WorldWideScience

Sample records for plants electrical switchgear

  1. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  2. Switchgear obsolescence

    International Nuclear Information System (INIS)

    Irish, C.S.

    2004-01-01

    As discussed in many forums, the global nuclear industry is struggling with many equipment issues, the foremost being obsolescence. The electrical distribution of a nuclear power plant is vital to plant safety and obviously to generation of electricity. Low and medium voltage breakers independent of OEM are becoming or are already obsolete in very large and alarming numbers. The obsolescence of the breakers causes the routine maintenance and overhauls to become very expensive and time consuming or not even possible at all. This is caused by the parts needed for the maintenance and overhauls to either not be available or to have very expensive prices and long lead times. The end result is that the overall switchgear reliability is greatly reduced due to nuisance trips, increased maintenance surveillance and breakers not being maintained with the frequency as needed. A lot of pressure is put on plant personnel to increase the reliability of the switchgear in the most cost effective manner. This paper will discuss using switchgear breaker replacements to improve the overall switchgear reliability. Whether the switchgear is 'safety related' or 'non-safety related' there is significant incentive to make as little field changes as necessary to improve the reliability. Replacement breakers achieve this goal. Replacement breakers are installed into the existing switchgear with little to no field changes. 600V, 5kV and 15kV breaker replacements are discussed with examples. (author)

  3. Distribution switchgear

    CERN Document Server

    Stewart, Stan

    2004-01-01

    Switchgear plays a fundamental role within the power supply industry. It is required to isolate faulty equipment, divide large networks into sections for repair purposes, reconfigure networks in order to restore power supplies and control other equipment.This book begins with the general principles of the Switchgear function and leads on to discuss topics such as interruption techniques, fault level calculations, switching transients and electrical insulation; making this an invaluable reference source. Solutions to practical problems associated with Distribution Switchgear are also included.

  4. High energy arcing fault fires in switchgear equipment : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  5. Switchgear project meticulously managed.

    Science.gov (United States)

    Baillie, Jonathan

    2015-04-01

    Electrical engineering and estates personnel at Sodexo--which manages a wide range of soft and hard facilities management services for five hospitals under a PFI contract at the Manchester Royal Infirmary--have successfully planned, managed, and co-ordinated, a complex electrical engineering project which saw high voltage (HV) switchgear in the site's main intake sub-station dismantled by the supplier to repair a potential earthing mechanism fault which would have prevented individual switchgear panels being shut down, to, for example, cater for renovation of electrical cabling or components cross the site's high voltage network. With detailed planning, including provision for bringing onto site temporary bulk generators, and the formulation of a 600-step switching programme, the replacement of potential faulty driver components in the disconnect mechanism for 20 HV switchgear panels was completed in just four weeks, with minimal interruption to the vast complex's power supply.

  6. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  7. MV-Switchgear Performance Evaluation of Electrical System at RSG-GAS after by Refunctioning

    International Nuclear Information System (INIS)

    T-Sulsistyo; T-Komarudin; Kiswanto; Y- Andriyanto

    2005-01-01

    Switchgear represents equipment link functioning to decide or connect source ration especial energy of PLN with building RSG-GAS distribution system burden. This system is provided with equipment circuit breaker (PMT) and disconnecting switch (PMS), which aim to the insulation, controlling, and protection electrical system RSG-GAS and equipment. Evaluation Method used by that is by perceiving nominal tension condition, nominal current, performance normal good switchgear in a condition, treatment and also trouble condition and also calculate change temperature effect of electric fire bow. Pursuant to calculation result, for the mean current 800 A, room; chamber temperature 24 o C, tension 24 kV, current disconnection time link to shorten 3 second, obtained temperature of equal to 90.5 o C (T1), and room temperature 40 o C obtained by temperature of equal to 108.5 o C (T2), so that of average temperature equal to 4.63 o C. While for the mean current 1250 A, room temperature 24 o C, tension 24 kV, current disconnection time link to shorten 3 second, obtained temperature equal to 282 o C (T1), and room temperature 40 o C obtained temperature equal to 298 o C (T2), so that average temperature equal to 4.0 o C. Result of evaluation job indicates that switchgear of electrical system RSG-GAS after re-functioning function goodness. (author)

  8. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  9. The Development of Computer-Aided Design for Electrical Equipment Selection and Arrangement of 10 Kv Switchgear

    Directory of Open Access Journals (Sweden)

    Chernaya Anastassiya

    2015-01-01

    Full Text Available The paper intends to give an overview of a computer-aided design program application. The research includes two main parts: the development of a computer-aided design for an appropriate switchgear selection and its arrangement in an indoor switchgear layout. Matlab program was used to develop a computer-aided design system. The use of this program considerably simplifies the selection and arrangement of 10 kV switchgear.

  10. Seismic capacity of switchgear

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  11. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  12. The Seismic Analysis of 800kV Gas Insulated Switchgear (GIS) for the Dangjin Thermal Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.H.; Song, W.P.; Kweon, K.Y. [Hyosung Corporation (Korea)

    1999-05-01

    800kV GIS (Gas Insulated Switchgear) which was first developed in korea at Dec. 1998 and is going to be installed in the dangjin thermal plant. We checked the stability of 800kV GIS under seismic load. pro-ENGINEER and PATRAN were used for modeling exactly 800kV GIS geometry. The 800kV GIS was modeled as shell elements for the enclosures and beam elements for the conductors and the support insulators. (author). 2 refs., 9 figs., 2 tabs.

  13. Laws and ordinances on electric arc protection. Electric arc protection of electric plants; Gesetze und Verordnungen zur Stoerlichtbogensicherheit. Stoerlichtbogensicherheit von elektrischen Betriebsstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, Stefan; Buenger, Stefan; Grote, Martin [Fritz Driescher KG - Spezialfabrik fuer Elektrizitaetswerksbedarf GmbH und Co., Wegberg (Germany); Boettcher, Lutz-Michael [Ingenieurbuero Boettcher-Consult, Schulzendorf (Germany); Weck, Karl-Heinz [Forschungsgemeinschaft fuer Elektrische Anlagen und Stromwirtschaft (FGH e.V.), Mannheim (Germany)

    2011-02-28

    With the publication of the new standards IEC 62271-200/VDE 0671 part 200-2003: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV, and IEC 62271-202/VDE 0671 part 202-2007: High voltage/low voltage prefabricated substations and their revision, the fundamentals of arc protection qualification of plants and stations were redefined with a view to personnel protection. In the case of new transformer stations, the application of these standards is state of the art. The publications and the application of the new standards for staff protection, plant protection and object protection via electric arc qualification has raised questions concerning the safety of older plants and stations, modernization, reconstruction, enhancement, maintenance, and the re-use of used stations and plants.

  14. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  15. STRENGTHENING OF TRENCH COVER PLATES FOR SWITCHGEAR BUILDING

    International Nuclear Information System (INIS)

    M.S. RUBEN

    2000-01-01

    The objective of this calculation is to strengthen the existing trench cover plates of the Electrical Switchgear Building (BLDG 5010) of the Exploratory Studies Facility. A remodeling effort will change the portion of the facility that has the trenches for electrical cables to a craft/shop area. The users of the building will be using a forklift in this area (Clark CGP 30 forklift with a capacity of 3 tons). The trench covers require strengthening to support the wheel loads from the forklift. The output of this calculation will be sketches revising the floor plate details of DWG YMP-025-1-7007-ST103,2. (Details 4 and 5)

  16. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    2013-12-01

    Full Text Available The ultra-high-frequency (UHF method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM waves excited by partial discharge (PD. As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.

  17. L.V. switchgear - design and development

    International Nuclear Information System (INIS)

    Armes, D.S.; Brown, R.D.

    1992-01-01

    This work describes the methods employed in the design and development of L.V. switchgear to meet the prospective conditions and operational requirements imposed on equipment at sites of PWR power stations. The work concentrates on the aspects of design, manufacture, qualification work and quality assurance particular to the range of L.V. switchgear distribution boards manufactured by Laurence, Scott and Electromotors Ltd. for Sizewell B Power Station and contrasts this equipment with other equipment for conventional (i.e. non-nuclear) power station purposes. (Author)

  18. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Chongxing Zhang

    2018-02-01

    Full Text Available Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  19. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.

    Science.gov (United States)

    Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo

    2018-02-11

    Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  20. A cost effective battery bank for I2t testing and evaluation of electrical switchgear

    International Nuclear Information System (INIS)

    Reass, W.A.

    1989-01-01

    This paper describes the electrical design and mechanical construction of a 50 kA ''step switched'' battery bank. Individual fuses protect each of the forty parallel isolated strings of three series (12 V) batteries. Step current waveforms of 12.5 kA, 25 kA, 37.5 kA, and 50 kA are produced by 8 sets of pneumatically driven 20 pole step switches and current limiting stainless steel ''trombone'' resistors. Inexpensive, yet conservatively designed, Group 65 Motorcraft car batteries are used to give an I 2 t capability of better than 5 x 10 9 . The battery bank has well over 1500 shots, with testing of commercial switchgear continuing. In addition to the battery bank engineering data, results of repetitive testing of vacuum interrupters at their I 2 t limit will be provided. 8 figs

  1. The research of high voltage switchgear detecting unit

    Science.gov (United States)

    Ji, Tong; Xie, Wei; Wang, Xiaoqing; Zhang, Jinbo

    2017-07-01

    In order to understand the status of the high voltage switch in the whole life circle, you must monitor the mechanical and electrical parameters that affect device health. So this paper gives a new high voltage switchgear detecting unit based on ARM technology. It can measure closing-opening mechanical wave, storage motor current wave and contactor temperature to judge the device’s health status. When something goes wrong, it can be on alert and give some advice. The practice showed that it can meet the requirements of circuit breaker mechanical properties temperature online detection.

  2. PSMG switchgear seismic analysis

    International Nuclear Information System (INIS)

    Kuehster, C.J.

    1977-01-01

    LOFT primary coolant system motor generator (PSMG) switchgear boxes were analyzed for sliding and overturning during a seismic event. Boxes are located in TAN-650, Room B-239, with the PSMG generators. Both boxes are sufficiently anchored to the floor

  3. High-voltage switchgear and controlgear part 200 : AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2003-01-01

    Specifies requirements for factory-assembled metal-enclosed switchgear and controlgear for alternating current of rated voltages above 1 kV and up to and including 52 kV for indoor and outdoor installation, and for service frequencies up to and including 60 Hz. Enclosures may include fixed and removable components and may be filled with fluid (liquid or gas) to provide insulation. This standard defines several types of metal enclosed switchgear and controlgear which differ due to - the consequences on network service continuity in case of maintenance on the switchgear and controlgear; - the need and convenience of maintenance of the equipment. For metal-enclosed switchgear and controlgear containing gas-filled compartments, the design pressure is limited to a maximum of 300 kPa (relative pressure). Metal-enclosed switchgear and controlgear for special use, for example, in flammable atmospheres, in mines or on board ships, may be subject to additional requirements. Components contained in metal-enclosed switch...

  4. Aging management guidelines for commercial nuclear power plant equipment

    International Nuclear Information System (INIS)

    Nakos, J.T.; Gazdzinski, R.F.; Toman, G.J.

    1994-01-01

    The US Department of Energy, in cooperation with the Electric Power Research Institute and nuclear power plant utilities, has prepared ''Aging Management Guidelines'' (AMGs) for commodity types of equipment (e.g., pumps, electrical switchgear) important to license renewal. For the most part, this is also consistent with the Maintenance Rule, 10 CFR 50.65 (1991). AMGs concentrate on technical, (not licensing) issues and are directed toward systems engineers and plant maintenance staff. AMGs include a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance practices that can be combined to create effective programs that manage aging. All aging mechanisms were addressed; no attempt was made to limit the evaluation to aging mechanisms ''unique to license renewal,'' as defined in the License Renewal Rule, 10 CFR 54 (1991). The first AMG on Electrical Switchgear was published in July 1993. Six (6) additional AMGs will be published by the first quarter of calendar year 1994. It is anticipated that two more AMGs will be started in 1994. The seven ongoing AMG topics are as follows: (1) battery chargers, inverters and uninterruptible power supplies; (2) batteries, stationary; (3) heat exchangers; (4) motor control centers; (5) pumps; (6) switchgear, electric; (7) transformers, power and distribution. In Section 7, industry feedback regarding AMGs is discussed. Overall, the response has been very positive

  5. Re-qualification of switchgear equipment following field modification

    International Nuclear Information System (INIS)

    Tulk, J.D.; El Bestawi, M.A.

    1984-01-01

    A set of 4.16 kV switchgear was seismically qualified by shaker table test for use in a nuclear power plant. Later, the equipment was modified by the addition of two extra switches and enclosures. This paper describes the methods used to extend the qualification achieved in the original proof test to the new configuration. Qualification of the modified switchgear depended on demonstrating that the intensity of the shaking that would be experienced by equipment mounted in the extended enclosure during a design basis earthquake (DBE) would be no stronger than the shaking that occurred during the original qualification testing. This was accomplished by a combination of analysis and experiment. Natural frequencies and mode-shapes of the original and extended enclosure structures were determined through in-situ modal tests on the equipment. Mathematical models based on the experimental results were then used for dynamic analyses which generated two sets of in-equipment response spectra: one set representing the original qualification test; and one set representing the response of the modified equipment to a hypothetical DBE. Qualification was confirmed by demonstrating that the test-based response spectra for the original configuration exceeded the response spectra developed for the extended structure subjected to DBE level excitation

  6. Decentralised electrical distribution network in power plants

    International Nuclear Information System (INIS)

    Mannila, P.; Lehtonen, M.

    2000-02-01

    A centralised network is a dominating network solution in today's power plants. In this study a centralised and a decentralised network were designed in order to compare them economically and technically. The emphasis of this study was on economical aspects, but also the most important technical aspects were included. The decentralised network requires less space and less cabling since there is no switchgear building and distribution transformers are placed close to the consumption in the field of a power plant. MV-motors and distribution transformers build up a ring. Less cabling and an absent switchgear building cause considerable savings. Component costs of both of the networks were estimated by using data from fulfilled power plant projects and turned out to be smaller for the decentralised network. Simulations for the decentralised network were done in order to find a way to carry out earth fault protection and location. It was found out that in high resistance earthed system the fault distance can be estimated by a relatively simple method. The decentralised network uses a field bus, which offers many new features to the automation system of a power plant. Diversified information can be collected from the protection devices in order to schedule only the needed maintenance duties at the right time. Through the field bus it is also possible to control remotely a power plant. The decentralised network is built up from ready-to-install modules. These modules are tested by the module manufacturer decreasing the need for field testing dramatically. The work contribution needed in the electrification and the management of a power plant project reduces also due the modules. During the lifetime of a power plant, maintenance is easier and more economical. (orig.)

  7. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and IandC equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/chargers, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed RandD efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research. 15 refs., 2 tabs

  8. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Du Charme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and I and C equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/charges, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed R and D efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research

  9. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  10. Optimised compact SF6 switchgear, mobile substations and modules for improved substation economics

    Energy Technology Data Exchange (ETDEWEB)

    Mikes, E.G. [Areva T and D gas insulated substations, Oberetfelder (Switzerland); Montillet, G.F. [Areva T and D, Charleroi, PA (United States)

    2007-07-01

    One of the key elements of the electrical transmission and subdistribution networks in dense industrial areas and cities are gas insulated substations (GIS). More economical and ecological aspects in new designs are increasingly forcing the selection of smaller optimised switchgear. This paper discussed new spring mechanisms, gasket design, monitoring systems, and eco-design. Utilities are looking for new substations, upgrades, refurbishments and more efficient solutions for an extension to the current expanding infrastructure. For temporary installations, mines and some specific industries mobile substations are a great opportunity. The paper discussed several types of designs, including mobile GIS and one platform solutions for small and midsize substations; prefabricated and container solutions; hybrid switchgear modules with integrated control and monitoring functions; and optimization of GIS solutions for different station layouts having combined-functions such as circuit breaker/disconnector units. It was concluded that the search for the ongoing enhancement of the solutions in terms of cost-effectiveness and increased availability by utilities demonstrate that the system's rated voltage level and single-line-diagram configuration and in some cases the geographical position are the critical elements that determine the choice between several alternatives. 13 refs, 16 figs.

  11. IEEE C37.82-1987: IEEE standard for the qualification of switchgear assemblies for Class 1E applications in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes the methods and requirements for qualifying switchgear assemblies for indoor areas outside of the containment in nuclear power generating stations. These assemblies include (1) metal-enclosed low-voltage power circuit breaker switchgear assemblies, as defined in ANSI/IEEE C37.20.1-1987, (2) metal-clad switchgear assemblies, as defined in ANSI/IEEE C37.20.2-1987, (3) metal-enclosed bus, as defined in ANSI/IEEE C37.23-1987, and (4) metal-enclosed interrupter switchgear assemblies, as defined in ANSI/IEEE C37.20.3-1987. The purpose of this document is to provide amplification of the general requirements of ANSI/IEEE Std 323-1983 as they apply to the specific features of Class 1E switchgear assemblies. Where differences exist between this document and ANSI/IEEE Std 323-1983, this document takes precedence insofar as switchgear assemblies are concerned

  12. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  13. Study of a Station Blackout Event in the PWR Plant

    International Nuclear Information System (INIS)

    Ching-Hui Wu; Tsu-Jen Lin; Tsu-Mu Kao

    2002-01-01

    On March 18, 2001, a PWR nuclear power plant located in the Southern Taiwan occurred a Station Blackout (SBO) event. Monsoon seawater mist caused the instability of offsite power grids. High salt-contained mist caused offsite power supply to the nuclear power plant very unstable, and forced the plant to be shutdown. Around 24 hours later, when both units in the plant were shutdown, several inadequate high cycles of bus transfer between 345 kV and 161 kV startup transformers degraded the emergency 4.16 kV switchgears. Then, in the Train-A switchgear room of Unit 1 occurred a fire explosion, when the degraded switchgear was hot shorted at the in-coming 345 kV breaker. Inadequate configuration arrangement of the offsite power supply to the emergency 4.16 kV switchgears led to loss of offsite power (LOOP) events to both units in the plant. Both emergency diesel generators (EDG) of Unit 1 could not be in service in time, but those of Unit 2 were running well. The SBO event of Unit 1 lasted for about two hours till the fifth EDG (DG-5) was lined-up to the Train-B switchgear. This study investigated the scenario of the SBO event and evaluated a risk profile for the SBO period. Guidelines in the SBO event, suggested by probabilistic risk assessment (PRA) procedures were also reviewed. Many related topics such as the re-configuration of offsite power supply, the addition of isolation breakers of the emergency 4.16 kV switchgears, the betterment of DG-5 lineup design, and enhancement of the reliability of offsite power supply to the PWR plant, etc., will be in further studies. (authors)

  14. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1984-01-01

    The high- and medium-voltage electrical equipment failures of both nuclear and nonnuclear electric utilities have been reviewed for possible disruptive failure modes that would be of special concern in a nuclear power plant. The resulting emphasis was on the electrical faults of transformers, switchgear (circuit breakers), lightning (surge) arrestors, high-voltage cabling and buswork, control boards, and other electrical equipment that, through failure, can be the initiating event that may expand the original fault to nearby or associated equipment. Many failures of such equipment were found and documented, although the failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment. Conclusions and recommendations pertaining to the design, maintenance, and operation of the affected electrical equipment are presented

  15. Abatement cost of SF6 emissions from medium voltage switchgear. Validation of recent studies for the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.; Van Lieshout, M.; Croezen, H.

