERS IN SUCKLING COWS DURING CALVING INTERVAL

    Directory of Open Access Journals (Sweden)

    Ales Pavlik

    2015-02-01

    Full Text Available In this study, effect of environmental condition changes during gazing period on energy metabolism parameters was investigated. Totally 40 Aberdeen Angus cows were selected for observation. Calving all of cows was situated into March. The feeding ration for the animals was comprised by pasture during the grazing period and corn silage, hay and granulated distiller’s grains during the winter period. At average age 9 days before calving, and subsequently 10, 81, 151, 189 and 273 days after calving, blood was sampled and analysed for glucose and NEFA (non-esterified fatty acid concentrations on KONELAB T20xt automatic analyser (Thermo Fisher Scientific, Finland and currently available commercial kits (Biovendor-Laboratorni medicina, Czech Republic. A rapid increase (p < 0.05 of glucose concentration was detected in blood plasma of cows in period before calving to 81 days post partum. Average value of glucose concentration at 273 days postpartum was significant (p < 0.05 lower comparing to day 189. The highest concentrations of NEFA in blood plasma of cows were found at 10 day postpartum. After that, during the persisted higher temperature period the NEFA concentration decreased significantly (p < 0.01 till 189 days postpartum. At the end of monitored period concentration of NEFA in blood plasma significantly decreased (p < 0.05. Changes of hot and cold season during the grazing period probably according to forage quality and had significant effects on blood plasma NEFA and glucose concentrations.

  8. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics.

    Directory of Open Access Journals (Sweden)

    Eugenia Trushina

    Full Text Available Alzheimer's Disease (AD currently affects more than 5 million Americans, with numbers expected to grow dramatically as the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia, highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine global metabolic changes in plasma and cerebrospinal fluid (CSF from the same individuals with different AD severity. Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were identified. Based on the changes of >150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in mild cognitive impairment (MCI vs. cognitively normal (CN individuals with a false discovery rate <0.05. The number of affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis; and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could advance our understanding of the early disease mechanisms shared in progression from CN to

  9. Pharmacokinetics and Biodistribution of Aurantiamide and Aurantiamide Acetate in Rats after Oral Administration of Portulaca oleracea L. Extracts.

    Science.gov (United States)

    Chen, Lijiang; Liu, Yang; Jia, Dechao; Yang, Jia; Zhao, Jinhua; Chen, Changlan; Liu, Hongsheng; Liang, Xiao

    2016-05-04

    Aurantiamide and aurantiamide acetate are the main active constituents of purslane (Portulaca oleracea L.), an edible plant with various biological activities. In this study, we developed a validated UHPLC-MS/MS method to quantitate the concentrations of aurantiamide and aurantiamide acetate in the plasma and various organ tissues of rat as the basis to study their pharmacological profile and distribution in vivo. Aurantiamide and aurantiamide acetate were rapidly absorbed following oral administration, both achieving a Cmax at around 0.2 h. The extent of their metabolisms also varied among different organ tissues, resulting in about 90% reduction in concentrations 4 h after their administration, thus leaving no long-term accumulation in the tissues. This is the first study to examine the pharmacokinetic and biodistribution of aurantiamide and aurantiamide acetate in rat, and our work may serve as the first step toward the investigation of the underlying mechanisms associated with the biological activity of purslane.

  10. Detrimental effects of fluvastatin on plasma lipid metabolism in rat breast carcinoma model

    Directory of Open Access Journals (Sweden)

    Kapinová Andrea

    2013-01-01

    Full Text Available From clinical practice, obvious positive effects of statins on plasma lipid metabolism are well known. On the other hand, there are several experimental rodent studies, where these beneficial effects were not confirmed. The effects of fluvastatin on selected serum lipid parameters in a rat model of experimental breast cancer were determined. The drug was dietary administered at two concentrations of 20 and 200 mg/kg. At the end of the study (experiment duration - 18 weeks the blood from each animal was collected and serum lipid parameters were evaluated. Fluvastatin in both treated groups significantly increased parameters of serum lipids (mostly in a dose dependent manner. Fluvastatin in both treated groups of animals significantly increased serum levels of triacylglycerols, total cholesterol, and LDL-, HDL-, VLDL-cholesterol when compared to the control group. Our results pointed out to the apparent harmful effects of fluvastatin on plasma lipid metabolism in rat mammary carcinogenesis. Based on our previous results, it seems that rats commonly used in cancer model studies are generally unresponsive to the hypocholesterolemic effects of statins.

  11. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats.

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S; Colyer, Alison; Jönsson, Thomas J; Swanson, Kelly S; Morris, Penelope J

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR pcats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.

  12. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  13. COMPARISON OF TWO 4.7-MILLIGRAM TO ONE 9.4-MILLIGRAM DESLORELIN ACETATE IMPLANTS ON EGG PRODUCTION AND PLASMA PROGESTERONE CONCENTRATIONS IN JAPANESE QUAIL (COTURNIX COTURNIX JAPONICA).

    Science.gov (United States)

    Petritz, Olivia A; Guzman, David Sanchez-Migallon; Hawkins, Michelle G; Kass, Philip H; Conley, Alan J; Paul-Murphy, Joanne

    2015-12-01

    Reproductive disease in captive avian species is common, and medical management is often chosen over surgical removal of the reproductive tract. In a previous study with Japanese quail, a single 4.7-mg deslorelin acetate implant reversibly decreased egg production in 6 out 10 birds for 70 days. The objective of the current study was to evaluate the effects of two 4.7-mg deslorelin acetate implants versus one 9.4-mg implant on egg production and plasma progesterone concentrations in Japanese quail ( Coturnix coturnix japonica). Following a 10-day period of consistent egg laying, 30 adult female Japanese quail were anesthetized and received two 4.7-mg deslorelin implants (n = 10), one 9.4-mg deslorelin implant (n = 10), or a single, identical placebo implant (n = 10) s.c. between the scapulae. Egg production was monitored daily, and plasma progesterone concentrations were measured on days 0, 14, 29, 120, 148, and 182 via enzyme-linked immunoassay. All birds were weighed periodically and euthanized at day 182, after which their reproductive tracts were evaluated at gross necropsy. Seven out of 10 birds treated with two 4.7-mg implants ceased egg laying 1 wk after implantation and remained nonovulatory for approximately 100 days. Cessation of egg laying for the 9.4-mg treatment group occurred in 7 out of 10 birds; onset was variable (weeks 5-12) and continued for the remainder of the study period. Plasma progesterone concentrations for deslorelin treatment groups were not significantly different compared to the placebo group at any time point. In conclusion, the two 4.7-mg and the one 9.4-mg implant treatments ceased egg laying in a similar number of birds, but the 9.4-mg implant had a slower onset of action and the effects on egg laying were inconsistent throughout the study period. Further studies evaluating use of deslorelin acetate in other avian species are needed.

  14. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces.

    Science.gov (United States)

    Xing, Jian-feng; You, Hai-sheng; Dong, Ya-lin; Lu, Jun; Chen, Si-ying; Zhu, Hui-fang; Dong, Qian; Wang, Mao-yi; Dong, Wei-hua

    2011-05-01

    To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, t(max2) and C(max2) for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t(1/2) and CL(int) value for scutellarin in male rats was significantly higher than that in female rats. The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CL(int) and lower absorption in male rats.

  15. Plasma Zonulin and its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation.

    Science.gov (United States)

    Dschietzig, Thomas B; Boschann, Felix; Ruppert, Jana; Armbruster, Franz P; Meinitzer, Andreas; Bankovic, Dragic; Mitrovic, Veselin; Melzer, Christoph

    2016-12-01

    The tight junction regulator zonulin has attracted clinical attention as a biomarker of increased gastrointestinal permeability. Recent work also suggests zonulin to represent a general regulator of tissue barriers and a player in metabolic inflammation. Here, we investigated the associations of zonulin with chronic heart failure (CHF), kidney function, and metabolic inflammation. Using multiple linear regression (Generalized Linear Model), this study determined the association of plasma zonulin with different laboratory and clinical parameters in 225 patients carrying automatic implantable cardioverters/defibrillators (AICD) for primary or secondary prevention. In another 115 patients with diastolic or systolic CHF, we investigated a possible relationship between zonulin and CHF severity. In the AICD cohort, zonulin associated inversely with serum creatinine (p = 0.013), carboxymethyl-lysine calprotectin (p zonulin increased significantly with high-sensitivity CRP (p = 0.014). In the CHF cohort, we found a highly significant rise of NT-proBNP, but not of zonulin with NYHA functional classes I-IV or other parameters of CHF severity. The inverse associations of zonulin with creatinine and markers of cardio-vascular risk (high CMLcalprotectin and kynurenine, low homoarginine) are novel findings that need further experimental and clinical clarification. Our study indicates zonulin involvement in metabolic inflammation in T2D, but no association with disease status in CHF.

  16. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    Science.gov (United States)

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  17. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    Science.gov (United States)

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  18. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study.

    Science.gov (United States)

    Jørgenrud, Benedicte; Stene, Lars C; Tapia, German; Bøås, Håkon; Pepaj, Milaim; Berg, Jens P; Thorsby, Per M; Orešič, Matej; Hyötyläinen, Tuulia; Rønningen, Kjersti S

    2017-03-01

    The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Up to four longitudinal plasma samples from age 3 months from case children who developed islet autoimmunity (n = 29) and autoantibody-negative control children (n = 29) with the HLA DR4-DQ8/DR3-DQ2 genotype were analyzed using two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer for detection of small polar metabolites. Plasma metabolite levels were found to depend strongly on age, with fold changes varying up to 50% from age 3 to 24 months (p polar metabolites changed with age during early childhood, independent of later islet autoimmunity status and sex. Breastfeeding was associated with higher levels of branched-chain amino acids, and lower levels of methionine and 3,4-dihydroxybutyric acid. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Plasma concentrations of retinol in obese children and adolescents: relationship to metabolic syndrome components

    Directory of Open Access Journals (Sweden)

    Marcia Teske

    2014-03-01

    Full Text Available Objective: To evaluate obese children and adolescents' retinol plasma levels and to correlate them with metabolic syndrome components. Methods: Cross-sectional study with 61 obese children and adolescents (body mass index Z score - ZBMI>+2. Pubertal development, arterial blood pressure, body weight and height for nutritional classification and waist circumference were obtained. A 15mL blood sample was collected (after a 12-hour fasting in a low luminosity room for retinol determination (cut-off inadequate if <30µg/dL, lipid profile (HDL-c, LDL-c, and triglycerides, oral glucose tolerance test (fasting and 120 minutes and for high sensitivity C-reactive protein. Spearman correlation and multiple linear regression were used in the statistical analysis. Results: Mean age was 10.7±2.7 years. There was a predominance of male gender 38/61 (62% and pre-pubertal 35/61 (57% subjects. The average plasmatic retinol was 48.5±18.6ug/dL. Retinol deficiency and severe obesity were observed in 6/61 (10% and 36/61 (59%, respectively. Glucose level at 120 minutes was the independent and predictive variable of plasma retinol levels [β=-0.286 (95%CI -0.013 - -0.001]. Conclusions: An independent and inverse association between plasma retinol levels and glucose tolerance was observed, suggesting an important contribution of this vitamin in the morbidities associated to obesity in children and adolescents.

  20. Effects of vanadium supplementation on performance, some plasma metabolites and glucose metabolism in Mahabadi goat kids.

    Science.gov (United States)

    Zarqami, A; Ganjkhanlou, M; Zali, A; Rezayazdi, K; Jolazadeh, A R

    2018-04-01

    This experiment was conducted to investigate the effects of vanadium (V) supplementation on performance, some plasma metabolites (cholesterol and triglycerides) and glucose metabolism in Mahabadi goat kids. Twenty-eight male kids (15 ± 2 kg body weight) were fed for 14 weeks in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 1, 2, and 3 mg V as vanadyl sulfate/animal/daily. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. Dry matter intake did not change by V supplementation, but adding V quadraticaly improved feed efficiency (p = .03) and tended to increase average daily gain (Quadratic, p = .09). Blood metabolites were unaffected by V supplementation, except for concentration of glucose in plasma, which decreased linearly as supplemental V level increased (p = .02). Plasma glucose concentrations at 15, 30, 45 and 60 min after glucose infusion were decreased in a quadratic fashion in response to increasing supplemental V level (p kids supplemented with 2 mg V had higher glucose clearance rate (K) and lower glucose half-life (T ½ ; p kids. © 2017 Blackwell Verlag GmbH.

  1. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...

  2. Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism.

    Science.gov (United States)

    Tymecka-Mulik, Joanna; Boss, Lidia; Maciąg-Dorszyńska, Monika; Matias Rodrigues, João F; Gaffke, Lidia; Wosinski, Anna; Cech, Grzegorz M; Szalewska-Pałasz, Agnieszka; Węgrzyn, Grzegorz; Glinkowska, Monika

    2017-01-01

    To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator-DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.

  3. Plasma levels of 27-hydroxycholesterol in humans and mice with monogenic disturbances of high density lipoprotein metabolism

    DEFF Research Database (Denmark)

    Karuna, Ratna; Holleboom, Adriaan G; Motazacker, Mohammad M

    2011-01-01

    Secretion of 27-hydroxycholesterol (27OHC) from macrophages is considered as an alternative to HDL-mediated reverse transport of excess cholesterol. We investigated 27OHC-concentrations in plasma of humans and mice with monogenic disorders of HDL metabolism. As compared to family controls mutations...... activities of LCAT and CETP, respectively, than the formation and transfer of cholesterylesters. 27OHC plasma levels were also decreased in apoA-I-, ABCA1- or LCAT-knockout mice but increased in SR-BI-knockout mice. Transplantation of ABCA1- and/or ABCG1-deficient bone marrow into LDL receptor deficient mice...... decreased plasma levels of 27OHC. In conclusion, mutations or absence of HDL genes lead to distinct alterations in the quantity, esterification or lipoprotein distribution of 27OHC. These findings argue against the earlier suggestion that 27OHC-metabolism in plasma occurs independently of HDL....

  4. Clinical significance of determination of changes of plasma ET-1 and CGRP contents in elderly males with metabolic syndrome

    International Nuclear Information System (INIS)

    Sun Xiaoming; Luo Nanping; Bai Lu; Wang Xueping

    2005-01-01

    Objective: To investigate the significance of changes of plasma endothelin-1 (ET-1) and calcitonin gene related peptide (CGRP) contents in elderly males with metabolic syndrome. Methods: Plasma ET-1 and CGRP contents were measured with RIA in 65 elderly males with hypertension and 65 elderly males with diabetes. The blood lipid and sugar contents were measured simultaneously. 35 controls entered this study. Results: The plasma ET-1 contents in elderly males with simple hypertension, diabetes and metabolic syndrome were all significantly higher than those in controls (P<0.01, P<0.05, P<0.05). Levels in hypertensives were significantly higher than those in diabetics (P<0.05). The plasma CGRP levels in the elderly males with hypertension and with metabolic syndrome were all significantly lower than those in controls (P<0.05, P<0.05). The CGRP levels in these subjects were significantly negatively correlated with the ET-1 levels (r= -0.75, P<0.01; r=-0.53, P<0.01). Conclusion: Changes of plasma ET-1 and CGRP levels in elderly males with metabolic syndrome were clinically significant, especially in the pathogenesis of hypertension. (authors)

  5. Carotid intima-media thickness and plasma fibrinogen among subjects with metabolic syndrome: Isfahan cohort study

    Directory of Open Access Journals (Sweden)

    Zahra Bayanfar

    2014-09-01

    Full Text Available BACKGROUND: The role of plasma fibrinogen, a key regulator of inflammation processes and increased carotid intima-media thickness (cIMT to predict metabolic syndrome (MetS is currently under investigation. We assessed differences in the indicators of cIMT and also plasma fibrinogen level between MetS and non-MetS subjects. We also assessed the role of these two parameters for independently relationship with MetS state. METHODS: The subjects in this cross-sectional survey were population-based samples of 93 men and women aged ≥ 35 years and over who were selected from the Isfahan cohort study, Isfahan, Iran. Fibrinogen was measured by the clotting assay of Clauss. Ultrasound studies of the carotid artery were performed to measure cIMT. MetS defined based on the National Cholesterol Education Program’s Adult Treatment Panel III. RESULTS: The mean level of plasma fibrinogen was not different in the two groups with and without MetS (240.10 ± 27.80 vs. 242.56 ± 35.82, P = 0.714, but the mean of cIMT was considerably higher in MetS group than in non-MetS group (0.85 ± 0.06 mm vs. 0.66 ± 0.09 mm, P < 0.001. Using a multivariable logistic regression model, high cIMT could effectively predict MetS state with the presence of different components of MetS (odds ratio = 17.544, 95% confidence interval: 2.151-142.860, P = 0.008. The optimal cutoff point of cIMT for discriminating these two clinical states was 0.6 mm yielding a sensitivity of 61.5% and a specificity of 59.6%. CONCLUSION: Individuals with MetS demonstrated increased cIMT values compared with those without MetS. However, high plasma fibrinogen level may not be associated with MetS state.   Keywords: Metabolic Syndrome, Carotid Intima-Media Thickness, Fibrinogen, Prediction 

  6. Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women.

    Science.gov (United States)

    Cala, Mónica P; Aldana, Julian; Medina, Jessica; Sánchez, Julián; Guio, José; Wist, Julien; Meesters, Roland J W

    2018-01-01

    Breast cancer (BC) is a highly heterogeneous disease associated with metabolic reprogramming. The shifts in the metabolome caused by BC still lack data from Latin populations of Hispanic origin. In this pilot study, metabolomic and lipidomic approaches were performed to establish a plasma metabolic fingerprint of Colombian Hispanic women with BC. Data from 1H-NMR, GC-MS and LC-MS were combined and compared. Statistics showed discrimination between breast cancer and healthy subjects on all analytical platforms. The differentiating metabolites were involved in glycerolipid, glycerophospholipid, amino acid and fatty acid metabolism. This study demonstrates the usefulness of multiplatform approaches in metabolic/lipid fingerprinting studies to broaden the outlook of possible shifts in metabolism. Our findings propose relevant plasma metabolites that could contribute to a better understanding of underlying metabolic shifts driven by BC in women of Colombian Hispanic origin. Particularly, the understanding of the up-regulation of long chain fatty acyl carnitines and the down-regulation of cyclic phosphatidic acid (cPA). In addition, the mapped metabolic signatures in breast cancer were similar but not identical to those reported for non-Hispanic women, despite racial differences.

  7. Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women

    Science.gov (United States)

    Cala, Mónica P.; Aldana, Julian; Medina, Jessica; Sánchez, Julián; Guio, José; Wist, Julien

    2018-01-01

    Breast cancer (BC) is a highly heterogeneous disease associated with metabolic reprogramming. The shifts in the metabolome caused by BC still lack data from Latin populations of Hispanic origin. In this pilot study, metabolomic and lipidomic approaches were performed to establish a plasma metabolic fingerprint of Colombian Hispanic women with BC. Data from 1H-NMR, GC-MS and LC-MS were combined and compared. Statistics showed discrimination between breast cancer and healthy subjects on all analytical platforms. The differentiating metabolites were involved in glycerolipid, glycerophospholipid, amino acid and fatty acid metabolism. This study demonstrates the usefulness of multiplatform approaches in metabolic/lipid fingerprinting studies to broaden the outlook of possible shifts in metabolism. Our findings propose relevant plasma metabolites that could contribute to a better understanding of underlying metabolic shifts driven by BC in women of Colombian Hispanic origin. Particularly, the understanding of the up-regulation of long chain fatty acyl carnitines and the down-regulation of cyclic phosphatidic acid (cPA). In addition, the mapped metabolic signatures in breast cancer were similar but not identical to those reported for non-Hispanic women, despite racial differences. PMID:29438405

  8. Ovarian follicular dynamics and plasma steroid concentrations are not significantly different in ewes given intravaginal sponges containing either 20 or 40 mg of fluorogestone acetate.

    Science.gov (United States)

    Letelier, C A; Contreras-Solis, I; García-Fernández, R A; Ariznavarreta, C; Tresguerres, J A F; Flores, J M; Gonzalez-Bulnes, A

    2009-03-01

    Although various progestagens are often used to induce and synchronize estrus and ovulation in ruminants, concerns regarding residues are the impetus to develop alternative approaches, including reduced doses of progestagens. Therefore, the objective was to determine whether ovarian function was affected by halving the dose of fluorogestone acetate in intravaginal sponges for synchronizing ovulation in sheep during the physiologic breeding season. Twenty Manchega ewes, 4-6-year-old, were randomly allocated to receive an intravaginal sponge containing either 20mg (P20, n=10) or 40 mg of fluorogestone acetate (P40, n=10). Cloprostenol (125 microg) was given at sponge insertion, and all sponges were removed after 6d. Ovarian follicular dynamics (monitored by daily ultrasonography) and other aspects of ovarian function did not differ significantly between the two groups. Ovulatory follicles (OF) grew at a similar growth rate (r=0.62; Pprogesterone concentrations (3.8+/-0.35 ng/mL for P20 and 3.9+/-0.38 ng/mL for P40) were similar. In conclusion, reducing the dose of fluorogestone acetate from 40 to 20mg did not affect significantly ovarian follicular dynamics or other aspects of ovarian function.

  9. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  10. Plasma calprotectin and its association with cardiovascular disease manifestations, obesity and the metabolic syndrome in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Pedersen, Lise; Nybo, M.; Poulsen, M. K.

    2014-01-01

    Background: Plasma calprotectin is a potential biomarker of cardiovascular disease (CVD), insulin resistance (IR), and obesity. We examined the relationship between plasma calprotectin concentrations, CVD manifestations and the metabolic syndrome (MetS) in patients with type 2 diabetes mellitus (T2......DM) in order to evaluate plasma calprotectin as a risk assessor of CVD in diabetic patients without known CVD. Methods: An automated immunoassay for determination of plasma calprotectin was developed based on a fecal Calprotectin ELIA, and a reference range was established from 120 healthy adults...... associated with obesity, MetS status, autonomic neuropathy, PAD, and MI. However, plasma calprotectin was not an independent predictor of CVD, MI, autonomic neuropathy or PAD....

  11. Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome.

    Science.gov (United States)

    Warshauer, Jeremy T; Lopez, Ximena; Gordillo, Ruth; Hicks, Jessica; Holland, William L; Anuwe, Estelle; Blankfard, Martin B; Scherer, Philipp E; Lingvay, Ildiko

    2015-10-01

    Metabolic syndrome (MetS) appears closely linked with ceramide accumulation, inducing insulin resistance and toxicity to multiple cell types. Animal studies demonstrate that thiazolidinediones (TZDs) reduce ceramide concentrations in plasma and skeletal muscle and support lowering of ceramide levels as a potential mediator of TZDs' mechanism of action in reducing insulin resistance; however, studies in humans have yet to be reported. This study investigated the effects of pioglitazone therapy on plasma ceramides to understand the mechanism by which TZDs improve insulin resistance in MetS. Thirty-seven subjects with MetS were studied in a single-centre, randomized, double-blind, placebo-controlled trial comparing pioglitazone to placebo. Data were collected at baseline and after 6 months of therapy. The primary endpoint was the change from baseline in plasma ceramide concentrations. Treatment with pioglitazone for 6 months, compared with placebo, significantly reduced multiple plasma ceramide concentrations: C18:0 (p = 0.001), C20:0 (p = 0.0004), C24 : 1 (p = 0.009), dihydroceramide C18 :0 (p = 0.005), dihydroceramide C24:1 (p = 0.004), lactosylceramide C16:0 (p = 0.02) and the hexosylceramides C16:0 (p = 0.0003), C18 : 0 (p = 0.00001), C22:0 (p = 0.00002) and C24:1 (p = 0.0006). Additionally, significant reductions were found when ceramides were grouped by species: ceramides (p = 0.03), dihydroceramides (p = 0.02), hexosylceramides (p = 0.00001) and lactosylceramides (p = 0.02). The total of all measured ceramides was also significantly reduced (p = 0.001). Following treatment with pioglitazone, the decrease in some ceramide species correlated negatively with the change in insulin sensitivity (dihydroceramide C16:0, r = -0.54; p = 0.02) and positively with total (lactosylceramide C24:0, r = 0.53; p = 0.02) and high molecular weight (lactosylceramide C24:0, r = 0.48; p = 0

  12. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    Science.gov (United States)

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  13. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  14. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (−)-[18 F]Flubatine in humans

    International Nuclear Information System (INIS)

    Patt, Marianne; Becker, Georg A.; Grossmann, Udo; Habermann, Bernd; Schildan, Andreas; Wilke, Stephan; Deuther-Conrad, Winnie; Graef, Susanne; Fischer, Steffen; Smits, René; Hoepping, Alexander; Wagenknecht, Gudrun; Steinbach, Jörg; Gertz, Hermann-Josef; Hesse, Swen; Schönknecht, Peter

    2014-01-01

    Introduction: (−)-[ 18 F]Flubatine is a PET tracer with high affinity and selectivity for the nicotinic acetylcholine α 4 β 2 receptor subtype. A clinical trial assessing the availability of this subtype of nAChRs was performed. From a total participant number of 21 Alzheimer’s disease (AD) patients and 20 healthy controls (HCs), the following parameters were determined: plasma protein binding, metabolism and activity distribution between plasma and whole blood. Methods: Plasma protein binding and fraction of unchanged parent compound were assessed by ultracentrifugation and HPLC, respectively. The distribution of radioactivity (parent compound + metabolites) between plasma and whole blood was determined ex vivo at different time-points after injection by gamma counting after separation of whole blood by centrifugation into the cellular and non-cellular components. In additional experiments in vitro, tracer distribution between these blood components was assessed for up to 90 min. Results: A fraction of 15% ± 2% of (−)-[ 18 F]Flubatine was found to be bound to plasma proteins. Metabolic degradation of (−)-[ 18 F]Flubatine was very low, resulting in almost 90% unchanged parent compound at 90 min p.i. with no significant difference between AD and HC. The radioactivity distribution between plasma and whole blood changed in vivo only slightly over time from 0.82 ± 0.03 at 3 min p.i. to 0.87 ± 0.03 at 270 min p.i. indicating the contribution of only a small amount of metabolites. In vitro studies revealed that (−)-[ 18 F]Flubatine was instantaneously distributed between cellular and non-cellular blood parts. Discussion: (−)-[ 18 F]Flubatine exhibits very favourable characteristics for a PET radiotracer such as slow metabolic degradation and moderate plasma protein binding. Equilibrium of radioactivity distribution between plasma and whole blood is reached instantaneously and remains almost constant over time allowing both convenient sample handling and

  15. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    Directory of Open Access Journals (Sweden)

    Thyparambil Aravindakshan Pramodkumar

    2016-01-01

    Full Text Available Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT with and without elevated 1-h postglucose (1HrPG values during an oral glucose tolerance test (OGTT. Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L and 2-h plasma glucose <140 mg/dl (7.8 mmol/L after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143-<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI, waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143-<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143-<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05 compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT.

  16. Plasma Lipoprotein-associated Phospholipase A2 in Patients with Metabolic Syndrome and Carotid Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Mao Yong-jun

    2011-01-01

    Full Text Available Abstract Background Lipoprotein-associated phospholipase A2 (Lp-PLA2 is a recently identified and potentially useful plasma biomarker for cardiovascular and atherosclerotic diseases. However, the correlation between the Lp-PLA2 activity and carotid atherosclerosis remains poorly investigated in patients with metabolic syndrome (MetS. The present study aimed to evaluate the potential role of Lp-PLA2 as a comprehensive marker of metabolic syndrome in individuals with and without carotid atherosclerosis. Methods We documented 118 consecutive patients with MetS and 70 age- and sex-matched healthy subjects served as controls. The patients were further divided into two groups: 39 with carotid plaques and 79 without carotid plaques to elucidate the influence of Lp-PLA2 on carotid atherosclerosis. The plasma Lp-PLA2 activity was measured by using ELISA method and carotid intimal-media thickness (IMT was performed by ultrasound in all participants. Results Lp-PLA2 activity was significantly increased in MetS subgroups when compared with controls, and was higher in patients with carotid plaques than those without plaques (P 2 was obtained between patients with three and four disorders of metabolic syndrome (P P = 0.029, LDL-cholesterol (β = 0.401, P = 0.000 and waist-hip ratio (β = 0.410, P = 0.000 emerged as significant and independent determinants of Lp-PLA2 activity. Multiple stepwise regression analysis revealed that LDL-cholesterol (β = 0.309, P = 0.000, systolic blood pressure (β = 0.322, P = 0.002 and age (β = 0.235, P = 0.007 significantly correlated with max IMT, and Lp-PLA2 was not an independent predictor for carotid IMT. Conclusions Lp-PLA2 may be a modulating factor for carotid IMT via age and LDL-cholesterol, not independent predictor in the pathophysiological process of carotid atherosclerosis in patients with MetS.

  17. Effects of Alpha-Lipoic Acid Supplementation on Plasma Adiponectin Levels and Some Metabolic Risk Factors in Patients with Schizophrenia.

    Science.gov (United States)

    Vidović, Bojana; Milovanović, Srđan; Stefanović, Aleksandra; Kotur-Stevuljević, Jelena; Takić, Marija; Debeljak-Martačić, Jasmina; Pantović, Maja; Đorđević, Brižita

    2017-01-01

    Adiponectin is an adipocyte-derived plasma protein with insulin-sensitizing and anti-inflammatory properties and is suggested to be a biomarker of metabolic disturbances. The aim of this study was to investigate the effects of alpha-lipoic acid (ALA) on plasma adiponectin and some metabolic risk factors in patients with schizophrenia. The plasma adipokine levels (adiponectin and leptin), routine biochemical and anthropometric parameters, markers of oxidative stress, and the serum phospholipid fatty acid profile in eighteen schizophrenic patients at baseline, in the middle, and at the end of a 3-month long supplementation period with ALA (500 mg daily) were determined. A significant increase in the plasma adiponectin concentrations, as well as a decrease in fasting glucose and aspartate aminotransferase activity (AST), was found. Baseline AST activity was independently correlated with the adiponectin concentrations. Our data show that ALA can improve plasma adiponectin levels and may play a potential role in the treatment of metabolic risk factor in patients with schizophrenia. Future randomized controlled trials are needed to confirm these preliminary investigations.

  18. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  19. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  20. Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: A comparison between endogenous vs exogenous substrate pools

    International Nuclear Information System (INIS)

    Navidi, M.; MacQuarrie, R.A.; Sun, G.Y.

    1990-01-01

    The metabolism of phosphatidylinositols (PI) labeled with [14C]arachidonic acid within plasma membranes or synaptosomes was compared to the metabolism of PI prelabeled with [14C]arachidonic acid and added exogenously to the same membranes. Incubation of membranes containing the endogenously-labeled PI pool in the presence of Ca2+ resulted in the release of labeled arachidonic acid, as well as a small amount of labeled diacylglycerol. Labeled arachidonic acid was effectively reutilized and returned to the membrane phospholipids in the presence of adenosine triphosphate (ATP), CoA, and lysoPI. Although Ca2+ promoted the release of labeled diacylglycerol from prelabeled plasma membranes, this amount was only 17% of the maximal release, i.e., release in the presence of deoxycholate and Ca2+. This latter condition is known to fully activate the PI-phospholipase C, and incubation of prelabeled plasma membranes resulted in a six-fold increase in labeled diacylglycerols. On the other hand, when exogenously labeled PI were incubated with plasma membranes in the presence of Ca2+, the labeled diacylglycerols released were 59% of that compared to the fully activated condition. The phospholipase C action was calcium-dependent, regardless of whether exogenous or endogenous substrates were used in the incubation. In contrast to plasma membranes, intact synaptosomes had limited ability to metabolize exogenous PI even in the presence of Ca2+, although the activity of phospholipase C was similar to that in the plasma membranes when assayed in the presence of deoxycholate and Ca2+. These results suggest that discrete pools of PI are present in plasma membranes, and that the pool associated with the acyltransferase is apparently not readily accessible to hydrolysis by phospholipase C

  1. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice[S

    Science.gov (United States)

    Palmisano, Brian T.; Le, Thao D.; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M.

    2016-01-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. PMID:27354419

  2. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Science.gov (United States)

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Association of plasma aldosterone with the metabolic syndrome in two German populations.

    Science.gov (United States)

    Hannemann, Anke; Meisinger, Christa; Bidlingmaier, Martin; Döring, Angela; Thorand, Barbara; Heier, Margit; Belcredi, Petra; Ladwig, Karl-Heinz; Wallaschofski, Henri; Friedrich, Nele; Schipf, Sabine; Lüdemann, Jan; Rettig, Rainer; Peters, Jörg; Völzke, Henry; Seissler, Jochen; Beuschlein, Felix; Nauck, Matthias; Reincke, Martin

    2011-05-01

    The aim of this study was to analyze the potential association of the plasma aldosterone concentration (PAC) with the metabolic syndrome (MetS) and its components in two German population-based studies. We selected 2830 and 2901 participants (31-80 years) from the follow-ups of the Study of Health in Pomerania (SHIP)-1 and the Cooperative Health Research in the Region of Augsburg (KORA) F4 respectively. MetS was defined as the presence of at least three out of the following five criteria: waist circumference ≥94 cm (men (m)) and ≥80 cm (women (w)); high-density lipoprotein (HDL) cholesterol <1.0 mmol/l (m) and <1.3 mmol/l (w); blood pressure ≥130/85 mmHg or antihypertensive treatment; non-fasting glucose (SHIP-1) ≥8 mmol/l, fasting glucose (KORA F4) ≥5.55 mmol/l or antidiabetic treatment; non-fasting triglycerides (SHIP-1) ≥2.3 mmol/l, fasting triglycerides (KORA F4) ≥1.7 mmol/l, or lipid-lowering treatment. We calculated logistic regression models by comparing the highest study- and sex-specific PAC quintiles versus all lower quintiles. MetS was common with 48.1% (m) and 34.8% (w) in SHIP-1 and 42.7% (m) and 27.5% (w) in KORA F4. Our logistic regression models revealed associations of PAC with MetS, elevated triglycerides, and decreased HDL cholesterol in SHIP-1 and KORA F4. Our findings add to the increasing evidence supporting a relation between aldosterone and MetS and suggest that aldosterone may be involved in the pathophysiology of MetS and lipid metabolism disorders.

  4. Predicting glucose intolerance with normal fasting plasma glucose by the components of the metabolic syndrome

    International Nuclear Information System (INIS)

    Pei, D.; Lin, J.; Kuo, S.; Wu, D.; Li, J.; Hsieh, C.; Wu, C.; Hung, Y.; Kuo, K.

    2007-01-01

    Surprisingly it is estimated that about half of type 2 diabetics remain undetected. The possible causes may be partly attributable to people with normal fasting plasma glucose (FPG) but abnormal postprandial hyperglycemia. We attempted to develop an effective predictive model by using the metabolic syndrome (MeS) components as parameters to identify such persons. All participants received a standard 75 gm oral glucose tolerance test which showed that 106 had normal glucose tolerance, 61 had impaired glucose tolerance and 6 had diabetes on isolated postchallenge hyperglycemia. We tested five models which included various MeS components. Model 0: FPG; Model 1 (Clinical history model): family history (FH), FPG, age and sex; Model 2 (MeS model): Model 1 plus triglycerides, high-density lipoprotein cholesterol, body mass index, systolic blood pressure and diastolic blood pressure; Model 3: Model 2 plus fasting plasma insulin (FPI); Model 4: Model 3 plus homeostasis model assessment of insulin resistance. A receiver-operating characteristic (ROC) curve was used to determine the predictive discrimination of these models. The area under the ROC curve of the Model 0 was significantly larger than the area under the diagonal reference line. All the other 4 models had a larger area under the ROC curve than Model 0. Considering the simplicity and lower cost of Model 2, it would be the best model to use. Nevertheless, Model 3 had the largest area under the ROC curve. We demonstrated that Model 2 and 3 have a significantly better predictive discrimination to identify persons with normal FPG at high risk for glucose intolerance. (author)

  5. Duration and severity of symptoms and levels of plasma interleukin-1 receptor antagonist, soluble tumor necrosis factor receptor, and adhesion molecules in patients with common cold treated with zinc acetate.

    Science.gov (United States)

    Prasad, Ananda S; Beck, Frances W J; Bao, Bin; Snell, Diane; Fitzgerald, James T

    2008-03-15

    Zinc lozenges have been used for treatment of the common cold; however, the results remain controversial. Fifty ambulatory volunteers were recruited within 24 h of developing symptoms of the common cold for a randomized, double-blind, placebo-controlled trial of zinc. Participants took 1 lozenge containing 13.3 mg of zinc (as zinc acetate) or placebo every 2-3 h while awake. The subjective scores for common cold symptoms were recorded daily. Plasma zinc, soluble interleukin (IL)-1 receptor antagonist (sIL-1ra), soluble tumor necrosis factor receptor 1, soluble vascular endothelial cell adhesion molecule, and soluble intercellular adhesion molecule (sICAM)-1 were assayed on days 1 and 5. Compared with the placebo group, the zinc group had a shorter mean overall duration of cold (4.0 vs. 7.1 days; P cold symptoms. We related the improvement in cold symptoms to the antioxidant and anti-inflammatory properties of zinc.

  6. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Manuela Sailer

    Full Text Available In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA and aromatic amino acids (AAA increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic

  7. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Directory of Open Access Journals (Sweden)

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  8. 醋酸环丙孕酮/炔雌醇复方片剂在人体的药代动力学%Pharmacokinetics of compound cyproterone acetate/ethinylestradiol tablets in human plasma

    Institute of Scientific and Technical Information of China (English)

    谭文明; 丁黎; 张正行; 杨劲

    2014-01-01

    目的 建立人血浆中醋酸环丙孕酮的HPLC-ESI-MS测定方法和丹酰氯衍生化血浆中炔雌醇的HPLC-APCI-MS测定方法,测定女性志愿者口服复方醋酸环丙孕酮片1片后的药代动力学参数,并对受试制剂和参比制剂的生物等效性进行评价.方法 血浆样品中的炔雌醇以乙酸乙酯提取后,与丹酰氯发生衍生化反应,进行HPLC-APCI-MS分析,流动相为10 mmol·L-1乙酸铵缓冲液(1%甲酸)-甲醇(3:97).检测离子分别为m/z 530.3(炔雌醇的丹酰氯衍生物)、m/z 404.3(内标,对羟基联苯的丹酰氯衍生物).结果 在10.43~625.8 pg·ml-1范围内炔雌醇的丹酰氯衍生物与内标的丹酰氯衍生物峰面积比值与浓度呈良好的线性关系,最低定量限为10.43 pg·ml-1.结论 本实验建立的分析方法灵敏、准确、简便,且统计学结果表明两种制剂生物等效.%Objective To develop an HPLC-ESI-MS assay for rapid determination of cyproterone acetate in human plasma and develop an HPLC-APCI-MS assay for determination of ethinylestradiol after derivatization with dansyl chloride and investigate the pharmacokinetics and bioequivalence of two compound cyproterone acetate tablets (containing 2 mg cyproterone acetate and 35 μ g ethinylestradiol) in 20 healthy women volunteers.Methods For ethinylestradiol,after its being extracted with ethyl acetate,the residue was derivatived with dansyl chloride,and separated by HPLC on a reversed-phase C18 column with a mobile phase of 10 mmol · L-1 ammonium acetate buffer solution (1% formic acid)-methanol (3:97).HPLC-APCIMS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 530.3 for 3-dansylethinylestradiol,m/z 404..3 for 4-dansyl-hydroxybiphenyl.Results For ethinylestradiol,calibration curves were linear over the range 10.43-625.8 pg · ml-1,the lower limit of quantification in plasma was 10.43 pg · ml-1.Conclusion The assay is proved to be sensitive,accurate and convenient.The two

  9. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men

    Directory of Open Access Journals (Sweden)

    Schilling Brian K

    2009-01-01

    Full Text Available Abstract Background Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. Methods Ten resistance trained men (age = 27 ± 4 yrs; BMI = 25 ± 3 kg· m-2; body fat = 9 ± 3%; mean ± SD ingested a dietary supplement (Meltdown®, Vital Pharmaceuticals or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI, norepinephrine (NE, glycerol, and free fatty acids (FFA. Area under the curve (AUC was calculated for all variables. Gas samples were collected from 30–60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. Results AUC was greater for the dietary supplement compared to the placebo for NE (1332 ± 128 pg·mL-1·90 min-1 vs. 1003 ± 133 pg·mL-1·90 min-1; p = 0.03, glycerol (44 ± 3 μg·mL-1·90 min-1 vs. 26 ± 2 μg·mL-1·90 min-1; p -1·90 min-1 vs. 0.88 ± 0.12 mmol·L-1·90 min-1; p = 0.0003. No difference between conditions was noted for EPI AUC (p > 0.05. For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02 for the dietary supplement (35 ± 3

  10. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism

    NARCIS (Netherlands)

    Karuna, Ratna; Park, Rebekka; Othman, Alaa; Holleboom, Adriaan G.; Motazacker, Mohammad Mahdi; Sutter, Iryna; Kuivenhoven, Jan Albert; Rohrer, Lucia; Matile, Hugues; Hornemann, Thorsten; Stoffel, Markus; Rentsch, Katharina M.; von Eckardstein, Arnold

    2011-01-01

    Apolipoprotein M (apoM) has been identified as a specific sphingosine-1-phosphate (S1P) binding protein of HDL. To investigate the in vivo effects of disturbed apoM or HDL metabolism we quantified S1P and apoM in plasmas of wild-type, apoM-knock-out, and apoM transgenic mice as well as 50 patients

  11. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma.

    Science.gov (United States)

    Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V

    1999-07-09

    To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs.

  12. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  13. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis

    Directory of Open Access Journals (Sweden)

    Lesley D. McPhail

    2006-03-01

    Full Text Available The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC as response biomarkers. Highperformance liquid chromatography (HPLC was used to determine the plasma concentration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA following treatment to provide an index of increased vessel permeability and vascular damage. Finally, tumor necrosis was assessed by grading hematoxylin and eosin-stained sections cut from the same tumors investigated by MRI. Both tumor Ktrans and IAUGC were significantly reduced 24 hours posttreatment with 350 mg/kg DMXAA only, with no evidence of dose response. HPLC demonstrated a significant increase in plasma 5-HIAA 24 hours posttreatment with 200 and 350 mg/kg DMXAA. Histologic analysis revealed some evidence of tumor necrosis following treatment with 100 or 200 mg/kg DMXAA, reaching significance with 350 mg/kg DMXAA. The absence of any reduction in Ktrans or IAUGC following treatment with 200 mg/kg, despite a significant increase in 5-HIAA, raises concerns about the utility of established DCE-MRI biomarkers to assess tumor response to DMXAA.

  14. Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism.

    Science.gov (United States)

    Niu, J; Liu, Y J; Tian, L X; Mai, K S; Yang, H J; Ye, C X; Zhu, Y

    2008-03-01

    A study was conducted to determine the effects of dietary phospholipid (PL) levels in cobia (Rachycentron canadum) larvae with regard to growth, survival, plasma lipids and enzymes of lipid metabolism. Fish with an average weight of 0.4 g were fed diets containing four levels of PL (0, 20, 40 and 80 g kg(-1)dry matter: purity 97%) for 42 days. Final body weight (FBW), weight gain (WG) and survival ratio were highest in the 8% PL diet group and mortality was highest in PL-free diet group. We examined the activities of lipoprotein lipase (LPL) and hepatic lipase (HL) in liver, lecithin-cholesterolacyltransferase (LCAT) in plasma as well as plasma lipids and lipoprotein. LCAT activity showed a decrease of more than two-fold in PL-supplemented diet groups compared with the PL-free diet group. HL activity was highest in the 8% PL diet group and the other three groups showed no difference. LPL activity was significantly higher in the PL-supplemented diet groups than in the PL-free diet group. The dietary intervention significantly increased plasma phospholipids and total cholesterol (TC) levels, and the higher free cholesterol (FC) level contributed to the TC level. However, the fish fed PL exhibited a significantly decreased plasma triglyceride (TG) level. The lipoprotein fractions were also affected significantly by the PL. The PL-supplemented diet groups had significantly higher high-density lipoprotein (HDL) compared with the PL-free diet group, but showed a marked decrease in very low-density lipoprotein (VLDL). The results suggested that PL could modify plasma lipoprotein metabolism and lipid profile, and that the optimal dietary PL level may well exceed 80 g kg(-1) for cobia larvae according to growth and survival.

  15. Effects of Acetate-Free Citrate Dialysate on Glycoxidation and Lipid Peroxidation Products in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Atsumi Masuda

    2012-09-01

    Full Text Available Background/Aims: Previous studies have shown the presence of high levels of glycoxidation and lipid peroxidation products in association with atherosclerosis in patients with end-stage kidney disease. Acetates are commonly used buffer for correcting metabolic acidosis in hemodialysis (HD patients. Since the toxic effects of acetates are well established, acetate-free citrate dialysate (AFD has become available in Japan. The objective of the present study was to evaluate the suppressive effects of AFD on oxidative stress in maintenance HD patients by measuring plasma pentosidine and malondialdehyde-modified low-density lipoprotein (MDA-LDL levels as markers for glycoxidation and lipid peroxidation products. Methods: Plasma pentosidine, MDA-LDL and other laboratory parameters were examined on maintenance HD at the Juntendo University Hospital before and after switching to AFD. Results: MDA-LDL levels divided by LDL cholesterol were significantly lower than those before switching to AFD. Furthermore, levels of plasma pentosidine were lower than those before switching to AFD. Stepwise multiple regression analysis revealed that the percent change of the calcium-phosphorus product in the nondiabetic group and that of phosphorus in the diabetic group were predictive variables for the percent change of MDA-LDL/LDL, whereas the percent change of log high-sensitive C-reactive protein and that of systolic blood pressure in the nondiabetic group and that of diastolic blood pressure in the diabetic group were predictive variables for the percent change of plasma pentosidine. Conclusions: It appears that AFD decreases glycoxidation and lipid peroxidation products when compared with acid citrate dextrose in HD patients. The reduction of oxidative stress by AFD during HD may have possible beneficial effects on atherosclerosis through calcium-phosphorus metabolism and blood pressure.

  16. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism[S

    Science.gov (United States)

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Goffredo, Bianca Maria; Rizzo, Cristiano; Dionisi-Vici, Carlo

    2016-01-01

    Oxysterols are intermediates of cholesterol metabolism and are generated from cholesterol via either enzymatic or nonenzymatic pathways under oxidative stress conditions. Cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC) have been proposed as new biomarkers for the diagnosis of Niemann-Pick type C (NP-C) disease, representing an alternative tool to the invasive and time-consuming method of fibroblast filipin test. To test the efficacy of plasma oxysterol determination for the diagnosis of NP-C, we systematically screened oxysterol levels in patients affected by different inherited disorders related with cholesterol metabolism, which included Niemann-Pick type B (NP-B) disease, lysosomal acid lipase (LAL) deficiency, Smith-Lemli-Opitz syndrome (SLOS), congenital familial hypercholesterolemia (FH), and sitosterolemia (SITO). As expected, NP-C patients showed significant increase of both C-triol and 7-KC. Strong increase of both oxysterols was observed in NP-B and less pronounced in LAL deficiency. In SLOS, only 7-KC was markedly increased, whereas in both FH and in SITO, oxysterol concentrations were normal. Interestingly, in NP-C alone, we observed that plasma oxysterols correlate negatively with patient’s age and positively with serum total bilirubin, suggesting the potential relationship between oxysterol levels and hepatic disease status. Our results indicate that oxysterols are reliable and sensitive biomarkers of NP-C. PMID:26733147

  17. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked to ...

  18. Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: The Metabolic Syndrome Reduction in Navarra (RESMENA) randomized controlled trial.

    Science.gov (United States)

    Bondia-Pons, Isabel; Martinez, José Alfredo; de la Iglesia, Rocio; Lopez-Legarrea, Patricia; Poutanen, Kaisa; Hanhineva, Kati; Zulet, Maria de los Ángeles

    2015-04-01

    Adherence to the Mediterranean diet has been associated with a reduced risk of metabolic syndrome (MetS). Metabolomics approach may contribute to identify beneficial associations of metabolic changes affected by Mediterranean diet-based interventions with inflammatory and oxidative-stress markers related to the etiology and development of the MetS. Liquid chromatography coupled to quadrupole-time of flight-MS metabolic profiling was applied to plasma from a 6-month randomized intervention with two sequential periods, a 2-month nutritional-learning intervention period, and a 4-month self-control period, with two energy-restricted diets; the RESMENA diet (based on the Mediterranean dietary pattern) and the Control diet (based on the American Heart Association guidelines), in 72 subjects with a high BMI and at least two features of MetS. The major contributing biomarkers of each sequential period were lipids, mainly phospholipids and lysophospholipids. Dependency network analysis showed a different pattern of associations between metabolic changes and clinical variables after 2 and 6 month of intervention, with a highly interconnected network during the nutritional-learning intervention period of the study. The 2-month RESMENA diet produced significant changes in the plasma metabolic profile of subjects with MetS features. However, at the end of the 6-month study, most of the associations between metabolic and clinical variables disappeared; suggesting that adherence to healthy dietary habits had declined during the self-control period. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Murphy, Nancy E; Carrigan, Christopher T; Castellani, John W; Madslien, Elisabeth H; Teien, Hilde-Kristin; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-09-01

    Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    Science.gov (United States)

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Plasma pH does not influence the cerebral metabolic ratio during maximal whole body exercise

    DEFF Research Database (Denmark)

    Volianitis, Stefanos; Rasmussen, Peter; Seifert, Thomas

    2011-01-01

    .05) following the Sal and Bicarb trials, respectively. Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8 ± 0.6 at rest to 1.7 ± 0.1 and 1.8 ± 0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis......Exercise lowers the cerebral metabolic ratio of O2 to carbohydrate (glucose + 1/2 lactate) and metabolic acidosis appears to promote cerebral lactate uptake. However, the influence of pH on cerebral lactate uptake and, in turn, on the cerebral metabolic ratio during exercise is not known. Sodium...... during maximal exercise but that did not affect the cerebral lactate uptake and, therefore, the decrease in the cerebral metabolic ratio....

  2. In Vivo Metabolism Study of Xiamenmycin A in Mouse Plasma by UPLC-QTOF-MS and LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Feng Lei

    2015-01-01

    Full Text Available Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of xiamenmycin A in mouse plasma was investigated by relative quantification. After two types of administration of xiamenmycin A at a single dose of 10 mg/kg, the plasma concentrations were measured quantitatively by LC-MS/MS. The dynamic changes in the xiamenmycin A concentration showed rapid absorption and quick elimination in plasma post-administration. Four metabolites (M1–M4 were identified in blood by UPLC-QTOF-MS, and xiamenmycin B (M3 is the principal metabolite in vivo, as verified by comparison of the authentic standard sample. The structures of other metabolites were identified based on the characteristics of their MS and MS/MS data. The newly identified metabolites are useful for understanding the metabolism of xiamenmycin A in vivo, aiming at the development of an anti-fibrotic drug candidate for the therapeutic treatment of excessive fibrotic diseases.

  3. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine.

    Science.gov (United States)

    Sadri, Hassan; von Soosten, Dirk; Meyer, Ulrich; Kluess, Jeannette; Dänicke, Sven; Saremi, Behnam; Sauerwein, Helga

    2017-01-01

    Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (Pcows were reduced (Pinsulin were not affected by Leu. In DIG, insulin and glucose concentrations peaked at 30-40 and 40-50 min after the infusion, respectively. Insulin concentrations were greater (Pcows were compared with the DIG and SAL cows at 50 and 120 min after the infusion. By using this analysis, several metabolites, mainly acylcarnitines, methionine sulfoxide and components from the

  4. Relationships of plasma adiponectin level and adiponectin receptors 1 and 2 gene expression to insulin sensitivity and glucose and fat metabolism in monozygotic and dizygotic twins

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Poulsen, Pernille; Ling, Charlotte

    2007-01-01

    and muscle AdipoR1/R2 gene expression and the impact of these components on in vivo glucose and fat metabolism. DESIGN AND PARTICIPANTS: Plasma adiponectin and muscle gene expression of AdipoR1/R2 were measured before and during insulin infusion in 89 young and 69 elderly monozygotic and dizygotic twins...... influenced by age, sex, abdominal obesity, and aerobic capacity. Intrapair correlations in monozygotic twins indicated a nongenetic influence of birth weight on plasma adiponectin and AdipoR2 expression. Nonoxidative glucose metabolism was associated with AdipoR1 and plasma adiponectin, in young and elderly...

  5. Multicompartmental nontargeted LC-MS metabolomics: explorative study on the metabolic responses of rye fiber versus refined wheat fiber intake in plasma and urine of hypercholesterolemic pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Lærke, Helle Nygaard

    2013-01-01

    A multicompartmental nontargeted LC–MS metabolomics approach was used to study the metabolic responses on plasma and urine of hypercholesterolemic pigs after consumption of diets with contrasting dietary fiber composition (whole grain rye with added rye bran versus refined wheat). To study...... the metabolic responses, we performed a supervised multivariate data analyses used for pattern recognition, which revealed marked effects of the diets on both plasma and urine metabolic profiles. Diverse pools of metabolites were responsible for the discrimination between the diets. Elevated levels of phenolic...... compounds and dicarboxylic acids were detected in urine of pigs after rye consumption compared to refined wheat. Furthermore, consumption of rye was characterized by lower levels of linoleic acid derived oxylipins and cholesterol in the plasma metabolic profiles. These results indicate that higher...

  6. Comparison of Drospirenone- with Cyproterone Acetate-Containing Oral Contraceptives, Combined with Metformin and Lifestyle Modifications in Women with Polycystic Ovary Syndrome and Metabolic Disorders: A Prospective Randomized Control Trial

    Science.gov (United States)

    Wang, Qiu-Yi; Song, Yong; Huang, Wei; Xiao, Li; Wang, Qiu-Shi; Feng, Gui-Mei

    2016-01-01

    Background: While combined oral contraceptives (COCs) are commonly used to treat polycystic ovary syndrome (PCOS), comparative data regarding metabolic effects of different progestogens on this patient population are missing. This study aimed to compare the different effects of drospirenone (DRP)-containing COCs with cyproterone acetate (CPA)-containing COCs, combined with metformin and lifestyle modifications in women with PCOS and metabolic disorders. Methods: Ninety-nine women with PCOS and a metabolic disorder between January 2011 and January 2013 were enrolled into this prospective randomized clinical trial. Participants were randomized into two groups such as DRP-containing COCs, and CPA-containing COCs. Participants took COCs cyclically for 6 months, combined with metformin administration (1.5 g/d) and lifestyle modifications (diet and exercise). Clinical measures and biochemical and hormone profiles were compared. Comparisons for continuous variables were evaluated with paired and unpaired Student's t-tests. The Wilcoxon signed rank test was used when the data were not normally distributed. Analysis of covariance was used to control for age, body mass index (BMI), and baseline data of each analyzed parameter when compared between the two groups. Results: A total of 68 patients have completed the study. The combination regimen of COCs, metformin, and lifestyle modifications in these patients resulted in a significant decrease in BMI, acne, and hirsutism scores when compared to baseline levels in both groups (P < 0.05). Blood pressure (BP) was significantly different in the CPA group when compared to baseline (75.14 ± 6.77 mmHg vs. 80.70 ± 5.60 mmHg, P < 0.01), and after 6 months of treatment, only the change in systolic BP was significantly different between the two groups (4.00 [–6.00, 13.00] mmHg vs. –3.50 [–13.00, 9.00] mmHg, P = 0.009). Fasting glucose, fasting insulin, and homeostasis model assessment-insulin resistance decreased significantly

  7. Characterization of the concurrent metabolic changes in brain and plasma during insulin-induced moderate hypoglycemia using 1H NMR spectroscopy in juvenile rats.

    Science.gov (United States)

    Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra

    2017-07-13

    Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; pplasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O

    2003-01-01

    AIMS: In order to perform euglycaemic clamp studies in Type 2 diabetic patients, plasma glucose must be reduced to normal levels. This can be done either (i) acutely during the clamp study using high-dose insulin infusion, or (ii) slowly overnight preceding the clamp study using a low-dose insulin...... infusion. We assessed whether the choice of either of these methods to obtain euglycaemia biases subsequent assessment of glucose metabolism and insulin action. METHODS: We studied seven obese Type 2 diabetic patients twice: once with (+ ON) and once without (- ON) prior overnight insulin infusion. Glucose...... turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...

  9. Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome

    OpenAIRE

    Mahbub, MH; Yamaguchi, Natsu; Takahashi, Hidekazu; Hase, Ryosuke; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Kageyama, Naoko

    2017-01-01

    Previous studies demonstrated independent contributions of plasma free amino acids (PFAAs) and high uric acid (UA) concentrations to increased risks of lifestyle-related diseases (LSRDs), but the important associations between these factors and LSRDs remain unknown. We quantified PFAAs and UA amongst Japanese subjects without LSRDs (no-LSRD, n = 2805), and with diabetes mellitus (DM, n = 415), dyslipidemia (n = 3207), hypertension (n = 2736) and metabolic syndrome (MetS, n = 717). The concent...

  10. Plasma metabolic changes in Chinese HIV-infected patients receiving lopinavir/ritonavir based treatment: Implications for HIV precision therapy.

    Science.gov (United States)

    Li, Xiaolin; Wu, Tong; Jiang, Yongjun; Zhang, Zining; Han, Xiaoxu; Geng, Wenqing; Ding, Haibo; Kang, Jing; Wang, Qi; Shang, Hong

    2018-05-16

    The goal of this study is to profile the metabolic changes in the plasma of HIV patients receiving lopinavir/ritonavir (LPV/r)-based highly active antiretroviral therapy (HAART) relative to their treatment-naïve phase, aimed to identify precision therapy for HIV for improving prognosis and predicting dyslipidemia caused by LPV/r. 38 longitudinal plasma samples were collected from 19 HIV-infected patients both before and after antiretroviral therapy, and 18 samples from healthy individuals were used as controls. Untargeted metabolomics profiling of these plasma samples was performed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). A total of 331 compounds of known identity were detected among these metabolites, a 67-metabolite signature mainly mapping to tryptophan, histidine, acyl carnitine, ketone bodies and fatty acid metabolism distinguished HIV patients from healthy controls. The levels of 19 out of the 67 altered metabolites including histidine, kynurenine, and 3-hydroxybutyrate (BHBA), recovered after LPV/r-based antiretroviral therapy, and histidine was positively correlated with the presence of CD4 + T lymphocytes. Furthermore, using receiver operating characteristic (ROC) analyses, we discovered that butyrylcarnitine in combination with myristic acid from plasma in treatment-naïve patients could predict dyslipidemia caused by LPV/r with 87% accuracy. Metabolites alterations in treatment-naïve HIV patients may indicate an inflammatory, oxidative state and mitochondrial dysfunction that is permissive for disease progression. Histidine may provide a specific protective function for HIV patients. Besides, elevated fatty acids levels including butyrylcarnitine and myristic acid after infection may indicate patients at risk of suffering from dyslipidemia after LPV/r-based HAART. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Validated LC-MS/MS Method for the Quantification of Ponatinib in Plasma: Application to Metabolic Stability.

    Directory of Open Access Journals (Sweden)

    Adnan A Kadi

    Full Text Available In the current work, a rapid, specific, sensitive and validated liquid chromatography tandem mass-spectrometric method was developed for the quantification of ponatinib (PNT in human plasma and rat liver microsomes (RLMs with its application to metabolic stability. Chromatographic separation of PNT and vandetanib (IS were accomplished on Agilent eclipse plus C18 analytical column (50 mm × 2.1 mm, 1.8 μm particle size maintained at 21±2°C. Flow rate was 0.25 mLmin-1 with run time of 4 min. Mobile phase consisted of solvent A (10 mM ammonium formate, pH adjusted to 4.1 with formic acid and solvent B (acetonitrile. Ions were generated by electrospray (ESI and multiple reaction monitoring (MRM was used as basis for quantification. The results revealed a linear calibration curve in the range of 5-400 ngmL-1 (r2 ≥ 0.9998 with lower limit of quantification (LOQ and lower limit of detection (LOD of 4.66 and 1.53 ngmL-1 in plasma, 4.19 and 1.38 ngmL-1 in RLMs. The intra- and inter-day precision and accuracy in plasma ranged from1.06 to 2.54% and -1.48 to -0.17, respectively. Whereas in RLMs ranged from 0.97 to 2.31% and -1.65 to -0.3%. The developed procedure was applied for quantification of PNT in human plasma and RLMs for study metabolic stability of PNT. PNT disappeared rapidly in the 1st 10 minutes of RLM incubation and the disappearance plateaued out for the rest of the incubation. In vitro half-life (t1/2 was 6.26 min and intrinsic clearance (CLin was 15.182± 0.477.

  12. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    Science.gov (United States)

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  13. Alternative methods for CYP2D6 phenotyping: comparison of dextromethorphan metabolic ratios from AUC, single point plasma, and urine.

    Science.gov (United States)

    Chen, Rui; Wang, Haotian; Shi, Jun; Hu, Pei

    2016-05-01

    CYP2D6 is a high polymorphic enzyme. Determining its phenotype before CYP2D6 substrate treatment can avoid dose-dependent adverse events or therapeutic failures. Alternative phenotyping methods of CYP2D6 were compared to aluate the appropriate and precise time points for phenotyping after single-dose and ultiple-dose of 30-mg controlled-release (CR) dextromethorphan (DM) and to explore the antimodes for potential sampling methods. This was an open-label, single and multiple-dose study. 21 subjects were assigned to receive a single dose of CR DM 30 mg orally, followed by a 3-day washout period prior to oral administration of CR DM 30 mg every 12 hours for 6 days. Metabolic ratios (MRs) from AUC∞ after single dosing and from AUC0-12h at steady state were taken as the gold standard. The correlations of metabolic ratios of DM to dextrorphan (MRDM/DX) values based on different phenotyping methods were assessed. Linear regression formulas were derived to calculate the antimodes for potential sample methods. In the single-dose part of the study statistically significant correlations were found between MRDM/DX from AUC∞ and from serial plasma points from 1 to 30 hours or from urine (all p-values < 0.001). In the multiple-dose part, statistically significant correlations were found between MRDM/DX from AUC0-12h on day 6 and MRDM/DX from serial plasma points from 0 to 36 hours after the last dosing (all p-values < 0.001). Based on reported urinary antimode and linear regression analysis, the antimodes of AUC and plasma points were derived to profile the trend of antimodes as the drug concentrations changed. MRDM/DX from plasma points had good correlations with MRDM/DX from AUC. Plasma points from 1 to 30 hours after single dose of 30-mg CR DM and any plasma point at steady state after multiple doses of CR DM could potentially be used for phenotyping of CYP2D6.

  14. Plasma bile acids are not associated with energy metabolism in humans

    Directory of Open Access Journals (Sweden)

    Brufau Gemma

    2010-09-01

    Full Text Available Abstract Bile acids (BA have recently been shown to increase energy expenditure in mice, but this concept has not been tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in humans. Type 2 diabetic (T2DM patients (n = 12 and gender, age and BMI-matched healthy controls (n = 12 were studied before and after 8 weeks of treatment with a BA sequestrant. In addition, patients with liver cirrhosis (n = 46 were investigated, since these display elevated plasma BA together with increased energy expenditure. This group was compared to gender-, age- and BMI-matched healthy controls (n = 20. Fasting plasma levels of total BA and individual BA species as well as resting energy expenditure were determined. In response to treatment with the BA sequestrant, plasma deoxycholic acid (DCA levels decreased in controls (-60%, p

  15. Plasma NOV/CCN3 Levels Are Closely Associated with Obesity in Patients with Metabolic Disorders

    Science.gov (United States)

    Pakradouni, Jihane; Le Goff, Wilfried; Calmel, Claire; Antoine, Bénédicte; Villard, Elise; Frisdal, Eric; Abifadel, Marianne; Tordjman, Joan; Poitou, Christine; Bonnefont-Rousselot, Dominique; Bittar, Randa; Bruckert, Eric; Clément, Karine; Fève, Bruno; Martinerie, Cécile; Guérin, Maryse

    2013-01-01

    Objective Evidence points to a founder of the multifunctional CCN family, NOV/CCN3, as a circulating molecule involved in cardiac development, vascular homeostasis and inflammation. No data are available on the relationship between plasma NOV/CCN3 levels and cardiovascular risk factors in humans. This study investigated the possible relationship between plasma NOV levels and cardiovascular risk factors in humans. Methods NOV levels were measured in the plasma from 594 adults with a hyperlipidemia history and/or with lipid-lowering therapy and/or a body mass index (BMI) >30 kg/m2. Correlations were measured between NOV plasma levels and various parameters, including BMI, fat mass, and plasma triglycerides, cholesterol, glucose, and C-reactive protein. NOV expression was also evaluated in adipose tissue from obese patients and rodents and in primary cultures of adipocytes and macrophages. Results After full multivariate adjustment, we detected a strong positive correlation between plasma NOV and BMI (r = 0.36 p<0.0001) and fat mass (r = 0.33 p<0.0005). According to quintiles, this relationship appeared to be linear. NOV levels were also positively correlated with C-reactive protein but not with total cholesterol, LDL-C or blood glucose. In patients with drastic weight loss induced by Roux-en-Y bariatric surgery, circulating NOV levels decreased by 28% (p<0.02) and 48% (p<0.0001) after 3 and 6 months, respectively, following surgery. In adipose tissue from obese patients, and in human primary cultures NOV protein was detected in adipocytes and macrophages. In mice fed a high fat diet NOV plasma levels and its expression in adipose tissue were also significantly increased compared to controls fed a standard diet. Conclusion Our results strongly suggest that in obese humans and mice plasma NOV levels positively correlated with NOV expression in adipose tissue, and support a possible contribution of NOV to obesity-related inflammation. PMID:23785511

  16. L-CARNITINE-INDUCED MODULATION OF PLASMA FATTY ACIDS METABOLISM IN HYPERLIPIDEMIC RABBITS

    Directory of Open Access Journals (Sweden)

    Frank Hernández Rosales PhD

    2006-02-01

    mejoramiento del metabolismo de las lipoproteínas. ABSTRACTThe present study was designed to examine whether the hipocholesterolemic effect of L-carnitine supplementation is related with lipoprotein fatty acid metabolism. Fatty acid compositional and cholesterol content changes were measured in lipoproteins of six different groups of rabbits. Group 1, rabbits fed a standard diet; group 2, rabbits fed standard diet plus L-carnitine 80 mg/kg bw; group 3, rabbits fed a 0.5 % cholesterol diet; group 4, rabbits fed a 0.5 % cholesterol diet plus L-carnitine 80 mg/kg b.w. These four groups were fed their diets during 126 days. Group 5 and 6 were fed the same diet as group 4 in a previous period of 126 days, and after this time, group 5 was fed the same diet as group 1, and group 6 fed the same diet as group 2, during a second period of 65 days.However, the progression of hypercholesterolemia was reduced 50 % by L-carnitine administration in those animals fed cholesterol diet. Fatty acid compositional changes in lipoprotein-cholesteryl esters were found in all groups of animals supplemented with L-carnitine. During the standard-fed period the saturated and unsaturated fatty acid ratio was increased in VLDL and HDL particles whereas was decreased in LDL. In the hyperlipidemia progression period the saturated to unsaturated fatty acid ratio in HDL fraction was slightly enhanced and in the VLDL+LDL modified particle was diminished. In the hyperlipidemia regression period, plasma cholesterol level was additionally reduced in a 33 % in the group 6; and the saturated to unsaturated fatty ratio had the same behaviour from that observed in the progression period for HDL and VLDL+LDL particles. A remarkable reduction (75% of aorta atherosclerotic plaques in the group 6 was found. From these results we concluded that L-carnitine, in this experimental model, induces an improved lipoprotein metabolism.

  17. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring.