    2012-05-15

    Sulphur hexafluoride (SF6) is a gas with applications including use as an insulator and switching medium in medium voltage (MV) switchgear. While having certain unique properties, it is also a greenhouse gas, with a 22,800 times greater impact than CO2 and an atmospheric lifetime of over 3,000 years. Although the use of SF6 in MV switchgear can be avoided, according to recent studies for the European Commission, the abatement costs are high. This study validates the calculated cost levels as well as the general feasibility of determining a fixed cost figure for this purpose. This analysis yields a result which differs from the earlier studies, particularly with respect to the cost aspect, but also in other areas. CE Delft concludes that for the majority of applications cost-effective SF6-free options are available, leading to abatement costs for the use of SF6 in MV switchgear that range from - 40 to 0 euro/tCO2 eq., for all types of switchgear, with voltage levels below 25 kV and situated on relatively dry locations.

  16. Ingledow 500 kV substation : using mixed technology switchgear solutions for replacement

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, C.; Glaubitz, P. [Siemens AG, Munich (Germany); Messinger, T. [British Columbia Transmission Corp., Vancouver, BC (Canada)

    2008-07-01

    The reliability of the 500 kV equipment at the Ingledow substation operated by BC Hydro Transmission System is of critical importance due to the energy interchange with the Bonneville Power Authority in the United States and the major role of the substation in serving the energy needs of British Columbia's densely populated Lower Mainland. Presently, the 500 kV switchyard includes 10 airblast circuit breakers and the associated current transformers which are all approaching their end of service-life. In response to environmental and safety concerns, the British Columbia Transmission Corporation adopted a policy whereby new oil-filled transformers are no longer acceptable, and the replacement of existing oil-filled transformers must be oil-free. The result is that the current transformers must be either bushing-type or sulphur-hexafluoride (SF6) type. The replacement strategies for the substation equipment consider economical, environmental and seismic issues. They have just as strong an influence on the decision process as the technical, operational and reliability aspects for the particular case or switchgear replacement in the transmission system. The Ingledow case demonstrates the advantages of using mixed technology switchgear, with its compact design flowing from gas insulated switchgear (GIS) for replacement of equipment in an outdoor switchyard. The advantages of the MTS in this case offer the possibility of future reconfiguration to improve the system reliability within the existing switchyard space. 3 refs., 5 figs.

  17. Design requirements document for the phase 1 privatization electrical power system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.

    1997-10-31

    The electrical system for the Phase 1 privatization facilities will support the TWRS mission by providing the electrical power to the Phase 1 privatized facilities. This system will receive power from the Department of Energy-Richland Operations (RL) A4-8 230 kV transmission system powered from Bonneville Power Administration (BPA) Ashe and Midway 230 kV Substations. The existing RL 230 kV transmission line will be modified and looped 1021 into the new 230 kV substation bus. The new substation will be located in the vicinity of the privatized facilities, approximately 3.2 km (2 mi) south of the existing RL A4-8 230 kV transmission line. The substation will be capable of providing up to 40 MW of electrical power to support the Phase 1 privatization facilities and has space for accommodating future expansions. The substation will require at least two 230-13.8 kV transformers, 13.8 kV split bus switchgear, switchgear building, grounding transformers, instrument transformers, control and monitoring equipment, associated protection and isolation devices, lightning protection, yard lighting, cable and raceways, and infrastructure needed to provide desired availability and reliability. The power from the 13.8 kV switchgear located in the switchgear building will be delivered at the privatization facilities site boundaries. The 13.8 kV distribution system inside the privatization facilities site boundaries is the responsibility of the privatization contract.

  18. Design requirements document for the phase 1 privatization electrical power system

    International Nuclear Information System (INIS)

    Singh, G.

    1997-01-01

    The electrical system for the Phase 1 privatization facilities will support the TWRS mission by providing the electrical power to the Phase 1 privatized facilities. This system will receive power from the Department of Energy-Richland Operations (RL) A4-8 230 kV transmission system powered from Bonneville Power Administration (BPA) Ashe and Midway 230 kV Substations. The existing RL 230 kV transmission line will be modified and looped 1021 into the new 230 kV substation bus. The new substation will be located in the vicinity of the privatized facilities, approximately 3.2 km (2 mi) south of the existing RL A4-8 230 kV transmission line. The substation will be capable of providing up to 40 MW of electrical power to support the Phase 1 privatization facilities and has space for accommodating future expansions. The substation will require at least two 230-13.8 kV transformers, 13.8 kV split bus switchgear, switchgear building, grounding transformers, instrument transformers, control and monitoring equipment, associated protection and isolation devices, lightning protection, yard lighting, cable and raceways, and infrastructure needed to provide desired availability and reliability. The power from the 13.8 kV switchgear located in the switchgear building will be delivered at the privatization facilities site boundaries. The 13.8 kV distribution system inside the privatization facilities site boundaries is the responsibility of the privatization contract

  19. Reducing operating costs: A collaborative approach between industry and electric utilities

    International Nuclear Information System (INIS)

    Tyers, B.; Sibbald, L.

    1993-01-01

    The unit cost of electricity to industrial consumers is expected to increase at a rate of 5% annually in the 1990s. The partnership that has been created between Amoco Canada Petroleum Company and TransAlta Utilities to control the cost of electricity is described. To allow the company to receive lower rates for interruptible power, a number of measures have been taken. The Amoco Whitecourt plant has standby generators in reserve that can be used when utility power is not available. A Pembina compressor can be turned off for up to 12 hours, at 30 minutes notice, without affecting field pressure. At the East Crossfield plant sales gas can be compressed using electricity or a gas-driven engine. Spot market energy is used in a number of plants allowing electric drive alternatives to plant operators and offering short term energy markets. TransAlta invests in electrical equipment such as switchgear as well as transmission lines and transformers. New rate alternatives offered by TransAlta Utilities include review of the need for a demand ratchet, additional time of use rates, unbundling of rates allowing power purchase from alternative sources, rates that follow product costs, reduced rates for conversion of gas to electric drives certain circumstances, energy audits, and power factor credits. 5 figs

  20. The European Foundation for Quality Management (EFQM Excellence Model in a Low Voltage Switchgear Compan

    Directory of Open Access Journals (Sweden)

    Özgür Özmen

    2017-11-01

    Full Text Available The Turkish low voltage switchgear sector is made up of several local and international companies. Generally, local companies operating in this sector try to get a competitive advantage by fabricating cheap products, in order to cope with the competition that focuses more on quality. What’s more, international corporations perform quality activities under the organization and control of their top-managements from abroad. Although VIKO is a local producer, it is a company willing to invest more in quality, as well as in research and development. VIKO company is the focus of this self-assessment study, since it lies at the conjunction of companies operating in this sector, it being a local company performing various quality enhancement activities. Simultaneously, the authors consider that this study shall prove useful to create an overview over the entire Turkish low voltage switchgear sector. The evaluation of the company and its core-activities was based upon nine criteria of the European Foundation for Quality Management (EFQM Excellence Model, in order to identify the strengths, the weaknesses and aspects that require improvements. This is the first study worldwide performed in the low voltage switchgear sector and it is aimed at motivating other Turkish companies that operate in this sector to implement The European Foundation for Quality Management (EFQM Excellence Model in their TQM activities (Total Quality Management.

  1. Proposal for the award of a contract, without competitive tendering, for the maintenance of low-voltage switchgear

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract, without competitive tendering, for the maintenance of low-voltage switchgear. The Finance Committee is invited to agree to the negotiation of a contract, without competitive tendering, for the maintenance of low-voltage switchgear with HAZEMEYER (FR) for a total amount of 385 000 euros (610 000 Swiss francs), covering an initial period of five years, subject to revision for inflation after 1 January 2007. The contract will include options for two one-year extensions beyond the initial five-year period. The amount in Swiss francs has been calculated using the present rate of exchange. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - 100%.

  2. Direct and synthetic testing of switchgear in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Haenisch, R

    1963-12-13

    Details are given of a high power testing station for switchgear and dielectric testing, incorporating an impulse generator of 2.4 MV (ultimately 3.6 MV), installed in a parabolic shaped hall with copper roof forming a Faraday cage with a maximum height of 82 ft and floor area of 137 ft x 118 ft. This design has the purpose of avoiding influences of external fields entering the hall and of containing within the hall radiations set up by test procedures. The surge generator has a terminal short-circuit capacity of 4,300 MVA and allows for synthetic testing at 25,000-MVA breaking capacities at 500-kV rating (ultamately 750 kV). Details of generator construction are given and particular attention is directed at safety features and future expansion of rating facilities.

  3. Electrical system design status of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Taek; Mun, Kyeong Jun; Kim, Jun Yeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Proton Engineering Frontier Project (PEFP) has been developing a 100 MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center in Gyeongju. In site, we installed GIS (Gas Insulated Switchgear) to receive 154kV electric power and 154kV/3.3kV transformer. For the energy saving scheme, we are now installing solar power system, automatic lighting control system and maximum control power system of PEFP. In this paper, we described electrical power system of PEFP.

  4. Evaluation of seismic resistance of low voltage switchgear, NPP V1 Jaslovske Bohunice, Slovakia

    International Nuclear Information System (INIS)

    Zeman, P.

    1999-01-01

    During this year, company Stevenson and Associates took part in the project of evaluation of seismic resistance of NPP V-1 Jaslovske Bohunice in Slovakia. It was responsible for a part of electrical equipment, mainly for the evaluation of low voltage switchgears. There were four steps of the evaluation: Detailed Walkdown; Application of GIP-WWER Methodology; Developing, of In Cabinet Response Spectra; and Evaluation of Acceptance of Formerly Performed Relay Tests According to the Russian Standard OEG l-330.00-3). Tests performed according to the Russian Standard OAG are acceptable only if the tested subject shows just one dominant natural frequency in the significant energy frequency range. If there is no knowledge of modal properties of the tested subject (that is a frequent situation because test reports usually contain only generalized Fourier loading spectrum) the enveloping of In Cabinet Response Spectra (ICRS) in all significant energy frequency ranges by Response Spectra (RS) of harmonic signal on one arbitrary frequency. This criteria is usually not satisfied because the shake tables used for the tests are not able to produce the sufficient level of excitation in the low frequency range. It may lead to the demand for test repeating

  5. A Study of Electromagnetic Radiation of Corona Discharge Near 500-Kv Electric Installations

    International Nuclear Information System (INIS)

    Korzhov, A. V.; Okrainskaya, I. S.; Sidorov, A. I.; Kufel'd, V. D.

    2004-01-01

    Data on the spectral composition and intensity of electromagnetic radiation of corona discharge are obtained in an experimental study performed on the outdoor switchgear of the Shagol 500-kV substation of the Chelyabinsk Enterprise of Trunk Transmission Grids and under a 500-kV Shagol - Kozyrevo overhead transmission line. The electromagnetic environment on the territory of the 500-kV outdoor switchgear is shown to be determined by narrow-band radiations (harmonics of the frequency of electric supply) and wide-band radiations due to corona discharges of high-voltage sources. This means that the personnel experience the action of a commercial-frequency electric field and electromagnetic radiation of a quite wide range, which is not allowed for by the existing guidelines. It is recommended to continue the study in cooperation with medical institutions in order to create guidelines that would allow for the joint action of commercial-frequency electric field and electromagnetic radiation and for the voltage in the line, the current load, the meteorological situation, and other factors

  6. Proposal for the award of a contract, without competitive tendering, for the maintenance of high-voltage switchgear and protection equipment

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract, without competitive tendering, for the maintenance of high-voltage switchgear and protection equipment. The Finance Committee is invited to agree to the negotiation of a contract, without competitive tendering, for the maintenance of high-voltage switchgear and protection equipment with SCHNEIDER (FR) for a total amount of 1 100 000 euros (1 742 000 Swiss francs), covering an initial period of five years, subject to revision for inflation after 1 January 2007. The contract will include options for two one-year extensions beyond the initial five-year period. The amount in Swiss francs has been calculated using the present rate of exchange. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - 100%.

  7. The application of GIS equipment in nuclear power plant

    International Nuclear Information System (INIS)

    Ji Lin; Huang Pengbo; Chang Xin'ai

    2012-01-01

    In this paper, the advantage and disadvantage of gas insulated switchgear (GIS) in environmental adaptability, operation safety and economic benefit are analyzed. Issues concerning the manufacture, transportation, on-site installation, operation, maintenance and extension of GIS equipment are discussed. Comparing those characteristics with air insulated switchgear (AIS), GIS is characterized by better aseismic ability, less occupied area and installation process, lower fault rate, longer maintenance period, easier for extension and higher economic benefit, SF6 gas insures the operation safety and reliability of GIS equipment, modular transport and re-assembling improves the installation flexibility. Therefore, GIS equipment may be the first choice for the primary equipment of nuclear power plant. (authors)

  8. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  9. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE's long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: (1) Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. (2) Provide backup power to the critical ATR loads in the event of a loss of commercial power. (3) Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: (1) Evaluation Criteria No.2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. (2) Evaluation Criteria No.3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary

  10. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  11. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  12. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  13. Proceedings of seminar on recent trends in generation and utilisation in electrical engineering

    International Nuclear Information System (INIS)

    1999-01-01

    The proceedings of the seminar on recent trends in generation and utilization in electrical engineering is very relevant in the present juncture. The papers have been divided into various sessions corresponding to the different topics of electrical engineering e.g. energy sources; power generation; materials, energy sources, power electronics, UPS and special purpose machines; conservation of energy - variable speed drives and control of P.F.; applications of electrical energy monitoring, protection and lighting; switch-gear, switchyards, control; safety aspects in electrical engineering materials, cables and quality control; applications of computers - expert systems, communication aspects and miscellaneous. Papers relevant to INIS are indexed separately

  14. Seismic fragility of nuclear power plant components (Phase II)

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E.

    1990-02-01

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I ampersand C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs

  15. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  16. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  17. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  18. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  19. In-depth investigation of high-energy arcing faults (HEAF) of electrical components with possible induced fires; Vertiefte Untersuchungen zum hochenergetischen Versagen elektrischer Komponenten (HEAF) mit moeglicher Brandfolge

    Energy Technology Data Exchange (ETDEWEB)

    Roewekamp, Marina

    2015-11-15

    Main objective of the project 3611R01301 performed on behalf of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) is an in-depth investigation of fires at electrical components induced by high energy arcing faults (HEAF) according to their non-negligible significance to nuclear safety. This report provides an overview on the insights with respect to high energy arcing faults at electrical components mainly gained from investigations of the national as well as international operating experience from nuclear installations. Moreover, the insights from the international operating experience have resulted in an experimental program carried out in the frame of a task by the OECD Nuclear Energy Agency (NEA) in order to investigate failures of electrical components, e. g. breakers, switchgears or transformers, installed in nuclear power plants of the member countries due to HEAF and potential consequential fires. The results of the in-depth analyses and experimental investigations shall be used for identifying potential areas of damage in a suitable manner. The results based on inter-national research shall also be checked with respect to their applicability to the situation in German nuclear power plants.

  20. Nuclear Power Plants in a Competitive Electricity Market

    International Nuclear Information System (INIS)

    Jankauskas, V.

    2002-01-01

    Electricity demand is growing in the world by an average rate of 3% and, according to the International Energy Agency, is going to keep this pace of growth for the 1st quarter of the 21st century. At the same time, the role of the nuclear in the world energy mix is diminishing, and in 2020 only 9% of the world electricity will be produced at the nuclear plants versus 17% in 2000. The main reasons for the nuclear power diminishing share in the world market are not environmental or safety problems, as one may assume, but technical and economical. Long construction time, high capital cost, huge liabilities connected with the spent nuclear fuel and radioactive waste treatment, storage and final disposal are the main factors restricting the further growth of the nuclear power. Nevertheless, in the liberalized markets (U.K., Germany, Scandinavian countries) nuclear power plants are operating rather successfully. In a short run nuclear plants may become very competitive as they have very low short-run marginal costs, but in the long run they may become very in competitive. The Ignalina NPP plays the dominant ro]e in the Lithuanian electricity market, producing more than 75% of the total domestic electricity. It produces the cheapest electricity in Lithuania, mostly due to its higher availability, than the thermal power plants. The price of electricity sold by Ignalina is also lower as it does not cover all costs connected with the future decommissioning of the plant, spent fuel storage and final disposal. If at least part of this cost were included into the selling price, Ignalina might become highly competitive in a liberalised electricity market. As the Lithuanian Electricity law requires to deregulate electricity. generation prices, these prices should be set by the market. (author)

  1. Multi-compartment Fire Modeling for Switchgear Room using CFAST

    International Nuclear Information System (INIS)

    Han, Kiyoon; Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, multi-compartment fire modeling for fire propagation scenario from SWGR A to SWGR B is performed using CFAST. New fire PSA method (NUREG/CR-6850) requires that the severity factor is to be calculated by fire modeling. If fire modeling is not performed, the severity factor should be estimated as one conservatively. Also, the possibility of the damages of components and cables located at adjacent compartments should be considered. Detailed fire modeling of multi-compartment fires refers to the evaluation of fire-generated conditions in one compartment that spread to adjacent ones. In general, the severity factor for multi-compartment fire scenario is smaller than that of single compartment scenario. Preliminary quantification of Hanul Unit 3 fire PSA was performed without fire modeling. As a result of quantification, multi-compartment scenario, fire propagation scenario from switchgear room (SWGR) A to SWGR B, is one of significant contributor to the CDF. In this study, fire modeling of multi-compartment was performed by Consolidated Fire Growth and Smoke Transport (CFAST) to identify the possibility of fire propagation. As a result of fire simulation, it is identified that fire propagation has little influences

  2. Multi-compartment Fire Modeling for Switchgear Room using CFAST

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, multi-compartment fire modeling for fire propagation scenario from SWGR A to SWGR B is performed using CFAST. New fire PSA method (NUREG/CR-6850) requires that the severity factor is to be calculated by fire modeling. If fire modeling is not performed, the severity factor should be estimated as one conservatively. Also, the possibility of the damages of components and cables located at adjacent compartments should be considered. Detailed fire modeling of multi-compartment fires refers to the evaluation of fire-generated conditions in one compartment that spread to adjacent ones. In general, the severity factor for multi-compartment fire scenario is smaller than that of single compartment scenario. Preliminary quantification of Hanul Unit 3 fire PSA was performed without fire modeling. As a result of quantification, multi-compartment scenario, fire propagation scenario from switchgear room (SWGR) A to SWGR B, is one of significant contributor to the CDF. In this study, fire modeling of multi-compartment was performed by Consolidated Fire Growth and Smoke Transport (CFAST) to identify the possibility of fire propagation. As a result of fire simulation, it is identified that fire propagation has little influences.

  3. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  4. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  5. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  6. New Developments in the Field of Materials for Electric Power Engineering. Paper presented at the ETG Conference (Energy Technology Society) 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Conference Proceedings comprise 21 papers divided into 4 theme groups: insulating materials and insulating systems; structural materials; magnetic materials; conductor and contact materials. Individual papers deal with: the search for a new insulating system for transformers; insulating oils and liquids; an insulating system for electric machines of high heat resistance: progress in insulation of exciter winding in hydroelectic generators and other large synchronous machines; insulating systems for extreme envronmental conditions; behavior of silicon elastomer, organic, and polyethylene insulating materials; development of new magnetic materials, in particular: metallic glasses; amorphous magnetic materials; pressed iron powder parts; modern permanent magnetic materials; development of new contact materials for power switchgear; alternative switchgear technologies; a new cryogenic conductor structured element based on V/sub 2/O/sub 3/ ceramic; choice of material for fuses.