    Science.gov (United States)

    Park, Youngja H; Lee, Kichun; Soltow, Quinlyn A; Strobel, Frederick H; Brigham, Kenneth L; Parker, Richard E; Wilson, Mark E; Sutliff, Roy L; Mansfield, Keith G; Wachtman, Lynn M; Ziegler, Thomas R; Jones, Dean P

    2012-05-16

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: (1) whether more chemicals are detected in humans living in a less controlled environment than captive species and (2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537-3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways.

    Science.gov (United States)

    Bovo, S; Mazzoni, G; Calò, D G; Galimberti, G; Fanelli, F; Mezzullo, M; Schiavo, G; Scotti, E; Manisi, A; Samoré, A B; Bertolini, F; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2015-12-01

    Metabolomics has opened new possibilities to investigate metabolic differences among animals. In this study, we applied a targeted metabolomic approach to deconstruct the pig sex metabolome as defined by castrated males and entire gilts. Plasma from 545 performance-tested Italian Large White pigs (172 castrated males and 373 females) sampled at about 160 kg live weight were analyzed for 186 metabolites using the Biocrates AbsoluteIDQ p180 Kit. After filtering, 132 metabolites (20 AA, 11 biogenic amines, 1 hexose, 13 acylcarnitines, 11 sphingomyelins, 67 phosphatidylcholines, and 9 lysophosphatidylcholines) were retained for further analyses. The multivariate approach of the sparse partial least squares discriminant analysis was applied, together with a specifically designed statistical pipeline, that included a permutation test and a 10 cross-fold validation procedure that produced stability and effect size statistics for each metabolite. Using this approach, we identified 85 biomarkers (with metabolites from all analyzed chemical families) that contributed to the differences between the 2 groups of pigs ( metabolic shift in castrated males toward energy storage and lipid production. Similar general patterns were observed for most sphingomyelins, phosphatidylcholines, and lysophosphatidylcholines. Metabolomic pathway analysis and pathway enrichment identified several differences between the 2 sexes. This metabolomic overview opened new clues on the biochemical mechanisms underlying sexual dimorphism that, on one hand, might explain differences in terms of economic traits between castrated male pigs and entire gilts and, on the other hand, could strengthen the pig as a model to define metabolic mechanisms related to fat deposition.

  19. Andrographis paniculata Extract and Andrographolide Modulate the Hepatic Drug Metabolism System and Plasma Tolbutamide Concentrations in Rats

    Directory of Open Access Journals (Sweden)

    Haw-Wen Chen

    2013-01-01

    Full Text Available Andrographolide is the most abundant terpenoid of A. paniculata which is used in the treatment of diabetes. In this study, we investigated the effects of A. paniculata extract (APE and andrographolide on the expression of drug-metabolizing enzymes in rat liver and determined whether modulation of these enzymes changed the pharmacokinetics of tolbutamide. Rats were intragastrically dosed with 2 g/kg/day APE or 50 mg/kg/day andrographolide for 5 days before a dose of 20 mg/kg tolbutamide was given. APE and andrographolide reduced the AUC0–12 h of tolbutamide by 37% and 18%, respectively, compared with that in controls. The protein and mRNA levels and enzyme activities of CYP2C6/11, CYP1A1/2, and CYP3A1/2 were increased by APE and andrographolide. To evaluate whether APE or andrographolide affected the hypoglycemic action of tolbutamide, high-fat diet-induced obese mice were used and treated in the same manner as the rats. APE and andrographolide increased CYP2C6/11 expression and decreased plasma tolbutamide levels. In a glucose tolerance test, however, the hypoglycemic effect of tolbutamide was not changed by APE or andrographolide. These results suggest that APE and andrographolide accelerate the metabolism rate of tolbutamide through increased expression and activity of drug-metabolizing enzymes. APE and andrographolide, however, do not impair the hypoglycemic effect of tolbutamide.

  20. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  1. Diet-resistant obesity is characterized by a distinct plasma proteomic signature and impaired muscle fiber metabolism

    Science.gov (United States)

    Thrush, A B; Antoun, G; Nikpay, M; Patten, D A; DeVlugt, C; Mauger, J-F; Beauchamp, B L; Lau, P; Reshke, R; Doucet, É; Imbeault, P; Boushel, R; Gibbings, D; Hager, J; Valsesia, A; Slack, R S; Al-Dirbashi, O Y; Dent, R; McPherson, R; Harper, M-E

    2018-01-01

    Background/Objectives: Inter-individual variability in weight loss during obesity treatment is complex and poorly understood. Here we use whole body and tissue approaches to investigate fuel oxidation characteristics in skeletal muscle fibers, cells and distinct circulating protein biomarkers before and after a high fat meal (HFM) challenge in those who lost the most (obese diet-sensitive; ODS) vs the least (obese diet-resistant; ODR) amount of weight in a highly controlled weight management program. Subjects/Methods: In 20 weight stable-matched ODS and ODR women who previously completed a standardized clinical weight loss program, we analyzed whole-body energetics and metabolic parameters in vastus lateralis biopsies and plasma samples that were obtained in the fasting state and 6 h after a defined HFM, equivalent to 35% of total daily energy requirements. Results: At baseline (fasting) and post-HFM, muscle fatty acid oxidation and maximal oxidative phosphorylation were significantly greater in ODS vs ODR, as was reactive oxygen species emission. Plasma proteomics of 1130 proteins pre and 1, 2, 5 and 6 h after the HFM demonstrated distinct group and interaction differences. Group differences identified S-formyl glutathione hydratase, heat shock 70 kDA protein 1A/B (HSP72), and eukaryotic translation initiation factor 5 (eIF5) to be higher in ODS vs ODR. Group-time differences included aryl hydrocarbon interacting protein (AIP), peptidylpropyl isomerase D (PPID) and tyrosine protein-kinase Fgr, which increased in ODR vs ODS over time. HSP72 levels correlated with muscle oxidation and citrate synthase activity. These proteins circulate in exosomes; exosomes isolated from ODS plasma increased resting, leak and maximal respiration rates in C2C12 myotubes by 58%, 21% and 51%, respectively, vs those isolated from ODR plasma. Conclusions: Findings demonstrate distinct muscle metabolism and plasma proteomics in fasting and post-HFM states corresponding in diet

  2. Low density lipoprotein for oxidation and metabolic studies. Isolation from small volumes of plasma using a tabletop ultracentrifuge.

    Science.gov (United States)

    Himber, J; Bühler, E; Moll, D; Moser, U K

    1995-01-01

    A rapid method is described for the isolation of small volumes of plasma low density lipoprotein (LDL) free of plasma protein contaminants using the TL-100 Tabletop Ultracentrifuge (Beckman). The isolation of LDL was achieved by a 25 min discontinuous gradient density centrifugation between the density range of 1.006 and 1.21 g/ml, recovery of LDL by tube slicing followed by a 90 min flotation step (d = 1.12 g/ml). The purity of LDL and apolipoprotein B100 (apo B100) were monitored by agarose electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), radial immunodiffusion and micropreparative fast protein liquid chromatography (FPLC). The ability of LDL oxidation was assessed by following absorbance at 234 nm after addition of copper ions. The functional integrity of the isolated LDL was checked by clearance kinetics after injection of [125I]-labelled LDL in estrogen-treated rats. The additional purification step led to LDL fractions free of protein contamination and left apo B100, alpha-tocopherol and beta-carotene intact. The LDL prepared in this way was free of albumin, as evident from analytic tests and from its enhanced oxidative modification by copper ions. Used for analytical purposes, this method allows LDL preparations from plasma volumes up to 570 microliters. This method is also convenient for metabolic studies in small animals, especially those relating to the determination of kinetic parameters of LDL in which LDL-apo B100 has to be specifically radiolabelled.

  3. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    Science.gov (United States)

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  4. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  5. Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism.

    Science.gov (United States)

    Pownall, Henry J; Rosales, Corina; Gillard, Baiba K; Ferrari, Mauro

    2016-09-01

    Although many acute and chronic diseases are managed via pharmacological means, challenges remain regarding appropriate drug targeting and maintenance of therapeutic levels within target tissues. Advances in nanotechnology will overcome these challenges through the development of lipidic particles, including liposomes, lipoproteins, and reconstituted high-density lipoproteins (rHDL) that are potential carriers of water-soluble, hydrophobic, and amphiphilic molecules. Herein we summarize the properties of human plasma lipoproteins and rHDL, identify the physicochemical determinants of lipid transfer between phospholipid surfaces, and discuss strategies for increasing the plasma half-life of lipoprotein- and liposome-associated molecules.

  6. Effects of cyclodextrin glycosiltransferase modified starch and cyclodextrins on plasma glucose and lipids metabolism in mice

    Science.gov (United States)

    The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn st...

  7. Effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan and theophylline in patients with metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Chi, K N; Tolcher, A; Lee, P; Rosen, P J; Kollmannsberger, C K; Papadopoulos, K P; Patnaik, A; Molina, A; Jiao, J; Pankras, C; Kaiser, B; Bernard, A; Tran, N; Acharya, M

    2013-01-01

    To assess the effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan HBr (CYP2D6 substrate) and theophylline (CYP1A2 substrate) in patients with metastatic castration-resistant prostate cancer (mCRPC). Men with progressive metastatic mCRPC who failed gonadotropin-releasing hormone therapy and ≥1 lines of chemotherapy were enrolled. Patients received two doses of dextromethorphan HBr-30 mg (n = 18; group A) or theophylline-100 mg (n = 16; group B) under fasting conditions; one dose on cycle 1, day -8, and the other dose on cycle 1, day 8. Only patients with extensive CYP2D6 metabolizing status were assigned to group A. All patients received continuous daily oral abiraterone acetate (1,000 mg) plus prednisone (10 mg) starting on cycle 1, day 1. Coadministration of abiraterone acetate plus prednisone increased the systemic exposure of dextromethorphan by approximately 100%. Ratios of geometric means for maximum plasma concentration (C(max)) (275.36%) and area under plasma concentration-time curves from time 0 to 24 h (AUC(24h)) (268.14%) of dextromethorphan were outside the bioequivalence limit. The pharmacokinetics of theophylline was unaltered following coadministration of abiraterone acetate plus prednisone. Ratios of geometric means [C(max); 102.36% and AUC(24h); 108.03%] of theophylline exposure parameters were within the bioequivalence limit. The safety profile of abiraterone acetate was consistent with reported toxicities. Abiraterone acetate plus prednisone increased the exposure of dextromethorphan, suggesting a need for caution when coadministrating with known CYP2D6 substrates. The pharmacokinetics of theophylline was unaffected when coadministered with abiraterone acetate plus prednisone.

  8. Plasma bile acids are not associated with energy metabolism in humans

    NARCIS (Netherlands)

    Brufau, Gemma; Bahr, Matthias J.; Staels, Bart; Claudel, Thierry; Ockenga, Johann; Boker, Klaus H. W.; Murphy, Elizabeth J.; Prado, Kris; Stellaard, Frans; Manns, Michael P.; Kuipers, Folkert; Tietge, Uwe J. F.

    2010-01-01

    Bile acids (BA) have recently been shown to increase energy expenditure in mice, but this concept has not been tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in humans. Type 2 diabetic (T2DM) patients (n = 12) and gender, age and

  9. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    OpenAIRE

    Samman S; Crossett B; Somers M; Bell KJ; Lai NT; Sullivan DR; Petocz P

    2014-01-01

    Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA) status is determined by facto...

  10. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  11. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  12. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention

    DEFF Research Database (Denmark)

    Lankinen, Maria; Schwab, Ursula; Kolehmainen, Marjukka

    2016-01-01

    Background: A healthy Nordic diet is associated with improvements in cardiometabolic risk factors, but the effect on lipidomic profile is not known. Objective: The aim was to investigate how a healthy Nordic diet affects the fasting plasma lipidomic profile in subjects with metabolic syndrome. Me...

  13. Effects of Soy-Germ Protein on Catalase Activity of Plasma and Erythocyte of Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    HERY WINARSI

    2015-01-01

    Full Text Available Oxidative stress always accompany patients with metabolic syndrome (MS. Several researchers reported that soy-protein is able to decrease oxidative stress level. However, there is no report so far about soy-germ protein in relation to its potential to the decrease oxidative stress level of MS patients. The aim of this study was to explore the potential of soy-germ protein on activity of catalase enzyme in blood's plasma as well as erythrocytes of MS patients. Double-blind randomized clinical trial was used as an experimental study. Thirty respondents were included in this study with MS, normal level blood sugar, low-HDL cholesterol but high in triglyceride, 40-65 years old, Body Mass Index > 25 kg/m2, live in Purwokerto and agreed to sign the informed consent. They were randomly grouped into 3 different groups, 10 each: Group I, was given special milk that contains soy-germ protein and Zn; Group II, soy-germ protein, while Group III was placebo; for two consecutive months. Data were taken from blood samples in 3 different periods i.e. 0, 1, and 2 months after treatment. Two months after treatment, there was an increase from 5.36 to 20.17 IU/mg (P = 0.028 in activity of catalase enzyme in blood's plasma respondents who consumed milk containing soy-germ protein with or without Zn. A similar trend of catalase activity, but at a lower level, was also noticed in erythrocyte; which increased from 88.31 to 201.11 IU/mg (P = 0.013. The increase in activity of catalase enzyme in blood's plasma was 2.2 times higher than that in erythrocytes.

  14. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  15. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout.

    Science.gov (United States)

    Capilla, Encarnación; Médale, Françoise; Navarro, Isabel; Panserat, Stéphane; Vachot, Christiane; Kaushik, Sadasivam; Gutiérrez, Joaquim

    2003-01-31

    Rainbow trout were fed for 10 weeks with either a carbohydrate-free diet (C-free) or with four experimental diets containing various levels (20 or 40%) and sources of starch (extruded wheat or peas) in order to examine metabolic utilisation of dietary vegetable carbohydrates and its endocrine control. The study was focused on the parameters described as limiting in glucose metabolism in fish. Feeding trials were conducted at 8 and 18 degrees C to establish whether carbohydrate-rich diets can be used in trout farming irrespective of water temperature. At both temperatures, pea diets (especially the highest level) resulted in a feed efficiency as high as the C-free diet. Fish had similar growth rates except when fed the low wheat content diet. Glycaemia values 6 h after feeding were significantly higher in trout fed carbohydrate diets than those given the C-free diet, whereas plasma insulin levels were similar independently of the levels of dietary starch. This study provides the first evidence that glucokinase (GK) activity and mRNA level in trout liver increase in proportion to the content of dietary starch. Nevertheless, these changes were not correlated with plasma insulin levels. Insulin-like growth factor-I (IGF-I) binding and number of receptors in skeletal muscle were consistently higher than those for insulin but no diet-induced differences were found for any of these parameters. Temperature clearly affected the postprandial profile of glucose and insulin, which both showed lower levels 6 h after feeding at 8 degrees C than at 18 degrees C, which was consistent with a lower feed intake. Glucose and insulin levels decreased markedly 24 h after feeding at 18 degrees C, while they were still high at 8 degrees C, an observation concordant with delayed transit rate. These findings indicate satisfactory adaptation of rainbow trout to diets with a relatively high vegetable starch content, especially when provided as extruded peas, and indicate that diets with

  16. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  17. Elevated levels of plasma phenylalanine in schizophrenia: a guanosine triphosphate cyclohydrolase-1 metabolic pathway abnormality?

    Directory of Open Access Journals (Sweden)

    Olaoluwa Okusaga

    Full Text Available BACKGROUND: Phenylalanine and tyrosine are precursor amino acids required for the synthesis of dopamine, the main neurotransmitter implicated in the neurobiology of schizophrenia. Inflammation, increasingly implicated in schizophrenia, can impair the function of the enzyme Phenylalanine hydroxylase (PAH; which catalyzes the conversion of phenylalanine to tyrosine and thus lead to elevated phenylalanine levels and reduced tyrosine levels. This study aimed to compare phenylalanine, tyrosine, and their ratio (a proxy for PAH function in a relatively large sample of schizophrenia patients and healthy controls. METHODS: We measured non-fasting plasma phenylalanine and tyrosine in 950 schizophrenia patients and 1000 healthy controls. We carried out multivariate analyses to compare log transformed phenylalanine, tyrosine, and phenylalanine:tyrosine ratio between patients and controls. RESULTS: Compared to controls, schizophrenia patients had higher phenylalanine (p<0.0001 and phenylalanine: tyrosine ratio (p<0.0001 but tyrosine did not differ between the two groups (p = 0.596. CONCLUSIONS: Elevated phenylalanine and phenylalanine:tyrosine ratio in the blood of schizophrenia patients have to be replicated in longitudinal studies. The results may relate to an abnormal PAH function in schizophrenia that could become a target for novel preventative and interventional approaches.

  18. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    Science.gov (United States)

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  19. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  20. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    Science.gov (United States)

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and subsequent cachexia at high altitude despite adequate availability of palatable foods. The metabolic implications of elevated CCK in AMS remain to be elucidated.

  1. Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria

    Science.gov (United States)

    Salinas, Jorge L.; Monteiro, Wuelton M.; Val, Fernando; Cordy, Regina J.; Liu, Ken; Melo, Gisely C.; Siqueira, Andre M.; Magalhaes, Belisa; Galinski, Mary R.; Lacerda, Marcus V. G.; Jones, Dean P.

    2017-01-01

    Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus

  2. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  3. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    Science.gov (United States)

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P glucose clearance rate (K) and lower glucose half-life (T½; P Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P glucose utilization and lipid oxidation of meat in fattening kid.

  4. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM)

    OpenAIRE

    Leitner, Miriam; Fragner, Lena; Danner, Sarah; Holeschofsky, Nastassja; Leitner, Karoline; Tischler, Sonja; Doerfler, Hannes; Bachmann, Gert; Sun, Xiaoliang; Jaeger, Walter; Kautzky-Willer, Alexandra; Weckwerth, Wolfram

    2017-01-01

    Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases. Here, we applied untargeted and targeted metabolomic protocols to analyze plasma and urine samples of pregnant women with and without GDM. Univariate and multivariate sta...

  5. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    Science.gov (United States)

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Do perfluoroalkyl substances affect metabolic function and plasma lipids?--Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1.

    Science.gov (United States)

    Fisher, Mandy; Arbuckle, Tye E; Wade, Mike; Haines, Douglas A

    2013-02-01

    Perfluorinated compounds (PFCs) are man-made chemicals that are heat stable, non-flammable and able to repel both water and oils. Biomonitoring research shows global distribution in human, animal and aquatic environments of these chemicals. PFCs have been shown to activate the peroxisome proliferator-activated receptors which play a large role in metabolism and the regulation of energy homeostasis. Previous epidemiological research has also suggested a potential role of PFCs on lipid and glucose metabolism. The objectives of this study were to examine the association between the levels of perfluorinated compounds perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) in plasma and metabolic function and plasma lipid levels. Using cross-sectional data from the Canadian Health Measures Survey (Cycle 1 2007-2009) we examined the association in adults between plasma levels of PFOA, PFOS and PFHxS (n=2700) on cholesterol outcomes, metabolic syndrome and glucose homeostasis using multivariate linear and logistic regression models. We found some evidence of a significant association between perfluoroalkyl substances, notably PFHxS, with total cholesterol (TC), low-density lipoprotein cholesterol (LDL), total cholesterol/high density lipoprotein cholesterol ratio (TC/HDL) and non-HDL cholesterol as well as an elevated odds of high cholesterol. We found some associations with PFOA and PFOS in our unweighted models but these results did not remain significant after weighting for sampling strategy. We found no association with metabolic syndrome, or glucose homeostasis parameters. This study showed lower levels of PFOA and PFOS and slightly higher levels of PFHxS than other published population studies. Our results did not give significant evidence to support the association with cholesterol outcomes with PFOS and PFOA. However, we did observe several significant associations with the PFHxS and cholesterol outcomes (LDL, TC, NON

  7. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  8. Relationship between pretreatment level of plasma Epstein-Barr virus DNA, tumor burden, and metabolic activity in advanced nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ma, Brigette; King, Ann; Lo, Y.M. Dennis; Yau, Y.Y.; Zee, Benny; Hui, Edwin P.; Leung, Sing F.; Mo, Frankie; Kam, Michael K.; Ahuja, Anil; Kwan, Wing H.; Chan, Anthony

    2006-01-01

    Purpose: Plasma Epstein-Barr virus DNA (pEBV DNA) is an important prognostic marker in nasopharyngeal carcinoma (NPC). This study tested the hypotheses that pEBV DNA reflects tumor burden and metabolic activity by evaluating its relationship with tumor volume and 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in NPC. Methods and Materials: Pre-treatment pEBV DNA analysis, 18 F-FDG positron emission tomography-computed tomography scan (PET-CT) and magnetic resonance imaging (MRI) of the head and neck were performed in 57 patients. Net volume (cm 3 ) of the primary tumor (T vol ) and regional nodes (N vol ) were quantified on MRI. 18 F-FDG uptake was expressed as the maximum standardized uptake value (SUV max ) at the primary tumor (T suv ) and regional nodes (N suv ). Lesions with SUV max ≥ 2.5 were considered malignant. Relationship between SUV max , natural logarithm (log) of pEBV DNA, and square root (sq) of MRI volumes was analyzed using the Wilcoxon test. A linear regression model was constructed to test for any interaction between variables and disease stage. Results: Log-pEBV DNA showed significant correlation with sq-T vol (r = 0.393), sq-N vol (r = 0.452), total tumor volume (sq-Total vol = T vol + N vol , r = 0.554), T suv (r = 0.276), N suv (r = 0.434), and total SUV max (Total suv = T suv + N suv , r = 0.457). Likewise, sq-T vol was correlated to T suv (r 0.426), and sq-N vol with N suv (r = 0.651). Regression analysis showed that only log-pEBV DNA was significantly associated with sq-Total vol (p vol was significantly associated with T suv (p = 0.002; parameter estimate = 3.923; 95% confidence interval = 1.498-6.348). Conclusion: This study supports the hypothesis that cell-free plasma EBV DNA is a marker of tumor burden in EBV-related NPC

  9. Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs.

    Science.gov (United States)

    Murillo, Ana Gabriela; Aguilar, David; Norris, Gregory H; DiMarco, Diana M; Missimer, Amanda; Hu, Siqi; Smyth, Joan A; Gannon, Sarah; Blesso, Christopher N; Luo, Yangchao; Fernandez, Maria Luz

    2016-10-01

    It is not clear how oil-in-water nanoemulsions of lutein may affect bioavailability and consequently alter lipoprotein metabolism, oxidative stress, and inflammation. The bioavailability as well as effects of a powdered lutein (PL) and an oil-in-water lutein nanoemulsion (NANO; particle size: 254.2 nm; polydispersity index: 0.29; and ζ-potential: -65 mV) on metabolic variables in liver, plasma, and adipose tissue in a guinea pig model of hepatic steatosis were evaluated. Twenty-four 2-mo-old male Hartley guinea pigs, weighing 200-300 g (n = 8/group), were fed diets containing 0.25 g cholesterol/100 g to induce liver injury for the duration of the study. They were allocated to control (0 mg lutein), PL (3.5 mg/d), or NANO (3.5 mg/d) groups. After 6 wk, plasma, liver, and adipose tissue were collected for determination of lutein, plasma lipids, tissue cholesterol, and inflammatory cytokines. The NANO group had 2-fold higher concentrations of lutein in plasma (P guinea pigs. © 2016 American Society for Nutrition.

  10. Beneficial metabolic effects of 2',3',5'-tri-acetyl-N6- (3-hydroxylaniline adenosine in the liver and plasma of hyperlipidemic hamsters.

    Directory of Open Access Journals (Sweden)

    Yang Sun

    Full Text Available BACKGROUND: Pharmaceutical research of hyperlipidemia has been commonly pursued using traditional approaches. However, unbiased metabonomics attempts to explore the metabolic signature of hyperlipidemia in a high-throughput manner to understand pathophysiology of the disease process. METHODOLOGY/PRINCIPAL FINDINGS: As a new way, we performed (1H NMR-based metabonomics to evaluate the beneficial effects of 2',3',5'-tri-acetyl-N(6- (3-hydroxylaniline adenosine (WS070117 on plasma and liver from hyperlipidemic Syrian golden hamsters. Both plasma and liver profiles provided a clearer distinction between the control and hyperlipidemic hamsters. Compared to control animals, hyperlipidemic hamsters showed a higher content of lipids (triglyceride and cholesterol, lactate and alanine together with a lower content of choline-containing compounds (e.g., phosphocholine, phosphatidylcholine, and glycerophosphocholine and betaine. As a result, metabonomics-based findings such as the PCA and OPLS-DA plotting of metabolic state and analysis of potential biomarkers in plasma and liver correlated well to the assessment of biochemical assays, Oil Red O staining and in vivo ultrasonographic imaging suggesting that WS070117 was able to regulate lipid content and displayed more beneficial effects on plasma and liver than simvastatin. CONCLUSIONS/SIGNIFICANCE: This work demonstrates the promise of applying (1H NMR metabonomics to evaluate the beneficial effects of WS070117 which may be a good drug candidate for hyperlipidemia.

  11. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM

    Directory of Open Access Journals (Sweden)

    Miriam Leitner

    2017-12-01

    Full Text Available Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases. Here, we applied untargeted and targeted metabolomic protocols to analyze plasma and urine samples of pregnant women with and without GDM. Univariate and multivariate statistical analyses of metabolomic profiles revealed markers such as 2-hydroxybutanoic acid (AHBA, 3-hydroxybutanoic acid (BHBA, amino acids valine and alanine, the glucose-alanine-cycle, but also plant-derived compounds like sitosterin as different between control and GDM patients. PLS-DA and VIP analysis revealed tryptophan as a strong variable separating control and GDM. As tryptophan is biotransformed to serotonin we hypothesized whether serotonin metabolism might also be altered in GDM. To test this hypothesis we applied a method for the analysis of serotonin, metabolic intermediates and dopamine in urine by stable isotope dilution direct infusion electrospray ionization mass spectrometry (SID-MS. Indeed, serotonin and related metabolites differ significantly between control and GDM patients confirming the involvement of serotonin metabolism in GDM. Clustered correlation coefficient visualization of metabolite correlation networks revealed the different metabolic signatures between control and GDM patients. Eventually, the combination of selected blood plasma and urine sample metabolites improved the AUC prediction accuracy to 0.99. The detected GDM candidate biomarkers and the related systemic metabolic signatures are discussed in their pathophysiological context. Further studies with larger cohorts are necessary to underpin these observations.

  12. Weight loss predictability by plasma metabolic signatures in adults with obesity and morbid obesity of the DiOGenes study

    DEFF Research Database (Denmark)

    Stroeve, Johanna H M; Saccenti, Edoardo; Bouwman, Jildau

    2016-01-01

    predictive for weight loss were acetoacetate, triacylglycerols, phosphatidylcholines, specific amino acids, and creatine and creatinine. This metabolic profile suggests that high energy metabolism activity results in higher amounts of weight loss. CONCLUSIONS: Possible predictive (pre-diet) markers were...

  13. Interactive effects of naphthalene treatment and the onset of vitellogenesis on energy metabolism in liver and gonad, and plasma steroid hormones of rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Tintos, Adrián; Gesto, Manuel; Alvarez, Rosa; Míguez, Jesús M; Soengas, José L

    2006-10-01

    The purpose of the study was to assess in female fish the possible interaction between treatment with a polycyclic aromatic hydrocarbon (PAH) like naphthalene and the onset of vitellogenesis. In a first experiment, female rainbow trout (Oncorhynchus mykiss) at stages 2-3 (previtellogenesis) or 4 (early vitellogenesis) were intraperitoneally injected (2 microl g(-1)) with vegetable oil alone (control) or containing naphthalene (50 mg kg(-1)) to be sampled 3 h later. A second experiment was similarly designed but using fish intraperitoneally implanted (10 microl g(-1)) with slow-release coconut oil implants alone (control) or containing 50 mg naphthalene kg(-1) body mass that were sampled 3 days after injection. On each sampling time, plasma levels of cortisol and 17beta-estradiol, and several metabolic parameters in plasma, liver and gonad were assessed. In controls, early vitellogenic fish compared with previtellogenic fish displayed changes that in some cases are confirmatory of previous studies whereas in other cases provide new information in plasma (increased amino acid levels), liver (decreased capacity for exporting glucose and reduced amino acid levels) and gonad (decreased amino acid levels). Naphthalene treatment produced in previtellogenic fish decreased 17beta-estradiol levels in plasma, increased plasma glucose or decreased liver gluconeogenic capacity whereas no major effects were noticed on parameters involved in lipid, amino acid and lactate metabolism. Differential effects of naphthalene treatment were noticed in early vitellogenic fish such as decreased 17beta-estradiol and glucose levels in plasma, increased hexokinase and glucokinase and lack of changes in fructose 1,6-bisphosphatase activities in liver, and a lower decrease of amino acid levels in gonad. Those alterations produced by naphthalene treatment resulted in a decreased capacity for covering the energy demand of vitellogenesis in liver and gonad that could contribute to a delay and

  14. Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage.

    Science.gov (United States)

    Barri, Thaer; Holmer-Jensen, Jens; Hermansen, Kjeld; Dragsted, Lars O

    2012-03-09

    Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Impairment of lysophospholipid metabolism in obesity: altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial.

    Science.gov (United States)

    Del Bas, Josep M; Caimari, Antoni; Rodriguez-Naranjo, Maria Isabel; Childs, Caroline E; Paras Chavez, Carolina; West, Annette L; Miles, Elizabeth A; Arola, Lluis; Calder, Philip C

    2016-08-01

    Plasma lysophospholipids have emerged as signaling molecules with important effects on inflammation, insulin resistance, and fatty liver disease, each of which is linked closely to obesity. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may be able to improve these conditions. The objective of this study was to assess the response of plasma lysophospholipids to obesity, n-3 PUFA consumption, and a high-fat meal challenge to better understand the role of lysophospholipid metabolism in the progression of obesity-related disorders. We determined the concentrations of 8 lysophosphatidylcholines, 11 lysophosphatidylethanolamines, and 7 lysophosphatidylinositols in the plasma of 34 normal-weight and 38 obese subjects randomly assigned to consume corn oil (control) or n-3 PUFA-rich fish oil (3 g/d; n = 15-19/group) for 90 d. Blood samples were collected on the last day of the study under fasting conditions and 6 h after a high-fat meal (1135 kcal, 86 g fat) challenge. The profile of secreted lysophospholipids was studied in HepG2 cells under palmitate-induced steatosis. Obese and normal-weight subjects had different profiles of plasma lysophospholipids. A multivariate combination of the 26 lysophospholipids could discriminate between normal-weight and obese subjects with an accuracy of 98%. The high-fat meal challenge altered the concentration of plasma lysophosphatidylcholines in an oil treatment-dependent manner in normal-weight but not obese subjects, suggesting that obesity impairs the sensitivity of lysophospholipid metabolism to n-3 PUFAs. Noncytotoxic steatosis in HepG2 cells affected the secretion pattern of lysophospholipids, partially resembling the changes observed in the plasma of obese subjects. Obesity has a substantial impact on lysophospholipid metabolism, altering the plasma lysophospholipid profile and abolishing its sensitivity to dietary n-3 PUFAs. These effects could contribute to the onset or progression of alterations associated with obesity

  16. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine

    2016-01-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signa......Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works...... as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter....... The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine...

  17. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    Science.gov (United States)

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  18. Plasma trans-fatty acid concentrations continue to be associated with metabolic syndrome among US adults after reductions in trans-fatty acid intake.

    Science.gov (United States)

    Zhang, Zefeng; Gillespie, Cathleen; Yang, Quanhe

    2017-07-01

    No study examined and compared the association between intake of trans-fatty acids (TFAs) and risk of metabolic syndrome before and after significant reduction of TFA intakes in the US population. We hypothesized that the relationship might remain significant after substantial reduction of TFA intakes in the population. We used data on 1442 and 2233 adults aged ≥20 years from the National Health and Nutrition Examination Survey 1999-2000 and 2009-2010, respectively. Multivariable logistic regression analysis was used to assess the association between plasma TFA concentrations and metabolic syndrome, including each of its 5 components. The median plasma TFA concentrations were reduced from 79.8 μmol/L in 1999-2000 to 36.9 μmol/L in 2009-2010. The fully adjusted prevalence ratios comparing the highest vs the lowest quintile of plasma TFA concentrations in 1999-2000 were 3.43 (95% confidence interval, 2.39-4.92) for metabolic syndrome, 1.72 (1.38-2.14) for large waistline, 8.25 (6.34-10.74) for high triglycerides, 1.96 (1.46-2.62) for low high-density lipoprotein cholesterol, 1.14 (0.85-1.55) for high blood pressure, and 1.48 (1.19-1.85) for high fasting glucose, respectively. The corresponding prevalence ratios in 2009-2010 were 2.93 (2.41-3.54), 1.62 (1.39-1.89), 14.93 (9.28-24.02), 3.09 (2.18-4.37), 1.27 (1.11-1.46), and 1.24 (1.06-1.46), respectively. The pattern of association between TFAs and metabolic syndrome and its components did not differ by cycles. The observed associations were consistent across the subgroups examined. Despite a 54% decline in plasma TFA concentrations from 1999-2000 to 2009-2010, it was positively associated with risk of metabolic syndrome and its individual components except for blood pressure in 1999-2000. Our findings support Food and Drug Administration initiatives to remove TFAs from the industrially-produced foods. Published by Elsevier Inc.