  7. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  8. Research on U.S. nuclear power plant major equipment aging

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.

    1994-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), in cooperation with nuclear power plant utilities and the Nuclear Energy Institute, have prepared equipment aging evaluations of nuclear power plant equipment for life extension considerations. Specifically, these evaluations focused on equipment considered important for plant license renewal (U.S. Code of Federal Regulations 10CFR54). open-quotes Industry Reportsclose quotes (IRs), jointly funded by DOE and EPRI, evaluated the aging of major systems, structures, and components (e.g., reactor pressure vessels, Class I structures, PWR and BWR containments, etc.) and contain a mixture of technical and licensing information. open-quotes Aging Management Guidelinesclose quotes (AMGs), funded by DOE, evaluate aging for commodity types of equipment (e.g., pumps, electrical switchgear, heat exchangers, etc.) and concentrate on technical issues only. AMGs are intended for systems engineers and plant maintenance staff. A significant number of technical issues were resolved during IR interactions with the U.S. Nuclear Regulatory Commission (NRC). However, certain technical issues have not been resolved and are considered open-quotes openclose quotes. Examples include certain issues related to fatigue, neutron irradiation embrittlement, intergranular stress corrosion cracking (IGSCC) and electrical cable equipment qualification. Direct NRC interaction did not take place during preparation of individual AMGs due to their purely technical nature. The eventual use of AMGs in a future license renewal application will likely require NRC interaction at that time. With a few noted exceptions, the AMG process indicated that current aging management practices of U.S. utilities were effective in preventing age-related degradation. This paper briefly describes the IR and AMG processes and summarizes the unresolved technical issues identified through preparation of the documents

  9. Miksova hydro-electric power plant is awaiting the fortieths

    International Nuclear Information System (INIS)

    Regula, E.

    2004-01-01

    In this paper the history of cascade of the Miksova hydro-electric power plants (HEPP, in the Slovak Republic) is described. This cascade of power plants consists of the following hydro-electric power plant: Hricov HEPP, Miksova HEPP, Povazska Bystrica HEPP and Nosice HEPP. In the Miksova HEPP are installed three turbo-sets with Kaplan turbine from the CKD Blansko and with synchronous hydro-alternator. Synchronous hydroelectric alternators have maximal output by 31.2 MW. Their installed output is together 93.6 MW and projected production of electric energy is 207 GWh annually. To the end 2003 Miksova HEPP during 40 years has produced together 7,161,342 MWh of electric energy

  10. Revenue opportunities for gas plants arising from electricity deregulation

    International Nuclear Information System (INIS)

    Bachmann, G.C.

    1999-01-01

    A brief overview of deregulation in the electric power industry and an explanation of how these changes can be used to increase revenues of gas processing plants is provided. Deregulation in the electric power industry provides the potential to significantly reduce energy costs for the gas plant and allows technology to be applied to make a better use of a valuable commodity. Owners and operators of gas processing plants increase their operating income by taking advantage of co-generation systems which provide heat and electrical energy to the gas plant. Such an application has three revenue streams, the main one being the power sales to the gas plant, the second one heat sales, and the third increased revenues from the gas plant through a reduction of overall costs, not to mention significantly reduced downtime. Further savings are possible through diversion of excess energy produced to other facilities owned by the gas plant owner

  11. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  12. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  13. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  14. A CALCULATION METHOD OF TRANSIENT MODES OF ELECTRIC SHIPS’ PROPELLING ELECTRIC PLANTS

    Directory of Open Access Journals (Sweden)

    V. A. Yarovenko

    2017-12-01

    Full Text Available The purpose of the work is to develop the method for calculating the transient modes of electric ships’ propelling electric plants during maneuver. This will allow us to evaluate and improve the maneuverability of vessels with electric motion. Methodology. The solution to the problems is proposed to be carried out on the basis of mathematical modeling of maneuvering modes. The duration of transient modes in an electric power plant at electric ships’ maneuvers is commensurable with the transient operation modes of the vessel itself. Therefore, the analysis of the electric power plants’ maneuvering modes should be made in unity with all the components of the ship’s propulsion complex. Results. A specified mathematical model of transient regimes of electric ship’s propulsion complex, including thermal motors, synchronous generators, electric power converters, propulsion motors, propellers, rudder, ship’s hull is developed. The model is universal. It covers the vast majority of modern and promising electric ships with a traditional type of propulsors. It allows calculating the current values of the basic mode indicators and assessing the quality indicators of maneuvering. The model is made in relative units. Dimensionless parameters of the complex are obtained. These parameters influence the main indicators of the quality of maneuvering. The adequacy of the suggested specified mathematical model and the developed computation method based on it were confirmed. To do this, the results of mathematical modeling for a real electric ship were compared with the data obtained in the course of field experiments conducted by other researchers. Originality. The mathematical description of a generator unit, as an integral part of an indivisible ship’s propulsion complex, makes it possible to calculate the dynamic operation modes of electric power sources during electric vessels’ maneuvering. There is an opportunity to design the electric ships

  15. Strategy of investment in electricity sources--Market value of a power plant and the electricity market

    Science.gov (United States)

    Bartnik, R.; Hnydiuk-Stefan, A.; Buryn, Z.

    2017-11-01

    This paper reports the results of the investment strategy analysis in different electricity sources. New methodology and theory of calculating the market value of the power plant and value of the electricity market supplied by it are presented. The financial gain forms the most important criteria in the assessment of an investment by an investor. An investment strategy has to involve a careful analysis of each considered project in order that the right decision and selection will be made while various components of the projects will be considered. The latter primarily includes the aspects of risk and uncertainty. Profitability of an investment in the electricity sources (as well as others) is offered by the measures applicable for the assessment of the economic effectiveness of an investment based on calculations e.g. power plant market value and the value of the electricity that is supplied by a power plant. The values of such measures decide on an investment strategy in the energy sources. This paper contains analysis of exemplary calculations results of power plant market value and the electricity market value supplied by it.

  16. General Analysis of Vacuum Circuit Breaker Switching Overvoltages in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Ghafourian, S. M.; Arana, I.; Holbøll, Joachim

    2016-01-01

    Understanding mechanisms of switching transient overvoltages in modern electrical power systems is a necessity to ensure a proper design of power plants and switchgear and the required level of reliable and secure system operation. High fidelity plant modelling and accurate transient analysis...... on the transformer terminal voltage during closing operation was studied. A wind farm power collection system was modelled in ATP-EMTP environment. To validate the results obtained through computer simulation, field measurements from an actual system were used....

  17. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  18. Disturbance Elimination for Partial Discharge Detection in the Spacer of Gas-Insulated Switchgears

    Directory of Open Access Journals (Sweden)

    Guoming Wang

    2017-11-01

    Full Text Available With the increasing demand for precise condition monitoring and diagnosis of gas-insulated switchgears (GISs, it has become a challenge to improve the detection sensitivity of partial discharge (PD induced in the GIS spacer. This paper deals with the elimination of the capacitive component from the phase-resolved partial discharge (PRPD signal generated in GIS spacers based on discrete wavelet transform (WT. Three types of typical insulation defects were simulated using PD cells. The single PD pulses were detected and were further used to determine the optimal mother wavelet. As a result, the bior6.8 was selected to decompose the PD signal into 8 levels and the signal energy at each level was calculated. The decomposed components related with capacitive disturbance were discarded, whereas those associated with PD were de-noised by a threshold and a thresholding function. Finally, the PRPD signals were reconstructed using the de-noised components.

  19. Design Provisions for Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duchac, Alexander

    2015-01-01

    A station blackout (SBO) is generally known as 'a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and un-interruptible AC power supplies may be available as long as batteries can supply the loads. Alternate AC power supplies are available'. A draft Safety Guide DS 430 'Design of Electrical Power Systems for Nuclear Power Plants' provides recommendations regarding the implementation of Specific Safety Requirements: Design: Requirement 68 for emergency power systems. The Safety Guide outlines several design measures which are possible as a means of increasing the capability of the electrical power systems to cope with a station blackout, without providing detailed implementation guidance. A committee of international experts and advisors from numerous countries is currently working on an IAEA Technical Document (TECDOC) whose objective is to provide a common international technical basis from which the various criteria for SBO events need to be established, to support operation under design basis and design extension conditions (DEC) at nuclear power plants, to document in a comprehensive manner, all relevant aspects of SBO events at NPPs, and to outline critical issues which reflect the lessons learned from the Fukushima Dai-ichi accident. This paper discusses the commonly encountered difficulties associated with establishing the SBO criteria, shares the best practices, and current strategies used in the design and implementation of SBO provisions and outline the structure of the IAEA's SBO TECDOC under development. (author)

  20. Assessment of electrical equipment aging for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  1. Assessment of electrical equipment aging for nuclear power plant

    International Nuclear Information System (INIS)

    2013-01-01

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  2. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  3. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  4. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  5. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  6. Systems studies of dual purpose electric/synthetic fuels fusion plants

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1975-02-01

    A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes

  7. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    Energy Technology Data Exchange (ETDEWEB)

    Fresco, A.; Subudhi, M.; Gunther, W.; Grove, E.; Taylor, J. [Brookhaven National Lab., Upton, NY (United States)

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.

  8. Electric power plant international. 1976--1977 edition

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ''Electric Power Plant International'' is intended to provide a comprehensive commercial and technical information source for use by suppliers, operators, and potential purchasers of power plant, and also by suppliers of materials and services to such organizations. It contains information that will help those considering the purchase of power plant to gain a reasonable understanding of the factors that should be taken into account when making a purchasing decision. Consideration is given to the operation, maintenance, and modification of power systems that will be of relevance to those currently operating plant. The publication is designed to act as an interface between suppliers and users of power plant. As part of this function, reference sections contain listings of all the companies that have been located throughout the world, supplying prime movers, generators, generator sets, and fixed-frequency inverter systems. Details of products currently available from these companies are included wherever possible and this is being continuously up-dated and extended to give increased coverage in future editions. The Electrical Research Association Ltd. does not manufacture or supply power plant (apart from some special-purpose static inverter systems), but would be pleased to receive requirement details from any company wishing to inquire about plant purchase. These will be forwarded to appropriate suppliers throughout the world who will be able to submit tenders for suitable products. Inquiry forms are included in Chapter 6 for this purpose.

  9. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    V.V. Shevchenko

    2013-06-01

    Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

  10. Fire risk analysis for nuclear power plants: Methodological developments and applications

    International Nuclear Information System (INIS)

    Kazarians, M.; Apostolakis, G.; Siv, N.O.

    1985-01-01

    A methodology to quantify the risk from fires in nuclear power plants is described. This methodology combines engineering judgment, statistical evidence, fire phenomenology, and plant system analysis. It can be divided into two major parts: (1) fire scenario identification and quantification, and (2) analysis of the impact on plant safety. This article primarily concentrates on the first part. Statistical analysis of fire occurrence data is used to establish the likelihood of ignition. The temporal behaviors of the two competing phenomena, fire propagation and fire detection and suppression, are studied and their characteristic times are compared. Severity measures are used to further specialize the frequency of the fire scenario. The methodology is applied to a switchgear room of a nuclear power plant

  11. What about improving the productivity of electric power plants

    International Nuclear Information System (INIS)

    Lawroski, H.; Knecht, P.D.; Prideaux, D.L.; Zahner, R.R.

    1976-01-01

    The FEA in April of 1974 established an Interagency Task Group on Power Plant Reliability, which was charged with the broad objective of improving the productivity of existing and planned large fossil-fueled and nuclear power plants. It took approximately 11 months for the task force to publish a report, ''Report on Improving the Productivity of Electrical Power Plants'' (FEA-263-G), a detailed analysis and comparison of successful and below-average-performance power plants. The Nuclear Service Corp. portion of this study examined four large central-station power plants: two fossil (coal) and two nuclear plants. Only plants with electrical generation capacities greater than 400 MWe were considered. The study included the following: staff technical skill, engineering support, QA program, plant/corporate coordination, operation philosophy, maintenance programs, federal/state regulations, network control, and equipment problems. Personnel were interviewed, and checklists providing input from some 21 or more plant and corporate personnel of each utility were utilized. Reports and other documentation were also reviewed. It was recognized early that productivity is closely allied to technical skills and positive motivation. For this reason, considerable attention was given to people in this study

  12. 1-MWp electrical photovoltaic plant (EPHOP - project)

    International Nuclear Information System (INIS)

    Vitanov, P.; Toneva, A.; Petkanchin, L.; Ivancheva, J.; Neshev, S.

    2000-01-01

    The presented project concerns the realization of a grid connected 1-MW p pilot photovoltaic plant on the territory of Bulgaria.The purpose of the project is to demonstrate and prove solar energy advantages. A special attention will be paid to the possibility the generated electricity to join the national electric network. The site selection according to the meteorological conditions as well as general aspects of the project are discussed

  13. Simulation of power plant construction in competitive Korean electricity market

    International Nuclear Information System (INIS)

    Ahn, Nam Sung; Huh, Sung Chul

    2001-01-01

    This paper describes the forecast of power plant construction in competitive Korean electricity market. In Korea, KEPCO (Korean Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company. Fossil power companies are schedule to be sold to private companies including foreign investors. Nuclear power company is owned by government. The competition in generation market will start from 2003. ISO (Independence System Operator) will purchase the electricity from the power exchange market. The market price is determined by the SMP (System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies. Large nuclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT (Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investor's behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investor's behavior can be applied to the new investments for the

  14. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  15. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  16. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  17. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  18. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  19. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  20. Aging assessment of large electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry's large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs

  1. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  2. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  3. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  4. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  5. Industrial Electricity. In-Plant Distribution. Vocational Trade and Industrial Education.

    Science.gov (United States)

    Teague, Cash; Pewewardy, Garner

    This curriculum guide, part of a series of industrial electricity curriculum guides, consists of materials for use in teaching a course on the in-plant distribution of electricity. Discussed in the introductory lessons are the National Electrical Code, power equipment, and blueprint reading. The next section, a series of units on branch-circuit…

  6. The economics of new nuclear power plants in liberalized electricity markets

    International Nuclear Information System (INIS)

    Linares, Pedro; Conchado, Adela

    2013-01-01

    Even after Fukushima, the nuclear debate is strong in many countries, with the discussion of its economics being a significant part of it. However, most of the estimates are based on a levelized-cost methodology, which presents several shortcomings, particularly when applied to liberalized electricity markets. Our paper provides results based on a different methodology, by which we determine the break-even investment cost for nuclear power plants to be competitive with other electricity generation technologies. Our results show that the cost competitiveness of nuclear power plants is questionable, and that public support of some sort would be needed if new nuclear power plants are to be built in liberalized markets. - Highlights: • We propose an alternative more realistic than LEC for the evaluation of the economics of nuclear electricity. • Our results show that the cost competitiveness of nuclear power plants is questionable. • Building nuclear power plants will require public support, particularly regarding risk management. • These results are less optimistic than previous, LEC-based, estimates

  7. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.

  8. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  9. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  10. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  11. Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear

    Science.gov (United States)

    Cai, Yuanji; Guan, Yonggang; Liu, Weidong

    2017-06-01

    Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.

  12. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  13. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  14. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  15. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  16. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  17. Needs for Constructing and Possibilities of Nuclear Power Plants Interconnection to the Croatian Electricity Grid

    International Nuclear Information System (INIS)

    Zeljko, M.; Bajs, D.

    1998-01-01

    Due to development of electric power system and considering an increase of electrical energy consumption, needs for larger units in new power plants are obvious. Connection of large nuclear power plants to the grid, depending on their power and location, usually requires significant investments in transmission network development and construction. Considering the capacity of the 400 kV transmission network in Croatia, this problem is evident. This paper deals with the possibilities of nuclear power plants construction, as one possible option in electric power system development, and their interconnection to the electricity grid. (author)

  18. Industrial DSM in a deregulated European electricity market - a case study of 11 plants in Sweden

    International Nuclear Information System (INIS)

    Trygg, Louise; Karlsson, B.G.

    2005-01-01

    In 2004 Sweden will become part of a common European electricity market. This implies that the price of electricity in Swedish will adapt to a higher European electricity price due to the increase in cross-border trading. Swedish plant is characterized as more electricity-intensive than plant on the European continent, and this, in combination with a higher European electricity price will lead to a precarious scenario. This paper studies the energy use of 11 plants in the municipality of Oskarshamn in Sweden. The aim is to show how these plants can reduce their electricity use to adapt to a European level. We have found that the plants could reduce their use of electricity by 48% and their use of energy by 40%. In a European perspective, where coal-condensing power is assumed to be the marginal production that alters as the electricity demand changes, the decrease in the use of electricity in this study leads to a reduction in global emissions of carbon dioxide of 69,000 tonne a year. Electricity generated in Sweden emits very low emissions of carbon dioxide and have thus consequently very low external cost. The freed capacity in Sweden could therefore replace electricity generated with higher external cost and as a result lower the total external cost in Europe. The emissions from the saved electricity could also be valuable within the EU emissions trading scheme, if the emissions calculation is done assuming the marginal electricity is fossil fuel based

  19. Integration of a nuclear power plant in electrical systems, alternative programs, optimization

    International Nuclear Information System (INIS)

    Souza, J.A.M. de.

    1991-01-01

    The problem of integration of a nuclear power plants in a electrical power system, to support the power demand of the system, and mainly also support the power demand at the critical period, I.E., peak demands, is analysed. The factors considered in this analysis are: the demand structure of the region, the availability of others power plants in the electrical net and the capacity factor. (author)

  20. More Electricity. Methodical survey of existing plants; Mer El. Metodisk genomgaang av befintliga anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Baafaelt, Martin [Carl Bro Energikonsult AB, Malmoe (Sweden); Ifwer, Karin; Svensson, Niclas; Oehrstroem, Anna [AaF-Process AB, Stockholm (Sweden); Johansson, Inge [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2006-11-15

    The interest in production of electricity has increased the last years as a consequence of the increased price. A high production of electricity is of interest for all kinds of CHP-plants. For large biofuel fired CHP-plants typical electrical efficiency is 35 %, for incineration plants the electrical efficiency is about 28 %. A number of reasons why it is not higher, for example corrosion, fouling, erosion, limited and varying need for heat, flue gas condensation etc, exist. A number of these reasons have earlier been studied in different Vaermeforsk reports. The results from these studies give to some extent solutions and understanding for how the production of electricity can be increased. There is however no report that has the overall picture of what actions are realistic, most cost effective, what areas need more research and gives the most benefit of allocated funds. The aim of this report is to identify the technical limitations and propose measures for increased electricity production at CHP-plants using biofuel and waste. A method for identification of the most suitable actions for each plant is also presented. The idea is to take every conceivable factor that affects electricity production into consideration and to be able to make a relevant comparison of the factors. This report doesn't take new solutions/measures and means of control into consideration. The method used is called 'Weighted Sum Method'. Every action is assessed in the means of different criteria as for example how it affects the environment, if it is profitable, if it means more maintenance etc. An extensive checklist for different conceivable measures for increased electricity production has been created. The checklist includes measures from the fuel storage to the chimney and makes a good guidance when making a review of a biofuel or incineration CHP-plant. Some of the measures can be eliminated immediately at review since they not are applicable or have already been done

  1. Introduction of Electrical System Simulation and Analysis Used in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Sang Hak; Jeong, Woo Sung

    2015-01-01

    The purpose of this paper is to introduce the simulation methods and tools to analyse and predict the performance of the electric power distribution system for nuclear power plants (NPPs) in Korea. Electrical System design engineers are to evaluate the load flow, bus voltage profiles, short circuit levels, motor starting, and fast bus transfer under various plant operating conditions and to verify the adequacy of power distribution System for a reliable power supply to plant loads under various disturbances which could jeopardize a safe and reliable operation of nuclear power plants. (authors)

  2. On-site electric power source facility for Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Oohara, T.

    1986-01-01

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  3. On-site electric power source facility for Japanese nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, T. [Incident/Failure Analysis and Evaluation Office, Nuclear Power Safety Information Research Centre, Nuclear Power Engineering Test Centre, 2nd Floor, Shuwa-Kamiyacho Bldg., 3-13, 4-Chome, Toranomon Minato-ku, Tokyo 105 (Japan)

    1986-02-15

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  4. Mutual influences of rated currents, short circuit levels, fault durations and integrated protective schemes for industrial distribution MV switchgears

    Energy Technology Data Exchange (ETDEWEB)

    Gaidano, G. (FIAT Engineering, Torino, Italy); Lionetto, P.F.; Pelizza, C.; Tommazzolli, F.

    1979-01-01

    This paper deals with the problem of integrated and coordinated design of distribution systems, as regards the definition of system structure and parameters together with protection criteria and schemes. Advantages in system operation, dynamic response, heavier loads with reduced machinery rating margins and overall cost reduction, can be achieved. It must be noted that MV switchgears installed in industrial main distribution substations are the vital nodes of the distribution system. Very large amounts of power (up to 100 MW and more) are conveyed through MV busbars, coming from Utility and from in-plant generators and outgoing to subdistribution substations, to step-down transformers and to main concentrated loads (big drivers, furnaces etc.). Criteria and methods already studied and applied to public distribution are examined to assess service continuity and economics by means of the reduction of thermal stresses, minimization of disturbances and improvement of system stability. The life of network components depends on sizing, on fault energy levels and on probability of fault occurrence. Constructional measures and protection schemes, which reduce probability and duration of faults, are the most important tools to improve overall reliability. The introduction of advanced techniques, mainly based on computer application, not only allows drastic reduction of fault duration, but also permits the system to operate, under any possible contingency, in the optimal conditions, as the computer provides adaptive control. This mode of system management makes it possible to size network components with reference to the true magnitude of system quantities, avoiding expensive oversizing connected to the unflexibility of conventional protection and control schemes.

  5. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  6. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  7. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  8. Scheduling the maintenance of gaseous diffusion and electric power distribution plants

    International Nuclear Information System (INIS)

    Chauvet, D.

    1990-01-01

    A computer aided scheduling applied to the maintenance of a uranium enrichment plant is presented. The plant exploits gaseous diffusion and electric power distribution plants, for which the operating conditions must be satisfied. The management and the execution of the maintenance actions are computer aided. Concerning the techniques, the cost, the safety and the scheduling actions were optimized [fr

  9. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  10. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  11. Impacts from new 50 MW wind power plant - Bogdnaci on the price of electrical energy in Macedonia

    International Nuclear Information System (INIS)

    Minovski, D.; Sarac, V.; Causevski, A.

    2012-01-01

    The paper presents the impact from the new planned wind power plant Bogdnaci on the price for the end users of electrical energy in Republic of Macedonia. In the next years, 50 MW wind power will be installed in the Macedonian electric power system. Production of electricity from wind power plants is unpredictable and of stochastic nature i.e. depends on the weather or the wind speed at the appropriate locations. Output of wind power plants is changing every minute, thus changing in the hourly level can be from 0 - 100%, even several times depending on the occurrence of winds. Changes in output of wind power plants, leads to increased demand for operational reserve in a power system. Preferential price of electrical energy from the wind power plants and increased operational reserve in the electric power system will have big impact on the final price of electrical energy in Republic of Macedonia. (Authors)

  12. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  13. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  14. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  15. Electricity-market price and nuclear power plant shutdown: Evidence from California

    International Nuclear Information System (INIS)

    Woo, C.K.; Ho, T.; Zarnikau, J.; Olson, A.; Jones, R.; Chait, M.; Horowitz, I.; Wang, J.

    2014-01-01

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market price data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010–December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation. - Highlights: • Japan's disaster led to calls for shutting down existing nuclear plants. • We perform a regression analysis of California's real-time electricity-market prices. • We estimate that the San Onofre plant shutdown has raised the market prices by $6/MWH to $9/MWH. • The price increases could be offset by demand reduction and renewable generation increase

  16. Nuclear electric power plants. [Journal, in Russian]. Atomnye elektricheskie stantsii

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, L M [ed.

    1980-01-01

    Separate articles are concerned with experience gained in the planning, exploitation, and adjustment of nuclear power plants with channel reactors. An examination is made of measures to be taken for assuring equipment reliability for nuclear power plants during the planning stage. Also examined is the experience gained in the operation of the pilot plants of the Kursk and Chernobyl' nuclear power plants, and the Bilibin nuclear thermal electric power plant. Considerable attention is given to the reprocessing and disposal of radioactive waste, the quality control of metal ducts in nuclear power plants, and the development of methods and means of controlling technological processes and equipment. The journal is intended for engineering-technical personnel of power plants, power supply administrations, adjustment, repair, and planning organizations.

  17. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology.

    Science.gov (United States)

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-18

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

  18. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  19. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  20. Transformer Protection by Using FL Based Artificial Intelligent Buchholz Relay against Incipient Faults

    OpenAIRE

    SOUMYADEEP SAMONTO; SAGARIKA PAL; SUBRATA BANERJEE; BISHAL SARKAR

    2016-01-01

    Switchgear and Protection are the two vital terminology of Electrical power system. Normally the components of any switchgear needs better protection schemes to be set for a composite power system. Many explorers worked on artificial intelligent breaker but an indulgence of fuzzy theory is nevertheless very absent in case of buchholz relay. Here in this paper discussion has been drawn in favor of the Artificial Intelligent Buchholz (AIB) relay where inputs are level of transformer oil and ...

  1. Electric power plants and networks. Elektrische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Happoldt, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. Centralen; Oeding, D [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Zentralbereich Forschung und Entwicklung

    1978-01-01

    This book is itended for enginers working in the planning, construction and operation of plants to generate and distribute electric power; it is also a valuable aid for students of power engineering. This new edition places more emphasis on the presentation and calculation of three-phase current networks with the aid of symmetric components. The equations used for calculation are adapted to VDE regulations as far as possible.

  2. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  3. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  4. IMPROVED ALGORITHM FOR CALCULATING COMPLEX NON-EQUIPOTENTIAL GROUNDING DEVICES OF ELECTRICAL INSTALLATIONS TAKING INTO ACCOUNT CONDUCTIVITY OF NATURAL GROUNDINGS

    Directory of Open Access Journals (Sweden)

    K. A. Starkov

    2017-08-01

    Full Text Available Purpose. The method of natural concentrated groundings substitution by the set of electrodes taking them into account in the algorithm of electric characteristics calculation for complicated grounding connections of electric installation is offered. An equivalent model as a set of linear electrodes is chosen in accordance with two criteria: leakage resistance and potentials on the ground surface. Methodology. We have applied induced potential method and methods for computing branched electrical circuits with distributed parameters. Results. We have obtained the algorithm for calculating complex non-equipotential grounding connections, which makes it possible to obtain refined values of the potential distribution in the electric stations and substations with outdoor switchgear. Originality. For the first time, we have taking into account the conductivity of natural concentrated grounds by a set of vertical and horizontal electrodes based on equivalent electrical characteristics applied to a two-layer ground. Practical value. The using of the proposed calculation algorithm in the electric grids of JSC «Kharkivoblenergo» made it possible to determine the values of the potential distribution at short circuit in electrical substation taking into account the influence of the conductivity of natural concentrated groundings.

  5. Component fragility research program

    International Nuclear Information System (INIS)

    Tsai, N.C.; Mochizuki, G.L.; Holman, G.S.

    1989-11-01

    To demonstrate how ''high-level'' qualification test data can be used to estimate the ultimate seismic capacity of nuclear power plant equipment, we assessed in detail various electrical components tested by the Pacific Gas ampersand Electric Company for its Diablo Canyon plant. As part of our Phase I Component Fragility Research Program, we evaluated seismic fragility for five Diablo Canyon components: medium-voltage (4kV) switchgear; safeguard relay board; emergency light battery pack; potential transformer; and station battery and racks. This report discusses our Phase II fragility evaluation of a single Westinghouse Type W motor control center column, a fan cooler motor controller, and three local starters at the Diablo Canyon nuclear power plant. These components were seismically qualified by means of biaxial random motion tests on a shaker table, and the test response spectra formed the basis for the estimate of the seismic capacity of the components. The seismic capacity of each component is referenced to the zero period acceleration (ZPA) and, in our Phase II study only, to the average spectral acceleration (ASA) of the motion at its base. For the motor control center, the seismic capacity was compared to the capacity of a Westinghouse Five-Star MCC subjected to actual fragility tests by LLNL during the Phase I Component Fragility Research Program, and to generic capacities developed by the Brookhaven National Laboratory for motor control center. Except for the medium-voltage switchgear, all of the components considered in both our Phase I and Phase II evaluations were qualified in their standard commercial configurations or with only relatively minor modifications such as top bracing of cabinets. 8 refs., 67 figs., 7 tabs

  6. Preparing for electrical-system startup at a nuclear power plant

    International Nuclear Information System (INIS)

    Boissy, G.J.

    1977-01-01

    Experience at St Lucie Unit No. 1 nuclear power plant regarding organization for electrical startup is related and analyzed. Problems of staffing, organization procedures, test standard development, and implementation of the program are considered

  7. Influence of Egyptian electrical grid and nuclear power plants under disturbances based on PSS/E

    International Nuclear Information System (INIS)

    Shaat, M. K.; Kotb, S. A.; Mahmoud, H. M.

    2012-12-01

    The capacity of the electrical power system in Egypt will increase rapidly in the coming twenty years. In year 2018, power generation will be connecting to the Egyptian electrical grid. Consequently, the interaction of nuclear power plants and other systems become a very important issue, and a detailed nuclear power model for the medium-term and long-term power system stability should be developed. However, there is no nuclear unit model that can describe the detailed characteristics of the nuclear unit in the available commercial power system simulation software. In this paper, a detailed pressurized water reactor (PWR) nuclear unit model for medium-term and long-term power system transient stability is proposed. The model is implemented by a user defined program in PSS/E through PSS/E Mat lab Seamanlike interface. Also this paper proposes a design of power plant rector controller for the nuclear power plant. This model can be used to analyze the difference influences between the Egyptian electrical grid and nuclear power plants for examples transient fault on electrical grid and outage of nuclear power plant. The simulation results show that the proposed model is valid. (Author)

  8. Nuclear power plants electrical retrofitting for cost effectiveness, reliability and operating efficiency

    International Nuclear Information System (INIS)

    Ciufu, L.; Popescu, M. O.

    2016-01-01

    In the context of continuous fast growing of the energy demand the current power plants retrofitting concept may represent an important step in the emission reduction, being able to offer in the same time a maximum operating efficiency. This desideratum can be obtained by implementing a rigorous energy management plan, based on an increased energy production capacity of non-pollutant electrical power plants and future-oriented frame on extending their lifetime operation. This management is focused on using state-of-art electronic, electrical and industrial control equipments, which can represent a real key factor. Thus, in this paper an analysis of the electrical system retrofitting is presented. As a part of this research the authors propose and simulate ambitious ways to upgrade actual control and command of the electrical operating systems, by promoting variable speed for large pumps and also computer software, as SCADA, for an intelligent control and monitoring of these studied processes. (authors)

  9. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  10. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  11. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  12. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  13. Life Cycle Assessment of Producing Electricity in Thailand: A Case Study of Natural Gas Power Plant

    Directory of Open Access Journals (Sweden)

    Usapein Parnuwat

    2017-01-01

    Full Text Available Environmental impacts from natural gas power plant in Thailand was investigated in this study. The objective was to identify the hotspot of environmental impact from electricity production and the allocation of emissions from power plant was studied. All stressors to environment were collected for annual natural gas power plant operation. The allocation of environmental load between electricity and steam was done by WRI/WBCSD method. Based on the annual power plant operation, the highest of environmental impact was fuel combustion, followed by natural gas extraction, and chemical reagent. After allocation, the result found that 1 kWh of electricity generated 0.425 kgCO2eq and 1 ton of steam generated 225 kgCO2eq. When compared based on 1GJ of energy product, the result showed that the environmental impact of electricity is higher than steam product. To improve the environmental performance, it should be focused on the fuel combustion, for example, increasing the efficiency of gas turbine, and using low sulphur content of natural gas. This result can be used as guideline for stakeholder who engage with the environmental impact from power plant; furthermore, it can be useful for policy maker to understand the allocation method between electricity and steam products.

  14. How to verify lightning protection efficiency for electrical systems? Testing procedures and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [DEHN and SOEHNE, Neumarkt (Germany)], Emails: Josef.Birkl@technik.dehn.de, Peter.Zahlmann@technik.dehn.de

    2007-07-01

    There are increasing numbers of applications, installing Surge Protective Devices (SPDs), through which partial lightning currents flow, and highly sensitive, electronic devices to be protected closely next to each other due to the design of electric distribution systems and switchgear installations which is getting more and more compact. In these cases, the protective function of the SPDs has to be co-ordinated with the individual immunity of the equipment against energetic, conductive impulse voltages and impulse currents. In order to verify the immunity against partial lightning currents of the complete system laboratory tests on a system level are a suitable approach. The proposed test schemes for complete systems have been successfully performed on various applications. Examples will be presented. (author)

  15. Ageing of polymers in electrical equipment used in nuclear power plants

    International Nuclear Information System (INIS)

    Clavreul, R.

    1999-01-01

    Ageing of polymers in electrical equipment used in nuclear power plants has been studied in (Electricite de France) EDF for several years. The objective of such studies is to predict the polymers lifetime in normal and accidental conditions. The prediction of polymers behaviour in normal conditions requires accelerated tests in order to get rapidly experimental results. Experimental conditions must carefully be chosen and representative of real ageing. Accelerated ageing is usually done by applying higher temperature, (dose) or dose rate. When such experiments are done, the effects of temperature, (dose) or dose rate are first determined. In a second step, experimental results are extrapolated to real conditions. To predict lifetime of polymers, the following recommendations have to be checked: in order to assume that accelerated tests are representative of normal ageing, the observed mechanisms in experiments must be the same as those in real conditions. For accidental conditions, the same tests as those described in standards can be applied to polymers. The simulation of any accident occurring just after the installation of electrical equipment in nuclear power plants is easy to manage: only the accidental test can be carried out on the electrical equipment. To determine whether polymers in electrical equipment would have a good behaviour or not when an accident would occur after a period of several years or decades in normal conditions in a nuclear power plant, the accidental test must be done on aged materials; their physical, mechanical and electrical characteristics must be relevant to aged polymers in normal conditions. In order to detect any evolution of properties during ageing, the electrical, mechanical or chemical tests have to be proceeded on polymers samples. The characterisation tests which are applied on non-aged and aged samples depend on the nature of the polymers, their application in electrical equipment and their environment. The IEC 544

  16. Inspection maintenance and planning of shutdown in thermal electric generating plants

    International Nuclear Information System (INIS)

    Dezordi, W.L.; Correa, D.A.; Kina, M.

    1984-01-01

    The schedule shutdown of an industrial plant and, more specifically, of an electrical generating station, is becoming increasingly important. The major parameters to be taken into account for the planning of such a shutdown are basically of economic-financial nature such as costs of the related services (materials, equipment, manpower, etc), loss of revenue caused by the station's shutdown as well as by the station availability, and other requirements expected from it by the Load Dispatch and consumers. Improving the equipment's performances and the station's availability are the fundamental objectives to be strived for. The authors present in this paper, in an abridged form, the planning tools used for thermal electric generating plants shutdowns for inspections, maintenance and design changes implementation. (Author) [pt

  17. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  18. Ageing management of electrical and C/I-systems in power plants of RWE Power

    International Nuclear Information System (INIS)

    Hentschel, Reinhard; Kochs, Wolfgang; Zander, Ralf-Michael

    2010-01-01

    Maintenance and enhancement of the availability and safety of fossil-fired and nuclear power plants currently in operation are increasing in importance with plants' age. The paper deals with issues related to e.g. the operation of C and I-systems at the end of production and with the challenges involved in their replacement during plant operation and describes the various measures taken for monitoring electrical equipment. Taking the improvement of the existing protection systems against internal arcs in electrical bus bars as an example, practical approaches for ageing management are described. In addition, the strategic approaches will be explained that were developed within a VGB working group due to the introduction of a new regulation on ageing management in nuclear power plants. (orig.)

  19. Probabilistic Analysis of Electrical Energy Costs: Comparing Production Costs for Gas, Coal and Nuclear Power Plants. Annex III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The increase in electricity demand is linked to the development of the economy and living standards in each country. This is especially true in those developing countries in which electricity consumption is far below the average of industrialized countries. To satisfy the increased demand for electricity, it is necessary to build new electrical power plants that could, in an optimum way, meet the imposed acceptability criteria. The main criteria are the potential to supply the required energy and to supply it with minimum or, at least, acceptable costs and environmental impacts, to satisfy the licensing requirements and be acceptable to the public. The main competitors for electricity production in the next few decades are fossil fuel power plants (coal and gas) and nuclear power plants. Power plants making use of renewables (solar, wind, biomass) are also important, but due to limited energy supply potential and high costs, can only be a supplement to the main generating units. Large hydropower plants would be competitive under the condition that suitable sites for the construction of such plants exist. Unfortunately, both in Croatia and in the rest of central Europe, such sites are scarce.

  20. Defence in depth for electric power supplies in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Gupta, S.K.; Srivasista, K.; Solanki, R.B.

    2009-01-01

    The purpose of electric power supply system in a nuclear power plant is to supply and distribute reliable electric power to safety related systems and systems important to safety in various forms, arrangements and combinations of redundancy and diversity in order to perform safety functions required during operational states and design basis events (DBE) such as shutting down the reactor, maintaining the reactor in safe shutdown state, containment isolation and reactor core cooling preventing significant release of radioactive material to the environment. Hence the design basis of electric power supply systems includes identification of DBE that require power supplies, adequacy of redundancy and diversity, environmental conditions to which electric equipment are qualified, identification of loads requiring interrupted and uninterrupted power supplies, time sequence in which emergency loads are to be supplied in case of interruption, provisions for maintaining and testing, consideration for minimum duration capability of emergency power supplies during station blackout etc. Based on operation experience, results of probability safety assessment and certain weaknesses noticed in defence in depth of electric power supply systems, several continuous design improvements have been made in Indian nuclear power plants during operating phase and life extension. Instituting various tests during initial commissioning, subsequent operation and life extension has ensured high standards of performance of electric power supplies. Some of these aspects are highlighted in this paper

  1. Investments into plant replacements in a deregulated electricity market

    International Nuclear Information System (INIS)

    Elsaesser, R.F.