  19. [18F]Fallypride: Metabolism studies and quantification of the radiotracer and its radiometabolites in plasma using a simple and rapid solid-phase extraction method

    International Nuclear Information System (INIS)

    Peyronneau, Marie-Anne; Saba, Wadad; Goutal, Sébastien; Kuhnast, Bertrand; Dollé, Frédéric; Bottlaender, Michel; Valette, Héric

    2013-01-01

    Introduction: [ 18 F]Fallypride, a fluorinated and substituted benzamide with high affinity for D 2 /D 3 receptors, is a useful PET radioligand for the study of striatal/extrastriatal areas. Since [ 18 F]fallypride is extensively metabolized in vivo and since PET examinations are long lasting in humans, the rapid measurement of the unchanged radiotracer in plasma is essential for the quantification of images. The present study aims: i) to evaluate if the radiometabolites of [ 18 F]fallypride cross the blood–brain barrier in rodents, ii) to identify these radiometabolites in baboon plasma and iii) to develop a rapid solid phase extraction method (SPE) suitable for human applications to quantify both [ 18 F]fallypride and its radiometabolites in plasma. Methods: The metabolites P450-dependant in rat and human liver microsomes were characterized by LC–MS–MS and compared to those detected in vivo. Sequential solvent elution on Oasis®-MCX-SPE cartridges was used to quantify [ 18 F]fallypride and its radiometabolites. Result: In rat microsomal incubations, five metabolites generated upon N/O-dealkylation or hydroxylation at the pyrrolidine and/or at the benzamide moiety were identified. No radiometabolite was detected in the rat brain. N-dealkylated and hydroxylated derivatives were detected in human microsomal incubations as well as in baboon plasma. The use of SPE (total recovery 100.2% ± 2.8%, extraction yield 95.5% ± 0.3%) allowed a complete separation of [ 18 F]fallypride from its radiometabolites in plasma and evaluate [ 18 F]fallypride at 150 min pi to be 22% ± 5% of plasma radioactivity. Conclusions: The major in vivo radiometabolites of [ 18 F]fallypride were produced by N-dealkylation and hydroxylation. Allowing the rapid analysis of multiple plasma samples, SPE is a method of choice for the determination of [ 18 F]fallypride until late images required for quantitative PET imaging in humans

  20. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis1

    OpenAIRE

    McPhail, Lesley D; McIntyre, Dominick J O; Ludwig, Christian; Kestell, Philip; Griffiths, John R; Kelland, Lloyd R; Robinson, Simon P

    2006-01-01

    The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC) as response biomarkers. Highperformance liquid chromatography (HPLC) was use...

  1. Meat and Seafood Consumption in Relation to Plasma Metabolic Profiles in a Chinese Population: A Combined Untargeted and Targeted Metabolomics Study.

    Science.gov (United States)

    Lu, Yonghai; Zou, Li; Su, Jin; Tai, E Shyong; Whitton, Clare; Dam, Rob M van; Ong, Choon Nam

    2017-06-30

    We examined the relationship between different patterns of meat and seafood consumption and plasma metabolic profiles in an Asian population. We selected 270 ethnic Chinese men and women from the Singapore Prospective Study Program based on their dietary habits assessed with a validated food frequency questionnaire. Participants were divided into four subgroups: high meat and high seafood ( n = 60), high meat and low seafood ( n = 64), low meat and high seafood ( n = 60), and low meat and low seafood ( n = 86) consumers. Plasma metabolites were measured using both targeted and untargeted mass spectroscopy-based analyses. A total of 42 metabolites differed significantly by dietary group. Higher concentrations of essential amino acids, polyunsaturated fatty acids, and d-glucose were found in high meat and/or seafood consumers as compared with the group with a low consumption of these animal foods. Red meat, poultry, fish, shellfish, soy products, and dairy were each correlated with at least one differential metabolite ( r = -0.308 to 0.448). Some observations, such as the correlation between fish and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), confirmed previous studies. Other observations, such as the correlation between shellfish and phosphatidylethanolamine (p36:4), were novel. We also observed significant correlations between plasma metabolites and clinical characteristics, such as CMPF with fasting blood glucose ( r = 0.401). These findings demonstrate a significant influence of meat and seafood consumption on metabolic profiles in the Asian population.

  2. The relationship between maternal and neonatal umbilical cord plasma homocyst(e)ine suggests a potential role for maternal homocyst(e)ine in fetal metabolism.

    Science.gov (United States)

    Malinow, M R; Rajkovic, A; Duell, P B; Hess, D L; Upson, B M

    1998-02-01

    Data on fetal blood homocyst(e)ine concentrations are not available. We tested the hypothesis that homocyst(e)ine crosses the maternal/placental/fetal interphases and is sequestered by the fetus. The concentration of homocyst(e)ine was determined at parturition in peripheral venous plasma from 35 nulliparous healthy pregnant women and umbilical arterial and venous plasma from their conceptus. Findings demonstrated a descending concentration gradient of plasma homocyst(e)ine from maternal vein to umbilical vein and to umbilical artery; the decrease at each interphase approximated 1 micromol/L. The neonate weight and gestational age were inversely related to maternal homocyst(e)ine concentrations. The umbilical vein to umbilical artery homocyst(e)ine decrement suggests that uptake of homocyst(e)ine occurs in the fetus. The likely incorporation of homocyst(e)ine into the fetal metabolic cycle may implicate maternal homocyst(e)ine as having a potential nutritional role in the fetus. Further studies are required to explain the role of homocyst(e)ine in fetal metabolism and development.

  3. Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model

    NARCIS (Netherlands)

    Pas, te M.F.W.; Koopmans, S.J.; Kruijt, L.; Calus, M.P.L.; Smits, M.A.

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers

  4. Weight loss predictability by plasma metabolic signatures in adults with obesity and morbid obesity of the DiOGenes study

    NARCIS (Netherlands)

    Stroeve, J.H.M.; Saccenti, E.; Bouwman, J.; Dane, A.; Strassburg, K.; Vervoort, J.; Hankemeier, T.; Astrup, A.; Smilde, A.K.; Ommen, B. van; Saris, W.H.M.

    2016-01-01

    Objective: Aim is to predict successful weight loss by metabolic signatures at baseline and to identify which differences in metabolic status may underlie variations in weight loss success. Methods: In DiOGenes, a randomized, controlled trial, weight loss was induced using a low calorie diet (800

  5. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

    Directory of Open Access Journals (Sweden)

    Laurence Le Moyec

    Full Text Available During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE and post exercise (PE from 69 horses competing in three endurance races at national level (130-160 km. Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses. The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.

  6. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  7. [Physical activity in patients with symptoms of metabolic syndrome reduces the concentration of plasma antioxidant vitamins - protective effect of vitamin C].

    Science.gov (United States)

    Godala, Małgorzata; Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Rutkowski, Maciej; Szatko, Franciszek; Gaszyńska, Ewelina; Tokarski, Sławomir; Kowalski, Jan

    2015-05-01

    Patients with cardiovascular diseases, including those with the symptoms of metabolic syndrome (MS), are recommended regular exercise but many studies indicate its role in the production of reactive oxygen species. Vitamin C supplementation may enhance the antioxidant barrier in MS patients. The aim of the study was to assess the impact of regular physical activity (PA)and vitamin C supplementation on plasma vitamin A, C and E levels in patients with MS. The study included 62 patients with MS according to International Diabetes Federation criteria, 32 men and 30 women, aged 38-57 years (mean age 51,24 ± 5,29 years). The patients were divided in two groups: group I (MS+PA) - 31 patients with recommended regular physical activity; group II ( MS+PA+C) - 31 patients with recommended regular physical activity and vitamin C supplementation per os. The control group consisted of 23 healthy individuals without MS, 17 men and 6 women, aged 49-56 years (mean age 53,21 ± 3,6 years), who were not recommended any vitamin supplementation nor physical activity. Plasma vitamin A, C and E levels were estimated in MS patients with spectrophotometry using T60V spectrophotometer (PG Instruments) before and after regular exercise with and without vitamin C supplementation. In the control group plasma levels of antioxidant vitamins were assessed only once. The plasma vitamin A, C and E levels were significantly lower (pvitamins was observed in MS patients. In the group of patients with regular physical activity and vitamin C supplementation there was detected a significant rise in the level of all the tested vitamins close to the levels in control group. Regular physical activity enhances the decrease in plasma antioxidant vitamin level in patients with MS. Vitamin C supplementation conducted in parallel with regular physical activity normalize plasma vitamin A, C and E levels in these patients. © 2015 MEDPRESS.

  8. Effects of a healthy Nordic diet on plasma 25-hydroxyvitamin D concentration in subjects with metabolic syndrome: a randomized, [corrected] controlled trial (SYSDIET).

    Science.gov (United States)

    Brader, Lea; Rejnmark, Lars; Carlberg, Carsten; Schwab, Ursula; Kolehmainen, Marjukka; Rosqvist, Fredrik; Cloetens, Lieselotte; Landin-Olsson, Mona; Gunnarsdottir, Ingibjorg; Poutanen, Kaisa S; Herzig, Karl-Heinz; Risérus, Ulf; Savolainen, Markku J; Thorsdottir, Inga; Uusitupa, Matti; Hermansen, Kjeld

    2014-06-01

    At northern latitudes, vitamin D is not synthesized endogenously during winter, causing low plasma 25-hydroxyvitamin D (25(OH)D) concentrations. Therefore, we evaluated the effects of a healthy Nordic diet based on Nordic nutrition recommendations (NNR) on plasma 25(OH)D and explored its dietary predictors. In a Nordic multi-centre trial, subjects (n = 213) with metabolic syndrome were randomized to a control or a healthy Nordic diet favouring fish (≥300 g/week, including ≥200 g/week fatty fish), whole-grain products, berries, fruits, vegetables, rapeseed oil and low-fat dairy products. Plasma 25(OH)D and parathyroid hormone were analysed before and after 18- to 24-week intervention. At baseline, 45 % had vitamin D inadequacy (healthy Nordic diet (P healthy Nordic and the control diet reduced the prevalence of vitamin D inadequacy by 42 % (P healthy Nordic diet. Predictors for 25(OH)D were intake of vitamin D, eicosapentaenoic acids (EPA), docosahexaenoic acids (DHA), vitamin D supplement, plasma EPA and plasma DHA. Nevertheless, only vitamin D intake and season predicted the 25(OH)D changes. Consuming a healthy Nordic diet based on NNR increased vitamin D intake but not plasma 25(OH)D concentration. The reason why fish consumption did not improve vitamin D status might be that many fish are farmed and might contain little vitamin D or that frying fish may result in vitamin D extraction. Additional ways to improve vitamin D status in Nordic countries may be needed.

  9. Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican Population

    Science.gov (United States)

    Results of studies investigating relationships between lifestyle factors and elevated plasma homocysteine (Hcy), an independent risk factor for cardiovascular disease, are conflicting. The objective of this study was to investigate genetic and lifestyle factors and their interactions on plasma Hcy c...

  10. 21 CFR 184.1185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be...

  11. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    Science.gov (United States)

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  12. Radiation sterilization of hydrocortisone acetate

    International Nuclear Information System (INIS)

    Charef, A.; Boussaha, A.

    1989-09-01

    The feasibility of using high energy ionizing radiation for the sterilization of hydrocortisone acetate was investigated. Hydrocortisone acetate in the form of powder was exposed to different dose levels of gamma radiation using a Cobalt-60 source. The irradiated samples were examined by various physico-chemical techniques in order to detect possible radiolysis products. It was of interest to know if one could insure sterility and retain biological properties of the drug by suitable choice of radiation dose. The results showed that a 10 KGy radiation dose causes no change in the physico-chemical properties of the drug and is sufficient to obtain contaminant-free product

  13. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention.

    Science.gov (United States)

    Lankinen, Maria; Schwab, Ursula; Kolehmainen, Marjukka; Paananen, Jussi; Nygren, Heli; Seppänen-Laakso, Tuulikki; Poutanen, Kaisa; Hyötyläinen, Tuulia; Risérus, Ulf; Savolainen, Markku J; Hukkanen, Janne; Brader, Lea; Marklund, Matti; Rosqvist, Fredrik; Hermansen, Kjeld; Cloetens, Lieselotte; Önning, Gunilla; Thorsdottir, Inga; Gunnarsdottir, Ingibjorg; Åkesson, Björn; Dragsted, Lars Ove; Uusitupa, Matti; Orešič, Matej

    2016-03-09

    A healthy Nordic diet is associated with improvements in cardiometabolic risk factors, but the effect on lipidomic profile is not known. The aim was to investigate how a healthy Nordic diet affects the fasting plasma lipidomic profile in subjects with metabolic syndrome. Men and women (n = 200) with features of metabolic syndrome [mean age: 55 y; body mass index (in kg/m 2 ): 31.6] were randomly assigned to either a healthy Nordic (n = 104) or a control (n = 96) diet for 18 or 24 wk at 6 centers. Of the participants, 156 completed the study with plasma lipidomic measurements. The healthy Nordic diet consisted of whole grains, fruits, vegetables, berries, vegetable oils and margarines, fish, low-fat milk products, and low-fat meat. An average Nordic diet served as the control diet and included low-fiber cereal products, dairy fat-based spreads, regular-fat milk products, and a limited amount of fruits, vegetables, and berries. Lipidomic profiles were measured at baseline, week 12, and the end of the intervention (18 or 24 wk) by using ultraperformance liquid chromatography mass spectrometry. The effects of the diets on the lipid variables were analyzed with linear mixed-effects models. Data from centers with 18- or 24-wk duration were also analyzed separately. Changes in 21 plasma lipids differed significantly between the groups at week 12 (false discovery rate P Nordic diet group compared with the control group. At the end of the study, changes in lipidomic profiles did not differ between the groups. However, when the intervention lasted 24 wk, changes in 8 plasma lipids that had been identified at 12 wk, including plasmalogens, were sustained. There were no differences in changes in plasma lipids between groups with an intervention of 18 wk. By the dietary biomarker score, adherence to diet did not explain the difference in the results related to the duration of the study. A healthy Nordic diet transiently modified the plasma lipidomic profile, specifically by

  14. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring

    OpenAIRE

    Park, Youngja H.; Lee, Kichun; Soltow, Quinlyn A.; Strobel, Frederick H.; Brigham, Kenneth L.; Parker, Richard E.; Wilson, Mark E.; Sutliff, Roy L.; Mansfield, Keith G.; Wachtman, Lynn M.; Ziegler, Thomas R.; Jones, Dean P.

    2012-01-01

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses,...

  15. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure.

    Science.gov (United States)

    Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K

    2018-01-01

    With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified

  16. Long-Term Intake of a High-Protein Diet Affects Body Phenotype, Metabolism, and Plasma Hormones in Mice.

    Science.gov (United States)

    Vu, John P; Luong, Leon; Parsons, William F; Oh, Suwan; Sanford, Daniel; Gabalski, Arielle; Lighton, John Rb; Pisegna, Joseph R; Germano, Patrizia M

    2017-12-01

    Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake. Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones. Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points. Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL ( P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL ( P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL ( P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL ( P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice. Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as

  17. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Guangmang Liu

    Full Text Available This study aimed to examine the effect of pea fiber (PF and wheat bran fiber (WF supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.

  18. Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2016-12-01

    Full Text Available The objective of this study was to profile plasma amino acids (AA and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET or rumen-protected choline (CHOL. Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.

  19. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome

    NARCIS (Netherlands)

    Sailer, M.; Dahlhoff, C.; Giesbertz, P.; Eidens, M.K.; Wit, de N.J.W.; Rubio-Aliaga, I.; Boekschoten, M.V.; Müller, M.R.; Daniel, H.

    2013-01-01

    Article About the Authors Metrics Comments Related Content Abstract Introduction Results Discussion Materials and Methods Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract In humans, plasma amino acid concentrations of branched-chain amino

  20. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism.

    Science.gov (United States)

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Goffredo, Bianca Maria; Rizzo, Cristiano; Dionisi-Vici, Carlo

    2016-03-01

    Oxysterols are intermediates of cholesterol metabolism and are generated from cholesterol via either enzymatic or nonenzymatic pathways under oxidative stress conditions. Cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC) have been proposed as new biomarkers for the diagnosis of Niemann-Pick type C (NP-C) disease, representing an alternative tool to the invasive and time-consuming method of fibroblast filipin test. To test the efficacy of plasma oxysterol determination for the diagnosis of NP-C, we systematically screened oxysterol levels in patients affected by different inherited disorders related with cholesterol metabolism, which included Niemann-Pick type B (NP-B) disease, lysosomal acid lipase (LAL) deficiency, Smith-Lemli-Opitz syndrome (SLOS), congenital familial hypercholesterolemia (FH), and sitosterolemia (SITO). As expected, NP-C patients showed significant increase of both C-triol and 7-KC. Strong increase of both oxysterols was observed in NP-B and less pronounced in LAL deficiency. In SLOS, only 7-KC was markedly increased, whereas in both FH and in SITO, oxysterol concentrations were normal. Interestingly, in NP-C alone, we observed that plasma oxysterols correlate negatively with patient's age and positively with serum total bilirubin, suggesting the potential relationship between oxysterol levels and hepatic disease status. Our results indicate that oxysterols are reliable and sensitive biomarkers of NP-C. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population

    OpenAIRE

    Yamaguchi, Natsu; Mahbub, MH; Takahashi, Hidekazu; Hase, Ryosuke; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Amano, Hiroki; Kobayashi- Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Takasu, Mariko

    2017-01-01

    Background Recently, the association of plasma free amino acid (PFAA) profile and lifestyle-related diseases has been reported. However, few studies have been reported in large Asian populations, about the usefulness of PFAAs for evaluating disease risks. We examined the ability of PFAA profiles to evaluate lifestyle-related diseases in so far the largest Asian population. Methods We examined plasma concentrations of 19 amino acids in 8589 Japanese subjects, and determined the association wit...

  2. Evaluations of in vitro metabolism, drug-drug interactions mediated by reversible and time-dependent inhibition of CYPs, and plasma protein binding of MMB4 DMS.

    Science.gov (United States)

    Hong, S Peter; Lusiak, Bozena D; Burback, Brian L; Johnson, Jerry D

    2013-01-01

    1,1'-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) dimethanesulfonate (DMS) is a bisquaternary pyridinium aldoxime that reactivates acetylcholinesterase inhibited by organophosphorus nerve agent. Drug metabolism and plasma protein binding for MMB4 DMS were examined using various techniques and a wide range of species. When (14)C-MMB4 DMS was incubated in liver microsomes, 4-pyridine aldoxime (4-PA) and an additional metabolite were detected in all species tested. Identity of the additional metabolite was postulated to be isonicotinic acid (INA) based on liquid chromatography with a tandem mass spectrometry analysis, which was confirmed by comparison with authentic INA. Formation of INA was dependent on species, with the highest level found in monkey liver microsomes. The MMB4 DMS exhibited reversible inhibition in a concentration-dependent manner toward cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in human liver microsomes showing the highest inhibition for CYP2D6. Human recombinant CYPs were used to evaluate inhibitory curves more adequately and determine detailed kinetic constants for reversible inhibition and potential time-dependent inhibition (TDI). The MMB4 DMS exhibited reversible inhibition toward human-recombinant CYP2D6 with an inhibition constant (K i) value of 66.6 µmol/L. Based on the k inact/K I values, MMB4 DMS was found to exhibit the most potent TDI toward CYP2D6. The MMB4 DMS at 5 different concentrations was incubated in plasma for 5 hours using an equilibrium dialysis device. For all species tested, there were no concentration-dependent changes in plasma protein binding, ranging from 10% to 17%. These results suggest that MMB4 was not extensively bound to plasma protein, and there were no overt species-related differences in the extent of MMB4 bound to plasma protein.

  3. Methodical investigation of the protein metabolism and of the bioenergetics of protein retention in growing animals. 1. Determination of parameters of growth and protein retention of chickens after long-term labelling with /sup 15/NH/sub 4/ acetate

    Energy Technology Data Exchange (ETDEWEB)

    Schiemann, R.; Bock, H.D.; Keller, J.; Hoffmann, L.; Krawielitzki, K.; Klein, M. (Akademie der Landwirtschaftswissenschaften der DDR, Dummerstorf-Rostock. Forschungszentrum fuer Tierproduktion)

    1983-01-01

    The influence of different protein levels in the feed (group R1 20%, R2 38% crude protein) and of different energy levels (group J1 low, J2 high energy level) on the composition of the carcass and the apparent half-life periods of the body proteins were determined in 4 groups of 15 male broiler chickens labelled with /sup 15/NH/sub 4/ acetate. In all slaughtering phases the higher protein level resulted in a higher weight of the feathers, breast and leg muscles, higher amounts of N in all parts of the body and a higher percentage of feathers, breast and leg muscles of the total carcass than the lower protein level. Between 13 and 19% of the N in the carcass contributed to the feathers, 24-31% to the breast and leg muscles and 50-63% to the rest of the carcass. The relative quotas of the sum of breast and leg muscles in the carcass were higher for the low energy level than for the high energy level. There were no remarkable differences as to the protein content of the muscles in dependence on the energy level, the quota of sarcoplasmatic proteins, however, was higher on the high level in contrast to the low energy level, that of the myofibrillar proteins was lower. The apparent half-life period of the total body protein after normal protein supply was 22 days (group R1) and 14 after high protein supply. The energy levels in groups J1 and J2 had no significant influence on the half-life period of the total body protein. In the body fractions examined the apparent half-life periods were highest in the breast muscle and lowest in the rest of the carcass. The protein stored in the feathers did not undergo decomposition. The protein fractions 'sarcoplasmatic protein' and 'myofibrillar protein' of breast and leg muscle neither differed from one another nor from the respective total muscle fractions as regards their half-life period.

  4. Desmopressin Acetate in Intracranial Haemorrhage

    Directory of Open Access Journals (Sweden)

    Thomas Kapapa

    2014-01-01

    Full Text Available Introduction. The secondary increase in the size of intracranial haematomas as a result of spontaneous haemorrhage or trauma is of particular relevance in the event of prior intake of platelet aggregation inhibitors. We describe the effect of desmopressin acetate as a means of temporarily stabilising the platelet function. Patients and Methods. The platelet function was analysed in 10 patients who had received single (N=4 or multiple (N=6 doses of acetylsalicylic acid and 3 patients (control group who had not taken acetylsalicylic acid. All subjects had suffered intracranial haemorrhage. Analysis was performed before, half an hour and three hours after administration of desmopressin acetate. Statistical analysis was performed by applying a level of significance of P≤0.05. Results. (1 Platelet function returned to normal 30 minutes after administration of desmopressin acetate. (2 The platelet function worsened again after three hours. (3 There were no complications related to electrolytes or fluid balance. Conclusion. Desmopressin acetate can stabilise the platelet function in neurosurgical patients who have received acetylsalicylic acid prior to surgery without causing transfusion-related side effects or a loss of time. The effect is, however, limited and influenced by the frequency of drug intake. Further controls are needed in neurosurgical patients.

  5. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the inf......Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal...... of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  6. Association of metabolic and genetic factors with cholesterol esterification rate in HDL plasma and atherogenic index of plasma in a 40 years old Slovak population

    Czech Academy of Sciences Publication Activity Database

    Rašlová, K.; Dobiášová, Milada; Hubáček, J. A.; Bencová, D.; Siváková, D.; Danková, Z.; Franeková, J.; Jabor, A.; Gašparovič, J.; Vohnout, B.

    2011-01-01

    Roč. 60, č. 5 (2011), s. 758-795 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NR8328; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : fractional esterification rate of cholesterol (FERHDL) * atherogenic index of plasma (AIP) * biomarkers of CVD * CILP2 * FTO * MLXIPL Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.555, year: 2011

  7. A (1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters.

    Directory of Open Access Journals (Sweden)

    Chun-Ying Jiang

    Full Text Available The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better understanding of the progression of hyperlipidemia and discover potential biomarkers, we have used a proton nuclear magnetic resonance spectroscopy ((1H-NMR-based metabonomics approach to study the metabolic changes occurring in the plasma, urine and liver extracts of hamsters fed a high-fat/high-cholesterol diet. Samples were collected at different time points during the progression of hyperlipidemia, and individual proton NMR spectra were visually and statistically assessed using two multivariate analyses (MVA: principal component analysis (PCA and orthogonal partial least squares-discriminant analysis (OPLS-DA. Using the commercial software package Chenomx NMR suite, 40 endogenous metabolites in the plasma, 80 in the urine and 60 in the water-soluble fraction of liver extracts were quantified. NMR analysis of all samples showed a time-dependent transition from a physiological to a pathophysiological state during the progression of hyperlipidemia. Analysis of the identified biomarkers of hyperlipidemia suggests that significant perturbations of lipid and amino acid metabolism, as well as inflammation, oxidative stress and changes in gut microbiota metabolites, occurred following cholesterol overloading. The results of this study substantially broaden the metabonomic coverage of hyperlipidemia, enhance our understanding of the mechanism of hyperlipidemia and demonstrate the effectiveness of the NMR-based metabonomics approach to study a complex disease.

  8. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  9. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  10. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma

    Directory of Open Access Journals (Sweden)

    Lance A. Johnson

    2016-01-01

    Full Text Available Obesity, metabolic syndrome (MetS and type 2 diabetes (T2D are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D, multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV, a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  11. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.

    Science.gov (United States)

    Teff, Karen L; Grudziak, Joanne; Townsend, Raymond R; Dunn, Tamara N; Grant, Ryan W; Adams, Sean H; Keim, Nancy L; Cummings, Bethany P; Stanhope, Kimber L; Havel, Peter J

    2009-05-01

    Compared with glucose-sweetened beverages, consumption of fructose-sweetened beverages with meals elevates postprandial plasma triglycerides and lowers 24-h insulin and leptin profiles in normal-weight women. The effects of fructose, compared with glucose, ingestion on metabolic profiles in obese subjects has not been studied. The objective of the study was to compare the effects of fructose- and glucose-sweetened beverages consumed with meals on hormones and metabolic substrates in obese subjects. The study had a within-subject design conducted in the clinical and translational research center. Participants included 17 obese men (n = 9) and women (n = 8), with a body mass index greater than 30 kg/m(2). Subjects were studied under two conditions involving ingestion of mixed nutrient meals with either glucose-sweetened beverages or fructose-sweetened beverages. The beverages provided 30% of total kilocalories. Blood samples were collected over 24 h. Area under the curve (24 h AUC) for glucose, lactate, insulin, leptin, ghrelin, uric acid, triglycerides (TGs), and free fatty acids was measured. Compared with glucose-sweetened beverages, fructose consumption was associated with lower AUCs for insulin (1052.6 +/- 135.1 vs. 549.2 +/- 79.7 muU/ml per 23 h, P glucose consumption. Increases of TGs were augmented in obese subjects with insulin resistance, suggesting that fructose consumption may exacerbate an already adverse metabolic profile present in many obese subjects.

  12. Micro-RNAs Let7e and 126 in Plasma as Markers of Metabolic Dysfunction in 10 to 12 Years Old Children.

    Directory of Open Access Journals (Sweden)

    Bernardo J Krause

    Full Text Available Growing evidence shows that metabolic syndrome (MetS is already starting in childhood however there is no consensus regarding how to diagnose this condition in pediatric population. Studies in adults show that altered levels of specific micro-RNAs are related with components of the MetS.We determined the plasma levels of four MetS-associated micro-RNAs (miR-126, miR-132, mir-145 and Let-7e in 10 to 12 years old children with or without MetS traits.Pediatric subjects were selected from a cohort of 3325 school-age children, and clustered by the absence (control, n = 30, or the presence of 1 (n = 50, 2 (n = 41 or 3 (n = 35 MetS traits according to Cook´s criteria. Micro-RNAs were isolated from plasma, and levels of miR-126, miR-132, miR-145 and Let-7e were determined by Taqman qPCR.Regression analysis of the different MetS traits regarding the different miRNAs analyzed showed that Let-7e presented a negative association with HDL-C levels, but a positive correlation with the number of MetS traits. Levels of miR-126 presented a positive correlation with waist circumference, waist to hip ratio, BMI, and plasma triglycerides and VLDL-C. Levels of miR-132 showed a positive correlation with waist to hip ratio. Plasma levels of Let-7e were increased (~3.4 fold in subjects with 3 MetS traits, and showed significant AUC (0.681; 95%CI = [0.58, 0.78]; p < 0.001 in the ROC analysis which were improved when miR-126 was included in the analysis (AUC 0.729; p < 0.001. In silico analysis of the interaction of proteins derived from mRNAs targeted by Let7 and miR-126 showed an important effect of both Let-7e and miR-126 regulating the insulin signaling pathway.These results suggest that changes in the plasma levels of Let-7e and miR-126 could represent early markers of metabolic dysfunction in children with MetS traits.

  13. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast.

    Science.gov (United States)

    Karonen, T; Filppula, A; Laitila, J; Niemi, M; Neuvonen, P J; Backman, J T

    2010-08-01

    According to available information, montelukast is metabolized by cytochrome P450 (CYP) 3A4 and 2C9. In order to study the significance of CYP2C8 in the pharmacokinetics of montelukast, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 3 days, and 10 mg montelukast on day 3, in a randomized, crossover study. Gemfibrozil increased the mean area under the plasma concentration-time curve (AUC)(0-infinity), peak plasma concentration (C(max)), and elimination half-life (t(1/2)) of montelukast 4.5-fold, 1.5-fold, and 3.0-fold, respectively (P gemfibrozil, the time to reach C(max) (t(max)) of the montelukast metabolite M6 was prolonged threefold (P = 0.005), its AUC(0-7) was reduced by 40% (P = 0.027), and the AUC(0-24) of the secondary metabolite M4 was reduced by >90% (P gemfibrozil 1-O-beta glucuronide inhibited the formation of M6 (but not of M5) from montelukast 35-fold more potently than did gemfibrozil (half-maximal inhibitory concentration (IC(50)) 3.0 and 107 micromol/l, respectively). In conclusion, gemfibrozil markedly increases the plasma concentrations of montelukast, indicating that CYP2C8 is crucial in the elimination of montelukast.

  14. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    Science.gov (United States)

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  15. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  16. A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Jianwen She

    2013-09-01

    Full Text Available Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC–LC, reversed-phase liquid chromatography (RP–LC, and gas chromatography (GC. All three techniques are coupled to a mass spectrometer (MS in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow.

  17. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  18. Effects of dietary substitution of mixed amino acids for glucose on the splanchnic metabolism of plasma triglycerides, cholesterol, carbohydrates, and amino acids in conscious fed baboons.

    Science.gov (United States)

    Wolfe, B M; Redinger, R N; Marliss, E B; Grace, D M

    1983-04-01

    Splanchnic metabolism was studied in the fed state during prolonged constant intravenous administration of tracer amounts of [9,10]-3H palmitic acid and the calculated isocaloric intraduodenal administration (13 mg/min X kg body wt0.75) of either (1) glucose, (2) 15% mixed amino acids and 85% glucose or (3) 45% mixed amino acids and 55% glucose to conscious, restrained female baboons that had been maintained on a similar diet (supplemented in essential nutrients) for the previous 9 days. Secretion of plasma triglycerides from the splanchnic region was quantified from splanchnic flow and radiochemical measurements of transsplanchnic gradients of 3H-labeled free fatty acids and triglycerides. Mean splanchnic secretion of plasma triglycerides increased significantly as the proportion of dietary calories derived from amino acids was varied from 0 to 15 to 45% (mean values 1.1 +/- 0.1, 2.6 +/- 0.2 and 4.2 +/- 0.3 mumol/min kg body wt0.75, respectively, p less than 0.05). Increased triglyceride secretion was attributable to both significantly higher rates of esterification of free fatty acids taken up in the splanchnic region to triglycerides released into hepatic venous blood plasma (mean values 10 +/- 1, 16 +/- 2 and 34 +/- 5%, respectively) and to significantly higher rates of secretion of triglycerides derived from precursors other than free fatty acids. Higher intake of amino acids was also associated with both higher plasma concentrations of cholesterol and higher values for hepatic oxidation of cholesterol to bile acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  20. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism

    NARCIS (Netherlands)

    Coker, M.; de Klerk, J. B.; Poll-The, B. T.; Huijmans, J. G.; Duran, M.

    1996-01-01

    Total plasma odd-numbered long-chain fatty acids were analysed in patients with methylmalonic acidaemia (vitamin B12-responsive and unresponsive), combined methylmalonic acidaemia/homocystinuria (CblC), propionic acidaemia (both neonatal-onset and late-onset), biotinidase deficiency and

  1. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders

    NARCIS (Netherlands)

    Onkenhout, W.; Venizelos, V.; van der Poel, P. F.; van den Heuvel, M. P.; Poorthuis, B. J.

    1995-01-01

    The free fatty acid and total fatty acid profiles in plasma of nine patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, two with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and two with mild-type multiple acyl-CoA dehydrogenase (MAD-m) deficiency, were analyzed by gas

  2. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  3. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    Science.gov (United States)

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of

  4. Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface.

    Science.gov (United States)

    Bretillon, L; Lütjohann, D; Ståhle, L; Widhe, T; Bindl, L; Eggertsen, G; Diczfalusy, U; Björkhem, I

    2000-05-01

    We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface. It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.

  5. Fatty Acid Content of Plasma Triglycerides May Contribute to the Heterogeneity in the Relationship Between Abdominal Obesity and the Metabolic Syndrome.

    Science.gov (United States)

    Aristizabal, Juan C; Barona, Jacqueline; Gonzalez-Zapata, Laura I; Deossa, Gloria C; Estrada, Alejandro

    2016-08-01

    About one-third of the people with abdominal obesity do not exhibit the metabolic syndrome (MetS). Fatty acids in plasma triglycerides (TGs) may help to explain part of this heterogeneity. This study compared TG fatty acid profile of adults with and without abdominal obesity and examined the associations of these fatty acids with MetS components. Fifty-four abdominally obese subjects were matched by age and sex with 54 adults without abdominal obesity. People were classified with MetS according to the harmonizing criteria for MetS. Fatty acids in plasma TGs were analyzed by gas chromatography. There were no differences in fatty acids of plasma TGs between people with and without abdominal obesity. However, there were differences between abdominally obese people with and without MetS. The abdominally obese group with MetS had higher palmitic (+2.9%; P = 0.012) and oleic (+4.0%; P = 0.001) acids and lower linoleic (-6.4%; P = 0.018) and arachidonic (-1.2%; P = 0.004) acids. After adjustment for abdominal obesity, age, and sex, a stepwise regression analysis showed that palmitic acid positively contributed to the variance in insulin (β = +1.08 ± 1.01; P = 0.000) and homeostasis model assessment of insulin resistance (HOMA-IR) index (β = +1.09 ± 1.01; P = 0.000) and myristic acid positively contributed to the variance in systolic blood pressure (β = +1.09 ± 1.03; P = 0.006). In contrast, linoleic acid negatively contributed to the variance in glucose (β = -0.321 ± 0.09; P = 0.001) and high-sensitivity C-reactive protein (hsCRP; β = -1.05 ± 1.01; P = 0.000). There were no differences in the plasma TG fatty acid profile between people with and without abdominal obesity. Likewise, fatty acids in plasma TGs associated with many of the MetS variables independently of abdominal obesity. These results suggest that the plasma TG fatty acid profile may help to explain part of the heterogeneity

  6. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  7. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  8. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  9. Biotransformation of (-)-dihydromyrcenyl acetate using the plant parasitic fungus Glomerella cingulata as a biocatalyst.