    2004-01-01

    The amendment to the Power Energy Act in April 1998 marked the complete deregulation of the electricity market in Germany. The debate is now beginning about ways and means to ensure new capital investments safeguarding the continuity of supply. The present power plant park has been characterized by a broad mix of primary energy sources and, admittedly, by some overcapacity as well. However, any further reduction of generating capacity will be at the expense of the continuity of supply. Although electricity prices in Germany are on the rise again after a clear drop, they have not yet reached a level sufficient for new investments. Only subsidized power plants are recovering their full costs. The question is for how long our economy is going to sustain this state of affairs. The balance among the energy policy goals of continuity of supply, environmental performance, and economic efficiency has been upset. In the period up until 2020, Germany alone will require approx. 37,000 MW of new generating capacity. Renewable and decentralized technologies alone do not constitute a sufficient and reliable alternative. However, there is the matter also of the practical feasibility of building the new power plants required. No experience is as yet available with re-investment cycles in the deregulated electricity market. Options are needed for a diversified structure of primary energy sources. There must be neither political definition of generating technologies nor exaggerated goals of environmental protection and climate protection. We advocate the free system of market prices and free access to the market. Major players able to guarantee sufficient security of investments are needed to cope with the challenges ahead. New investments with a life of thirty to forty years require a modicum of stability and realism in political framework conditions. (orig.)

  2. Development of management systems for nuclear power plant of Hokuriku Electric Power Company

    International Nuclear Information System (INIS)

    Nakamura, Tatsuaki; Hasunuma, Junichi; Suzuki, Shintaro

    2009-01-01

    Hokuriku Electric Power Company has been operating the Shika Nuclear Power Station that it constructed in Shika city, Ishikawa prefecture, for over 15 years since bringing Unit 1 of this plant online in July 1993. In addition to electricity generation, maintenance and inspection tasks constitute a big part of operating a large-scale nuclear power plant, and in recent years, problems at power stations in the nuclear power industry have led to several revisions of nationally regulated maintenance and inspection systems. This paper describes the background, objectives, development method, and features of the Maintenance Management System and Maintenance History Management System that make effective use of information technology to promote safer and more efficient maintenance work at large-scale nuclear power plants. (author)

  3. Electric current precedes emergence of a lateral root in higher plants.

    Science.gov (United States)

    Hamada, S; Ezaki, S; Hayashi, K; Toko, K; Yamafuji, K

    1992-10-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 muA.cm(-2) at the surface.

  4. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    Ortega C, R.F.; Martin del Campo M, C.

    2004-01-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  5. Acceptability analysis of technical-scale plants for electricity generation; Ansatz zur Akzeptabilitaetsanalyse grosstechnischer Anlagen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Katharina; Koch, Marco K. [Bochum Univ. (Germany). AG Reaktorsimulation und -sicherheit

    2013-03-15

    Public acceptance of technical-scale plants for electricity generation is an indispensable prerequisite for the long-term continuity of supply of electricity. Even though nuclear power in Germany continues to meet with particularly grave objections, this is no longer an exception. Problems associated with the rapidly declining willingness of the public to accept specific disadvantages connected with electricity generation are confronting not only nuclear, but also large fossil-fired and renewable-resource power plants. To investigate to what extent these objections based on subjective heuristics are justified, a model is developed for analyzing the objective acceptability of electricity-producing large power plants, which allows the assessment of their acceptability to be measured on the basis of quantitative analysis of the discrepancies between acceptability and acceptance and may serve as a tool for promoting public acceptance. (orig.)

  6. Virtual Power Plants as a Model for the Competitiveness of Small Manufacturers and Operators of Virtual Power Plants in Markets of Electricity and Gas

    International Nuclear Information System (INIS)

    Galic, T.; Tomsic, Z.

    2012-01-01

    Production of electricity from renewable energy sources and energy-efficient power sources to be connected to the electricity distribution network is still not competitive with electricity production from conventional sources of electricity. A powerful technological development of distributed energy sources and technologies for electricity storage has reduced their production costs, production costs of electricity from distributed energy sources, the costs of simultaneous production of electricity and thermal energy from cogeneration distributed energy sources and thus has facilitated their increased use in practice. It also allows them to interconnect systems such as virtual power plants in order to achieve full economic feasibility of their use. Current electricity and gas customers, now also in the role of small power producers, interconnected by virtual power plants operators, in addition to buying electricity and gas on retail markets for electricity and gas, will be able to sell electricity and new energy services also on wholesale electricity markets. Development and application of new distributed technologies will enable the production of new quantities of electricity which will increase the competitiveness of electricity producers, competitiveness of electricity suppliers of end-customers and elasticity of supply and demand in the electricity market. These processes will also increase the efficiency of the entire systems of electricity supply and of the gas supply systems.(author)

  7. PROMSYS, Plant Equipment Maintenance and Inspection Scheduling

    International Nuclear Information System (INIS)

    Morgan, D.L.; Srite, B.E.

    1986-01-01

    1 - Description of problem or function: PROMSYS is a computer system designed to automate the scheduling of routine maintenance and inspection of plant equipment. This 'programmed maintenance' provides the detailed planning and accomplishment of lubrication, inspection, and similar repetitive maintenance activities which can be scheduled at specified predetermined intervals throughout the year. The equipment items included are the typical pumps, blowers, motors, compressors, automotive equipment, refrigeration units, filtering systems, machine shop equipment, cranes, elevators, motor-generator sets, and electrical switchgear found throughout industry, as well as cell ventilation, shielding, containment, and material handling equipment unique to nuclear research and development facilities. Four related programs are used to produce sorted schedule lists, delinquent work lists, and optional master lists. Five additional programs are used to create and maintain records of all scheduled and unscheduled maintenance history. 2 - Method of solution: Service specifications and frequency are established and stored. The computer program reviews schedules weekly and prints, on schedule cards, instructions for service that is due the following week. The basic output from the computer program comes in two forms: programmed-maintenance schedule cards and programmed-maintenance data sheets. The data sheets can be issued in numerical building, route, and location number sequence as equipment lists, grouped for work assigned to a particular foreman as the foreman's equipment list, or grouped by work charged to a particular work order as the work-order list. Data sheets grouped by equipment classification are called the equipment classification list

  8. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  9. Report on assessment of electrical equipment aging for nuclear power plant (AEA), FY2011

    International Nuclear Information System (INIS)

    Minakawa, T.

    2012-11-01

    Electrical components with safety function used in nuclear power plants, such as cables, medium voltage motors, low voltage motors, electrical penetration of reactor containment vessel, motor operated valve, pressure transmitter, temperature detector, etc, are required to be operational under the environment of design basis event (DBE) to shut down a reactor safely and to prevent radioactive materials from being leaked to outside. Polymer materials used as parts of these equipments are gradually degraded by thermal and radiation environment in the normal operation. In addition, the degradation is thought to progress rapidly when they are exposed to the DBE environment and a decrease in performance of the equipment may be caused. From these reason, electrical components with safety function are tested for long-term integrity in accordance with IEEE standard. However, conventional method of accelerated aging which assumes thermal and radiation aging during normal operation is said to have uncertainty in simulating the degradation given in actual operating environment. To address this issue, the project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) was carried out and 'Guide for Cable Environmental Qualification Test for Nuclear Power Plant' was developed. The need for developing an aging evaluation method for other electrical and I and C components was pointed out in the 'Strategy maps 2007', prepared by the cooperation among government, industry and academia. Under the circumstance, the project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008. In this study, parts of electrical and I and C component with safety function used in nuclear power plant whose aging needs to be considered are employed as specimens, and their aging characteristics under the thermal environment and the combined radiation and thermal environment are obtained (herein after referred to as 'critical part test

  10. Steelmaking plants: towards lower energy consumption and lower CO2 production using more electricity

    International Nuclear Information System (INIS)

    Nicolle, R.

    2010-01-01

    Production processes of integrated steel plants, mostly based on coal as an energy source, produce about 2 tons of CO 2 per ton of steel. As specific CO 2 production has to be decreased by 20% in the mid-term (2020), immediate action is required to further decrease the specific energy consumption. The integrated plant is not energy self-sufficient as extra electricity must be bought from outside, but on the other hand, produces an excess of process gas that has to be used within the plant. Optimisation of the use of the internally produced gases is a key issue as either they are burned at the power plant with a conversion yield to electricity of about 40% and often much lower, or might be valued in the plant internal heat exchangers with a much higher efficiency such as ∼90% in the hot stoves or ∼65% or more in the present reheating furnaces. This paper shows that using the high-value coke oven gas as a chemical reactant (for DRI production) leads to significant extra metal production. From a global viewpoint, this extra metal production is almost carbon-free, as it requires only electricity for its manufacture. (author)

  11. 78 FR 41492 - Buy America Policy

    Science.gov (United States)

    2013-07-10

    ... equipment, such as street sweepers, backhoes, refuse trucks, dump trucks, graders, etc.? Should the FHWA... marine diesel engines, electrical switchboards and switchgear, electric motors, pumps, ventilation fans... assembly is the standard for a vehicle, should the FHWA be concerned about Buy America when an engine is...

  12. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  13. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    Science.gov (United States)

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  15. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  16. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  17. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  18. Hazardous Waste Cleanup: General Electric - Auburn Plant in Auburn, New York

    Science.gov (United States)

    GE purchased the property at Genesee Street in 1951 and constructed a manufacturing plant that produced a variety of electrical components including radar equipment, printed circuit boards and high voltage semiconductors. In January 1986, Powerex, Inc.,

  19. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  20. Evaluation Of Electricity Production Cost Of Commercial Nuclear Power Plant Models

    OpenAIRE

    DÖNER, Nimeti

    2017-01-01

    The level of the development of countries is being measured by thecountry’s quantity of production and consumption energy. Concerning Turkey,according to an energy report of The World Energy Council Turkish NationalCommittee in order to meet the electricity needs of the country in 2010, there should befounded a 2000 MW(e) capacity nuclear power plant. For the nuclear electric powerplant considered to be founded in Turkey, three types of commercial reactor models,that are Pressiued Water React...

  1. The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria

    International Nuclear Information System (INIS)

    Brand, Bernhard; Boudghene Stambouli, Amine; Zejli, Driss

    2012-01-01

    This paper examines the effects of an increased integration of concentrated solar power (CSP) into the conventional electricity systems of Morocco and Algeria. A cost-minimizing linear optimization tool was used to calculate the best CSP plant configuration for Morocco's coal-dominated power system as well as for Algeria, where flexible gas-fired power plants prevail. The results demonstrate that in both North African countries, storage-based CSP plants offer significant economic advantages over non-storage, low-dispatchable CSP configurations. However, in a generalized renewable integration scenario, where CSP has to compete with other renewable generation technologies, like wind or photovoltaic (PV) power, it was found that the cost advantages of dispatchability only justify CSP investments when a relatively high renewable penetration is targeted in the electricity mix. - Highlights: ► Market model to optimize CSP plant configuration in North African power systems. ► Value of storage-based CSP plants compared to non-dispatchable configurations: 28–55 €/MWh. ► Assessment of Morocco's and Algeria's renewable electricity targets until 2030. ► CSP becomes more competitive with intermittent technologies when high RES-E quota are targeted.

  2. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.

    2011-01-01

    Full Text Available This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia. Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown that fixed PV solar plant power of 1 MW, solar modules of monocrystalline silicon yield 1130000 kWh power output, one-axis tracking PV solar plant yields 1420000 kWh, and dual-axis tracking PV solar plant yields 1450000 kWh of electricity. Electricity generated by the fixed PV solar plant could satisfy 86% of the annual needs for the electricity of the „Zdravljak“ hotel and the special „Novi stacionar“ hospital in Soko banja.

  3. VGB congress 'power plants 2003'. Generation gap - risk and challenge for the electricity market

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The VGB Congress 'Power Plants 2003' took place in Copenhagen from 15th to 17th September 2003. The motto of this year's Congress was 'Generation Gap - Risk and Challenge for the Electricity Market'. More than 800 participants took the opportunity for discussion and information in the plenary and technical lectures 'Market and Competition' and 'Technology, Operation and Environment'. Apart from the special features of the Scandinavian and Baltic electricity market, the main focus was on papers reflecting the situation of nuclear power (Finland), operating experience with new power plants, new materials for power plant construction, application of renewables and issues of climate protection. The Congress was again rounded off by technical visits and a side programme. (orig.) [de

  4. Marginal cost pricing for coal fired electricity in coastal cities of China: the case of Mawan Electricity Plant in Shenzhen City, China.

    Science.gov (United States)

    Zhang, Shi-Qiu; Duan, Yan-Xin

    2003-05-01

    By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO2, NO(x), and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate,NO(x), and SO2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well an emission trading arrangements.

  5. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  6. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  7. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  8. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  9. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  10. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  11. Electric boilers for nuclear power plant in Liebstadt

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feed water is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors. (JIW)

  12. Electric boilers for nuclear power plant in Liebstadt

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-29

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feedwater is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors.

  13. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  14. Thermic solar plants for the production of electricity in Mexico: present and future

    International Nuclear Information System (INIS)

    Almanza, R.

    1990-01-01

    During the last decade, there are have been some important achievements in generating electricity using solar concentrators. The Instituto de Ingenieria, of the Universidad Nacional Autonoma de Mexico (UNAM), has started the design and construction of solar thermic plants for generating electricity , capable of reaching 1 Kw and 10 Kw. The Instituto continues developing the research and testing of new materials, because this way of generating electricity has become economically feasible: besides, it constitutes a non polluting alternative. (Author)

  15. Added value by rule IEC61850. Modernizing the electrical protection of Gundremmingen nuclear power plant

    International Nuclear Information System (INIS)

    Hoetzel, A.; Willems, D.; Maier, K.L.; Herrmann, H.J.; Einsiedler, G.

    2006-01-01

    After many years in operation the large power plant generating units B and C at Gundremmingen nuclear power plant are due for inspection and maintenance, which also requires modernizing the electrical protection. Unlike the construction of new power plants, additional constraints apply to modernization in existing plants. The new solution has to fit as seamlessly as possible into the existing units, such as signaling systems with their multitude of signaling contacts and printers, or the connection to the power plant automation system. Apart from purely technical requirements, economic factors such as short standstill times, limited budgets or phased conversions also influence the choice of a suitable solution. Planning, construction and commissioning of the electrical generating unit protection was implemented by the Secondary Systems Technology Center, a technical department of RWE-Rhein-Ruhr Netzservice GmbH, in coordination with the operator. (orig.)

  16. Analysis of existing structure and emissions of wood combustion plants for the production of heat and electricity in Bavaria

    International Nuclear Information System (INIS)

    Joa, Bettina

    2014-01-01

    This work deals with the detailed analysis of the existing structure of all Bavarian wood burning plants for the generation of heat and electricity as well as the determination of the resulting emission emissions in 2013. The number of wood burning plants in the single-chamber fireplaces, wood central heating and wood-fired heating plants which are in operation in the year 2013 were determined, and how many plants are existing in the various areas like pellet stoves, traditional ovens, wood-burning fireplace, pellet central heating systems, wood chips central heating systems, fire-wood central heating systems, wood combined heat and power plant (electricity and heat) and wood power plants (heat). In addition, the regional distribution of the wood burning plants in the Bavarian governmental districts is investigated as well as the type and amount of energy produced by them (heat, electricity). [de

  17. The effect of plant reliability improvement in the cost of generating electricity

    International Nuclear Information System (INIS)

    Nejat, S.; Sanders, R.C.; Tsoulfanidis, N.

    1982-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant, as a result of improving the availability of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel series system having components with failure and repair rates distributed exponentially in time. The method has been applied to different subsystems, systems, and the secondary loop of a plant as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal allocation of spare parts to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utility will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously

  18. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  19. Pre-feasibility study for an electric power plant based on rice straw. [Mali

    Energy Technology Data Exchange (ETDEWEB)

    Fock, F. [Ea Energy Analysis, Copenhagen (Denmark); Nygaard, I. [Technical Univ. of Denmark. DTU Management Engineering, UNEP Risoe Centre on Energy, Climate and Sustainable Development, Roskilde (Denmark); Maiga, A.; Kone, B.; Kamissoko, F.; Coulibaly, N.; Ouattara, O.

    2012-11-15

    The main objective is to make a first evaluation regarding if it's technically possible, economically viable, sustainable and recommendable to build a rice straw/hulls fired power plant in Niono in Mali. Based on the available resource of rice straw and the possibilities for connecting to the grid it has been chosen to analyse a 5 MW power plant in the project. For technical reasons the rice straw should be the main fuel, but rice hulls can be used for co-firing. Up to around 20% of the fuel in the plant can be rice hulls instead of rice straw. A number of different biomass power production technologies have been evaluated in the project. This includes: 1) Grate fired boiler. 2) Bubbling fluidised bed. 3) Circulating fluidised bed. 4) Dust fired boiler. 5) Gasification. 6) Stirling engine. 7) Organic Rankine Cycle. Grate firing is the most relevant technology in this case, due to the fuel, the size of the power plant, the demand for electricity only and not heat, the demand for a robust and well proven technology. For a grate fired plant a calculation of the thermodynamic process of the power plant has been carried out in order to determine the electrical efficiency of the plant. The case consists of a 5 MW grate fired power plant with steam turbines and air cooled condenser resulting in an efficiency of 24.6% at full load (20% as yearly average). Investment costs and costs for O and M have been assumed based on experience from Danish power plants but adjusted for local conditions in Mali. The costs for collecting and transporting the rice straw and for the ash disposal have been specifically estimated in this project. The average cost of capital has been estimated based on assumptions on equity, international loans and local loans/bank finance. Based on the investment, the cost of O and M, fuel, ash disposal and the financial assumptions, a cash flow analysis is made in order to calculate the power price resulting in a Net Present Value (NPV) of the

  20. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  1. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  2. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  3. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  4. Standard Technical Specifications, General Electric plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. This document Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  5. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  6. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  7. Investigation of practical use situation and performance for electric transient analysis programs in the U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2010-01-01

    The purposes of the present study are firstly to investigate the status of practical use of electric transient analysis programs used in U.S. nuclear power plants, which has been extracted as good examples from the information analysis of overseas troubles, and secondly to select a program to be recommended for use in implementing electric transient analysis in domestic nuclear power plants. In addition, to promote its practical use, a selected electric transient analysis program was tested by simulating the transient response during a load sequence test of an emergency diesel generator (EDG) in a domestic representative nuclear plant to evaluate its simulation accuracy by comparing its result with the measured plant data. The results obtained are as follows: (1) In U.S. nuclear power plants, simulations using electric transient analysis programs, such as ETAP, EMPT, etc., are widely performed, which contributed to improve the plant safety. (2) A selected transient analysis program EMTP was verified in its accuracy in terms of transient response of active power, current, voltage and frequency of the EDG during the load sequence test in a domestic representative nuclear power plant. (author)

  8. Bidding strategy for pumped-storage plant in pool-based electricity market

    International Nuclear Information System (INIS)

    Kanakasabapathy, P.; Shanti Swarup, K.