    Science.gov (United States)

    Miyazawa, M; Akazawa, S i; Sakai, H; Nankai, H

    2000-10-01

    The microbial transformation of (-)-dihydromyrcenyl acetate was investigated using the plant parasitic fungus Glomerella cingulata. As a result, (-)-dihydromyrcenyl acetate was converted to dihydromyrcenol, 3,7-dihydroxy-3,7-dimethyl-1-octene-7-carboxylate, 3,7-dihydroxy-3,7-dimethyl-1-octene, 3,7-dimethyloctane-1,2, 7-triol-7-carboxylate, and 3,7-dimethyloctane-1,2,7-triol. In addition, microbial transformation of dihydromyrcenol by G. cingulata was carried out. The metabolic pathway of (-)-dihydromyrcenyl acetate is discussed.

  10. 21 CFR 582.6185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is generally...

  12. [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation].

    Science.gov (United States)

    Qi, Zhengliang; Yang, Hailin; Xia, Xiaole; Wang, Wu; Leng, Yunwei; Yu, Xiaobin; Quan, Wu

    2014-03-04

    The aim of the study is to propose a dynamic acetic acid resistance mechanism through analysis on response of cellular morphology, physiology and metabolism of A. pasteurianus CICIM B7003 during vinegar fermentation. Vinegar fermentation was carried out in a Frings 9 L acetator by strain B7003 and cultures were sampled at different cellular growth phases. Simultaneously, percentage of capsular polysaccharide versus dry cells weight, ratio of unsaturated fatty acids to saturated fatty acids, transcription of acetic acid resistance genes, activity of alcohol respiratory chain enzymes and ATPase were detected for these samples to assay the responses of bacterial morphology, physiology and metabolism. When acetic acid was existed, no obvious capsular polysaccharide was secreted by cells. As vinegar fermentation proceeding, percentage of capsular polysaccharide versus dry cells weight was reduced from 2.5% to 0.89%. Ratio of unsaturated fatty acids to saturated fatty acids was increased obviously which can improve membrane fluidity. Also transcription level of acetic acid resistance genes was promoted. Interestingly, activity of alcohol respiratory chain and ATPase was not inhibited but promoted obviously with acetic acid accumulation which could provide enough energy for acetic acid resistance mechanism. On the basis of the results obtained from the experiment, A. pasteurianus CICIM B7003 relies mainly on the cooperation of changes of extracellular capsular polysaccharide and membrane fatty acids, activation of acid resistance genes transcription, enhancement of activity of alcohol respiratory chain and rapid energy production to tolerate acidic environment.

  13. The effect of Cu2+ on osmoregulation in rainbow trout (Oncorhynchus mykiss) assayed by changes in plasma salinity and gill lipid metabolism

    DEFF Research Database (Denmark)

    Hansen, Heinz J.M.; Olsen, Allan Gylling; Rosenkilde, Per

    1993-01-01

    Zoofysiologi, Osmoregulation, Lipid metabolism, Ecotoxicology, Rainbow trout, Oncorhynchus mykiss.......Zoofysiologi, Osmoregulation, Lipid metabolism, Ecotoxicology, Rainbow trout, Oncorhynchus mykiss....

  14. [The non-etherifying and free fatty acids of blood plasma. Pathogenesis of arterial hypertension and symptoms of syndrome of overeating-metabolic syndrome: a lecture].

    Science.gov (United States)

    Titov, V N

    2013-12-01

    From point of view of physiology, the metabolic syndrome is a syndrome of overeating when an optimal by the content of fatty acids in food is too much a physologically. This condition forms an omental variant of increase of body mass. The oleic triglycerides cumulate in fatty cells of omentum and after activation of lypolisis at the level of paracrinically regulating associations of cells and organs release into blood many non-etherifying fatty acids. The albumin has no possibilities to bind them all. The polar fatty acids-free fatty acids which are not bind by albumin form in blood direct heterogeneous micelles which spontaneously incorporate into plasmatic membrane of monolayer of endothelium. At that, the hydrophilic lipid pores are formed through which Ca2+, Na+ and water get into cytosol and K+ gets out. The hydration of cytosol and hypercalcinemia increase dimensions, thickness of monolayer of epithelium, narrow lumen of arterioles of muscular type and increase resistance to blood flow in distal section of arterial channel. The hydrodynamic pressure increases compensatory in proximal section of arterial channel along with the development of arterial hypertension. The late in phylogenesis insulin has no possibilities to block lipolysis in fatty cells of omentum hence these cells have no receptors to this insulin. While in blood plasma the concentration of non-etherifying acids is increased the cell will not absorb and oxidize glucose. The non-etherifying form the resistance too late in phylogenesis insulin, hyperglycemia and hyperinsulinemia. The concentration of oleic triglycerides increases in blood. The increase in omentum of number of fatty cells of loose connective tissue forms biological reaction of inflammation right up to destruction of overloaded oleic triglycerides cells on the type of apoptosis. This occurrence increases the concentration of C-reactive protein in blood plasma. All symptoms of syndrome of overeating (metabolic syndrome) are formed in

  15. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance

    OpenAIRE

    Takashina, Chisa; Tsujino, Ichizo; Watanabe, Taku; Sakaue, Shinji; Ikeda, Daisuke; Yamada, Asuka; Sato, Takahiro; Ohira, Hiroshi; Otsuka, Yoshinori; Oyama-Manabe, Noriko; Ito, Yoichi M.; Nishimura, Masaharu

    2016-01-01

    Background Amino acids (AAs) are emerging as a new class of effective molecules in the etiology of obesity and diabetes mellitus. However, most investigations have focused on subjects with obesity and/or impaired glucose regulation; the possible involvement of AAs in the initial phase of glucose dysregulation remains poorly understood. Furthermore, little attention has been given to possible associations between the pattern/degree of fat deposition and the plasma AA profile. Our objective was...

  16. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.

    Science.gov (United States)

    Shimizu, Makiko; Suemizu, Hiroshi; Mitsui, Marina; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-10-01

    1. Pomalidomide has been shown to be potentially teratogenic in thalidomide-sensitive animal species such as rabbits. Screening for thalidomide analogs devoid of teratogenicity/toxicity - attributable to metabolites formed by cytochrome P450 enzymes - but having immunomodulatory properties is a strategic pathway towards development of new anticancer drugs. 2. In this study, plasma concentrations of pomalidomide, its primary 5-hydroxylated metabolite, and its glucuronide conjugate(s) were investigated in control and humanized-liver mice. Following oral administration of pomalidomide (100 mg/kg), plasma concentrations of 7-hydroxypomalidomide and 5-hydroxypomalidomide glucuronide were slightly higher in humanized-liver mice than in control mice. 3. Simulations of human plasma concentrations of pomalidomide were achieved with simplified physiologically-based pharmacokinetic models in both groups of mice in accordance with reported pomalidomide concentrations after low dose administration in humans. 4. The results indicate that pharmacokinetic profiles of pomalidomide were roughly similar between control mice and humanized-liver mice and that control and humanized-liver mice mediated pomalidomide 5-hydroxylation in vivo. Introducing one aromatic amino group into thalidomide resulted in less species differences in in vivo pharmacokinetics in control and humanized-liver mice.

  17. Transports of acetate and haloacetate in Burkholderia species MBA4 are operated by distinct systems

    Directory of Open Access Journals (Sweden)

    Su Xianbin

    2012-11-01

    Full Text Available Abstract Background Acetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase. Recent studies have identified the presence of a concomitantly induced haloacetate-uptake activity in MBA4. This uptake activity has also been found to transport acetate. Since acetate transporters are commonly found in bacteria it is likely that haloacetate was transported by such a system in MBA4. Results The haloacetate-uptake activity of MBA4 was found to be induced by monochloroacetate (MCA and monobromoacetate (MBA. While the acetate-uptake activity was also induced by MCA and MBA, other alkanoates: acetate, propionate and 2-monochloropropionate (2MCPA were also inducers. Competing solute analysis showed that acetate and propionate interrupted the acetate- and MCA- induced acetate-uptake activities. While MCA, MBA, 2MCPA, and butyrate have no effect on acetate uptake they could significantly quenched the MCA-induced MCA-uptake activity. Transmembrane electrochemical potential was shown to be a driving force for both acetate- and MCA- transport systems. Conclusions Here we showed that acetate- and MCA- uptake in Burkholderia species MBA4 are two transport systems that have different induction patterns and substrate specificities. It is envisaged that the shapes and the three dimensional structures of the solutes determine their recognition or exclusion by the two transport systems.

  18. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  19. [Effect of polymorphisms on key enzymes in homocysteine metabolism, on plasma homocysteine level and on coronary artery-disease risk in a Tunisian population].

    Science.gov (United States)

    Belkahla, R; Omezzine, A; Kchok, K; Rebhi, L; Ben Hadj Mbarek, I; Rejeb, J; Ben Rejeb, N; Slimane, N; Nabli, N; Ben Abdelaziz, A; Boughzala, E; Bouslama, A

    2008-08-01

    Hyperhomocysteinemia is known as an independent-risk factor for coronary-artery disease (CAD). However, the effect of homocystein metabolic enzymes polymorphisms on CAD is still controversed. We investigated the relation between homocystein metabolic key enzymes polymorphisms, homocystenemia and coronary stenosis in a Tunisian population. Samples were collected from 251 CAD patients documented by angiography. Genotyping were performed for C677T methylene-tetrahydrofolate reductase (MTHFR), A2756G methionine-synthase (MS) and 844ins 68 cystathionine-beta-synthase (CBS). We measured fasting plasma tHcy, folate and vitamin B12. There was significant increase in homocysteinemia for homozygous genotypes of C677T MTHFR (p<0.001) and A2756G MS (p=0.01), but not for 844ins68 CBS (p=0.105). Potential confounders adjusted odds-ratios for significant coronary stenosis, associated with MTHFR TT, MS GG and CBS insertion, were respectively 1.78 (p=0.041); 2.33 (p=0.036) and 0.87 (p=0.823). The effect of mutated MTHFR genotype was more pronounced on homocysteinemia (21.4+/-9.1 micromol/L; p<0.001) and coronary stenosis (OR=2.73; p=0.033) at low folatemia (< or =6.1 ng/mL). MTHFR TT and MS GG genotypes increase tHcy concentration and coronary stenosis risk, especially with low folatemia.

  20. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  1. Elevated plasma levels of TNF-alpha and Interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders

    Directory of Open Access Journals (Sweden)

    Ellinghaus Peter

    2009-11-01

    Full Text Available Abstract Background Diabetes mellitus (DM has reached epidemic proportions and is an important risk factor for heart failure (HF. Left ventricular diastolic dysfunction (LVDD is recognized as the earliest manifestation of DM-induced LV dysfunction, but its pathophysiology remains incompletely understood. We sought to evaluate the relationship between proinflammatory cytokine levels (TNF-alpha, IL-6 and tissue Doppler derived indices of LVDD in patients with stable coronary artery disease. Methods We enrolled 41 consecutive patients (mean age 65+/-10 years submitted for coronary angiography. Echocardiographic assessment was performed in all patients. Pulsed tissue Doppler imaging was performed at the mitral annulus and was characterized by the diastolic early relaxation velocity Em. Conventional transmitral flow was measured with pw-doppler. Early (E transmitral flow velocity was measured. LVDD was defined as E/Em ratio ≥ 15, E/Em 8-14 was classified as borderline. Plasma levels of TNF-alpha and IL-6 were determined in all patients. A standardized oral glucose tolerance test was performed in subjects without diabetes. Results Patients with E/Em ratio ≥ 15, classified as LVDD and those with E/Em ratio 8-14 (classified as borderline had significantly higher IL-6 (P = 0,001, TNF-alpha (P Conclusion This study reveals that increased plasma levels of IL-6 and TNF-alpha were associated with LVDD. These findings suggest a link between low-grade inflammation and the presence of LVDD. An active proinflammatory process may be of importance in the pathogenesis of diastolic dysfunction.

  2. GC-MS and GC-MS/MS measurement of ibuprofen in 10-μL aliquots of human plasma and mice serum using [α-methylo-2H3]ibuprofen after ethyl acetate extraction and pentafluorobenzyl bromide derivatization: Discovery of a collision energy-dependent H/D isotope effect and pharmacokinetic application to inhaled ibuprofen-arginine in mice.

    Science.gov (United States)

    Tsikas, Dimitrios; Kayacelebi, Arslan Arinc; Hanff, Erik; Mitschke, Anja; Beckmann, Bibiana; Tillmann, Hanns-Christian; Gutzki, Frank-Mathias; Müller, Meike; Bernasconi, Corrado

    2017-02-01

    GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d 0 -ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl- 2 H 3 -4-(isobutyl)phenylacetic acid (d 3 -ibuprofen) as internal standard. Plasma (10μL) was diluted with acetate buffer (80μL, 1M, pH 4.9) and d 0 - and d 3 -ibuprofen were extracted with ethyl acetate (2×500μL). After solvent evaporation d 0 - and d 3 -ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d 0 - and d 3 -ibuprofen readily ionize to form their carboxylate anions [M-PFB] - at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO 2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H - from d 0 -ibuprofen and D - from d 3 -ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d 0 -ibuprofen and m/z 208 to m/z 164 for d 3 -ibuprofen. In a therapeutically relevant concentration range (0-1000μM) d 0 -ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r 2 =0.9991). In incubation mixtures of arachidonic acid (10μM), d 3 -ibuprofen (10μM) or d 0 -ibuprofen (10μM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d 3

  3. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  4. Positron scattering from vinyl acetate

    International Nuclear Information System (INIS)

    Chiari, L; Brunger, M J; Zecca, A; Blanco, F; García, G

    2014-01-01

    Using a Beer–Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C 4 H 6 O 2 ) in the incident positron energy range 0.15–50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1–1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ∼2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect. (paper)

  5. Production of acetone and conversion of acetone to acetate in the perfused rat liver

    International Nuclear Information System (INIS)

    Gavino, V.C.; Somma, J.; Philbert, L.; David, F.; Garneau, M.; Belair, J.; Brunengraber, H.

    1987-01-01

    The utilization of millimolar concentrations of [2- 14 C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2- 14 C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1- 14 C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2- 14 C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate

  6. Extraction of left ventricular myocardial mass from dynamic 11C-acetate PET

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Background: Dynamic 11C-acetate PET is used to quantify oxygen metabolism, which is used to calculate left ventricular (LV) myocardial efficiency, an early marker of heart failure. This requires estimation of LV myocardial mass and is typically derived from a separate cardiovascular magnetic...... resonance (CMR) scan. The aim of this study was to explore the feasibility of estimating myocardial mass directly from a dynamic 11C-acetate PET scan. Methods: 21 subjects underwent a 27-min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner. In addition, 10 subjects underwent a dynamic...... 11C-acetate 27-min PET scan on a GE Discovery ST PET/CT scanner. Parametric images of uptake rate K1 and both arterial (VA) and venous (VV) spillover fractions were generated using a basis function implementation of the standard single tissue compartment model using non-gated dynamic data. The LV...

  7. Does non-alcoholic fatty liver impair alterations of plasma lipoproteins and associated factors in metabolic syndrome?

    Science.gov (United States)

    Lucero, Diego; Zago, Valeria; López, Graciela I; Graffigna, Mabel; López, Gustavo H; Fainboim, Hugo; Miksztowicz, Verónica; Gómez Rosso, Leonardo; Belli, Susana; Levalle, Oscar; Berg, Gabriela; Brites, Fernando; Wikinski, Regina; Schreier, Laura

    2011-03-18

    Hepatic steatosis (HS) is closely associated to metabolic syndrome (MS). Both, VLDL-triglyceride oversecretion and intrahepatic deposits, can take place. We evaluated VLDL characteristics, CETP, hepatic lipase (HL), IDL and small dense LDL (sdLDL), in patients with HS associated to MS. We studied 3 groups matched by age and sex: 25 MS patients with HS (diagnosed by ultrasonography), 25 MS patients without HS and 25 healthy controls. Main measurements were: lipid profile, free fatty acids, VLDL composition, VLDL size by HPLC, CETP and HL activities, IDL-cholesterol and sdLDL-cholesterol. Patients with HS presented higher triglyceride levels, HOMA-IR and free fatty acids, VLDL mass and VLDL-apoB (p<0.05). No differences in VLDL composition were observed. MS groups presented higher proportion of large VLDL than controls (p<0.05). HS group showed higher CETP than controls (p=0.01) and almost higher than MS without HS (p=0.06). CETP correlated with VLDL-cholesterol content, r=0.48, p<0.005. The increase in sdLDL-cholesterol correlated with CETP (r=0.47) and HL (r=0.56), independent of insulin resistance (p<0.003). Despite intrahepatic fat, patients with HS secreted higher number of VLDL particles. CETP would have a remodeling action on VLDL in circulation, enriching it in cholesterol and also favoring, together with HL, the formation of sdLDL. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  9. Plasma Amino Acid Abnormalities in Chronic Heart Failure. Mechanisms, Potential Risks and Targets in Human Myocardium Metabolism

    Directory of Open Access Journals (Sweden)

    Roberto Aquilani

    2017-11-01

    Full Text Available The goal of this study was to measure arterial amino acid levels in patients with chronic heart failure (CHF, and relate them to left ventricular function and disease severity. Amino acids (AAs play a crucial role for heart protein-energy metabolism. In heart failure, arterial AAs, which are the major determinant of AA uptake by the myocardium, are rarely measured. Forty-one subjects with clinically stable CHF (New York Heart Association (NYHA class II to IV were analyzed. After overnight fasting, blood samples from the radial artery were taken to measure AA concentrations. Calorie (KcalI, protein-, fat-, carbohydrate-intake, resting energy expenditure (REE, total daily energy expenditure (REE × 1.3, and cardiac right catheterization variables were all measured. Eight matched controls were compared for all measurements, with the exception of cardiac catheterization. Compared with controls, CHF patients had reduced arterial AA levels, of which both their number and reduced rates are related to Heart Failure (HF severity. Arterial aspartic acid correlated with stroke volume index (r = 0.6263; p < 0.0001 and cardiac index (r = 0.4243; p = 0.0028. The value of arterial aspartic acid (µmol/L multiplied by the cardiac index was associated with left ventricular ejection fraction (r = 0.3765; p = 0.0076. All NYHA groups had adequate protein intake (≥1.1 g/kg/day and inadequate calorie intake (KcalI < REE × 1.3 was found only in class IV patients. This study showed that CHF patients had reduced arterial AA levels directly related to clinical disease severity and left ventricular dysfunction.

  10. Effects of atorvastatin and T-786C polymorphism of eNOS gene on plasma metabolic lipid parameters.

    Science.gov (United States)

    Zago, Vanessa Helena de Souza; Santos, José Eduardo Tanus dos; Danelon, Mirian Regina Gardin; Silva, Roger Marcelo Mesquita da; Panzoldo, Natália Baratella; Parra, Eliane Soler; Alexandre, Fernanda; Virgínio, Vítor Wilson de Moura; Quintão, Eder Carlos Rocha; Faria, Eliana Cotta de

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) activity may be modulated by high-density lipoprotein cholesterol (HDL-C), statins or polymorphisms, such as the T-786C of eNOS. This study aimed at evaluating if the T-786C polymorphism is associated with changes of atorvastatin effects on the lipid profile, on the concentrations of metabolites of nitric oxide (NO) and of high sensitivity C-reactive protein (hsCRP). Thirty male volunteers, asymptomatic, aged between 18 and 56 years were genotyped and classified according to absence (TT, n = 15) or presence (CC, n = 15) of the polymorphism. They were randomly selected for the use of placebo or atorvastatin (10 mg/day/14 days). After each treatment lipids, lipoproteins, HDL2 and HDL3 composition, cholesteryl ester transfer protein (CETP) activity, metabolites of NO and hsCRP were evaluated. The comparisons between genotypes after placebo showed an increase in CETP activity in a polymorphism-dependent way (TT, 12±7; CC, 22±12; p < 0.05). The interaction analyses between treatments indicated that atorvastatin has an effect on cholesterol, LDL, nitrite and lipid-protein ratios (HDL2 and HDL3) (p < 0.001) in both genotypes. Interestingly, we observed genotype/drug interactions on CETP (p < 0.07) and lipoprotein (a) (Lp(a)) (p < 0.056), leading to a borderline decrease in CETP, but with no effect on Lp(a). HsCRP showed no alteration. These results suggest that statin treatment may be relevant for primary prevention of atherosclerosis in patients with the T-786C polymorphism of eNOS, considering the effects on lipid metabolism.

  11. Prevalence of plasma lipid abnormalities and its association with glucose metabolism in Spain: the di@bet.es study.

    Science.gov (United States)

    Martinez-Hervas, Sergio; Carmena, Rafael; Ascaso, Juan F; Real, Jose T; Masana, Luis; Catalá, Miguel; Vendrell, Joan; Vázquez, José Antonio; Valdés, Sergio; Urrutia, Inés; Soriguer, Federico; Serrano-Rios, Manuel; Rojo-Martínez, Gemma; Pascual-Manich, Gemma; Ortega, Emilio; Mora-Peces, Inmaculada; Menéndez, Edelmiro; Martínez-Larrad, Maria T; López-Alba, Alfonso; Gomis, Ramón; Goday, Albert; Girbés, Juan; Gaztambide, Sonia; Franch, Josep; Delgado, Elías; Castell, Conxa; Castaño, Luis; Casamitjana, Roser; Calle-Pascual, Alfonso; Bordiú, Elena

    2014-01-01

    Dyslipidemia is a significant contributor to the elevated CVD risk observed in type 2 diabetes mellitus. We assessed the prevalence of dyslipidemia and its association with glucose metabolism status in a representative sample of the adult population in Spain and the percentage of subjects at guideline-recommended LDL-C goals. The di@bet.es study is a national, cross-sectional population-based survey of 5728 adults. A total of 4776 subjects were studied. Dyslipidemia was diagnosed in 56.8% of subjects; only 13.2% of subjects were treated with lipid lowering drugs. Lipid abnormalities were found in 56.8% of Spanish adults: 23.3% with high LDL-C, 21.5% high TG, 35.8% high non-HDL-C, and 17.2% low HDL-C. Most normal subjects showed an LDL-C ≤ 3.36 mmol/l. Pre-diabetics presented similar proportion when considering a goal of 3.36 mmol/l, but only 35% of them reached an LDL-C goal ≤ 2.6 mmol/l. Finally, 45.3% of diabetics had an LDL-C ≤ 2.6 mmol/l, and only 11.3% achieved an LDL-C ≤ 1.8 mmol/l. Our study demonstrates a high prevalence of dyslipidemia in the adult Spanish population, and a low use of lipid-lowering drugs. Moreover, the number of subjects achieving their corresponding LDL-C goal is small, particularly in subjects at high cardiovascular risk, such as diabetics. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  12. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  13. A Study of the Hepatic Tolerance of the Ethyl Acetate Fraction of ...

    African Journals Online (AJOL)

    Purpose: In this study, the effect of the ethyl acetate fraction of the extract of Morinda morindoides (Baker) Milne-Redhead (Rubiaceae) on the tissue and metabolic integrity of rabbit liver was evaluated. Methods: Thirty rabbits (divided equally between male and female) were randomly distributed into five (5) groups of six (6) ...

  14. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  15. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  16. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  17. Correction for the metabolic exchange of 14C for 12C atoms in the pathway of gluconeogenesis in vivo

    International Nuclear Information System (INIS)

    Hetenyi, G. Jr.

    1982-01-01

    Methods designed for estimation of the synthesis of plasma glucose are based on the transfer of 14 C atoms from a selected precursor (substrate) such as lactate or alanine. This approach was shown to lead to an underestimation of the true synthesis of glucose because of the metabolic exchange of 14 C atoms for 12 C atoms in the hepatic oxaloacetate pool. From the incorporation of 14 C atoms from intravenously infused [2- 14 C]acetate into plasma glucose, the extent of the metabolic exchange has been estimated. In normal dogs, metabolic exchange leads to an underestimation of plasma glucose synthesis from plasma lactate or alanine by a factor of 2.2 +/- 0.07, i.e., by 55%. In insulin-deprived diabetic dogs, the factor was found to be 1.8 +/- 0.05. In longterm fasted dogs, the factor may be higher than in the postabsorptive state, whereas treatment with methylprednisolone has no effect. The assumptions and sources of possible errors in the estimation of the extent of metabolic exchange are reviewed

  18. Correction for the metabolic exchange of 14C for 12C atoms in the pathway of gluconeogenesis in vivo

    International Nuclear Information System (INIS)

    Hetenyi, G. Jr.

    1982-01-01

    Methods designed for estimation of the synthesis of plasma glucose are based on the transfer of 14 C atoms from a selected precursor (substrate) such as lactate or alanine. This approach was shown to lead to an underestimation of the true synthesis of glucose because of the metabolic exchange of 14 C atoms for 12 C atoms in the hepatic oxaloacetate pool. From the incorporation of 14 C atoms from intravenously infused [2- 14 C]acetate into plasma glucose, the extent of the metabolic exchange has been estimated. In normal dogs, metabolic exchange leads to an under-estimation of plasma glucose synthesis from plasma lactate or alanine by a factor of 2.2 +/- 0.07, i.e., by 55%. In insulin-deprived diabetic dogs, the factor was found to be 1.8 +/- 0.05. In long-term fasted dogs, the factor may be higher than in the postabsorptive state, whereas treatment with methylprednisolone has no effect. The assumptions and sources of possible errors in the estimation of the extent of metabolic exchange are reviewed

  19. Effects of leuprolide acetate on selected blood and fecal sex hormones in Hispaniolan Amazon parrots (Amazona ventrais).

    Science.gov (United States)

    Klaphake, Eric; Fecteau, Kellie; DeWit, Martine; Greenacre, Cheryl; Grizzle, Judith; Jones, Michael; Zagaya, Nancy; Abney, L Kim; Oliver, Jack

    2009-12-01

    The luteinizing hormone-releasing hormone agonist leuprolide acetate is used commonly to anage reproductive problems in pet birds. To determine the effect of leuprolide acetate on plas a and fecal hormone levels in a psittacine species, a single 800 microg/kg dose of the 30-day depot form of leuprolide acetate was administered IM in 11 healthy, nonbreeding adult Hispaniolan Amazon parrots (Amazona ventralis), and plasma and fecal hormone levels were measured before and after leuprolide administration. At pooled baseline to 21 days postleuprolide acetate administration, sample collection day was significantly associated with plasma 17beta-estradiol and androstenedione levels and fecal 17beta-estradiol levels (evaluated in females only). Both plasma androstenedione and plasma 17beta-estradiol levels decreased significantly from baseline to a nadir at 7 days postleuprolide acetate administration but did not differ significantly 14 days later from that nadir or from pooled baseline samples, suggesting that the effect of leuprolide on hormone levels remained about 2 weeks. Fecal 17beta-estradiol levels increased significantly from the nadir at 7 days postleuprolide to 21 days postleuprolide administration, with trends of the level at 21 days postleuprolide being higher than the pooled baseline level and of decreasing levels from pooled baseline to 7 days postleuprolide administration. Plasma luteinizing hormone and fecal testosterone levels did not change significantly from baseline levels after leuprolide administration over the 2-day period. No significant correlations were found between plasma hormone and fecal hormone levels. These results suggest that measurement of plasma androstenedione, plasma 17beta-estradiol, and fecal 17beta-estradiol levels might be useful in assessing the effects of 30-day depot leuprolide acetate in Hispaniolan Amazon parrots.

  20. Ulipristal acetate in emergency contraception.

    Science.gov (United States)

    Goldstajn, Marina Sprem; Baldani, Dinka Pavicić; Skrgatić, Lana; Radaković, Branko; Vrbić, Hrvoje; Canić, Tomislav

    2014-03-01

    Despite the widespread availability of highly effective methods of contraception, unintended pregnancy is common. Unplanned pregnancies have been linked to a range of health, social and economic consequences. Emergency contraception reduces risk of pregnancy after unprotected intercourse, and represents an opportunity to decrease number of unplanned pregnancies and abortions. Emergency contraception pills (ECP) prevent pregnancy by delaying or inhibiting ovulation, without interfering with post fertilization events. If pregnancy has already occurred, ECPs will not be effective, therefore ECPs are not abortificants. Ulipristal acetate (17alpha-acetoxy-11beta-(4N-N,N-dymethilaminophenyl)-19-norpregna--4,9-diene-3,20-dione) is the first drug that was specifically developed and licensed for use as an emergency contraceptive. It is an orally active, synthetic, selective progesterone modulator that acts by binding with high affinity to the human progesterone receptor where it has both antagonist and partial agonist effects. It is a new molecular entity and the first compound in a new pharmacological class defined by the pristal stem. Up on the superior clinical efficacy evidence, UPA has been quickly recognized as the most effective emergency contraceptive pill, and recently recommended as the first prescription choice for all women regardless of the age and timing after intercourse. This article provides literature review of UPA and its role in emergency contraception.

  1. In vitro study of (1-14C)-acetate incorporation into lipids of liver slices in experimental diabetes

    International Nuclear Information System (INIS)

    Greco, A.V.; Mingrone, G.; Peruzzi, E.; Orlando, P.

    1981-01-01

    The effect of insulin deficiency on lipid synthesis in the liver of normal rats, diabetic rats by alloxan and pancreatectomized rats was studied in vitro using (1- 14 C)-acetate as lipid precursor. Insulin deficiency induces an increased incorporation of (1- 14 C)-acetate into triglycerides in rat liver. This is particularly evident in pancreatectomized rats with respect to alloxan diabetic rats. It is concluded that in experimental diabetes an atherogenous metabolic pattern is elaborated by the liver. (author)

  2. In vitro study of (1-/sup 14/C)-acetate incorporation into lipids of liver slices in experimental diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Greco, A V; Mingrone, G; Peruzzi, E [Universita Cattolica S. Cuore, Roma (Italy). Ist. di Patologia Medica; Orlando, P [Universita Cattolica S. Cuore, Roma (Italy). Centre Radioisotopi

    1981-01-01

    The effect of insulin deficiency on lipid synthesis in the liver of normal rats, diabetic rats by alloxan and pancreatectomized rats was studied in vitro using (1-/sup 14/C)-acetate as lipid precursor. Insulin deficiency induces an increased incorporation of (1-/sup 14/C)-acetate into triglycerides in rat liver. This is particularly evident in pancreatectomized rats with respect to alloxan diabetic rats. It is concluded that in experimental diabetes an atherogenous metabolic pattern is elaborated by the liver.

  3. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, J; Davis, E J

    1973-01-01

    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  4. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment.

    Science.gov (United States)

    Vriens, Dennis; de Geus-Oei, Lioe-Fee; Oyen, Wim J G; Visser, Eric P

    2009-12-01

    For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIFs are biased because of partial-volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematic function, consisting of an initial linear rising activity concentration followed by a triexponential decay, to describe the APTAC. This function was fitted to 80 oncologic patients and verified for 40 different oncologic patients by area-under-the-curve (AUC) comparison, Patlak glucose metabolic rate (MR(glc)) estimation, and therapy response monitoring (Delta MR(glc)). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF. To determine the free parameters of the function, plasma time-activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of (18)F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic (18)F-FDG PET scans), this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC(AA/iDV)), by 1 late arterial sample (APTAC(1 sample)), and by the individual IDIF (APTAC(IDIF)), was compared with the gold standard of serial arterial sampling (APTAC(sampled)) using the AUC. Additionally, these 3 methods of APTAC determination were evaluated with Patlak MR(glc) estimation and with Delta MR(glc) for therapy effects using serial sampling as the gold standard. Excellent individual fits to the function were derived with significantly different decay constants (P AUC from APTAC(AA/iDV), APTAC(1 sample), and APTAC(IDIF) with the gold standard (APTAC(sampled)) were 0

  5. Radioprotection of whole-body gamma irradiation induced alterations in lipid metabolism of liver and plasma by AET (S-2, aminoethyl isothiuronium Br. H. Br.) and serotonin in rats

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1975-01-01

    Radioprotective effect of AET, serotonin and their mixture has been studied on liver and plasma lipid metabolism 24 hrs and 48 hrs after irradiation in fasted male rats. AET and serotonin both gave significant radioprotection to certain liver and plasma lipid components, but the mixture of the two afforded a better protection. The non-radioprotection of plasma NEFA, phospholipids and phosphatidyl choline levels by serotonin observed in irradiated rats was because serotonin itself raised the levels of these lipids in control rats. Serotonin alone or in mixture effectively protected the radiation-induced increased incorporation of NaH 2 32 PO 4 into liver phospholipids. Mixture of AET and serotonin failed to protect the increased incorporation of aceae-1-14-C into liver total fatty acids and cholesterol, but it prevented this increased incorporation into liver triglycerides and phospholipids. (orig.) [de

  6. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    OpenAIRE

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, uni...

  7. Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater.