    2010-01-01

    This paper develops optimal bidding strategies for a pumped-storage plant in a pool-based electricity market. In the competitive regime, when compared to simple hydroelectric generator, profit of the pumped-storage plant is maximized by operating it as a generator when market clearing price is high and as a pump when the price is low. Based on forecasted hourly market clearing price, a multistage looping algorithm to maximize the profit of a pumped-storage plant is developed, considering both the spinning and non-spinning reserve bids and meeting the technical operating constraints of the plant. The proposed model is adaptive for the nonlinear three-dimensional relationship between the power produced, the energy stored, and the head of the associated reservoir. Different operating cycles for a realistic pumped-storage plant are considered and simulation results are reported and compared. (author)

  9. The role of nuclear power plants in the wholesale electricity market

    International Nuclear Information System (INIS)

    Alonso, J. c.; Alonso, J.; Gonzalez, A.; Gonzalez, R.

    2009-01-01

    The Spanish electricity market has been running foe eleven years and its rules and procedures have proven compatible with a safe and stable operation of the nuclear power plants, helped by a wide portfolio of technologies in the Spanish system. In the near future, two issues emerge as a potential threat: the increase in renewable (mainly wind) production and its volatility and the development of new network infrastructure around the plants owned by third parties. Stricter rules on network development and operation and greater respect to the plants operational needs have to be pushed forward by the industry to succeed in life extension programs. (Author)

  10. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  11. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  12. FleetPower: Creating Virtual Power Plants in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha); W. Ketter (Wolfgang); A. Gupta (Alok)

    2017-01-01

    textabstractElectric vehicles have the potential to be used as virtual power plants to provide reliable back-up power. This generates additional profits for carsharing rental firms, who rent vehicles by the minute. We show this by developing a discrete event simulation platform based on real-time

  13. Comparison of the General Electric BWR/6 standard plant design to the IAEA NUSS codes and guides

    International Nuclear Information System (INIS)

    D'Ardenne, W.H.; Sherwood, G.G.

    1985-01-01

    The General Electric BWR/6 Mark III standard plant design meets or exceeds current requirements of published International Atomic Energy Agency (IAEA) Nuclear Safety Standards (NUSS) codes and guides. This conclusion is based on a review of the NUSS codes and guides by General Electric and by the co-ordinated US review of the NUSS codes and guides during their development. General Electric compared the published IAEA NUSS codes and guides with the General Electric design. The applicability of each code and guide to the BWR/6 Mark III standard plant design was determined. Each code or guide was reviewed by a General Electric engineer knowledgeable about the structures, systems and components addressed and the technical area covered by that code or guide. The results of this review show that the BWR/6 Mark III standard plant design meets or exceeds the applicable requirements of the published IAEA NUSS codes and guides. The co-ordinated US review of the IAEA NUSS codes and guides corroborates the General Electric review. In the co-ordinated US review, the USNRC and US industry organizations (including General Electric) review the NUSS codes and guides during their development. This review ensures that the NUSS codes and guides are consistent with the current US government regulations, guidance and regulatory practices, US voluntary industry codes and standards, and accepted US industry design, construction and operational practices. If any inconsistencies are identified, comments are submitted to the IAEA by the USNRC. All US concerns submitted to the IAEA have been resolved. General Electric design reviews and the Final Design Approval (FDA) issued by the USNRC have verified that the General Electric BWR/6 Mark III standard plant design meets or exceeds the current US requirements, guidance and practices. Since these requirements, guidance and practices meet or exceed those of the NUSS codes and guides, so does the General Electric design. (author)

  14. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  15. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  16. Planning of maintenance of electrical equipment in nuclear plants/laboratories [Paper No.: VB-3

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Bhattacharyya, A.K.

    1981-01-01

    Satisfactory operating performance of electrical systems ensures continuous availability of power to the various plants and machinery in nuclear plant and laboratories. For effective optimal functioning of the electrical equipment and to reduce their down time, scheduled planning of maintenance to the equipment is essential. Maintenance of power plant, nuclear or fossil, and industrial plant and research laboratories demands essential ingredients such as right type of trained and motivated technical personnel, adoption of standard procedures for maintenance, adequate safety and protection for equipment, safety procedures adopted in the installation to prevent hazards to the workers, provision of adequate stores and inventories, facilities for quick repairs and testing of equipment and effective planning of procedures for their maintenance. While breakdown maintenance allows equipment to operate before it is repaired or replaced, preventive maintenance makes use of scheduled inspection and periodical equipment overhaul and has little value for predicting future continuous performances of equipment. The engineered maintenance is most advantageous and offers maximum operating time to reduce down time of the equipment while adding predictive testing technique to aid in determining the frequency of overhaul of equipment. The important checks to be conducted and preventive maintenance programme to be scheduled are discussed in this paper. The safety and reliable functioning of the electrical equipment depend on proper optimal design, selection of equipment, their installation, subsequent maintenance and strict compliance with safety regulations. (author)

  17. Industrial plant electrical systems: Simplicity, reliability, cost savings, redundancies

    International Nuclear Information System (INIS)

    Silvestri, A.; Tommazzolli, F.; Pavia Univ.

    1992-01-01

    This article represents a compact but complete design and construction manual for industrial plant electrical systems. It is to be used by design engineers having prior knowledge of local power supply routes and voltages and regards principally the optimum choice of internal distribution systems which can be radial or single, double ringed or with various network configurations, and with single or multiple supplies, and many or few redundancies. After giving guidelines on the choosing of these options, the manual deals with problematics relevant to suitable cable sizing. A cost benefit benefit analysis method is suggested for the choice of the number of redundancies. Recommendations are given for the choice of transformers, motorized equipment, switch boards and circuit breakers. Reference is made to Italian electrical safety and building codes

  18. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  19. A review of electric cable aging effects and monitoring programs for plant license renewal

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1999-01-01

    As commercial nuclear power plants approach the end of their original license period, some utilities are considering the possibility of license renewal. The requirements for applying for license renewal are specified in the License Renewal Rule, which is in Title 10 of the Code of Federal Regulations, Part 54 (10 CFR54). Among the requirements specified in the rule is the performance of an Integrated Plant Assessment (IPA) which identifies and lists structures and components subject to an aging management review. The intent of this requirement is to ensure that aging degradation will not adversely affect plant safety during the license renewal period. The aging management review includes an identification of the aging effects and monitoring programs for components within the scope of the rule. Among the components within the scope are electric cables since they are passive, long-lived components that are not replaced on a periodic basis. This paper examines the aging causes and effects of electric cables, along with the programs that are typically used to ensure that proper aging management practices are in place to monitor and mitigate the effects of aging on electric cables

  20. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  1. SF6 and the greenhouse effect

    International Nuclear Information System (INIS)

    Gjaerde, Anne Cathrine; Rein, Asgaut; Hegerberg, Rolf; Kulsetaas, John

    1997-01-01

    The gas SF 6 (sulfur hexafluoride) is much used as an insulation medium in electric switchgear and breakers. However, there has been some recent concern about the possible contribution of SF 6 to the global greenhouse effect. This report presents some collected facts about SF 6 emission. The concentration of SF 6 in the atmosphere is very low and will probably remain so until the end of the next century. Hence the contribution of SF 6 to the greenhouse effect is negligible. Most of the SF 6 emission comes from the magnesium and aluminium industries. In 1993, SF 6 emission from switchgear in the Norwegian distribution grid corresponded to only 0.2 per million of the CO 2 emission in Norway. But the quantity of SF 6 accumulated in electric switchgear is considerable. However, losing it to the atmosphere can be avoided by using recirculation or destruction systems for SF 6 in connection with maintenance and replacement of components. Norwegian climate policy aims at taking measures against SF 6 and other climate gases on a par with CO 2 . Taxation measures have been suggested for SF 6 . Atmospheric SF 6 does not influence the ozone layer. 3 refs., 8 figs

  2. Environment pollution with aluminium around a coalburning electric power plant

    International Nuclear Information System (INIS)

    Hermann, J.

    1997-01-01

    The experiments were carried out from November 1991 till November 1993 on the area surrounding an electric power plant within the circle of 20 km diameter and five geographical directions (N, S, SE, E, W). The results presented in this paper have indicated the threats caused by emissions of the power plant ashes and dusts. Mean aluminium content in soil has been multiply surpassed on the area studied. This must have as impact on fauna and flora. The distribution and intensity of pollution is determined first of all by the distance from the emitters and direction of prevailing winds. A part of aluminium contained in water soluble compounds can be distributed on large areas, what adds a lot to the threat to animals. That is why high chimneys do not solve the problem of pollution around big industrial plants. (author)

  3. Acceptance test report for project C-157 ''T-Plant electrical upgrade''

    International Nuclear Information System (INIS)

    Jeppson, L.A.

    1997-01-01

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ''Acceptance Test Proceedure for Project C-157 'T Plant Electrical Upgrade''' The test was completed and approved without any problems or exceptions

  4. Acceptance test report for project C-157 ``T-Plant electrical upgrade``

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, L.A.

    1997-08-05

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

  5. A deterministic model for the growth of non-conducting electrical tree structures

    International Nuclear Information System (INIS)

    Dodd, S J

    2003-01-01

    Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. In this paper a deterministic electrical tree growth model is described. The model is based on electrostatics and local electron avalanches to model partial discharge activity within the growing tree structure. Damage to the resin surrounding the tree structure is dependent on the local electrostatic energy dissipation by partial discharges within the tree structure and weighted by the magnitudes of the local electric fields in the resin surrounding the tree structure. The model is successful in simulating the formation of branched structures without the need of a random variable, a requirement of previous stochastic models. Instability in the spatial development of partial discharges within the tree structure takes the role of the stochastic element as used in previous models to produce branched tree structures. The simulated electrical trees conform to the experimentally observed behaviour; tree length versus time and electrical tree growth rate as a function of applied voltage for non-conducting electrical trees. The phase synchronous partial discharge activity and the spatial distribution of emitted light from the tree structure are also in agreement with experimental data for non-conducting trees as grown in a flexible epoxy resin and in polyethylene. The fact that similar tree growth behaviour is found using pure amorphous (epoxy resin) and semicrystalline (polyethylene) materials demonstrate that neither annealed or quenched noise, representing material inhomogeneity, is required for the formation of irregular branched structures (electrical trees). Instead, as shown in this paper, branched growth can occur due to the instability of individual discharges within the tree structure

  6. Electrical systems at the nuclear power plant of Laguna Verde after the event in Fukushima

    International Nuclear Information System (INIS)

    Lopez J, J. F.

    2016-09-01

    During the event at the nuclear power plant of Fukushima Daichii (Japan), the electrical systems were affected both Onsite and Offsite, which were lost for a long time with irreversible consequences. Therefore, the Mexican Regulatory Body known as the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has taken various actions to review the current capacity of the electrical systems at the nuclear power plant of Laguna Verde (NPP-LV) before an event beyond the design bases. The CNSNS made special inspections to the NPP-LV to verify the current capacity of the electrical systems of Ac and Dc; as a result of the inspections, requirements were generated that must be met to demonstrate that has the capacity to deal with events beyond the design bases. In addition, CNSNS has participated in the Ibero-American Forum to deal with resistance testing. Is important to note that prior to the event at the nuclear power plant of Fukushima, the NPP-LV had implemented 1) the project Extended Power Increase in both Units of the NPP-LV, and 2) the Generic Charter 2006-02, both issues are considered contributions in the robustness of electrical systems. But it is also important to mention that the US Nuclear Regulatory Commission will soon issue mitigation strategies for a Station Blackout event, which could involve new actions at nuclear power plants. Based on the aforementioned, the CNSNS concludes that all the actions being taken contribute to the strengthening of the NPP-LV electrical systems, in order to increase their reliability, safety and operation when these are required to deal with events beyond the design bases as the event occurred in Fukushima Daichii and avoid as far as possible, damage in the reactor cores of the NPP-LV. (Author)

  7. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  8. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  9. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  10. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-01-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  11. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  12. Thermodynamic and economic evaluation of co-production plants for electricity and potable water

    International Nuclear Information System (INIS)

    1997-05-01

    Within the framework of the IAEA's activities related to seawater desalination using nuclear energy, a need was identified for developing criteria and methodologies in order to facilitate comparative economic evaluations of nuclear and fossil fuelled energy sources for desalination and generation of electricity. The aspect of costing of electricity and potable water from co-production plants is of particular interest. In response to these needs, the IAEA carried out a study to establish methodologies for allocating costs to the two final products of co-production plants based on thermodynamic criteria and to enable economic ranking of co-production plant alternatives. This publication describes the methodologies and presents the results obtained from analyzing a reference case, taken as an example. This publication has been discussed and reviewed at a consultants meeting convened by the IAEA in September 1996 in Vienna. The methodologies have been incorporated in an EXCEL spreadsheet routine which is available upon request from the IAEA. The IAEA staff member responsible for this publication is L. Breidenbach of the Division of Nuclear Power and the Fuel Cycle. 30 refs, figs, tabs

  13. Study of Formosa's electrical offer for installing a commercial nuclear power plant

    International Nuclear Information System (INIS)

    Torino Araoz, Ines; Parera, Maria D.

    2011-01-01

    Within the specific agreement for the siting study of the CAREM nuclear power plant in Formosa Province, signed between the National Atomic Energy Commission and the Government of Formosa, a detailed study of electrical supply was conducted in order to analyze the requirements and the electricity supply as a result of its future installation. This topic is part of the analysis developed in the Level II of the site survey study. The analysis focuses on a plan for long-term projections from 2005 to 2030, using the IAEA’s MESSAGE model (Model for Energy Supply Strategy Alternatives and Their General Environmental Impacts). The existing electrical infrastructure and the plans for expansion of transmission and distribution lines, the generation technologies and the electricity flows with the provinces and neighboring countries have been taken into account. The study was based on the evaluation of two site scenarios based on the availability of infrastructure in the province and the conclusions obtained in the Level I of the siting study. The modelling results indicate that the current situation that characterizes the Province as a net importer of electricity will be reversed due to the operation of the nuclear plant since 2019. However, it is important to note that to keep Formosa’s feature as an electricity exporter from the year 2026, according to the less favorable scenario (highest demand), ongoing energy planning and investment in the province will be done. (author) [es

  14. Report of the national committee on the evaluation of special water releases for electric power plants

    International Nuclear Information System (INIS)

    2004-01-01

    During summer 2003, because of high temperatures monitored in french rivers and to guarantee the electric power supply in France, the government authorized some power plants of EDF to depart from the rules normally applied in terms of release temperatures of cooling water in rivers. This report presents the main observations realized by the Committee responsible of the electric power plants control on the ecological impacts, the prevention means and the crisis management bound to the meteorological phenomena and the consequences on the water policy. (A.L.B.)

  15. Hazardous Waste Cleanup: General Electric – Main Plant Site in Schenectady, New York

    Science.gov (United States)

    GE purchased the property at Genesee Street in 1951 and constructed a manufacturing plant that produced a variety of electrical components including radar equipment, printed circuit boards and high voltage semiconductors. In January 1986, Powerex, Inc., ac

  16. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  17. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  18. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  19. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  1. Fire PRA requantification studies. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.

    1993-03-01

    This report describes the requantification of two existing fire probabilistic risk assessments (PRAs) using a fire PRA method and data that are being developed by the Electric Power Research Institute (EPRI). The two existing studies are the Seabrook Station Probabilistic Safety Assessment that was made in 1983 and the 1989 NUREG-1150 analysis of the Peach Bottom Plant. Except for the fire methods and data, the original assumptions were used. The results from the requantification show that there were excessive conservatisms in the original studies. The principal reason for a hundredfold reduction in the Peach Bottom core- damage frequency is the determination that no electrical cabinet fire in a switchgear room would damage both offsite power feeds. Past studies often overestimated the heat release from electrical cabinet fires. EPRI's electrical cabinet heat release rates are based on tests that were conducted for Sandia's fire research program. The rates are supported by the experience in the EPRI Fire Events Database for U.S. nuclear plants. Test data and fire event experience also removed excessive conservatisms in the Peach Bottom control and cable spreading rooms, and the Seabrook primary component cooling pump, turbine building relay and cable spreading rooms. The EPRI fire PRA method and data will show that there are excessive conservatisms in studies that were made for many plants and can benefit them accordingly

  2. 75 FR 11920 - General Electric Lighting-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers...

    Science.gov (United States)

    2010-03-12

    ... to the production of high intensity discharge lamps. The review shows that on August 24, 2007, a...-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers from Devore Technologies, Ravenna..., 2009, applicable to workers of General Electric Lighting-Ravenna Lamp Plant, Lighting Division...

  3. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Adams, Charles M.; Wood, David G.; Feehan, Daniel J.; Veal, Howard F.; Skeen, John H. III; Koenigs, Melvin J.; Lichtenfeld, David I.; Seretakis, Pauline J.

    1990-09-01

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  4. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  5. Pump selection and application in a pressurized water reactor electric generating plant

    International Nuclear Information System (INIS)

    Kitch, D.M.

    1985-01-01

    Various pump applications utilized in a nuclear pressurized water reactor electric generating plant are described. Emphasis is on pumps installed in the auxiliary systems of the primary nuclear steam supply system. Hydraulic and mechanical details, the ASME Code (Nuclear Design), materials, mechanical seals, shaft design, seismic qualification, and testing are addressed

  6. Tapping of electrical energy from plant leaves: Sansevieria trifasciata

    Energy Technology Data Exchange (ETDEWEB)

    Jain, K.A.; Hundet, A.; Abraham, S.; Nigam, H.L.

    Some investigations on the prospective use of plant leaves as useful battery material have been described in this paper. A bio-emf-device (BED) has been developed using the leaf of Sansevieria trifasciata. The current - voltage (I-V) and the current - power (I-power) characteristics have been measured. Kinetic studies have also been made taking different loads. The results based on these characteristics of BED indicate a close involvement of the bio-contribution in the generation of electric power. Some applications of using these BEDs are also suggested to operate low power electronic circuits.

  7. Electrical predictive maintenance at Trillo I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vicente, L. R.; Fernandez de la Mata, R.; Cano Gonzalez, J. C.

    1998-01-01

    An electrical predictive maintenance plan is currently being put into effect at Trillo I Nuclear Power Plant which is initially being applied to three types of equipment: motors, transformers and motor-driven valves. This paper describes the different phases considered in the implementation of the Predictive Maintenance Plan: study of existing techniques for such equipment (tangoδ, spectral analysis of stator current, chromatographic analysis of gases, spectral analysis of the axial stray magnetic flux, etc), study of the special characteristics of the electrical equipment at Trillo NPP, analysis of applicable techniques (characteristic parameters, alert-alarm values, experience with such techniques, etc), analysis of machine history records, study of the optimum preventive-predictive case, study of applicable frequencies and definition of the computerised predictive maintenance management tool. With the exception of the computerised predictive maintenance management applications which are presently being implemented, all the activities described above have been carried out on the three types of equipment mentioned. (Author)

  8. Ethics on the TEPCO bankruptcy, nuclear power plants and regulatory reform in the electric power industry

    International Nuclear Information System (INIS)

    Koga, Shigeaki

    2013-01-01

    Although regulatory reform in the electric power industry had been considered as part of social system reform like in the finance and communications to liberalize the market, there still continued to exist regional monopoly, integrated system for power generation, transmission and distribution, and lack of competition. The Fukushima accident showed such electric power system was unethical as social system compared to ordinary industries, because electric power company getting profit could not be prepared for nuclear damage liability and would burden third unrelated parties with risk. Electric power company should be forced to insure nuclear power plants for nuclear accidents. Otherwise restart of nuclear power plant operation should not be allowed. Nuclear power had been justified to be entitled grant or subsidy from the government for public good, which would be unfair to people. This article presented speeding-up scheme of Fukushima accident treatment leading to TEPCO bankruptcy and discussed measures against concerns or comments about bankruptcy procedures, major part of which might be mitigation of fund-raising fear by government support. At the proceeding of bankruptcy procedure including spinning off of separate companies, regulatory reform in the electric power industry could be taken in advanced. (T. Tanaka)

  9. Review of the Brunswick Steam Electric Plant Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Davis, P.R.; Satterwhite, D.G.; Gilmore, W.E.; Gregg, R.E.