    Science.gov (United States)

    Chen, Si; Cheng, Huicai; Liu, Jiang; Hazen, Terry C; Huang, Vicki; He, Qiang

    2017-02-01

    Acetoclastic methanogenesis is a key metabolic process in anaerobic digestion, a technology with broad applications in biogas production and waste treatment. Acetoclastic methanogenesis is known to be performed by two archaeal genera, Methanosaeta and Methanosarcina. The conventional model posits that Methanosaeta populations are more competitive at low acetate levels (competitiveness of Methanosaeta at elevated acetate was further supported by the enrichment of Methanosaeta with high concentrations of acetate (20 mM). The dominance of Methanosaeta in the methanogen community could be reproduced in anaerobic digesters with the direct addition of acetate to above 20 mM, again supporting the competitiveness of Methanosaeta over Methanosarcina at elevated acetate levels. This study for the first time systematically demonstrated that the dominance of Methanosaeta populations in anaerobic digestion could be linked to the competitiveness of Methanosaeta at elevated acetate concentrations. Given the importance of acetoclastic methanogenesis in biological methane production, findings from this study could have major implications for developing strategies for more effective control of methanogenic treatment processes.

  8. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  9. Cellulose acetate electrospun nanofibrous membrane: fabrication ...

    Indian Academy of Sciences (India)

    337–343. c Indian Academy of Sciences. ... 1Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81300 Johor, Malaysia ... concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone ...

  10. Acetate causes alcohol hangover headache in rats.

    Directory of Open Access Journals (Sweden)

    Christina R Maxwell

    2010-12-01

    Full Text Available The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache.We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats.Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia, followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity.Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction.

  11. The ratio of acetate-to-glucose oxidation in astrocytes from a single 13C NMR spectrum of cerebral cortex.

    Science.gov (United States)

    Marin-Valencia, Isaac; Hooshyar, M Ali; Pichumani, Kumar; Sherry, A Dean; Malloy, Craig R

    2015-01-01

    The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate. © 2014 International Society for Neurochemistry.

  12. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    Science.gov (United States)

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  13. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  14. The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations—A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Pamela Vrabl

    2017-12-01

    Full Text Available Filamentous fungi are important cell factories. In contrast, we do not understand well even basic physiological behavior in these organisms. This includes the widespread phenomenon of organic acid excretion. One strong hurdle to fully exploit the metabolic capacity of these organisms is the enormous, highly environment sensitive phenotypic plasticity. In this work we explored organic acid excretion in Penicillium ochrochloron from a new point of view by simultaneously investigating three essential metabolic levels: the plasma membrane H+-ATPase (PM; energy metabolism, in particular adenine and pyridine nucleotides (M; and respiration, in particular the alternative oxidase (R. This was done in strictly standardized chemostat culture with different nutrient limitations (glucose, ammonium, nitrate, and phosphate. These different nutrient limitations led to various quantitative phenotypes (as represented by organic acid excretion, oxygen consumption, glucose consumption, and biomass formation. Glucose-limited grown mycelia were used as the reference point (very low organic acid excretion. Both ammonium and phosphate grown mycelia showed increased organic acid excretion, although the patterns of excreted acids were different. In ammonium-limited grown mycelia amount and activity of the plasma membrane H+-ATPase was increased, nucleotide concentrations were decreased, energy charge (EC and catabolic reduction charge (CRC were unchanged and alternative respiration was present but not quantifiable. In phosphate-limited grown mycelia (no data on the H+-ATPase nucleotide concentrations were still lower, EC was slightly decreased, CRC was distinctly decreased and alternative respiration was present and quantifiable. Main conclusions are: (i the phenotypic plasticity of filamentous fungi demands adaptation of sample preparation and analytical methods at the phenotype level; (ii each nutrient condition is unique and its metabolic situation must be considered

  15. A study of 11C-acetate production using 11C-choline commercial module

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Yao Shulin; Chen Yan

    2008-01-01

    Objective: 11 C-acetate is a useful PET tracer in evaluating myocardial metabolism but more interest has been focused on its application in tumor detection in recent years, especially hepatocellular carcinoma (HCC). This study was designed to evaluate the laboratory, preparation of 11 C-acetate with a modified 11 C-choline commercial module and to investigate its biodistribution in tumor (lung adenocarcinoma)-bearing mice as well as its potential as a tumor imaging agent. Methods: 11 C-acetate was synthesized with a modified 11 C choline module: Methyl magnesium bromide Grignard (0.1 ml of 1.5 mol/L) was load- ed to a Teflon loop before 11 CO 2 was recovered from the target. Cartier acetate solution (2 ml of 1 mmol/L) was pushed through the loop, SPE cartridges (mixed AG50 and IC-Ag) and then the QMA. The loop and cartridges were then rinsed with water. The product 11 C-acetate was then washed out from QMA with 0.9% NaCl solution into a collection vial containing diluted HCl. 11 C-carbonate was removed by nitrogen bubbling for 2 min. After neutralization with trisodium citrate, the injectable 11 C-acetate solution was obtained. The tumor-bearing mice were sacrificed. The percentage activity of injected dose per gram of tissue (% ID/g) for tumor and other tissues were calculated. One patient with known diagnosis of moderately differentiated HCC was injected with 11 C-acetate and imaged by PET/CT, followed by 18 F-fluorodeoxyglucose (FDG). Results: The synthesis yield of 11 C-acetate was (60.5 ± 8.7)% (decay conected, n=10); the radio-chemistry purity was > 98% and the synthesis time was 10 min from 11 CO 2 to 11 C-acetate. The radioactivity ratio for tumor/muscle was 1.76 at 30 min. A patient with known HCC showed positive 11 C-acetate accumulation in the tumor but was negative in 18 F-FDG. Conclusion: The synthesis of 11 C-acetate by modification of an 11 C-choline commercial module was feasible and it could be achieved with high yield, high radiochemical purity

  16. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Jasmina Saric

    Full Text Available BACKGROUND: Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine in terms of characterizing acute and chronic stages of this intestinal fluke infection. METHODOLOGY/PRINCIPAL FINDINGS: Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using (1H nuclear magnetic resonance (NMR spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection. CONCLUSION/SIGNIFICANCE: The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non

  17. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  18. Efeitos do implante subdérmico de acetato de nomegestrol sobre o metabolismo de carboidratos, lipoproteínas séricas e função hepática The effects of nomegestrol acetate subdermal implant on carbohydrate metabolism, serum lipoproteins and on hepatic function

    Directory of Open Access Journals (Sweden)

    Ione Barbosa

    1998-07-01

    Full Text Available Objetivos: avaliar variações de peso corporal, pressão arterial, glicemia em jejum, HbA1C, insulina, colesterol total, HDL-C, LDL-C, triglicérides, TGO, TGP, GGT e bilirrubina em mulheres usuárias de um implante único, subdérmico, de Silástico, contendo 55 mg (±10% de acetato de nomegestrol, durante dois anos. Métodos: dezoito voluntárias saudáveis e em idade reprodutiva, que desejavam fazer uso de anticoncepcionais e não apresentavam contra-indicações para o uso de contracepção hormonal, participaram deste estudo. Todas as mulheres foram avaliadas antes do início do tratamento e a seguir, acompanhadas por um período de dois anos. Ao final do primeiro ano, as cápsulas foram retiradas e novas cápsulas foram inseridas. Resultados: o peso corporal aumentou de 54,9 ± 1,5 kg na admissão para 55,3 ± 2,0 kg no 12º mês de uso (pObjective: to evaluate variations in body weight, arterial blood pressure, fasting glucose, HbA1C, insulin, total cholesterol, HDL-C, LDL-C, triglycerides, Sgot, SGPT, GGT and bilirubin in women bearing a single subdermal Silastic implant containing 55 mg (+ 10% of nomegestrol acetate during two years. Methods: eighteen healthy volunteers of reproductive age who desired to use anticonceptive drugs and who did not present contraindications to hormonal contraception participated in the study. All women were investigated before starting treatment and were followed-up for two years. At the end of the first year the capsules were inserted. Results: body weight increased from 54.9 + 1.5 kg at admission to 55.3 + 2.0 kg at 12 months of use (p<0.05 and from 56.0 + 2.7 kg at 24 months of use. There was a slight increase in arterial blood pressure, both systolic and diastolic, at month 12 (p<0.01. At month 24, the arterial blood pressure was not significantly different from the values at admission. All values were within the normal range. Insulin, HbA1C, LDL-C and GGT remained unchanged during the use of the

  19. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    DEFF Research Database (Denmark)

    Hansen, Max; Baunsgaard, D.; Autrup, H.

    2008-01-01

    We have shown previously that a high sucrose intake increases the background level of somatic mutations and the level of bulky DNA adducts in the colon epithelium of rats. The mechanism may involve either glucose or fructose formed by hydrolysis of sucrose. Male Big Blue (R) rats were fed 30......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage....... The metabonomic studies indicated disturbed amino acid metabolism and decrease in plasma and urinary acetate as a common feature for all sugars and confirmed triglyceridemic effects of fructose. In conclusion, the genotoxicity may be related to the altered chemical environment in the caecum and thereby also...

  20. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio

    2016-03-24

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  1. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio; Gonella, Elena; Crotti, Elena; Vacchini, Violetta; Syrpas, Michail; Pontini, Marianna; Mangelinckx, Sven; Daffonchio, Daniele; Alma, Alberto

    2016-01-01

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  2. Rosiglitazone Reduces Plasma Levels of Inflammatory and Hemostatic Biomarkers and Improves Global Endothelial Function in Habitual Heavy Smokers Without Diabetes Mellitus or Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    I-Chih Chen

    2010-02-01

    Conclusion: Rosiglitazone significantly reduces plasma levels of inflammatory and hemostatic biomarkers, and restores global endothelial dysfunction, independently from insulin sensitization, in healthy smokers.

  3. Studies on carbohydrate metabolism in Bacillus sphaericus 1593

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-02

    Oct 2, 2006 ... Key words: Bacillus sphaericus, carbohydrate metabolism, glycolytic enzymes. ... available in soil close to decaying plant materials. So when a medium .... citrate, isocitrate, 2-oxoglutarate, malate and acetate. The unit of.

  4. Association between Plasma Proprotein Convertase Subtilisin/Kexin Type 9 and the Presence of Metabolic Syndrome in a Predominantly Rural-Based Sub-Saharan African Population

    DEFF Research Database (Denmark)

    Paquette, Martine; Luna Saavedra, Yascara Grisel; Chamberland, Ann

    2017-01-01

    Background: The prevalence of metabolic syndrome (MetS) has increased dramatically in low- and middle-income countries. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in low-density lipoprotein receptor degradation, but its relationship with metabolic parameters is still...

  5. Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient.

    Science.gov (United States)

    Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan

    2016-08-25

    Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats

    Directory of Open Access Journals (Sweden)

    Walid Hamdy El-Tantawy

    2016-10-01

    Full Text Available Lead is a toxic metal that induces a wide range of behavioral, biochemical and physiological effects in humans. Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. The current study was carried out to evaluate the antioxidant activities of Spirulina supplement against lead acetate -induced hepatic injury in rats. Five groups of rats were used in this study, Control, Lead acetate (100 mg/kg, Lead acetate (100 mg/kg + 0.5 g/kg Spirulina, Lead acetate (100 mg/kg + 1 g/kg Spirulina and Lead acetate + 25 mg/100 g Vitamin C (reference drug. All experimental groups received the oral treatment by stomach tube once daily for 4 weeks. Lead intoxication resulted in a significant increase in serum alanine transaminae (ALT, aspartate transaminae (AST activities, liver homogenate tumor necrosis factor-α (TNF-α, caspase-3, malondialdehyde (MDA, nitric oxide (NO levels and a significant decline of total serum protein, liver homogenate reduced glutathione (GSH level and superoxide dismutase (SOD activity. Both doses of Spirulina supplement as well as Vitamin C succeeded to improve the biochemical parameters of serum and liver and prevented the lead acetate-induced significant changes on plasma and antioxidant status of the liver. Both doses of Spirulina supplement had the same anti-apoptotic activity and high dose exhibited more antioxidant activity than that of low dose. In conclusion, the results of the present work revealed that Spirulina supplement had protective, antioxidant and anti-apoptotic effects on lead acetate-induced hepatic damage.

  7. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  8. Automatic extraction of forward stroke volume using dynamic 11C-acetate PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Objectives: Dynamic PET with 11C-acetate can be used to quantify myocardial blood flow and oxidative metabolism, the latter of which is used to calculate myocardial external efficiency (MEE). Calculation of MEE requires forward stroke volume (FSV) data. FSV is affected by cardiac loading conditions......, potentially introducing bias if measured with a separate modality. The aim of this study was to develop and validate methods for automatically extracting FSV directly from the dynamic PET used for measuring oxidative metabolism. Methods: 16 subjects underwent a dynamic 27 min PET scan on a Siemens Biograph...... TruePoint 64 PET/CT scanner after bolus injection of 399±27 MBq of 11C-acetate. The LV-aortic time-activity curve (TAC) was extracted automatically from dynamic PET data using cluster analysis. The first-pass peak was derived by automatic extrapolation of the down-slope of the TAC. FSV...

  9. Protective effects of Spirulina maxima on hyperlipidemia and oxidative-stress induced by lead acetate in the liver and kidney.

    Science.gov (United States)

    Ponce-Canchihuamán, Johny C; Pérez-Méndez, Oscar; Hernández-Muñoz, Rolando; Torres-Durán, Patricia V; Juárez-Oropeza, Marco A

    2010-03-31

    Oxidative damage has been proposed as a possible mechanism involved in lead toxicity, specially affecting the liver and kidney. Previous studies have shown the antioxidant effect of Spirulina maxima in several experimental models of oxidative stress. The current study was carried out to evaluate the antioxidant activity of Spirulina maxima against lead acetate-induced hyperlipidemia and oxidative damage in the liver and kidney of male rats. Control animals were fed on a standard diet and did not receive lead acetate (Control group). Experimental animals were fed on a standard laboratory diet with or without Spirulina maxima 5% in the standard laboratory diet and treated with three doses of lead acetate (25 mg each/weekly, intraperitoneal injection) (lead acetate with Spirulina, and lead acetate without Spirulina groups). The results showed that Spirulina maxima prevented the lead acetate-induced significant changes on plasma and liver lipid levels and on the antioxidant status of the liver and kidney. On the other hand, Spirulina maxima succeeded to improve the biochemical parameters of the liver and kidney towards the normal values of the Control group. It was concluded that Spirulina maxima has protective effects on lead acetate-induced damage, and that the effects are associated with the antioxidant effect of Spirulina.

  10. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    Science.gov (United States)

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  11. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  12. A case of anaphylactoid reaction to acetate in acetate-containing bicarbonate dialysate.

    Science.gov (United States)

    Misaki, Taro; Suzuki, Yumiko; Naito, Yoshitaka; Shiooka, Tempei; Isozaki, Taisuke

    2015-05-01

    A 35-year-old man with end-stage kidney disease due to chronic glomerulonephritis was admitted to our hospital to start maintenance hemodialysis (HD). One hour after starting the first session of HD, he experienced general pruritus, urticaria, and dyspnea. Signs and symptoms were resolved by discontinuing HD and administrating an antihistamine drug; HD-associated anaphylactoid reactions were therefore suspected. Over the next few HD sessions, we changed the dialysis membrane, anticoagulant, HD circuit and needle, in that order, but general pruritus and urticaria again appeared within 3 h after starting each session of HD. Finally, when we changed the dialysate from acetate-containing bicarbonate dialysate to acetate-free bicarbonate dialysate, urticaria was clearly less than that seen in previous HD sessions, and subsided after discontinuation of HD. Subsequently, 20 mg of oral prednisolone (PSL) was administered 1 h before starting HD, and the patient did not experience general pruritus, urticaria, or dyspnea after starting the session. When administered acetate-containing bicarbonate dialysate after oral PSL pretreatment, the patient again experienced general pruritus, urticaria and dyspnea. Few reports have been published on the occurrence of anaphylactoid reactions during HD using acetate dialysate. We report a rare case of anaphylactoid reactions with acetate in acetate-containing bicarbonate dialysate that were reduced with the use of acetate-free bicarbonate dialysate and oral PSL pretreatment.

  13. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii.

    Directory of Open Access Journals (Sweden)

    Shahid Manzoor

    Full Text Available Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has been identified as a key organism in engineered methane-producing processes relying on syntrophic acetate oxidation as the main methane-producing pathway. However, due to strict cultivation requirements and difficulties in reconstituting the thermodynamically unfavourable acetate oxidation, the physiology of this functional group is poorly understood. Genome-guided and whole transcriptome analyses performed in the present study provide new insights into habitat adaptation, syntrophic acetate oxidation and energy conservation. The working draft genome of Syntrophaceticus schinkii indicates limited metabolic capacities, with lack of organic nutrient uptake systems, chemotactic machineries, carbon catabolite repression and incomplete biosynthesis pathways. Ech hydrogenase, [FeFe] hydrogenases, [NiFe] hydrogenases, F1F0-ATP synthase and membrane-bound and cytoplasmic formate dehydrogenases were found clearly expressed, whereas Rnf and a predicted oxidoreductase/heterodisulphide reductase complex, both found encoded in the genome, were not expressed under syntrophic growth condition. A transporter sharing similarities to the high-affinity acetate transporters of aceticlastic methanogens was also found expressed, suggesting that Syntrophaceticus schinkii can potentially compete with methanogens for acetate. Acetate oxidation seems to proceed via the Wood-Ljungdahl pathway as all genes involved in this pathway were highly expressed. This study shows that Syntrophaceticus schinkii is a highly specialised, habitat-adapted organism relying on syntrophic acetate oxidation rather than metabolic versatility. By expanding its complement of respiratory complexes, it might overcome

  14. Plasma chemerin in young untrained men: association with cardio-metabolic traits and physical performance, and response to intensive interval training.

    Science.gov (United States)

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-02-01

    Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, pHIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.

  15. Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome.

    Science.gov (United States)

    Gutwenger, Ivana; Hofer, Georg; Gutwenger, Anna K; Sandri, Marco; Wiedermann, Christian J

    2015-03-28

    Hypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors. This pilot study aimed to explore for effects of a two-week hiking vacation at moderate versus low altitude on adipokines and parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. Fourteen subjects (mean age: 55.8 years, range: 39 - 69) with metabolic syndrome participated in a 2-week structured training program (3 hours of guided daily hiking 4 times a week, training intensity at 55-65% of individual maximal heart rate; total training time, 24 hours). Participants were divided for residence and training into two groups, one at moderate altitude (1,900 m; n = 8), and the other at low altitude (300 m; n = 6). Anthropometric, cardiovascular and metabolic parameters were measured before and after the training period. In study participants, training overall reduced circulating levels of total cholesterol (p = 0.024), low-density lipoprotein cholesterol (p = 0.025) and adiponectin (p triglycerides (p = 0.025) and leptin (p = 0.015), whereas in the low altitude group (n = 6), none of the lipid parameters was significantly changed (each p > 0.05). Hiking-induced relative changes of triglyceride levels were positively associated with reductions in leptin levels (p = 0.006). As compared to 300 m altitude, training at 1,900 m showed borderline significant differences in the pre-post mean reduction rates of triglyceride (p = 0.050) and leptin levels (p = 0.093). Preliminary data on patients with metabolic syndrome suggest that a 2-week hiking vacation at moderate altitude may be more beneficial for adipokines and parameters of lipid metabolism than training at low altitude. In order to draw firm conclusions regarding better corrections of dyslipidemia and metabolic syndrome by physical exercise under mild hypobaric and hypoxic conditions, a sufficiently powered randomized clinical trial appears warranted. ClinicalTrials.gov ID NCT

  16. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health*

    Science.gov (United States)

    Reiding, Karli R.; Ruhaak, L. Renee; Uh, Hae-Won; el Bouhaddani, Said; van den Akker, Erik B.; Plomp, Rosina; McDonnell, Liam A.; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Beekman, Marian; Wuhrer, Manfred

    2017-01-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the

  17. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health.

    Science.gov (United States)

    Reiding, Karli R; Ruhaak, L Renee; Uh, Hae-Won; El Bouhaddani, Said; van den Akker, Erik B; Plomp, Rosina; McDonnell, Liam A; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; Beekman, Marian; Wuhrer, Manfred

    2017-02-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex 4 HexNAc 2 to Hex 7 HexNAc 6 dHex 1 Neu5Ac 4 , as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall

  18. Profiling of Plasma Metabolites Suggests Altered Mitochondrial Fuel Usage and Remodeling of Sphingolipid Metabolism in Individuals With Type 2 Diabetes and Kidney Disease

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2017-05-01

    Discussion: DKD is associated with altered fuel substrate use and remodeling of sphingolipid metabolism in T2DM with DKD. Associations of albuminuria and impaired filtration function with distinct metabolomic signatures suggest different pathophysiology underlying these 2 manifestations of DKD.

  19. Ethanol and Acetate Acting as Carbon/Energy Sources Negatively Affect Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Ivan Orlandi

    2013-01-01

    Full Text Available In Saccharomyces cerevisiae, the chronological lifespan (CLS is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.

  20. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  1. Platelet concentrates for transfusion-metabolic and storage aspects.

    Science.gov (United States)

    Farrugia, A

    1994-01-01

    Transfusion of platelets concentrated from donated blood is an established therapeutic modality in clinical medicine. Over the past 25 years much effort has gone into optimising the conditions for the collection, preparation and storage of platelets for transfusion. Despite significant advances, platelet production is still a costly process requiring a dedicated environment and the use of specially formulated plastic storage containers. A progressive lesion over storage limits the shelf life and the availability of donated platelets, while the need to store platelets in the donor's autologous plasma also results in a loss of valuable fresh plasma for fractionation. Recent studies have addressed the issues of platelet quality and plasma economy by examining the possibility of storing platelets in a synthetic medium. Platelets stored in a variety of crystalloid solutions have been shown to retain in vitro and in vivo properties equivalent or superior to platelets stored in autologous donor plasma. Some additional insight has been gained on the metabolic patterns of stored platelets. In particular, studies have shown that, under these conditions, platelets are unable to oxidise dextrose to any significant extent, and that dextrose is invariably broken down to lactate, irrespective of the oxygen tensions in the platelet's environment. This in turn leads to the metabolic lesion of platelet storage, whereby low pH results in loss of platelet viability. Platelets stored in synthetic dextrose-free media are capable of maintaining aerobic ATP generation, and acetate-a component of many media studied-has been shown to be metabolised by platelets. Similarly, platelets prepared from blood collected into a dextrose-free anticoagulant have satisfactory properties both when suspended in autologous plasma or in a dextrose-free synthetic medium. The requirements for storage in special, high gas-permeable, containers, and for constant agitation during storage, were both found to be

  2. CYP2D6 Phenotyping Using Urine, Plasma, and Saliva Metabolic Ratios to Assess the Impact of CYP2D6∗10 on Interindividual Variation in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Pei Hu

    2017-05-01

    Full Text Available Purpose: Asian populations have around 40–60% frequency of reduced function allele CYP2D6∗10 compared to 1–2% in Caucasian populations. The wide range of CYP2D6 enzyme activities in subjects with the CYP2D6∗10 variant is a big concern for clinical practice. The quantitative analysis measuring the impact of CYP2D6 enzyme activity as a result of one CYP2D6∗10 allele or two CYP2D6∗10 alleles has not been reported in large Asian populations.Methods: A total of 421 healthy Chinese subjects were genotyped for CYP2D6 by polymerase chain reaction and direct DNA sequencing. A total of 235 subjects with CYP2D6∗1/∗1 (n = 22, CYP2D6∗1/∗10 (n = 93, CYP2D6∗10/∗10 (n = 85, and CYP2D6∗5/∗10 (n = 35 were phenotyped for CYP2D6 using dextromethorphan as the probe drug. Metabolic ratios (MR were calculated as the ratio of parent drug to metabolite in 0–3 h urine, 3 h plasma, and 3 h saliva for each sample type.Results: The urinary, plasma, or salivary MRs increased successively in subjects with CYP2D6∗1/∗1, ∗1/∗10, ∗10/∗10, and ∗5/∗10 (all P < 0.001. In the normal metabolizer group, homozygous CYP2D6∗10/∗10 decreased the CYP2D6 enzyme activity further than heterozygous CYP2D6∗1/∗10. Urinary, plasma, and salivary MRs were highly correlated.Conclusion: The normal metabolizer group calls for a more detailed classification. The activity score system could more accurately predict enzyme activity than by grouping a number of genotypes into a single phenotype group. Single-point plasma samples and saliva samples could be used as alternative phenotyping methods for clinical convenience.

  3. Characterization on glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies

    Czech Academy of Sciences Publication Activity Database

    Biederman, H.; Boyaci, I. H.; Bílková, P.; Slavinská, D.; Mutlu, S.; Zemek, Josef; Trchová, M.; Klimovič, J.; Mutlu, M.

    2001-01-01

    Roč. 81, - (2001), s. 1341-1352 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z1010914 Keywords : cellulose acetate membrane * plasma polymerization * surface treatment * enzyme electrodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.992, year: 2001

  4. Antipain and 12-O-tetradecanoyl-phorbol-13-acetate

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Tatsumi, M.

    1980-01-01

    Antipain (AP) and 12-O-tetradecanoyl-phorbooe-13-acetate (TPA) were tested in V79 Chinese hamster cells for cytotoxicity and effects on survival and 6-thioguanine-resistant (6TGsup(r)) mutation after UV-irradiation. AP and/or TPA were relatively non-cytotoxic and had no significant effects on UV survival. Despite their non-mutagenicity, the recovery of UV-induced 6TGsup(r) colonies was significantly enhanced by the pretreatment with either AP (0,5-2 mM) or TPA (0.1-1 μg/ml) only during the expression period before the 6TG selection at a low density of cells in the absence of AP or TPA. Such enhancing effects were maximal when AP or TPA was present during the late expression period after the mutation fixation and extensive dilution of DNA lesions. Reconstruction experiments revelaed the antgonisitc actions that TPA and AP tended to eliminate and increase, respectively, the metabolic co-operation. In the TPA-plus-AP treatment, AP abolished the TPA-enhanced recovery of induced mutants. Thus, it seems that TPA increases the mutant recovery langely through decreased metabolic co-operation and AP could modulate the mutation expression. Further, an error-prone inducible repair may not exist or, if it exists, AP may not inhibit it in V79 Chinese hamster cells. (orig.)

  5. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    Science.gov (United States)

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. Copyright © 2017 American Society for Microbiology.

  6. The plasma composition of karakul lambs fed isocaloric high- and ...

    African Journals Online (AJOL)

    ences in the efficiency of metabolizable energy utilisation were determined from the average daily intake (ADl), ..... tissue growth may be influenced by metabolic hormones .... propionate and acetate in the control of food intake in sheep. ,Br. J.

  7. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  8. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  9. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  10. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats.

    Science.gov (United States)

    Dalal, Arindam; Poddar, Mrinal K

    2010-07-01

    Long-term consumption of artificial food color(s) can induce behavioral hyperactivity in human and experimental animals, but no neurobiochemical mechanism is defined. This study investigates the role of brain regional serotonin metabolism including its turnover, MAO-A activity, and plasma corticosterone status in relation to behavioral disturbances due to an artificial food color, erythrosine. Long-term (15 or 30 consecutive days) erythrosine administration with higher dosage (10 or 100 mg/kg/day, p.o.) produced optimal hyperactive state in exploratory behavior (rearing motor activity) after 2 h of last erythrosine administration, in young adult male albino rats. Erythrosine-induced stimulation in brain regional (medulla-pons, hypothalamus, hippocampus, and corpus striatum) serotonin metabolism (measuring steady state levels of 5-HT and 5-HIAA, MAO-A activity), including its turnover (pargyline-induced 5-HT accumulation and 5-HIAA declination rate), as well as plasma corticosterone were also observed depending on dosage(s) and duration(s) of erythrosine administration under similar experimental conditions. The lower dosage of erythrosine (1 mg/kg/day, p.o.) under similar conditions did not affect either of the above. These findings suggests (a) the induction as well as optimal effect of long-term erythrosine (artificial food color) on behavioral hyperactivity in parallel with increase in 5-HT level in brain regions, (b) the activation of brain regional serotonin biosynthesis in accordance with plasma corticosterone status under such behavioral hyperactivity, and (c) a possible inhibitory influence of the enhanced glucocorticoids-serotonin interaction on erythrosine-induced rearing motor hyperactivity in young adult mammals.

  11. Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC.

    Science.gov (United States)

    Gao, Yuan; Li, Li; Zhang, Jianjun; Shu, Wenjuan; Gao, Liqiong

    2012-04-01

    A simple, rapid, specific and precise reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of triacetin, acetic ether, butyl acetate and amorolfine in marketed pharmaceutical liniment. Chromatographic separation was performed on a Shimadzu VP-ODS C(18) column using the mixture of citric acid-hydrochloric acid-sodium hydrate buffer (pH 3.0), acetonitrile and methanol (32:30:38) as the mobile phase at a flow rate of 1.0 mL/min with UV-detection at 215 nm. The method separated the four components simultaneously in less than 10 min. The validation of the method was performed with respect to specificity, linearity, accuracy, and precision. The calibration curves were linear in the range of 35.1-81.9 μ/mL for triacetin, 431.1-1005.9 μ/mL for acetic ether, 167.0-389.7 μ/mL for butyl acetate and 151.0-352.3 μ/mL for amorolfine. The mean 100% spiked recovery for triacetin, acetic ether, butyl acetate and amorolfine is 99.43 ± 0.42, 101.5 ± 1.09, 101.4 ± 1.02 and 100.8 ± 0.69, respectively. The intra-day and inter-day relative standard deviation values were liniment.

  12. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Science.gov (United States)

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  15. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    Science.gov (United States)

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ethanol-induced increase in portal blood flow: Role of acetate and A1- and A2-adenosine receptors

    International Nuclear Information System (INIS)

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H.

    1988-01-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A 1 -adenosine receptor agonist N-6-cyclohexyl adenosine and the A 2 -agonist 5'-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A 2 -subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues

  17. Avalanches in Mn12-Acetate: ``Magnetic Burning"

    Science.gov (United States)

    McHugh, Sean; Suzuki, Y.; Graybill, D.; Sarachik, M. P.; Avraham, N.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2006-03-01

    From local time-resolved measurements of fast reversal of the magnetization in single crystals of the molecular magnet Mn12-acetate, we have shown[1] that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. The propagation speed of the avalanche depends on the energy stored in each molecule, which can be controlled and tuned using an external magnetic field. We report studies of propagation speed with different external fields in Mn12-acetate. [1] Yoko Suzuki, M.P. Sarachik, E.M. Chudnovsky, S. McHugh, R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, H. Shtrikman, E. Zeldov, N.E. Chakov and G. Christou, Phys. Rev. Lett. 95, 147201 (2005).

  18. Neutron scattering studies of Mn12-acetate

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: The S=10 magnetic molecule Mn 12 -acetate, which crystallises into a tetragonal crystal structure, has attracted substantial recent attention by virtue of its low temperature bulk magnetic properties, which give evidence for resonant quantum tunnelling of the magnetisation. We report a full neutron crystal structure including positions of all protons/deuterons, including the solvated water and acetic acid, a polarised-neutron study of the real space magnetisation, which confirms a simple magnetic-structure model for the molecule, albeit with reduced Mn moments, and inelastic neutron scattering data containing both the excitations within the 21-fold degenerate S=10 manifold, and those from S=10 to the S=9 manifolds. Both manifolds are split by uniaxial magnetic anisotropy, and we report coefficients for 2nd and 4th-order terms in the magnetic Hamiltonian

  19. Nomegestrol acetate-17b-estradiol for oral contraception

    Directory of Open Access Journals (Sweden)

    Burke A

    2013-06-01

    Full Text Available Anne Burke Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Oral contraceptives remain a popular method of contraception over 50 years after their introduction. While safe and effective for many women, the failure rate of oral contraception is about 8%. Concerns about the risk of venous thromboembolism continue to drive the search for the safest oral contraceptive formulations. The oral contraceptive NOMAC-E2 contains nomegestrol acetate (NOMAC 2.5 mg + 17b-estradiol (E2 1.5 mg. The approved dosing regimen is 24 days of active hormone, followed by a 4-day hormone-free interval. NOMAC is a progestin derived from testosterone, which has high bioavailability, rapid absorption, and a long half-life. Estradiol, though it has a lower bioavailability, has been successfully combined with NOMAC in a monophasic oral contraceptive. Two recently published randomized controlled trials demonstrate that NOMAC-E2 is an effective contraceptive, with a Pearl Index less than one pregnancy per 100 woman-years. The bleeding pattern on NOMAC-E2 is characterized by fewer bleeding/spotting days, shorter withdrawal bleeds, and a higher incidence of amenorrhea than the comparator oral contraceptive containing drospirenone and ethinyl estradiol. The adverse event profile appears to be acceptable. Few severe adverse events were reported in the randomized controlled trials. The most common adverse events were irregular bleeding, acne, and weight gain. Preliminary studies suggest that NOMAC-E2 does not seem to have negative effects on hemostatic and metabolic parameters. While no one oral contraceptive formulation is likely to be the optimum choice for all women, NOMAC-E2 is a formulation with effectiveness comparable with that of other oral contraceptives, and a reassuring safety profile.Keywords: oral contraception, nomegestrol acetate, estradiol

  20. Acetate in Oz: Some Strategic Moves

    Directory of Open Access Journals (Sweden)

    Colin Webb

    2005-08-01

    Full Text Available I would like to add my voice to the words of congratulations and thanks to the British Library for organising this forum, and for their generosity in making it possible for me to come across the world to be part of it. The issues we are discussing today have an importance extending beyond cellulose acetate, as they reflect our ability as custodians to deal with common threats to the documentary heritage we are charged with preserving. As I will argue later, we need to see this situation in the context of the full range of preservation management issues that face our institutions. While it imposes a burden and a challenge on us as preservation managers, it also presents opportunities to sort out some things that have needed attention for some time. I have been asked to talk about problems with cellulose acetate microfilm collections in Australia, and specifically the strategies – both national and local – that have been adopted or at least explored in response to those problems. In the time I have I will not be going into any of these in great detail, but I hope I can give you some sense of the situation down under, and perhaps draw out a few issues that might make this more than just an ‘us too’ session! One thing to emphasise from the start is that we have had a number of goes at dealing with acetate microfilm collections: it is not a newly discovered problem in Australia. One significant context in which we have been working is that of a national strategy for all kinds of cellulose acetate collection materials. Explaining this national strategy will form a major part of my presentation, with issues and approaches specific to microfilm discussed towards the end.

  1. [The role of structural heterogeneity of circulating lipids in the regulation of lipoprotein metabolism in the plasma and lymph in hypercholesterolemia in dogs].

    Science.gov (United States)

    Kosukhin, A B; Akhmetova, B S

    1986-01-01

    Fatty acid spectrum of lipoproteins was studied in intestinal steam lymph and blood plasma of dogs with alimentary hypercholesterolemia. Mechanism of cholesterol accumulation in blood plasma appears to relate to increase in content of cholesterol palmitate which is secreted from intestine into lymph and hydrolyzed slowly in liver tissue. Alterations in composition of fatty acid acyls of cholesterol esters, of phosphatidyl cholines and triacyl glycerides as well as effect of these alterations on the lecithin-cholesterol acyl-transferase reaction and lipoprotein lipolysis are discussed.

  2. Physiology and Genetics of Biogenic Methane-Production from Acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sowers, Kevin R

    2013-04-04

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical

  3. Potentiometric titrations in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Le Port, L.

    1966-03-01

    The method used for studying anhydrous acetic acid is potentiometry with a glass electrode. We have in this way studied the titration of common inorganic acids (HClO 4 - HBr - H 2 SO 4 - HCl - HNO 3 - H 3 PO 4 ) and of some metallic salts. Furthermore we have shown that complex acids are formed between HCl and some metallic chlorides. An analysis of the titration curves for the inorganic acids against pyridinium chloride has made it possible to calculate a certain number of values for the dissociation pK of these acids and of the corresponding pyridinium salts. The titration of metallic perchlorates constitutes a method of studying the stability of acetates; we have thus been able to draw up a classification for some of these acetates. The metallic chlorides studied fall into two groups according to their behaviour in weak or strong acids. The differences have been explained on the basis of the role played by solvolysis. In the third part we have studied the acidic properties of mixtures of HCl with certain metallic chlorides. This work has demonstrated the existence, in certain cases, of acid complexes of the type (HCl) m MCl n . (author) [fr

  4. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  6. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose ...

  7. 21 CFR 582.5892 - a-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false a-Tocopherol acetate. 582.5892 Section 582.5892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  8. 21 CFR 182.8892 - α-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...-Tocopherol acetate. (a) Product. α-Tocopherol acetate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  10. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  11. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  12. Addressing Cellulose Acetate Microfilm from a British Library perspective

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2005-08-01

    Full Text Available This paper is about cellulose acetate microfilm from the British Library perspective. It traces how acetate microfilm became an issue for the British Library and describes cellulose acetate deterioration. This is followed by details of what has already been done about the situation and what action is planned for the future.

  13. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  14. Air-oxidized linalyl acetate - an emerging fragrance allergen?

    Science.gov (United States)

    Hagvall, Lina; Berglund, Victoria; Bråred Christensson, Johanna

    2015-04-01

    Linalyl acetate is a fragrance chemical that is prone to autoxidation. Exposure to linalyl acetate occurs through cosmetic products and essential oils, but is difficult to assess, as linalyl acetate is not labelled in the EU. To investigate the frequencies of contact allergy to oxidized linalyl acetate among dermatitis patients, and to investigate the autoxidation of linalyl acetate in terms of hydroperoxide formation and sensitization potency. Hydroperoxide formation in air-exposed linalyl acetate was determined with high-performance liquid chromatography. The sensitization potencies of hydroperoxides were determined with the local lymph node assay. One thousand seven hundred and seventeen patients were patch tested with oxidized linalyl acetate at 6.0% in petrolatum. Of the patients, 2.2% showed positive reactions to oxidized linalyl acetate. Forty-three per cent of the positive patients also had positive patch test reactions to other fragrance markers. Linalyl acetate hydroperoxides were detected early in the autoxidation process, and accumulated to a concentration of 37% after 42 weeks of air exposure. The linalyl acetate hydroperoxides were classified as moderate sensitizers. The frequency of positive reactions to oxidized linalyl acetate is comparable to that of previously studied oxidized fragrance terpenes. Oxidized linalyl acetate could thus be a common fragrance contact allergen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches

    NARCIS (Netherlands)

    Beamonte Barrientos, Rene; Verhulst, Simon

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is

  16. Evaluation of Mango Byproduct Extracts as Antioxidant Against Pb-Acetate-Induced Oxidative Stress and Genotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Makawy Aida I. El

    2015-03-01

    Full Text Available The antioxidant and antiproliferative properties of mango by-products were investigated. This study was carried out to evaluate the protective role of mango peel or kernel defatted extracts against Pb-acetate adverse effects on oxidant/antioxidant status, liver dysfunction biomarkers, histopathological changes and genotoxicity in male mice. Total phenolic content and antioxidant activity of both extracts were evaluated. Two doses of both extracts (50 and 100 mg/kg were used to evaluate their role against the toxicity of Pb-acetate (500 ppm. Mice given mango extracts with Pb-acetate had significantly lower plasma MDA, AST and ALT and higher glutathione than mice given Pb-acetate alone. Mango extracts prevented the histopathological changes in liver induced by Pb-acetate and decreased the cytotoxicity of lead by increasing the ratio of PCE/NCE. Mango extract treatment reduced the DNA damage induced by Pb-acetate in liver as demonstrated by a reduction in micronuclei and decrease in tail length, tail DNA% and Olive tail moment. It can be concluded that mango by-product extracts have potential to protect from oxidative stress and genotoxicity of lead.

  17. No genetic footprints of the fat mass and obesity associated (FTO) gene in human plasma 1H CPMG NMR metabolic profiles

    DEFF Research Database (Denmark)

    Kjeldahl, Karin; Rasmussen, Morten Arendt; Hasselbalch, Ann Louise

    2014-01-01

    In this paper it was investigated if any genotypic footprints from the fat mass and obesity associated (FTO) SNP could be found in 600 MHz 1H CPMG NMR profiles of around 1,000 human plasma samples from healthy Danish twins. The problem was addressed with a combination of univariate and multivariate...

  18. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment.

    NARCIS (Netherlands)

    Vriens, D.; Geus-Oei, L.F. de; Oyen, W.J.G.; Visser, E.P.

    2009-01-01

    For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible

  19. Acetic acid sclerotheraphy of renal cysts

    International Nuclear Information System (INIS)

    Hong, Hoon Pyo; Oh, Joo Hyeong; Yoon, Yup; Kong, Keun Young; Kim, Eui Jong; Goo, Jang Sung

    1998-01-01

    Sclerotherapy for renal cysts was performed, using 50% acetic acid as new sclerosing agent. We report the methods and results of this procedure. Fifteen patients underwent sclerotherapy for renal cyst, using 50% acetic acid. Because four patients were lost to follow-up, only 11 of the 15 were included in this study. The renal cysts, including one infected case, were diagnosed by ultrasonograpy (n=3D10) ormagnetic resonance imaging (n=3D1). The patient group consisted of four men and seven women(mean age, 59 years; range, 23-77). At first, the cyst was completely aspirated, and 25 volume% of aspirated volume was replaced with 50% sterile acetic acid through the drainage catheter. During the follwing 20 minutes, the patient changed position, and the acetic acid was then removed from the cyst. Finally, the drainage catheter was removed, after cleaning the cyst with saline. After treatment of infection by antibiotics and catheter drainage for 7 days, sclerotherapy in the infected case followed the same procedure. In order to observe changes in the size of renal cysts and recurrence, all patients were followed up by ultrasound between 2 and 8 months. We defined response to therapy as follows:complete regression as under 5 volume%, partial regression as 5-50 volume% and no response as more than 50 volume% of initial cyst volume. No clinically significant complication occured during the procedures or follow-up periods. All cysts regressed completely during follow-up of 8 months. Complete regression occurred as follows: two cysts at 2 months, seven cysts at 4 months, two cysts at 6 months. Two cysts showed residues at the last follow-up, at 4 and 6 months, respectively. The volume of residual cysts decreased to under 5 volume% of initial volume, however. Completely regressed cysts did not recurr during follow-up. Acetic acid sclerotherapy for renal cysts showed good results, regardless of the dilution of sclerosing agent with residual cyst fluid, and no significant

  20. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  1. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    Science.gov (United States)

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Metabolism of 14C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta)

    International Nuclear Information System (INIS)

    Slikker, W. Jr.; Holder, C.L.; Lipe, G.W.; Korfmacher, W.A.; Thompson, H.C. Jr.; Bailey, J.R.

    1986-01-01

    The time-course of the metabolic fate of [ 14 C]doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus [ 14 C]doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid, 1-[1-phenyl-1(2-pyridinyl)ethoxy] methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peak 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination

  3. Effect of acetate Ringer's solution with or without 5% dextrose administered intravenously to diarrheic calves.

    Science.gov (United States)

    Tsukano, Kenji; Kato, Satoko; Sarashina, Shinya; Abe, Izumi; Ajito, Tadaharu; Ohtsuka, Hiromichi; Suzuki, Kazuyuki

    2017-04-20

    The objectives of this study were to evaluate the effects of intravenous acetate Ringer's solution, with or without dextrose, on diarrheic calves with either experimentally induced or spontaneous diarrhea. In the experimental model, diarrhea was induced in nine healthy calves by administering cold milk (below 4°C) twice a day for 2 days. The calves were randomly assigned to the isotonic saline (ISS), acetated Ringer's (AR) or acetated Ringer's with 5% dextrose (ARD) groups, with three calves assigned to each group. The calves received 80 ml/kg of their designated solution, at a flow rate of 20 ml/kg/hr. Infusion of ISS, AR and ARD were all found to be safe and effective in increasing plasma volume. Intravenous (IV) infusion of ISS resulted in the acidification secondary to dilution, while AR and ARD infusion inhibited acidification. In addition, prevention of catabolism was observed only with IV infusion of ARD. Sixteen calves with spontaneous diarrhea were enrolled in the clinical study. The calves were randomly assigned to the AR or ARD groups, with eight calves being assigned to each group. The calves received 100 ml/kg of their designated solution, at a flow rate of 25 ml/kg/hr. Intravenous infusion of AR and ARD was found to be effective in increasing plasma volume and inhibiting acidification. Only infusion of ARD prevented catabolism, but it also led to hyperglycemia. Our results suggest that a solution containing dextrose may be beneficial for wasting diarrheic calves.

  4. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  5. The acute metabolic response to breads with contrasting content and composition of arabinoxylans and ß-glucan - metabolomics analysis of plasma from porto-arterial catheterized pigs

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Hedemann, Mette Skou; Lærke, Helle Nygaard

    2014-01-01

    A liquid chromatography–MS (LC-MS) metabolomics analysis of plasma from portal–arterial catheterised pigs fed breads prepared with whole-grain rye or wheat flour with added concentrated arabinoxylan (AX) or β-glucan (BG) was conducted. Comparison of the effects of concentrated fibres with whole...... of available carbohydrate was similar for the five breads but varied in the content of protein. Plasma was collected continuously for 4 h after feeding. Glucose levels in the portal vein were reduced postprandially in response to the AX, GR and RK breads that had high contents of AX compared with WF bread (P...... contents in the breads and leucine uptake significantly affected insulin secretion in the mesenteric artery...

  6. Plasma alkylresorcinols reflect gluten intake and distinguish between gluten-rich and gluten-poor diets in a population at risk of metabolic syndrome

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Madsen, Mia Linda; Rumessen, Jüri J

    2016-01-01

    BACKGROUND: Many patients with celiac disease experience difficulties in adherence to a gluten-free diet. Methods for testing compliance to a gluten-free diet are costly and cumbersome. Thus, a simple biomarker of gluten intake is needed in a clinical setting and will be useful for epidemiologic...... in plasma total alkylresorcinols per 1-g increase in reported gluten intake (P gluten-free diet as well as to help investigations into the possible effects of gluten in the wider population. This trial...... 8 wk of a gluten-rich and gluten-poor diet separated by a washout period of ≥6 wk. We measured fasting plasma concentrations of alkylresorcinols to determine if they reflected differences in gluten intake as a secondary outcome of the original study. In addition, we investigated in 118 Danish adults...

  7. Plasma lipids, lipoprotein composition and profile during induction and treatment of hepatic lipidosis in cats and the metabolic effect of one daily meal in healthy cats.

    Science.gov (United States)

    Blanchard, G; Paragon, B M; Sérougne, C; Férézou, J; Milliat, F; Lutton, C

    2004-04-01

    Anorexia in obese cats may result in feline hepatic lipidosis (FHL). This study was designed to determine plasma lipids and lipoprotein profiles in queens at different stages during experimental induction of FHL (lean, obese, FHL), and after 10 weeks of treatment. Results were compared with those obtained from lean queens of same age fed the same diet but at a maintenance level, once a day. Hepatic lipidosis led to an increase in plasma triacylglycerol (TG), very low density lipoprotein (VLDL) and low density lipoprotein (LDL), and an enrichment of LDL with TG and of high density lipoprotein (HDL) with cholesterol, suggesting that VLDL secretion is enhanced, VLDL and LDL catabolism is lowered, and lipoprotein exchanges are impaired in FHL. This study also showed that cholesterolaemia is increased in cats fed at a dietary rhythm of one meal per day compared to ad libitum feeding.

  8. Plasma Free Amino Acid Profiles Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension in Japanese Population

    OpenAIRE

    Yamakado, Minoru; Nagao, Kenji; Imaizumi, Akira; Tani, Mizuki; Toda, Akiko; Tanaka, Takayuki; Jinzu, Hiroko; Miyano, Hiroshi; Yamamoto, Hiroshi; Daimon, Takashi; Horimoto, Katsuhisa; Ishizaka, Yuko

    2015-01-01

    Plasma free amino acid (PFAA) profile is highlighted in its association with visceral obesity and hyperinsulinemia, and future diabetes. Indeed PFAA profiling potentially can evaluate individuals? future risks of developing lifestyle-related diseases, in addition to diabetes. However, few studies have been performed especially in Asian populations, about the optimal combination of PFAAs for evaluating health risks. We quantified PFAA levels in 3,701 Japanese subjects, and determined visceral ...

  9. Effect of oral contraceptives containing estradiol and nomegestrol acetate or ethinyl-estradiol and chlormadinone acetate on primary dysmenorrhea.

    Science.gov (United States)

    Grandi, Giovanni; Napolitano, Antonella; Xholli, Anjeza; Tirelli, Alessandra; Di Carlo, Costantino; Cagnacci, Angelo

    2015-10-01

    To study the three cycles effect on primary dysmenorrhea of the monophasic 24/4 estradiol/nomegestrol acetate (E2/NOMAC) and of the 21/7 ethinyl-estradiol/chlormadinone acetate (EE/CMA) oral contraceptive. The tolerability and the effect of both preparations on metabolism and health-related quality of life were also evaluated. Prospective observational cohort study. Tertiary gynecologic center for pelvic pain. Subjects with primary dysmenorrhea requiring an oral contraceptive, who spontaneously selected either E2/NOMAC (n = 20) or EE/CMA (n = 20). Visual Analogue Scale (VAS) score for dysmenorrhea, Short Form-36 questionnaire for health-related quality of life, lipoproteins and days of menstrual bleeding (withdrawal bleeding during oral contraceptive). Mean age and body mass index (BMI) were similar between the two groups. The final analysis was performed on 34 women, 15 in E2/NOMAC and 19 in EE/CMA group. Compliance with treatment was significantly higher with EE/CMA (100%) than E2/NOMAC (75%) (p = 0.02). Both treatments significantly (p dysmenorrhea, similarly (E2/NOMAC by a mean of 74.7%, EE/CMA by a mean of 78.4%; p = 0.973). Only E2/NOMAC significantly increased SF-36 score (p = 0.001), both in physical (p = 0.001) and mental domains (p = 0.004). The mean number of days of menstrual bleeding was significantly reduced in E2/NOMAC group (from 4.86 ± 1.20 d to 2.64 ± 1.59 d, p = 0.0005 versus baseline, p = 0.007 versus EE/CMA group). BMI did not vary in either group. E2/NOMAC did not change lipoproteins and apoproteins while EE/CMA increased total cholesterol (p = 0.0114), HDL-cholesterol (p = 0.0008), triglycerides (p = 0.002), apoprotein-A1 (Apo-A1; p = 0.0006) and apopoprotein-B (Apo-B; p = 0.008), decreasing LDL/HDL ratio (p = 0.024). Both oral contraceptives reduced similarly primary dysmenorrhea, with E2/NOMAC also reducing withdrawal bleedings and being neutral on lipid metabolism.

  10. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio; Okamoto, Haruhito

    1976-01-01

    This paper deals with the sterol-synthesizing ability and the fate of dietary sterols, cholesterol and desmosterol, in the crabs, Sesarma dehaani and Helice tridens. Injected acetate-1- 14 C was not incorporated into either squalene or sterols in the above crabs. This suggested that the sterol-synthesizing ability from acetate is absent or weak in the crabs, S. dehaani and H. tridens. The apparent percentage absorptions of dietary cholesterol and desmosterol from the digestive tracts were 91.9 and 90.9, respectively. The ingested cholesterol and desmosterol were metabolized to steryl esters and polar compounds but only slightly to water-soluble sterols. Also, it was shown that the crab, S. dehaani, is capable of converting desmosterol to cholesterol. (auth.)

  11. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Key words: Lead acetate, glutathione (GSH), dithiobisdinitrobenzoic acid (DTNB), plasma and cytosolic ... fraction. Control containing 1 ml of venous blood and 1 ml of 0.9%. NaCl solution was also centrifuged for isolation of plasma. The packed cells were .... altered fatty acid composition of membranes?

  12. Tuning magnetization avalanches in Mn12-acetate

    Science.gov (United States)

    Wen, Bo; McHugh, S.; Ma, Xiang; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Christou, G.

    2009-03-01

    We report the results of a systematic study of magnetic avalanches (abrupt magnetization reversals) in the molecular magnet Mn12-acetate using a micron-sized Hall sensor array. Measurements were taken for: (a) fixed magnetic field (constant barrier against spin reversal); and (b) fixed energy release obtained by adjusting the barrier and δM. A detailed comparison with the theory of magnetic deflagration of Garanin and Chudnovsky [1] will be presented and discussed. [1] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 76, 054410 (2007)

  13. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón

    2016-09-15

    Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.

  14. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    Science.gov (United States)

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  15. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  16. Quantification of patterns of regional cardiac metabolism

    International Nuclear Information System (INIS)

    Lear, J.L.; Ackermann, R.F.

    1990-01-01

    To quantitatively map and compare patterns of regional cardiac metabolism with greater spatial resolution than is possible with positron emission tomography (PET), the authors developed autoradiographic techniques for use with combinations of radiolabeled fluorodeoxyglucose (FDG), glucose (GLU), and acetate (ACE) and applied the techniques to normal rats. Kinetic models were developed to compare GLU-based oxidative glucose metabolism with FDG-based total glucose metabolism (oxidative plus anaerobic) and to compare ACE-based overall oxidative metabolism with FDG-based total glucose metabolism. GLU-based metabolism generally paralleled FDG-based metabolism, but divergence occurred in certain structures such as the papillary muscles, where FDG-based metabolism was much greater. ACE-based metabolism also generally paralleled FDG-based metabolism, but again, the papillary muscles had relatively greater FDG-based metabolism. These discrepancies between FDG-based metabolism and GLU- or ACE-based metabolism suggest the presence of high levels of anaerobic glycolysis. Thus, the study indicates that anaerobic glycolysis, in addition to occurring in ischemic or stunned myocardium (as has been shown in recent PET studies), occurs normally in specific cardiac regions, despite the presence of abundant oxygen

  17. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    Science.gov (United States)

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  18. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen

    2015-01-01

    .75 % of their body mass with a diet based on either (1) fish meal (FM), (2) pea protein concentrate (PPC), or (3) pea protein concentrate supplemented with histidine, lysine, methionine and threonine (PPC+) to mimic FM AA profile. The specific dynamic action and nitrogen quotient (NQ) were calculated for 48 h....... The strongest effect was observed for methionine, presenting threefold higher concentrations at peak time for PPC+ compared to FM (297.0 +/- A 77.0 and 131.8 +/- A 39.0 nmol ml(-1), respectively). The differences in AA availability and metabolic profile in the pea diets compared to the FM diet were believed...

  19. Influence of IL1B, IL6 and IL10 gene variants and plasma fatty acid interaction on metabolic syndrome risk in a cross-sectional population-based study.

    Science.gov (United States)

    Maintinguer Norde, Marina; Oki, Erica; Ferreira Carioca, Antonio Augusto; Teixeira Damasceno, Nágila Raquel; Fisberg, Regina Mara; Lobo Marchioni, Dirce Maria; Rogero, Marcelo Macedo

    2018-04-01

    Metabolic syndrome (MetS) is a cluster of interrelated risk factors for type 2 diabetes mellitus, and cardiovascular disease, with underlying inflammatory pathophysiology. Genetic variations and diet are well-known risk factor for MetS, but the interaction between these two factors is less explored. The aim of the study was to evaluate the influence of interaction between SNP of inflammatory genes (encoding interleukin (IL)-6, IL-1β and IL-10) and plasma fatty acids on the odds of MetS, in a population-based cross-sectional study. Among participants of the Health Survey - São Paulo, 301 adults (19-59 y) from whom a blood sample was collected were included. Individuals with and without MetS were compared according to their plasma inflammatory biomarkers, fatty acid profile, and genotype frequency of the IL1B (rs16944, rs1143623, rs1143627, rs1143634 and rs1143643), IL6 (rs1800795, rs1800796 and rs1800797) and IL10 (rs1554286, rs1800871, rs1800872, rs1800890 and rs3024490) genes SNP. The influence of gene-fatty acids interaction on MetS risk was investigated. IL6 gene SNP rs1800795 G allele was associated with higher odds for MetS (OR = 1.88; p = 0.017). Gene-fatty acid interaction was found between the IL1B gene SNP rs116944 and stearic acid (p inter = 0.043), and between rs1143634 and EPA (p inter = 0.017). For the IL10 gene SNP rs1800896, an interaction was found for arachidonic acid (p inter = 0.007) and estimated D5D activity (p inter = 0.019). The IL6 gene SNP rs1800795 G allele is associated with increased odds for MetS. Plasma fatty acid profile interacts with the IL1B and IL10 gene variants to modulate the odds for MetS. This and other interactions of risk factors can account for the unexplained heritability of MetS, and their elucidation can lead to new strategies for genome-customized prevention of MetS. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Immunotoxicity of trenbolone acetate in Japanese quail

    Science.gov (United States)

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  1. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    Science.gov (United States)

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  2. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  3. The effect of feeding barley or hay alone or in combination with molassed sugar beet pulp on the metabolic responses in plasma and caecum of horses

    DEFF Research Database (Denmark)

    Jensen, R B; Austbø, Dag; Blache, D

    2016-01-01

    only (HAY), hay and molassed SBP (HAY + SBP), hay and pelleted barley (BAR), and hay, pelleted barley and molassed SBP (BAR + SBP). The amount of barley (2 g starch/kg body weight (BW)) fed in the test meals was similar for the BAR and BAR + SBP diets. Each diet was fed for 16 days followed by data...... to the large intestine in response to the dietary carbohydrate composition. In conclusion, there was no effect of adding molassed SBP to a meal of barley compared to feeding barley alone, and fluctuations in plasma and caecal variables were more stable when feeding hay and molassed SBP than feeding barley...

  4. Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater

    International Nuclear Information System (INIS)

    Williams, Kenneth H.; Long, Philip E.; Davis, James A.; Wilkins, Michael J.; N'Guessan, A. Lucie; Steefel, Carl I.; Yang, Li; Newcomer, Darrell R.; Spane, Frank A.; Kerkhof, L.; McGuinness, L.; Dayvault, Richard; Lovley, Derek

    2011-01-01

    Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126 (micro)M). During successive summer experiments - referred to as 'Winchester' (2007) and 'Big Rusty' (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which iron reduction ('Winchester') or sulfate reduction ('Big Rusty') was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI); however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 (micro)M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during 'Big Rusty' was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration 'Winchester' experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to

  5. Acetate availability and its influence on sustainable bioremediation of Uranium-contaminated groundwater

    Science.gov (United States)

    Williams, K.H.; Long, P.E.; Davis, J.A.; Wilkins, M.J.; N'Guessan, A. L.; Steefel, Carl; Yang, L.; Newcomer, D.; Spane, F.A.; Kerkhof, L.J.; Mcguinness, L.; Dayvault, R.; Lovley, D.R.

    2011-01-01

    Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126??M).During successive summer experiments - referred to as "Winchester" (2007) and "Big Rusty" (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM),and the extent to which iron reduction ("Winchester") or sulfate reduction("Big Rusty") was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI);however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 ??M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during "Big Rusty" was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration "Winchester" experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their

  6. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    acetate in soil solution were the most important factor affecting the fate of the respective LMWOS. We conclude that for all three substances representing the three main groups of LMWOS in soil the most rapid process is microbial uptake which was mainly finished within 30. Thereafter, microbial utilization led to further distribution of the metabolized products and their sorption by soil matrix.

  7. Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory.

    Science.gov (United States)

    Sharma, Gaurav; Attri, Savita Verma; Behra, Bijaylaxmi; Bhisikar, Swapnil; Kumar, Praveen; Tageja, Minni; Sharda, Sheetal; Singhi, Pratibha; Singhi, Sunit

    2014-05-01

    The present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations were carried out using Lichrospher 100 RP-18e (5 μm) 250 × 4.0 mm column connected to 100 CN 4.0 × 4.0 mm guard column on a quaternary HPLC system and run time was 53 min. Linearity of the peak areas for different concentrations ranging from 2.5 to 100 pmol/μL of individual amino acids was determined. A good linearity (R (2) > 0.998) was achieved in the standard mixture for each amino acid. Recovery of amino acids incorporated at the time of derivatization ranged from 95 to 106 %. Using this method we have established the normative data of amino acids in plasma, the profile being comparable to the range reported in literature and identified cases of classical homocystinuria, cobalamin defect/deficiency, non-ketotic hyperglycinemia, hyperprolinemia, ketotic hyperglycinemia, urea cycle defect and maple syrup urine disease.

  8. The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Zander, M; Madsbad, S; Deacon, C F

    2006-01-01

    AIM/HYPOTHESIS: Glucagon-like peptide-1 (GLP-1) is metabolised by the enzyme dipeptidyl-peptidase 4 (DPP-4), generating a metabolite with potential antagonistic properties. This study was conducted to evaluate the effect of that metabolite on plasma glucose levels in patients with type 2 diabetes...... of the metabolite increased from 1+/-3 (SAL) and 2+/-6 (IB) pmol/l to 42+/-4 (LSC), 64+/-8 (IV) and 327+/-16 (HSC) pmol/l, pglucose levels at 6 h decreased from 12.4+/-1.1 (SAL) mmol/l to 10.4+/-1.1 (LSC), 8.6+/-0.6 (IB), 8.8+/-0.8 (IV) and 9.1+/-0.9 (HSC) mmol/l, p.../INTERPRETATION: At approximately similar concentrations of intact GLP-1 (IV, IB, HSC), but with widely ranging metabolite concentrations, the effect on plasma glucose levels was equal, indicating that the presence of the metabolite does not antagonise the glucose-lowering effect of GLP-1....

  9. Phenolic extract from Ocimum basilicum restores lipid metabolism in Triton WR-1339-induced hyperlipidemic mice and prevents lipoprotein-rich plasma oxidation

    Directory of Open Access Journals (Sweden)

    Ilham Touiss

    2017-03-01

    Full Text Available In this study we investigated the hypolipidemic and anti-lipoprotein-oxidation activities of phenolic extract from sweet basil a popular culinary herb. The hypolipidemic activity was studied in mice model injected intraperitoneally with Triton WR-1339 at a dose of 200 mg/kg body weight. The animals were grouped as follows: normolipidemic control group (n = 8, hyperlipidemic control group (n = 8 and phenolic extract-treated group (n = 8 at a dose of 200 mg/kg body weight. After 7 h and 24 h treatment, the oral administration of the phenolic extract exerts a significant reduction of plasma total cholesterol, triglycerides and LDL-cholesterol concentrations (P < 0.001. On the other hand, we demonstrated that the phenolic extract prevents plasma lipid oxidation by 16% (P < 0.001, 20% (P < 0.001, 32% (P < 0.001 and 44% (P < 0.001 at a doses of 10, 25, 50 and 100 μg/mL, respectively. The results were compared with ascorbic acid used as standard synthetic antioxidant. HPLC analysis shows that the extract contains 4 major phenolics and is especially rich in rosmarinic acid. This finding indicates that the phenolic extract might be beneficial in lowering hyperlipidemia and preventing atherosclerosis.

  10. Heterotrophic utilization of acetate and glucose in Swartvlei, South Africa

    International Nuclear Information System (INIS)

    Robarts, R.D.

    1979-01-01

    The utilization of dissolved organic compounds in Swartvlei was measured by the addition of single concentrations of 14 C-labelled acetate and glucose to water samples. The results indicated acetate uptake was greatest in the aerobic zone while glucose was predominantly utilized in the anaerobic zone. With the exception of two months, integral glucose uptake was usually greater than the uptake of acetate. In August and September 1971 acetate was indicated as being utilized predominantly by flagellates and in December 1971 by dinoflagellates. During the remainder of the study, bacteria were assumed to be responsible for the uptake of acetate. The extensive weed beds which surround the upper reaches of Swartvlei may be a major source of acetate and glucose in the pelagic water column

  11. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men.

    Science.gov (United States)

    Pantophlet, Andre J; Wopereis, Suzan; Eelderink, Coby; Vonk, Roel J; Stroeve, Johanna H; Bijlsma, Sabina; van Stee, Leo; Bobeldijk, Ivana; Priebe, Marion G

    2017-02-01

    The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower glucose clearance rate quantified with a dual-isotope technique, which was in accordance with a lower insulin and glucose-dependent insulinotropic polypeptide response. To gain more insight into the acute metabolic consequences of the consumption of products resulting in differential glucose kinetics, postprandial metabolic profiles were determined. In a crossover study, 9 healthy men [mean ± SEM age: 21 ± 0.5 y; mean ± SEM body mass index (kg/m 2 ): 22 ± 0.5] consumed wheat bread (132 g) and fresh pasta (119 g uncooked) enriched with wheat bran (10%) meals. A total of 134 different metabolites in postprandial plasma samples (at -5, 30, 60, 90, 120, and 180 min) were quantified by using a gas chromatography-mass spectrometry-based metabolomics approach (secondary outcomes). Two-factor ANOVA and advanced multivariate statistical analysis (partial least squares) were applied to detect differences between both food products. Forty-two different postprandial metabolite profiles were identified, primarily representing pathways related to protein and energy metabolism, which were on average 8% and 7% lower after the men consumed pasta rather than bread, whereas concentrations of arabinose and xylose were 58% and 53% higher, respectively. Arabinose and xylose are derived from arabinoxylans, which are important components of wheat bran. The higher bioavailability of arabinose and xylose after pasta intake coincided with a lower rate of appearance of glucose and amino acids. We speculate that this higher bioavailability is due to higher degradation of arabinoxylans by small intestinal microbiota, facilitated by the higher viscosity of arabinoxylans after pasta intake than after bread

  12. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer.

    Science.gov (United States)

    Vāvere, Amy L; Kridel, Steven J; Wheeler, Frances B; Lewis, Jason S

    2008-02-01

    Although it is accepted that the metabolic fate of 1-(11)C-acetate is different in tumors than in myocardial tissue because of different clearance patterns, the exact pathway has not been fully elucidated. For decades, fatty acid synthesis has been quantified in vitro by the incubation of cells with (14)C-acetate. Fatty acid synthase (FAS) has been found to be overexpressed in prostate carcinomas, as well as other cancers, and it is possible that imaging with 1-(11)C-acetate could be a marker for its expression. In vitro and in vivo uptake experiments in prostate tumor models with 1-(11)C-acetate were performed both with and without blocking of fatty acid synthesis with either C75, an inhibitor of FAS, or 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC). FAS levels were measured by Western blot and immunohistochemical techniques for comparison. In vitro studies in 3 different prostate tumor models (PC-3, LNCaP, and 22Rv1) demonstrated blocking of 1-(11)C-acetate accumulation after treatment with both C75 and TOFA. This was further shown in vivo in PC-3 and LNCaP tumor-bearing mice after a single treatment with C75. A positive correlation between 1-(11)C-acetate uptake into the solid tumors and FAS expression levels was found. Extensive involvement of the fatty acid synthesis pathway in 1-(11)C-acetate uptake in prostate tumors was confirmed, leading to a possible marker for FAS expression in vivo by noninvasive PET.

  13. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  14. Teratogenic effects of lead acetate on kidney

    International Nuclear Information System (INIS)

    Jabeen, R.; Tahir, M.; Waqas, S.

    2010-01-01

    Background: Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both men and women. Conflicting reports have appeared on lead induced nephrotoxicity in experimental studies in the past. There is hardly any work on its teratogenic effects on kidney. Present study was therefore designed to investigate the effects of lead acetate on developing kidney. Methods: Twelve mice were used as experimental model and were divided into two groups of six animals each; group A served as control group and B was used as an experimental group. Lead acetate (10 mg/kg) dissolved in 0.02 ml of distilled water was administered as a single daily dose orally to group B whereas weight related amount of distilled water was given to group A for the entire period of experiment. On 18 day of gestation foetuses were dissected free of uterine wall under the dissecting microscope and were sacrificed; kidneys were removed and fixed in 10% formalin, dehydrated in ascending grades of alcohol, cleared in xylene and infiltrated with filtered paraffin. The paraffin blocks were made and five micron thin sections were obtained using a rotary microtome. The sections were stained with Hematoxylin and eosin and, PAS; these were examined under light microscope. Results: Significant decrease in cortical thickness was observed which varied from 578.6 +- 1.4 mu m in group A to 515.6 +- 5 mu m in group B (p<0.001). Diameter of renal corpuscles varied from 57.7 +- 0.07 mu m in group A to 50.5 +- 0.07 mu m in group B (p<0.001). Moderate cortical tubular atrophy showing thickening of endothelial basement membrane in glomeruli, desquamated epithelium with degenerated nuclei in proximal and distal tubules were observed in group B in contrast to group A. Conclusion: The results of the investigation indicated that lead acetate administration to the dams produced deleterious effects on the developing kidney in mice. (author)

  15. Proton conductivity and relaxation properties of chitosan-acetate films

    International Nuclear Information System (INIS)

    Prokhorov, E.; Luna-Bárcenas, G.; González-Campos, J.B.; Kovalenko, Yu.; García-Carvajal, Z.Y.; Mota-Morales, J.