    1989-11-01

    A review of the Brunswick Steam Electric Plant probabilistic risk Assessment was conducted with the objective of confirming the safety perspectives brought to light by the probabilistic risk assessment. The scope of the review included the entire Level I probabilistic risk assessment including external events. This is consistent with the scope of the probabilistic risk assessment. The review included an assessment of the assumptions, methods, models, and data used in the study. 47 refs., 14 figs., 15 tabs

  10. Electricity production of Slovakia

    International Nuclear Information System (INIS)

    Czodor, T.

    2003-01-01

    Here is examined the spatial structure of electric energy production divided in hydropower plants (through-flow and re-pumping), thermal power plants as the most expensive way of electric energy production and nuclear power plants where high difficulty and long-term realisation of construction projects and spent financial resources are pointed out. Work describes present structure of electric energy production and consumption and refers to alternative electric energy sources

  11. Requirements for low-cost electricity and hydrogen fuel production from multiunit inertial fusion energy plants with a shared driver and target factory

    International Nuclear Information System (INIS)

    Logan, G.B.; Moir, R.W.; Hoffmman, M.A.

    1995-01-01

    The economy of scale for multiunit inertial fusion energy (IFE) power plants is explored based on the molten salt HYLIFE-II fusion chamber concept, for the purpose of producing lower cost electricity and hydrogen fuel. The cost of electricity (CoE) is minimized with a new IFE systems code IFEFUEL5 for a matrix of plant cases with one to eight fusion chambers of 250 to 2000-MW (electric) net output each, sharing a common heavy-ion driver and target factory. Improvements to previous HYLIFE-II models include a recirculating induction linac driver optimized as a function of driver energy and rep-rate (average driver power), inclusion of beam switchyard costs, a fusion chamber cost scaling dependence on both thermal power and fusion yield, and a more accurate bypass pump power scaling with chamber rep-rate. A CoE less than 3 cents/kW(electric)-h is found for plant outputs greater than 2 GW(electric), allowing hydrogen fuel production by wafer electrolysis to provide lower fuel cost per mile for higher efficiency hydrogen engines compared with gasoline engines. These multiunit, multi-GW(electric) IFE plants allow staged utility plant deployment, lower optimum chamber rep-rates, less sensitivity to driver and target fabrication costs, and a CoE possibly lower than future fission, fossil, and solar competitors. 37 refs., 12 figs., 4 tabs

  12. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Science.gov (United States)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  13. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  14. Complex analysis of hazards to the man and natural environment due to electricity production in nuclear and coal power plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1990-01-01

    The report presents a complex analysis of hazards connected with electrical energy production in nuclear power plants and coal power plants, starting with fuel mining, through power plant construction, operation, possible accidents and decommissioning to long term global effects. The comparison is based on contemporary, proven technologies of coal fired power plants and nuclear power plants with pressurized water reactors. The hazards to environment and man due to nuclear power are shown to be much smaller than those due to coal power cycle. The health benefits due to electrical power availability are shown to be much larger than the health losses due to its production. (author). 71 refs, 17 figs, 12 tabs

  15. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  16. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  18. Impact of financial environmental incentives in the potential of electric power generation on the sugar cane plants

    International Nuclear Information System (INIS)

    Pinto, Claudio Plaza; Walter, Arnaldo

    1999-01-01

    The aim of the work is to present the electric power generation from biomass and the economic potential from sugar cane plants in Brazil. Computerized electricity costs simulation are presented and several financial incentives and external market effects are considered. The results are also presented and criticized

  19. Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro

    OpenAIRE

    Vladan Durković; Željko Đurišić

    2017-01-01

    This paper deals with a conceptual solution for the supply of a part of electrical energy for the needs of Aluminium Plant Podgorica (KAP) in Montenegro from a large Floating Photovoltaic Power Plant (FPPP), that would be installed on the nearby lake. The recommended FPPP, with an innovative azimuth angle control method and total installed power of 90 MWp, would consist of 18 power plants having an installed power of 5 MWp each. An analysis using the NREL solar insolation database ascertained...

  20. Analysis of technologies and economics for geothermal energy utilization of electric power plant

    International Nuclear Information System (INIS)

    Haijie, C.

    1993-01-01

    Geothermal energy -- it is a kind of heat energy which pertains to the internal heat of the earth. It carries the heat of the earth outward by the underground water of the rock section of the earth. Normally, the temperature of the thermal water is 50 degrees-140 degrees. During the 20th century, the rapid development of industry and agriculture quickly increased the need for large amounts of electric power. Now, although there are coal power plants, oil and nature gas power plants, hydroelectric power and nuclear power plants, all countries of the world attach importance to the prospect of geothermal power plants. It is the most economic (no consumption fuel) and safe (no pollution) power plant. (Present author considered that the chlorofluorocarbon refrigerants such as RII, R12, and etc. are not used). In 1904, Italy established the first geothermal power plant in the world. Soon afterwards, the U.S.A., Iceland, Japan, Russia, and New Zealand also established geothermal power plants. In 1970, China, North China, Jiang province and Guangdong province also established geothermal power plants. In 1975, the U.S.A. geothermal power plant capacity of 522mw was the first in the world

  1. Model-based investigation of the electricity market. Unit commitment and power plant investments

    International Nuclear Information System (INIS)

    Sun, Ninghong

    2013-01-01

    The German Federal Government published its energy concept in September 2010 with a description of the road into the era of renewable energies. Therefore, the future renewable energy installed in Germany is expected to consist mostly of wind and solar, which are subject to intermittency of supply and significant fluctuations. The growing portion of energy generation by fluctuating sources is turning to a big challenge for the power plant unit commitment and the investment decisions as well. In this thesis, a fundamental electricity market model with combined modeling of these two aspects is developed. This model is subsequently applied to the German electricity market to investigate what kind of power plant investments are indispensable, considering the steadily increasing portion of energy generation from fluctuating sources, to ensure a reliable energy supply in a cost-effective way in the future. In addition, current energy policy in Germany regarding the use of renewable energy and nuclear energy is analyzed.

  2. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  3. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  4. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  5. European utility requirements: common rules to design next LWR plants in an open electricity market

    International Nuclear Information System (INIS)

    Berbey, Pierre; Ingemarsson, Karl-Fredrik

    2004-01-01

    The major European electricity producers want to keep able to build new nuclear power plants and they believe 3. generation LWRs would be the most adapted response to their needs in the first decades of this century. Producing a common European Utility Requirement (EUR) document has been one of the basic tasks towards this objective. In this common frame, standardized and competitive LWR NPPs could be developed and offered to the investors. This idea is now well supported by all the other actors on the European electricity market: vendors, regulators, grid managers, administrations although in the competitive and unified European electricity market that is emerging, the electricity producers' stakes are more and more different from the other electricity business actors'. The next term objectives of the electricity producers involved in EUR are focused on negotiating common rules of the game together with the regulators. This covers the nuclear safety approaches, the conditions requested to connect a plant to a HV grid, as well as the design standards. Discussions are going on between the EUR organization and all the corresponding bodies to develop stabilized and predictable design rules that would meet the constraints of nuclear electricity generation in this new environment. Finally there cannot be competition without competitors. The EUR organization has proven to be the right place to establish trustful relationship between the vendors and their potential customers, through fair assessment of the proposed designs performance vs. the utility needs. This will be continued and developed with the main vendors present in Europe, so as to keep alive a list of 4 to 6 designs 'qualified', i.e. showing an acceptable score of non-compliance vs. EUR. (authors)

  6. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  7. Potential of Electric Power Production from Microbial Fuel Cell (MFC in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Directory of Open Access Journals (Sweden)

    Zaman Badrus

    2018-01-01

    Full Text Available Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media. Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  8. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  9. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    Science.gov (United States)

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  10. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Directory of Open Access Journals (Sweden)

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  11. Energized CO{sub 2} dry ice blast cleaning firmly grounded in the Canadian electrical industry

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, K.

    1999-02-01

    Development and use of energized carbon dioxide dry ice blast technology for cleaning electrical distribution system components by Oakville Hydro and Milton Hydro (both in Ontario) is discussed. The technology was developed by Alpheus Cleaning Technologies of California and Puget Sound Power and Light Company after a two-year study that commenced in 1991, and has been supplied in Canada by Wickens Industrial Ltd., since 1993 for cleaning various industrial and non-energized electrical applications in the automotive, printing , food processing and other manufacturing industries and hydro generating facilities. The unique cleaning dynamics of this technology allow for the removal of contaminants that are much more stubborn than those encountered in pad-mounted switchgear and other electrical apparatus. Dry ice pellets, by expanding to 400 times their solid state on impact, create a flushing action that helps to remove contaminants. No grit or solvents are required and the process is non-toxic. In using the process workers wear fire retardant clothing, 40 kV-Class 4 rubber gloves and full face shields. Dielectric tests are performed routinely to confirm the dielectric integrity of the spray wand components. A two stage inspection/trouble report is completed on every job. Use of this technology eliminates power interruptions to customers, improves system reliability and safety, reduces cleaning time to a minimum, and eliminated the need for reclamation of grit or solvent containment.

  12. [Measurement of chemical agents in metallurgy field: electric steel plant].

    Science.gov (United States)

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  13. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, M.; Hakola, M. [Teollisuuden Voima Oyj, F- 27160 Eurajoki (Finland)

    2012-07-01

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the

  14. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    International Nuclear Information System (INIS)

    Kosonen, M.; Hakola, M.

    2012-01-01

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the

  15. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  16. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  17. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    All electric and active mechanical equipment important to safety for nuclear power plants must be seismically qualified by testing, analysis, or combined analysis and testing. The general requirements for seismic qualification of electric and active mechanical equipment in nuclear power plants are delineated in Appendix S, 'Earthquake Engineering Criteria for Nuclear Power Plants,' to Title 10, Part 50, 'Domestic Licensing of Production and Utilization Facilities,' of the Code of Federal Regulations (10 CFR Part 50), item 52.47(20) of 10 CFR 52.47, 'Contents of Applications; Technical Information,' and Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' The United States Nuclear Regulatory Commission (NRC) issued Revision 2 of Regulatory Guide (RG) 1.100, 'Seismic Qualification of Electric and Mechanical for Nuclear Power Plants' in 1988, which endorsed, with restrictions, exceptions, and clarifications, Institute of Electrical and Electronics Engineers (IEEE) Standard 344-1987 'IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations,' for use in seismic qualification of both electric and mechanical equipment. In 2008, the staff at the NRC drafted Revision 3 of RG 1.100 to endorse, with restrictions, exceptions, and clarifications, the IEEE Std 344-2004 and the American Society of Mechanical Engineers (ASME) QME-1-2007 'Qualification of Active Mechanical Equipment Used in Nuclear Power Plants.' IEEE Std 344-2004 was an update of Std 344-1987 and ASME QME-1-2007 was an update of QME-1-2002. The major changes in IEEE Std 344-2004 and ASME QME-1-2007 include the update and expansion of criteria and procedures describing the use of experience data as a method for seismic qualification of Class 1E electric equipment (including I and C components) as well as active mechanical equipment. In this paper, the staff will compare the draft Revision 3 to

  18. Use of SP-100 thermometry technology to improve operation of electric power plants

    International Nuclear Information System (INIS)

    Shepard, R.L.

    1996-01-01

    Control of the nuclear power source for the SP-100 electric power supply required a thermometer that would be 1% accurate at temperatures to 1,100 C with no drift and unattended operation for more than 7 years in moderate radiation environment. Johnson noise thermometers had been developed by Oak Ridge National Laboratory originally for nuclear fuel centerline temperature measurements were believed to be able to provide this performance. They were then adapted for use in the SP-100. This Johnson noise technology also has direct application to two problems in the electric power plant: in situ calibration of conventional resistance thermometers installed in steam systems at temperatures up to about 560 C and measurement of combustion chamber temperatures up to bout 1,100 C. Both capacities require measurement of Johnson noise in harsh industrial environments. The final development and transfer of the SP-100 technology to the electric power sector is currently being supported by the Electric Power Research Institute (EPRI)

  19. Estimating the contribution of the private power plant on electricity market in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sonn, Yang-Hoon; Park, Jong-Bae

    2010-09-15

    This paper aims to measure the contribution of merchant power provider in electricity market in Korea. In spite of the restructuring process of last one decade, wholesale power market is still dominated by KEPCO and its subsidiaries. The share of the public-owned power plants is 89% in capacity, and 96% in generation. The participation of the private power shows very significant contribution in promoting the competition in the market in spite of the small share. The conclusion of the paper is that we need to enhance the competition among suppliers in order to build stable electricity market for the consumer.

  20. Kawasaki steam power plant of Tokyo Electric Power Co. and an example of geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    1961-01-01

    The first part of this discussion is devoted to a description of the Kawasaki steam power plant, installed by Tokyo Electric Co. to supply electricity to the Keihin industrial area. The output is 700 MW and it possesses a thermal efficiency of 36.9%. The plant is operated automatically by remote control. The latter section describes the status of a geothermal power station in Hakone. It outlines the steam distribution piping, the steam itself, the turbine and vapor/water separation equipment. With regard to technical problems, it is suggested that old wells having weak pressure can be restored by self-cleaning and that further improvement can be brought about by dynamiting the base of the borehole.

  1. The capital investment and electricity cost of 2 x 600 MW PWR nuclear power plant in China

    International Nuclear Information System (INIS)

    Li Zhihua; Xing Leiming

    1990-01-01

    The capital investment and electricity cost of 2 x 600 MW PWR nuclear power plant in China are studied. If the rate of interest R 1 and of escalation R 2 are 7.2% and 10.0% respectively for RMB and the rate of interest R 1 and of escalation R 2 are 6.5% and 2.0% respectively for MK, the total investment is 9270 M RMB Yuan, the Specific investment is 7320 RMB Yuan/kW, the average selling electricity cost is 0.16 RMB Yuan/(kW·h). If the selling electricity price is 0.24 RMB Yuan/(kW·h), the rate of inner return is 7.7%, the dynamic return period is 13 years, the national income is 15800 M RMB Yuan, the profit of nuclear power plant after taxation is 6800 M RMB Yuan

  2. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    International Nuclear Information System (INIS)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously

  3. Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro

    Directory of Open Access Journals (Sweden)

    Vladan Durković

    2017-09-01

    Full Text Available This paper deals with a conceptual solution for the supply of a part of electrical energy for the needs of Aluminium Plant Podgorica (KAP in Montenegro from a large Floating Photovoltaic Power Plant (FPPP, that would be installed on the nearby lake. The recommended FPPP, with an innovative azimuth angle control method and total installed power of 90 MWp, would consist of 18 power plants having an installed power of 5 MWp each. An analysis using the NREL solar insolation database ascertained that the recommended FPPP power plant can achieve a significantly higher production in comparison with previous solutions. An economic analysis has shown that the recommended power plant would yield positive economic indicators. Additionally, such a power plant would significantly contribute to the reduction of CO2 emissions.

  4. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    OpenAIRE

    Pavlović Tomislav M.; Milosavljević Dragana D.; Radivojević Aleksandar R.; Pavlović Mila A.

    2011-01-01

    This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia). Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown ...

  5. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  6. TAPS-1 and 2 upgradation: a new lease of life to the vintage plant of 1960 design

    International Nuclear Information System (INIS)

    Singh, K.P.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.; Mittal, Subhash

    2006-01-01

    Improvements and modifications in Nuclear Power Plants design and safety is a continuous process to maintain the highest safety standards and for the survival of the nuclear industry in the today's competitive world. Old plants modifications are aimed at to reduce the risk posed by equipment degradation and outdated systems. Due to these considerations plant up gradation becomes inevitable to preclude the possibility of severe accidents. Tarapur Atomic Power Station 1 and 2 (TAPS 1 and 2) is a twin Boiling Water Reactor (BWR) nuclear power station, with each unit operating at 160 MWe. Both the units were commissioned in the year 1969 and have completed about 36 years of commercial operation. The systems and equipment layout of this plant is based upon the BWR design criteria's prevailing at that time. As the plant had operated for more than three decades, it was felt prudent to assess the condition of plant structures, systems and components and apply the new design criteria's of the latest design nuclear plants to determine the need for system modifications and life extension of the plant. The detailed review of the plant included the Probabilistic Safety Analysis (PSA) studies, aging degradations of structures, systems and components, operating experiences, seismic studies and design review based upon the General Design Criteria's, codes and guides. The reviews were carried out by expert groups and completed in about three years. The proposed modifications were mainly about the change in equipment layout and unit wise segregation of electrical and mechanical systems and replacement of the 3 x 50 % capacity emergency diesel generators with 3 x 100 % capacity diesel generators apart from aging related inspections/replacements and seismic up grades. The shared systems such as control rod drive hydraulic system, reactor shut down cooling system, de-linking of fuel pool cooling system from reactor shut down cooling system and power supply to the neutron monitoring

  7. Guidance for emergency planning in nuclear power plants

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ekdahl, Maria

    2008-06-01

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  8. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  9. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  10. Electricity costs in liberalized market

    International Nuclear Information System (INIS)

    Barkans, J.; Junghans, G.