    2016-01-01

    Graphical abstract: Temperature dependence of conductivity, the number of density and proton mobility in chitosan-acetate film. - Highlights: • DD, conductivity, Vogel temperature dependent on the concentration of acetic acid. • Proton conductivity of CS-acetate films interpreted using two Grotthuss mechanisms. • Transformation between two mechanisms observed at the glass transition temperature. - Abstract: The effect of aqueous acetic acid solution concentration during the preparation of chitosan-acetate (CS-acetate) films on the conductivity and relaxation properties were studied by dielectric and FTIR spectroscopies, TGA measurements and X-Ray diffraction. Analyses of the experimental results on the degree of deacetylation, water absorption, conductivity, Vogel temperature and activation energy demonstrate a strong dependence of these parameters on the concentration of the acid acetic solutions from which the films have been obtained. The proton conductivity and relaxation properties of CS-acetate films have been interpreted using two Grotthuss “structural diffusion” and “pack-acid” mechanisms. The transformation between these two mechanisms observed at temperature higher than CS-acetate glass transition temperature is due to an increase in the thermal motion of CS chains, water evaporation, hydrogen bond between water molecules and side groups of CS breaking and formation of new bonds between NH 3 + and acetate ions. Additionally, application of the Rice and Roth model allowed estimating the temperature dependence of proton number and their mobility in CS-acetate films. A systematic interpretation on the appropriate conductivity mechanism will help trigger the design of smart materials used in flexible electronic, solid polymer electrolytes for fuel cells and solid polymer batteries based on CS-acetate films.

  16. [Effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca].

    Science.gov (United States)

    Wu, Jing; Cheng, Keke; Li, Wenying; Feng, Jie; Zhang, Jian'an

    2013-03-01

    To get the tolerability and consumption of Klebsiella oxytoca on major inhibitors in lignocelluloses hydrolysate, we studied the effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca. The metabolites of furfural and 5-hydroxymethylfurfural were measured. The results show that when acetic acid, furfural and 5-hydroxymethylfurfural was individually added, tolerance threshold for Klebsiella oxytoca was 30 g/L, 4 g/L and 5 g/L, respectively. Acetic acid was likely used as substrate to produce 2,3-butanediol. The yield of 2,3-butanediol increased when acetic acid concentration was lower than 30 g/L. In the fermentation, more than 70% 5-hydroxymethylfurfural was converted to 2,5-furandimethanol. All furfural and the rest of 5-hydroxymethylfurfural were metabolized by Klebsiella oxytoca. It showed that in the detoxification process of 2,3-butanediol production using lignocelluloses hydrolysate, furfural should be given priority to remove and a certain concentration of acetic acid is not need to removal.

  17. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective.

    Science.gov (United States)

    Palma, Margarida; Guerreiro, Joana F; Sá-Correia, Isabel

    2018-01-01

    Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii . However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.

  18. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  19. Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: Implications for cell metabolism and growth in skeletal muscle of the fine flounder.

    Science.gov (United States)

    Fuentes, Eduardo N; Safian, Diego; Einarsdottir, Ingibjörg Eir; Valdés, Juan Antonio; Elorza, Alvaro A; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-06-01

    Insight of how growth and metabolism in skeletal muscle are related is still lacking in early vertebrates. In this context, molecules involved in these processes, such as leptin, AMP-activated protein kinase (AMPK), target of rapamicyn (TOR), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α, and oxidative phosphorylation complexes (OXPHOS), were assessed in the skeletal muscle of a fish species. Periods of fasting followed by a period of refeeding were implemented, using the fine flounder as a model (Paralichthys adspersus). This species exhibits remarkably slow growth and food intake, which is linked to an inherent growth hormone (GH) resistance and high circulating levels of leptin. Leptin increased during fasting concomitantly with AMPK activation, which was inversely correlated with TOR activation. On the other hand, AMPK was directly correlated with an increase in PGC-1α and OXPHOS complexes contents. Dramatic changes in the activation and content of these molecules were observed during short-term refeeding. Leptin, AMPK activation, and PGC-1α/OXPHOS complexes contents decreased radically; whereas, TOR activation increased significantly. During long-term refeeding these molecules returned to basal levels. These results suggest that there is a relation among these components; thus, during fasting periods ATP-consuming biosynthetic pathways are repressed and alternative sources of ATP/energy are promoted, a phenomenon that is reversed during anabolic periods. These results provide novel insight on the control of metabolism and growth in the skeletal muscle of a non-mammalian species, suggesting that both processes in fish muscle are closely related and coordinated by a subset of common molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Glatiramer Acetate-associated Refractory Immune Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Iftach Sagy

    2016-04-01

    Full Text Available We present a case of glatiramer acetate-associated refractory immune thrombocytopenic purpura (ITP in a female patient with multiple sclerosis. A search of MEDLINE/PubMed did not find any connection between glatiramer acetate and thrombocytopenia, specifically ITP. The autoimmune reaction was resistant to conservative ITP treatment, and was eventually managed only by splenectomy. To the best of our knowledge, this is the first report of glatiramer acetate-associated ITP. Physicians should be aware of this condition, and consider performing routine blood counts at the beginning of glatiramer acetate treatment.

  1. The method of quantitative determination of iodine in acetic acid

    International Nuclear Information System (INIS)

    Sukhomlinov, A.B.; Kalinchenko, N.B.

    1988-01-01

    Method for separate determination of J 2 and J - concentrations in acetic acid is suggested. Iodine concentration in acetic acid is determined by measuring potential of iodine-selective electrode first in the initial solution of acetic acid, where molecular iodine dissociation equals 0.5, and then in acetic acid, with alkali (NaOH) addition up to pH > 3, where molecular iodine dissociation equals 1. Determination is conducted in 5x10 -7 -5x10 -6 mol/l concentration range with relative standard deviation not more than 0.1. 1 fig

  2. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  3. Ulipristal acetate as an emergency contraceptive agent.

    Science.gov (United States)

    Martinez, Alan M; Thomas, Michael A

    2012-09-01

    Emergency contraceptive agents play a crucial role in preventing unplanned pregnancy. These agents and devices have been studied since the 1960s and have had varied results in terms of side effects and efficacy. A new oral tablet for emergency contraception (EC), ulipristal acetate (UPA) , is a selective progesterone receptor modulator and can be used up to 120 h following unprotected intercourse, without an increase in adverse effects or a decrease in efficacy. This article reviews studies that evaluate the pharmacodynamics, pharmacokinetics, clinical efficacy, and safety profile of UPA as an emergency contraceptive agent. UPA, a selective progesterone receptor modulator, is administered as a single 30 mg dose for EC. This agent provides a comparable, if not better, efficacy and side effect profile than seen with levonorgestrel or mifepristone. Because it has both agonistic and antagonistic effects on the progesterone receptor, ongoing clinical trials are documenting UPA's use for patients with endometriosis and as an extended use contraceptive.

  4. Ulipristal acetate: a new emergency contraceptive.

    Science.gov (United States)

    Sullivan, Jade L; Bulloch, Marilyn N

    2011-07-01

    Ulipristal acetate (UPA) is a newly developed emergency contraceptive currently available in the USA and Europe. It is approved as a 30 mg one-time dose taken within 120 h (5 days) of unprotected intercourse or failed contraception. This selective progesterone receptor modulator appears to be more effective than the levonorgestrel-containing emergency contraceptive, which must be taken within 72 h of unprotected intercourse. According to pharmacodynamic trials, UPA delays follicular maturation and ovulation. In addition, UPA may modulate the endometrium. Both Phase III clinical trials found that UPA does not lose efficacy within the 120-h dosing interval. Throughout all phases of clinical studies, UPA was shown to be well tolerated with only minimal adverse drug reactions, all of which are similar to competitor therapies.

  5. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  6. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  7. Emergency Contraception Options: Focus on Ulipristal Acetate

    Directory of Open Access Journals (Sweden)

    Sharon T. Cameron

    2012-01-01

    Full Text Available Ulipristal acetate (UPA is a progesterone receptor modulator that is available for emergency contraception (EC and can be taken up to 120 hours after unprotected intercourse. A meta-analysis of clinical trials comparing UPA with levonorgestrel (LNG for EC, demonstrated that UPA has higher efficacy than LNG. This higher efficacy is supported by biomedical studies that have demonstrated that UPA is a more potent inhibitor of ovulation, being able to delay ovulation in the immediate preovulatory period, when LNG is no longer effective. A recent study that explored risk factors for failure of EC, demonstrated that obese women were at increased risk of EC failure, with either UPA or LNG. However, failure was significantly less amongst women receiving UPA than those receiving LNG. There is growing evidence therefore, that UPA should be the preferred oral method of EC.

  8. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  9. Contribution to the study of 14C-acetate as the precursor of aminoacids in detached leaves of coffee (Coffea arabica cv. Mundo Novo)

    International Nuclear Information System (INIS)

    Brasil, O.G.

    1975-01-01

    Labelled acetates with 14 C were used as the forerunner of aminoacids in leaves of coffee (Coffea arabica cv Mundo Novo). Leaves with the labelled acetates were incubated and released CO 2 was retained in paper discs with hiamine for further radioactivity detection. Separated proteins furnished 13 amino-acids through acid hidrolysis, all of them were identified by bidimensional filter paper chromatography. Through the obtained results it is possible to conclude that acetates are metabolized by the leafs and are related to the processes of leaf synthesis. It was possible to show that an utilization of acetate for energetical production via Krebs cycle was donne. The obtained conclusions show too that methylic carbon was more incorporated than carboxylic carbon [pt

  10. Emergency contraception: potential role of ulipristal acetate

    Directory of Open Access Journals (Sweden)

    Kristina Gemzell-Danielsson

    2010-04-01

    Full Text Available Kristina Gemzell-Danielsson, Chun-Xia MengDepartment of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, SwedenAbstract: Unintended pregnancy is a global reproductive health problem. Emergency contraception (EC provides women with a safe means of preventing unwanted pregnancies after having unprotected intercourse. While 1.5 mg of levonorgestrel (LNG as a single dose or in 2 doses with 12 hours apart is the currently gold standard EC regimen, a single dose of 30 mg ulipristal acetate (UPA has recently been proposed for EC use up to 120 hours of unprotected intercourse with similar side effect profiles as LNG. The main mechanism of action of both LNG and UPA for EC is delaying or inhibiting ovulation. However, the ‘window of effect’ for LNG EC seems to be rather narrow, beginning after selection of the dominant follicular and ending when luteinizing hormone peak begins to rise, whereas UPA appears to have a direct inhibitory effect on follicular rupture which allows it to be also effective even when administered shortly before ovulation, a time period when use of LNG is no longer effective. These experimental findings are in line with results from a series of clinical trials conducted recently which demonstrate that UPA seems to have higher EC efficacy compared to LNG. This review summarizes some of the data available on UPA used after unprotected intercourse with the purpose to provide evidence that UPA, a new type of second-generation progesterone receptor modulator, represents a new evolutionary step in EC treatment.Keywords: emergency contraception, ulipristal acetate, levonorgestrel

  11. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Nobuyuki; Kim, Joonyoung; Jones, Lynne A.; Mercer, Nicole M.; Engelbach, John A.; Sharp, Terry L.; Welch, Michael J. E-mail: welchm@mir.wustl.edu

    2002-11-01

    PET has been used to monitor changes in tumor metabolism in breast cancer following hormonal therapy. This study was undertaken to determine whether PET imaging could evaluate early metabolic changes in prostate tumor following androgen ablation therapy. Studies were performed comparing two positron-emitting tracers, {sup 18}F-FDG and {sup 11}C-acetate, in Sprague-Dawley male rats to monitor metabolic changes in normal prostate tissue. Additional studies were performed in nude mice bearing the CWR22 androgen-dependent human prostate tumor to evaluate metabolic changes in prostate tumor. In rats, for the androgen ablation pretreatment, 1 mg diethylstilbestrol (DES) was injected subcutaneously 3 and 24 hours before tracer injection. For androgen pretreatment, 500 {mu}g dihydrotestosterone (DHT) was injected intraperitoneally 2 and 6 hours before tracer injection. The rats were divided into three groups, Group A (no-DES, no-DHT, n = 18), Group B (DES, no-DHT, n = 18) and Group C (DES, DHT, n = 18). In each group, 10 animals received {sup 18}F-FDG, whereas the remaining eight animals were administered {sup 11}C-acetate. Rats were sacrificed at 120 min post-injection of {sup 18}F-FDG or 30 min post-injection of {sup 11}C-acetate. Pretreatment of the mouse model using DHT (200 {mu}g of DHT in 0.1 mL of sunflower seed oil) or DES (200 {mu}g of DES in 0.1 mL of sunflower seed oil) was conducted every 2 days for one week. Mice were imaged with both tracers in the microPET scanner (Concorde Microsystems Inc.). DES treatment caused a decrease in acetate and glucose metabolism in the rat prostate. Co-treatment with DHT maintained the glucose metabolism levels at baseline values. In the tumor bearing mice, similar effects were seen in {sup 18}F-FDG study, while there was no significant difference in {sup 11}C-acetate uptake. These results indicate that changes in serum testosterone levels influence {sup 18}F-FDG uptake in the prostate gland, which is closely tied to glucose

  12. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation.

    Directory of Open Access Journals (Sweden)

    Bettina Müller

    Full Text Available This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB. Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention.

  13. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  14. The behaviour of tungsten electrodes in a mixture of acetic acid and acetic anhydride

    International Nuclear Information System (INIS)

    Pastor, T.J.; Vajgand, V.H.

    1976-01-01

    Tungsten electrodes have advantageously been used for potentiometric end-point detection in perchloric acid titration of bases in a mixture of acetic acid and acetic anhydride. They have also given good results in biamperometric detection of the equivalence point in continuous coulometric titration of small quantities of bases and acids in the same solvent. Tungsten electrodes in the presence of quinhydrone behave like platinum electrodes, but in biamperometric end-point determination in the absence of quinhydrone it is better to remove the oxide layer from their surface. Some other factors affecting their behaviour have also been studied. Errors in determination do not exceed +-2% even in titration of very small quantities of substances. (author)

  15. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz; Mehl, Marco; Lokachari, Nitin; Nilsson, Elna J.K.; Konnov, Alexander A.; Wagnon, Scott W.; Pitz, William J.; Curran, Henry J.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  16. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz

    2017-12-14

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  17. ANTIOXIDATIVE PROPERTIES OF ETHYL ACETATE FRACTION OF UNRIPE PULP OF CARICA PAPAYA IN MICE

    Directory of Open Access Journals (Sweden)

    Joao Rocha Magareth Athayde

    2011-12-01

    Full Text Available Unripe Carica papaya fruits were extracted with methanol in Soxhlet apparatus and later with a liquid-liquid extraction with the aim of identifying and quantifying secondary metabolite fraction of this plant. Quercetin and β-sitosterol have been isolated from the fruit and the quantities detected were 120.2±0.16 mg/g (dry fruit and 279.1±0.09mg/g respectively. In addition, the extracts were evaluated in vivo for their effects on activities of some antioxidant enzymes which includes Glutathione peroxidase (GPx, Glutathione reductase (GR, Glutathione transferase (GST, Catalase (CAT and metabolizing enzyme Glucose-6-phosphate dehydrogenase (G6PDH in mice treated orally with a daily dose of extracts (100mg/kg for 7 days. Results showed that ethyl acetate fraction caused significant increase(p<0.05 in the activities of GR, GPx, GST, and G6PDH. Significant decrease (p<0.05 in GPx activity was observed in kidney following administration of ethyl acetate fraction. It is likely that quercetin and β-sitosterol may be responsible for the antioxidant potential demonstrated by the ethyl acetate fraction from unripe fruit.

  18. Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort.

    Science.gov (United States)

    Navarro-González, David; Sánchez-Íñigo, Laura; Pastrana-Delgado, Juan; Fernández-Montero, Alejandro; Martinez, J Alfredo

    2016-05-01

    We evaluated the potential role of the triglyceride-glucose index (TyG index) as a predictor of diabetes in a White European cohort, and compared it to fasting plasma glucose (FPG) and triglycerides. 4820 patients of the Vascular-Metabolic CUN cohort (VMCUN cohort) were examined and followed up for 8.84years (±4.39). We performed a Cox proportional hazard ratio with repeated-measures analyses to assess the risk of developing type 2 diabetes across quartiles of FPG, triglycerides and the TyG index (ln[fasting triglycerides (mg/dl)×fasting plasma glucose (mg/dl)/2]), and plotted a receiver operating characteristics (ROC) curve for discrimination. There were 332 incident cases of type 2 diabetes involving 43,197.32person-years of follow-up. We observed a progressively increased risk of diabetes in subjects with TyG index levels of 8.31 or more. Among those with normal fasting glucose at baseline, index in the fourth quartile were 6.87 times more likely to develop diabetes (95% CI, 2.76-16.85; P for trendindex, 0.66 (0.60-0.72) for FPG and 0.71 (0.65-0.77) for TG, in subjects with normal fasting glucose (p=0.017). Our data suggest that the TyG index is useful for the early identification of individuals at risk of type 2 diabetes. The TyG index seems to be a better predictor than FPG or triglycerides of the potential development of type 2 diabetes in normoglycemic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  20. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    Science.gov (United States)

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  1. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  2. Effect of antimicrobial agents on cellulose acetate nano composites properties

    International Nuclear Information System (INIS)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo

    2011-01-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  3. Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac ...

    African Journals Online (AJOL)

    Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac·eptive Preparation. Basil Bloch. Abstract. Experience with depot medroxyprogesterone acetate as a contraceptive preparation in 7 335 patients for a total of 38 714 months over a 3-year period is described. The discontinuation rate was 18.3% and the ...

  4. Effect of antimicrobial agents on cellulose acetate nano composites properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo, E-mail: francisco.rodriguez.m@usach.cl [Center for the Development of Nanoscience and Nanotechnology (CEDENNA). Universidad de Santiago de Chile. Faculty of Technology. Department of Food Science and Technology. Food Packaging Laboratory. Santiago (Chile)

    2011-07-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  5. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Methods: Chitosan acetate was chemically modified with acetaldehyde and the solution was prepared with 1 % acetic acid, in which was dissolved propranolol hydrochloride, was cast as films in Petri dish and characterised by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and ...

  6. Acetalization of furfural with zeolites under benign reaction conditions

    DEFF Research Database (Denmark)

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  7. modelling and simulation of the batch hydrolysis of acetic ing

    African Journals Online (AJOL)

    eobe

    The kinetic modelling of the batch synthesis of acetic acid from acetic. The kinetic modelling of ... integral method of analysis to determine the kinetic parameters .... Equation (5) is applied to all the components ... In common chemical engineering terminology, the degree of ..... of Physical Organic Chemistry, Vol. 25, Number ...

  8. Bioelectrochemical Ethanol Production through Mediated Acetate Reduction by Mixed Cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Schaap, J.D.; Kampman, C.; Buisman, C.J.N.

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate

  9. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  10. Investigations of the metabolism of the hormones ethylen, abscisic acid and indol-3-acetic acid in coniferous trees in forest die-back areas of south western Germany; Untersuchungen zum Haushalt der Hormone Ethylen, Abscisinsaeure und Indol-3-essigsaeure in Nadelbaeumen aus Waldschadensgebieten Suedwestdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, A.

    1993-12-31

    The author investigated changes in the hormone metabolism of affected trees; he intended to analyze as many hormones as possible. The investigations were carried out on needles, owing to the fact that the symptoms observed suggested specific disturbances of the needle hormone metabolism. Further, needles are the main point of attack of airborne pollutants. In physiologically healthy trees, the seasonal changes in hormone levels were investigated as a function of different parameters such as forest site, needle age, tree age, and position of sample branches in the tree crown. On this basis, hormone changes resulting from tree disease were characterized for the sample trees. SO{sub 2} and ozone were taken into account in the investigations. It was found that although the development with time of physiological and structural characteristics suggests premature aging of the needles of affected trees, the changes in the hormone metabolism do not correspond to the hormonal control patterns of natural needle aging. SO-2 exposure or a lack of minerals at the forest site are excluded as causes of the observed damage. No conclusive information could be obtained on the effects of ozone. (orig./MG) [Deutsch] Es war ein Ziel dieser Arbeit, nachzuweisen, welche Veraenderungen im Hormonhaushalt erkrankter Baeume vorliegen und dabei moeglichst viele Hormone zu bearbeiten. Die Untersuchungen wurden an Nadeln durchgefuehrt, da die beobachtbaren Symptome fuer eine Stoerung des Hormonhaushaltes vor allem dieser Organe sprachen und sie zudem Hauptangriffsort fuer Luftschadstoffe sind. An physiologisch gesunden Baeumen wurde das Verhalten der einzelnen Hormone im Jahresverlauf in Abhaengigkeit von verschiedenen Einflussgroessen wie Standort, Nadelalter, Baumalter und Position von Probenaesten innerhalb der Baumkrone erarbeitet. Danach wurden die krankheitsbedingten Veraenderungen im Hormonhaushalt der entsprechenden Versuchsbaeume charakterisiert. Die Schadgase SO{sub 2} und Ozon wurden

  11. A Preliminary Investigation of NSCL/P Plasma and Urine in Guizhou Province in China Using NMR-Based Metabonomics.

    Science.gov (United States)

    Lei, Huang Guang; Hong, Luo; Kun, Song Ju; Hai, Yin Xin; Dong, Wang Ya; Ke, Zhao; Ping, Xu; Hao, Chen

    2013-09-01

    Objective : To assess the feasibility of metabonomics in clinical studies. This is a pilot study introducing nuclear magnetic resonance (NMR)-based metabonomics to elucidate and compare the metabolism of patients with nonsyndromic cleft lip and/or palate (NSCL/P) and children without orofacial clefts. Methods : High-resolution (1)H NMR spectroscopy was performed on plasma and urine samples obtained from NSCL/P and healthy children. The (1)H NMR spectra were further analyzed with principal component analysis. Results : Compared to the control group, the level of low-molecular-weight metabolites in plasma such as asparagine was higher in NSCL/P patients, while arginine, lysine, acetate, lactate, proline, glutamine, pyruvate, creatinine, choline, and β-glucose were lower. The carnitine, citrate, and formate excretion in urine appeared to be higher in the healthy children, while the NSCL/P group excreted higher concentrations of aspartic acid and phenylalanine in urine. Conclusion : The present study clearly demonstrated the great potential of NMR-based metabonomics in elucidating NSCL/P plasma metabolism and the possible application of this technology in clinical diagnosis and screening.

  12. Disorder effects in Mn(12)-acetate at 83 K.

    Science.gov (United States)

    Cornia, Andrea; Fabretti, Antonio Costantino; Sessoli, Roberta; Sorace, Lorenzo; Gatteschi, Dante; Barra, Anne-Laure; Daiguebonne, Carole; Roisnel, Thierry

    2002-07-01

    The structure of hexadeca-mu-acetato-tetraaquadodeca-mu(3)-oxo-dodecamanganese bis(acetic acid) tetrahydrate, [Mn(12)O(12)(CH(3)COO)(16)(H(2)O)(4)] x 2CH(3)COOH x 4H(2)O, known as Mn(12)-acetate, has been determined at 83 (2) K by X-ray diffraction methods. The fourfold (S(4)) molecular symmetry is disrupted by a strong hydrogen-bonding interaction with the disordered acetic acid molecule of solvation, which displaces one of the acetate ligands in the cluster. Up to six Mn(12) isomers are potentially present in the crystal lattice, which differ in the number and arrangement of hydrogen-bonded acetic acid molecules. These results considerably improve the structural information available on this molecular nanomagnet, which was first synthesized and characterized by Lis [Acta Cryst. (1980), B36, 2042-2046].

  13. Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density

    Directory of Open Access Journals (Sweden)

    Chanock Stephen J

    2010-03-01

    Full Text Available Abstract Background Increased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a woman's life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here. Methods Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI. The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3. Results The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis. Conclusion Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.

  14. Development of an automated modular system for the synthesis of [11C]acetate.

    Science.gov (United States)

    Felicini, Chiara; Någren, Kjell; Berton, Andrea; Pascali, Giancarlo; Salvadori, Piero Alberto

    2010-12-01

    Carboxylation reactions offer a straightforward method for the synthesis of carbon-11 labelled carboxylic acids. Among these, the preparation of carbon-11 (C)-acetate is receiving increasing attention because of diagnostic applications in oncology in addition to its well-established use as a probe for myocardial oxidative metabolism. Although a number of dedicated modules are commercially available, the development of the synthesis on flexible platforms would be beneficial to widen the number of tracers, in particular for preclinical assessment and testing. In this study, the carboxylation reaction was implemented for the synthesis of sodium 1-[C]acetate after the classic route of carboxylation of methylmagnesium chloride by [C]carbon dioxide, followed by the acidic hydrolysis, purification and sterile filtration. This was performed using a commercially available kit of preassembled hardware units and fully compatible components of radiochemistry automation (VarioSystem). The system proved be to highly versatile and inexpensive and allowed a quick translation of the radiochemistry project into a working system even by less experienced personnel, because of predefined interfaces between electronic parts and operating software (preloaded on a laptop and included in the kit). The automatic module proved to be a simple and reliable system for the production of 1-[C]acetate that was prepared in 24 min (total synthesis time) with stable radiochemical yields (20% nondecay corrected) and high radiochemical purity (>97%). The module is used routinely to produce 1-[C]acetate for preclinical studies and is being implemented for the production of the labelled fatty acids.

  15. Ameliorative effects of l-carnitine on rats raised on a diet supplemented with lead acetate.

    Science.gov (United States)

    El-Sherbini, El-Said; El-Sayed, Gehad; El Shotory, Rehab; Gheith, Nervana; Abou-Alsoud, Mohamed; Harakeh, Steve Mustapha; Karrouf, Gamal I

    2017-09-01

    Lead intoxication has been a major health hazard in humans. It affects people at all ages. Its toxicity is associated with various organs of the body and affects different metabolic pathways. Based on histological data, l-carnitine reduced the severity of tissue damage produced as a result of exposure of rats to lead acetate. The main objective of this study was to evaluate the underlying mechanism of protection offered by l-carnitine against lead acetate intoxication using male Sprague-Dawley rats. Forty male Sprague-Dawley rats were randomly divided into four groups with ten rats in each. The first group (G1) served as the control group and animals received standard diet only. The second group (G2) received lead acetate in their diet. The third group (G3) was the l-carnitine treated group and received the normal standard diet supplemented with l-carnitine. While the fourth group (G4) had a diet supplemented with both lead acetate and l-carnitine. At the end of each experiment, blood (serum and whole blood) were collected from each animal and analyzed for the following parameters: serum testosterone levels, serum nitric oxide and serum malondialdehyde. This is in addition to looking at the enzymatic activities of two important enzymes (superoxide dismutase and catalase) and on (glutathione reductase) which are indicative of the antioxidant activities in the whole blood. The results indicated that l-carnitine will counteract the undesirable effects of lead intoxication. It exerted its antioxidant potential by reducing the production of ROS and scavenging free radicals by maintaining and protecting the level of the of antioxidant enzymes SOD, CAT and glutathione peroxidase. Conclusion: l-Carnitine may play an important role in reversing the undesirable effects of lead intoxication. Future studies should be conducted to see whether such an effect is applicable in humans exposed to lead poising.

  16. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  17. Depo-Provera (depot medroxyprogesterone acetate) use after bariatric surgery.

    Science.gov (United States)

    Lam, Clarissa; Murthy, Amitasrigowri S

    2016-01-01

    In the US, obesity rates are increasing greatly. The Centers for Disease Control and Prevention estimates that 68.5% of Americans, including 63.9% of adult women older than 20 years, are overweight (body mass index between 25 kg/m 2 and 29.9 kg/m 2 ) or obese (body mass index >30 kg/m 2 ). In light of this, it is not surprising that the rates of bariatric surgery have also been increasing. When considering the metabolic changes associated with both bariatric surgery and contraceptive use, in combination with the unique medical considerations of obese women, it is indisputable that clear guidelines are needed when counseling obese patients of reproductive age after bariatric surgery. In this literature review, we focus on depot medroxyprogesterone acetate (DMPA) and the implications of its use in obese women, preweight and postweight loss following bariatric surgery. Both DMPA use and bariatric surgery are known to cause bone loss, but it is still unclear whether there is an additive effect of the two factors on bone loss and whether either of these factors directly leads to an increased risk of bone fracture. The current consensus guidelines do not impose a restriction on the use of DMPA after bariatric surgery. DMPA use is associated with weight gain, and it is unclear whether weight loss blunting occurs with the use of DMPA after bariatric surgery. Prior studies had demonstrated an association with weight gain in adolescents, and therefore, those prescribing DMPA use after bariatric surgery in adolescents should proceed with caution. Adult women do not have a similar response to the use of DMPA. DMPA use has rarely been associated with increased risk of venous thromboembolism (VTE). The obesity-associated increase in VTE should be mitigated by surgically induced weight loss. The concurrent use of DMPA in the post bariatric surgical period should not further increase the risk of VTE.

  18. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...... of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes...

  19. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  20. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  1. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  2. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  3. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  4. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.......Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  5. Normal and abnormal lipid and lipoprotein metabolism

    African Journals Online (AJOL)

    2009-03-20

    Mar 20, 2009 ... This article focuses on lipid and lipoprotein metabolism and introduces a range of genetic ... spherical structures that are suspended in the plasma and whose ..... atherosclerosis. Table II suggests a simple classification of.

  6. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  8. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  9. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  10. Ulipristal acetate versus placebo for fibroid treatment before surgery.

    Science.gov (United States)

    Donnez, Jacques; Tatarchuk, Tetyana F; Bouchard, Philippe; Puscasiu, Lucian; Zakharenko, Nataliya F; Ivanova, Tatiana; Ugocsai, Gyula; Mara, Michal; Jilla, Manju P; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and safety of oral ulipristal acetate for the treatment of symptomatic uterine fibroids before surgery are uncertain. We randomly assigned women with symptomatic fibroids, excessive uterine bleeding (a score of >100 on the pictorial blood-loss assessment chart [PBAC, an objective assessment of blood loss, in which monthly scores range from 0 to >500, with higher numbers indicating more bleeding]) and anemia (hemoglobin level of ≤10.2 g per deciliter) to receive treatment for up to 13 weeks with oral ulipristal acetate at a dose of 5 mg per day (96 women) or 10 mg per day (98 women) or to receive placebo (48 women). All patients received iron supplementation. The coprimary efficacy end points were control of uterine bleeding (PBAC score of <75) and reduction of fibroid volume at week 13, after which patients could undergo surgery. At 13 weeks, uterine bleeding was controlled in 91% of the women receiving 5 mg of ulipristal acetate, 92% of those receiving 10 mg of ulipristal acetate, and 19% of those receiving placebo (P<0.001 for the comparison of each dose of ulipristal acetate with placebo). The rates of amenorrhea were 73%, 82%, and 6%, respectively, with amenorrhea occurring within 10 days in the majority of patients receiving ulipristal acetate. The median changes in total fibroid volume were -21%, -12%, and +3% (P=0.002 for the comparison of 5 mg of ulipristal acetate with placebo, and P=0.006 for the comparison of 10 mg of ulipristal acetate with placebo). Ulipristal acetate induced benign histologic endometrial changes that had resolved by 6 months after the end of therapy. Serious adverse events occurred in one patient during treatment with 10 mg of ulipristal acetate (uterine hemorrhage) and in one patient during receipt of placebo (fibroid protruding through the cervix). Headache and breast tenderness were the most common adverse events associated with ulipristal acetate but did not occur significantly more frequently than with placebo

  11. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: Identification and characterization

    NARCIS (Netherlands)

    K.W.A. Grinsven; S. Rosnowsky (Silke); S.W.H. van Weelden (Susanne); S. Pütz (Simone); M. van der Giezen (Mark); W. Martin (William); J.J. van Hellemond (Jaap); A.G.M. Tielens (Aloysius); K. Henze (Katrin)

    2008-01-01

    textabstractAcetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial

  12. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  13. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  14. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  15. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Diego, L.F. de; Garcia-Labiano, F. [Instituto de Carboquimica, Zaragoza (Spain). Dept. of Energy and Environment

    1999-04-01

    The calcination process of the calcium acetate (CA) and calcium magnesium acetate (CMA) was investigated as a previous step for coal gas desulfurisation during sorbent injection at high temperatures because the excellent results demonstrated by these sorbents as sulfur removal agents both in combustion and gasification processes. As pore structure developed during calcination is one of the most important characteristics of the sorbent related with the later reaction with the gaseous pollutants, several calcination tests were conducted in a drop tube reactor at temperatures from 700{degree}C to 1100{degree}C, and residence times from 0.8 to 2.4 s. Four different gas atmospheres were used for comparative purposes: inert, oxidising, reducing, and non-calcining (pure CO{sub 2}). Despite the advantage of the high porous cenospheric structure developed by these sorbents during their injection at high temperature, calcination of the CaCO{sub 3} was not complete even at the longest residence time, 2.4 s, and the highest temperature, 1100{degree}C, tested. An important effect of the reacting atmosphere on the calcination conversion and on the sorbent pore structure was detected. The CO{sub 2} concentration around the particle, both that fed in the reacting gases or that generated by organic material combustion, seems to be responsible for the final calcination conversions obtained in each case, also affecting the sintering suffered by the sorbents. 19 refs., 10 figs.

  16. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    Science.gov (United States)

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions. © 2011 American Chemical Society

  17. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  18. <