    2006-01-01

    In the liberalized electricity market the flexible demand determines the operation of power plants. Under market conditions the producers are forced to compete, and their power plants are normally loaded in order of increasing prices. The electricity costs consist of fixed and variable components, and the competition among producers simulates minimization of both the components. Considering the fixed costs (including maintenance, depreciation, capital costs and other permanent costs not depending on production) to be known, the total electricity costs in different operating conditions are based on the economic characteristics and the equipment load of a power plant. The paper describes the method for determination of electricity costs for condensing thermal power plants with permanent steam take-off for regeneration purposes and adjustable steam take-off for the needs of local heat energy consumers. The marginal costs for CHP plants are determined considering a number of different steam take-off from a turbine. At the electricity cost determination, auxiliary services also are taken into account. These can be reduced by adjusting the rotational speed of electric motors. The paper also shows how to determine the electricity costs for gas turbines, combined cycle gas turbines, and nuclear power plants. The position of hydro power plants among other PPs in the free market is also analysed. (authors)

  11. Improved electrical efficiency and bottom ash quality on waste combustion plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter A.; Nesterov, I.; Boejer, M.; Hyks, J.; Astrup, T.; Kloeft, H.; Dam-Johansen, K.; Lundtorp, K.; Hedegaard Madsen, O.; Frandsen, F. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. (Author)

  12. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  13. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  14. Study on thermal electric conversion system for FBR plant. Investigation for effective EVST waste heat recovery system

    International Nuclear Information System (INIS)

    Maekawa, Isamu; Kurata, Chikatoshi

    2004-02-01

    Recently, it has been important to reuse discharged heat energy from present nuclear plant, especially from sodium cooled FBR, which are typical high temperature system, in the view of reduction of environmental burden and improvement of heat efficiency for plant. The thermal electric conversion system can work only the temperature difference and has been applied to the limited fields such as space or military, however, that results show good merits for reliability, maintenance free, and so on. Recently, the development of new thermal electric conversion elements has made remarkable progress. In this study, for the effective utilization of waste heat from Monju', the prototype plant of FBR, we made an investigation of electric power generating system maintaining the cooling faculty by applying the thermal electric conversion system to sodium cooling line of EVST. Using the new type iron based thermal electric conversion elements, which are plentiful, economical and good for environmental harmonization, we have calculated the amount of heat exchange and power generation from sodium cooling line of EVST, and have investigated the module sizing, cost and subject to be settled. The results were , (1)The amount of power generation from sodium cooling line of EVST is smaller about one figure than motive power of sodium cooler fan. However, if Seebeck coefficient and heat conductivity of iron based thermal electric conversion elements shall be improved, power from sodium cooling line shall be able to cover the motive power. (2) The amount of heat released from sodium cooling line after the installation of thermal electric conversion module covers the necessity to maintain the sodium cooling faculty. (3) In case of the installation of module to the sodium cooler, it should be reconstructed because of tube arrangement modification. In case of the installation of module to the sodium connecting line, air ventilation system is needed to suppress the room temperature. (4) As

  15. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  16. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  17. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  18. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  19. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-01-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.

  20. Optimization of scheduling system for plant watering using electric cars in agro techno park

    Science.gov (United States)

    Oktavia Adiwijaya, Nelly; Herlambang, Yudha; Slamin

    2018-04-01

    Agro Techno Park in University of Jember is a special area used for the development of agriculture, livestock and fishery. In this plantation, the process of watering the plants is according to the frequency of each plant needs. This research develops the optimization of plant watering scheduling system using edge coloring of graph. This research was conducted in 3 stages, namely, data collection phase, analysis phase, and system development stage. The collected data was analyzed and then converted into a graph by using bipartite adjacency matrix representation. The development phase is conducted to build a web-based watering schedule optimization system. The result of this research showed that the schedule system is optimal because it can maximize the use of all electric cars to water the plants and minimize the number of idle cars.

  1. Performances of nuclear power plants for combined production of electricity and hot water for district heating

    International Nuclear Information System (INIS)

    Bronzen, S.

    The possibilities for using nuclear power plants for combined production of heat and power seem to be very good in the future. With the chosen 600 MWsub (e) BWR plant a heat output up to 1200 MW can be arranged. An alternative, consisting of steam extractions from the low-pressure turbine, offers a flexible solution for heat and power generation. With this alternative the combined plant can use components from normal condensing nuclear power plants. The flexible extraction design also offers a real possibility for using the combined plant in electric peak generation. However, urban siting requires long distance heat transmission and the pipe design for this transmission is a major problem when planning and optimizing the whole nuclear combined heat and power plant. (author)

  2. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  3. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  4. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power specifications. This report contains three volumes. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS

  5. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Li, Huanhuan; Zhao, Junwei; Chen, Kangting; Tan, Qingkun; Tan, Zhongfu

    2016-01-01

    Highlights: • Our research focuses on virtual power plant. • Electric vehicle group and demand response are integrated into virtual power plant. • Stochastic chance constraint planning is applied to overcome uncertainties. • A multi-objective stochastic scheduling model is proposed for virtual power plant. • A three-stage hybrid intelligent solution algorithm is proposed for solving the model. - Abstract: A stochastic chance-constrained planning method is applied to build a multi-objective optimization model for virtual power plant scheduling. Firstly, the implementation cost of demand response is calculated using the system income difference. Secondly, a wind power plant, photovoltaic power, an electric vehicle group and a conventional power plant are aggregated into a virtual power plant. A stochastic scheduling model is proposed for the virtual power plant, considering uncertainties under three objective functions. Thirdly, a three-stage hybrid intelligent solution algorithm is proposed, featuring the particle swarm optimization algorithm, the entropy weight method and the fuzzy satisfaction theory. Finally, the Yunnan distributed power demonstration project in China is utilized for example analysis. Simulation results demonstrate that when considering uncertainties, the system will reduce the grid connection of the wind power plant and photovoltaic power to decrease the power shortage punishment cost. The average reduction of the system power shortage punishment cost and the operation revenue of virtual power plant are 61.5% and 1.76%, respectively, while the average increase of the system abandoned energy cost is 40.4%. The output of the virtual power plant exhibits a reverse distribution with the confidence degree of the uncertainty variable. The proposed algorithm rapidly calculates a global optimal set. The electric vehicle group could provide spinning reserve to ensure stability of the output of the virtual power plant. Demand response could

  6. Electricity supply from thermal power plants and alternative sources at the Adriatic coast

    International Nuclear Information System (INIS)

    Kurek, J.

    1999-01-01

    The Croatian coastline with its numerous islands offers the most appropriate region in the whole of Croatia for the realisation of energy supply from alternative sources as a substitute for the electricity supplied from coal-driven thermal power plants, not only from the point of view of energy but also financial results. Investment costs of a 100 MW thermal power plant served for the estimation of results which would be achieved with the introduction of alternative sources (the sun, small hydro power plants and biomass) as well as for the rationalisation of consumption and savings of the existing energy sources. The alternative programmes can be conducted partially and the investments financed from savings. However, without a systematic solution for the whole country no significant results can be expected. (author)

  7. Electric equipment for Koto Refuse Incineration Plant; Tokyoto Koto seiso kojo muke denki setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Meidensha Corporation, intending to enter into refuse disposal business, delivered electric equipment to a Koto Refuse Incineration Plant, Koto Ward, Tokyo, and the facilities came into operation in October, 1998. The plant is the largest in Japan in terms of refuse processing capacity (1800t/day), and efforts are exerted to harmonize the plant with the surroundings, which involve pollution measures and a building that images a cruising yacht. The power receiving facility consists of a 66kV nominal two-circuit gas insulated switch and gas insulated transformer arranged in a space saving design. Heat from refuse incineration is fed to a steam turbine generator (yielding 50MW, the largest in Japan, with the surplus offered for sale after 15MW fed to loads in the site) and to neighboring facilities. For the suppression of fluctuations in voltage at the power receiving point, reactive power is subjected to control which is done by controlling the generator magnetic field system. An 11kV distribution system is provided to match the steam turbine generator voltage, and the voltage is stepped down to 6.6kV with the intermediary of a 23MVA gas insulated transformer. The power is fed to high voltage motors such as the one used for the induced draft fan, electric equipment in the buildings, power facilities in the plant, etc. A power monitoring board is provided in the central control room for general supervision over the power related facilities. (NEDO)

  8. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  9. De-regulated electric power markets and operating nuclear power plants: the case of British energy

    International Nuclear Information System (INIS)

    Hewlett, James G.

    2005-01-01

    One issue addressed in almost all electric power restructuring/de-regulation plans in both the United States (US) and the United Kingdom (UK) was the recovery of operating nuclear power plant's spent fuel disposal costs and the expenditures to decommission the units when they are retired. Prior to restructuring, in theory at least, in both countries, electricity consumers were paying for the back end costs from operating nuclear power plants. Moreover, in virtually all cases in the US, states included special provisions to insure that consumers would continue to do so after power markets were de-regulated. When power markets in the UK were initially restructured/de-regulated and nuclear power privatized, the shareholders of British Energy (BE) were initially responsible for these costs. However, after electricity prices fell and BE collapsed, the British government shifted many of the costs to future taxpayers, as much as a century forward. If this was not done, the book value of BE's equity would have been about -3.5 billion pounds. That is, BE's liabilities would have been about -3.5 billion pounds greater than their assets. It is difficult to see how BE could remain viable under such circumstances

  10. Review of European regulatory and tariff experience with the sale of heat and electricity from combined heat and power plants

    International Nuclear Information System (INIS)

    Dyrelund, A.

    1991-12-01

    The Prince Edward Island Energy Corporation, Edmonton Power, Energy, Mines and Resources Canada and the Canadian Electrical Association commissioned a study to understand how electrical power and district heat from combined heat and power (CHP) plants is priced in Europe. Four northern European countries were investigated, Denmark, Germany, Sweden and Finland. These countries produce 45.8 TWh of power from combined heat and power plants, 7.1% of their annual consumption. In the case of Denmark, CHP accounts for 37.5% of its total power production. The energy situation in each country is reviewed using published statistics, and in particular the rapidly changing situation with regard to environmental and fuel taxes is examined. In order to obtain practical insights with regard to tariffs used by the various utilities, a series of generic examples were examined, supported by specific case studies. Technologies reviewed included: CHP from coal-fuelled extraction plant, CHP from coal-fuelled back pressure plant, waste heat from a municipal waste plant, and gas turbine with waste heat recovery. The benefits and risks associated with different tariff designs are discussed in detail including tariff formulae. This should enable interested parties to develop appropriate tariffs for combined heat and power plants in the context of current electrical utility policies. As a complement to the tariffs for combined heat and power plants, the design of district heating tariffs is also addressed. The typical concepts used in different countries are presented and discussed. 23 tabs

  11. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  12. The impact of the new investments in combined cycle gas turbine power plants on the Italian electricity price

    International Nuclear Information System (INIS)

    Fontini, Fulvio; Paloscia, Lorenzo

    2007-01-01

    The paper measures the variation of the electricity price in Italy within the next 10 years due to the recent investment flow in combined cycle gas turbine (CCGT) power plants. It starts by investigating the possibility of decoupling gas and oil prices on the basis of hypotheses about the amount of existing resources and plausible technical substitutability assumptions of the latter with the former. In particular, it is supposed that, in the Italian market, natural gas will play a crucial role which oil has had in power generation. The price of electricity stemming from natural gas is then calculated taking into account the role of the power mix restructuring that derives from the CCGT power plants investments. Under reasonable assumptions, it is shown that a net reduction of at least 17% on the electric price is likely to be expected. (author)

  13. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  14. System for detecting and limiting electrical ground faults within electrical devices

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1990-01-01

    This paper discusses, in a nuclear power plant of a variety wherein a reactor is provided including a reactor vessel retaining a liquid metal coolant, a reactor core and an electromagnetic pump having inductive windings insulatively retained within the electrically conductive wall of an enclosure, the method for controlling electrical ground fault current between a the inductive winding and the walls. It comprises providing an electrically isolated power source by inductive coupling with the plant power supply; rectifying the power source to provide an isolated d.c. power source; providing an inverter powered from the isolated d.c. power source under the control of the plant control system for selectively energizing the inductive windings; providing a fault control conductor electrically connected with the pump enclosure wall and extending as an electrical return for ground fault current to the inverter; and providing an electrical resistance between the conductor and the isolated inverter having an impedance selected to limit the fault current below a predetermined value limiting arc damage at any the electrical ground fault location

  15. Projections of cost and on-site manual-labor requirements for constructing electric-generating plants, 1980-1990

    International Nuclear Information System (INIS)

    1982-02-01

    This report represents part of a continuing effort by the Federal Government to forecast the capital and labor required for constructing electric generating capacity additions necessary to accommodate projected economic and population growth in the US and its regions. Information is included on anticipated additions to electric generating capacity, labor requirements for these additions, capital cost requirements, and forecasting models. Coal-fired, nuclear, hydro, and pumped storage power plants are considered in these forecasts

  16. Mobile test stand for evaluation of electric power plants for unmanned aircraft

    Directory of Open Access Journals (Sweden)

    Serbezov Vladimir

    2017-01-01

    Full Text Available The absence of accurate performance data is a common problem with most civilian unmanned aerial vehicle (UAV power plant producers. The reasons for this are the small size of most of the manufacturers and the high price of precise wind tunnel testing and computer simulations. To overcome this problem at Dronamics Ltd., with support from the Department of Aeronautics of TU-Sofia, a mobile test stand for evaluation of electric power plants for unmanned aircraft was developed. The stand may be used statically, or may be installed on the roof of an automobile. The measurement system of the stand is based on popular hardware that is used in radio controlled models and in general automation. The verification of the measurement system is performed by comparing static test results with data published by the manufacturer of the tested electric motor. Tests were carried out with 2 different types of propellers and the results were compared with published results for common propellers as well as with results of theoretical studies. The results are satisfactory for practical applications. The use of this type of test stands can be a cheap and effective alternative for research and development start-up companies like Dronamics.

  17. The Trencin water power station

    International Nuclear Information System (INIS)

    2005-01-01

    of the impeller wheel 3800 mm. Its water absorption maximum flow is 90 m 3 .s -1 and operational extension of the head between 13.85 and 10,35 m. Maximum power output of the generator is 11.5 MVA, a nominal voltage 10.5 kV and the power factor cos φ = 0.7. The power station has a block arrangement with its output led out through the 22 kV switchgear that is connected to the 110 kV switchgear. The big inner cubicle-type switchgear of 22 kV provides power supplies for many industrial plants in Trencin and for the city of Trencin itself, as well as interconnection with neighbouring water power stations

  18. Generation and export of electric energy by sugar and alcohol plants; Geracao e exportacao de energia eletrica por usinas sucroalcooleiras

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Gil Mesquita de Oliveira Rabello; Paschoareli Junior, Dionizio; Faria Junior, Max Jose de Araujo [Universidade Estadual Paulista (DEE/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica. Grupo de Pesquisa em Fontes Alternativas e Aproveitamento de Energia Eletrica

    2008-07-01

    This paper presents technical aspects necessary to allow a sugar-cane mill, which promotes cogeneration, to operate as an electrical energy producer. Changes and optimization in the process to produce alcohol and sugar-cane, which results in the increase of electrical energy to export are discussed. A case of a sugarcane mill, working as a thermoelectric power plant is presented. The necessary components to generate energy and to connect the thermoelectric plant to the main transmission system are described. (author)

  19. Puget Sound area electric reliability plan: Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin

  20. The long term plan for the integration of nuclear power plants into the Turkish Electrical Power System

    International Nuclear Information System (INIS)

    Kutukcuoglu, A.

    1974-03-01

    The report covers in detail the study of the expansion of the Turkish Electric Power System for the period 1980-1987. Load forecast is done by sectors and regions and inter-regions power balances gave the basis for the high voltage network configurations. Expansion alternatives are defined giving priority to hydroelectric projects, to local resources and nuclear power plants concurrently with conventional plants (lignite and oil). Several reactor strategies are analysed with LWR, HWR, FBR and HTGR power plants. Present worth value method is used for comparison of alternatives and sensitivity analysis is done for those ranked in the first places. Load flow, transient stability and frequency deviation studies of the power system are studied carefully by means of A.C. calculator and digital computer codes in order to see the influence of the introduction of large-sized power plants (600-750MW(e)) and their location in the power system. A 600MW(e) nuclear plant in 1983 and a second one of 750MW(e) in 1987 should, it is found, be commissioned into the system. The economic optimization was done with two computer programmes developed by KFA (Juelich): IACO for fuelling nuclear plant and RESTRAPO for power system with high hydroelectric component. The report is bound in three volumes: Volume I: Summary and Conclusions; Volume II: System Planning; Volume III: Electrical Survey

  1. PUREX new substation ATR

    International Nuclear Information System (INIS)

    Nelson, D.E.

    1997-01-01

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience

  2. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    Science.gov (United States)

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  3. THE CHOICE OF THE GENERATOR AND ELECTRICITY STABILIZATION FOR SMALL HYDROPOWER PLANTS

    OpenAIRE

    Kvitko A. V.; Daybova L. A.; Kondratenko Y. E.

    2015-01-01

    The article analyzes the main characteristics of the electricity generators to use them as a part of small hydroelectric power plants. It is shown, that contactless asynchronous generators in comparison with synchronous generators and DC generators have improved their operational and technical characteristics, and above all, their reliability and performance efficiency. We have shown graphic dependences of the cost and the weight of power generators. It is proposed using direct frequency conv...

  4. Trend of collective dose and dose reduction measures of Mitsubishi Electric Corporation workers in nuclear power plants

    International Nuclear Information System (INIS)

    Yamato, I.; Nakayama, T.; Shimokawa, F.; Yamamoto, T.

    1996-01-01

    MELCO has supplied the reactor instrumentation control system, reactor coolant pump motors, turbine generator and central control system for the pressurized water type nuclear power plant. For the legal periodical inspection and repair work, MELCO has also received orders for the periodical inspection for 23 power plants (including 4 plants under construction) of 5 electric power companies, and executed the inspection work from the view point of preventive maintenance. The annual dose for MELCO's workers is liable to be decreased in spite of increased number of plants. The dose for new plant in particular is 50, or less as compared with that for conventional plant. This is because the measures taken for the conventional plant against the dose reduction is reflected upon the new plant. The dose reduction measures are taken for each system for which order was received. Such measures are mainly intended to improve the work procedures and equipment for reduction of work time in the radioactive area and to arrange the working process, so as to perform the work in such period when the dose level at the working environment is low. To enhance the workers' consciousness for reduction of dose, MELCO provided the workers with dose predictive training, and let them aware of such items known at the tool box briefing (TBX), which could realize the dose reduction for workers. MELCO has been positively promoting the activity to arrange the desirable work environment for extermination of 3Ks (giken, gitsui, titanai) or 3Ds (dangerous, difficult, dirty) including protection against radiation in corporation with electric power companies. (author)

  5. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  6. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  7. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  8. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  9. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A11 to A14

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard Madsen, O.; Boejer, M.; Jensen, Peter A.; Dam-Johansen, K.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with electrical efficiency by dividing the combustion products; release of potentially corrosive constituents from the grate; CFD modeling of grate with and without vertical divider. (Author)

  10. Interaction among competitive producers in the electricity market: An iterative market model for the strategic management of thermal power plants

    International Nuclear Information System (INIS)

    Carraretto, Cristian; Zigante, Andrea

    2006-01-01

    The liberalization of the electricity sector requires utilities to develop sound operation strategies for their power plants. In this paper, attention is focused on the problem of optimizing the management of the thermal power plants belonging to a strategic producer that competes with other strategic companies and a set of smaller non-strategic ones in the day-ahead market. The market model suggested here determines an equilibrium condition over the selected period of analysis, in which no producer can increase profits by changing its supply offers given all rivals' bids. Power plants technical and operating constraints are considered. An iterative procedure, based on the dynamic programming, is used to find the optimum production plans of each producer. Some combinations of power plants and number of producers are analyzed, to simulate for instance the decommissioning of old expensive power plants, the installation of new more efficient capacity, the severance of large dominant producers into smaller utilities, the access of new producers to the market. Their effect on power plants management, market equilibrium, electricity quantities traded and prices is discussed. (author)

  11. Nuclear power within liberalised electricity markets

    International Nuclear Information System (INIS)

    Kidd, Stephen W.

    2002-01-01

    Competition between various methods of generating electricity in liberalised markets means that all power plants must be cost-effective. The price of electricity from nuclear power includes all waste disposal and decommissioning costs, unlike other electricity generating technologies. Most existing nuclear power plants are likely to prosper under electricity liberalization. Many will receive operating life extensions and be able to compete in the electricity market for many years to come. Investment costs are particularly heavy for nuclear plants. Capital expenditure appraisal methodologies mean that such plants suffer financial disadvantages in times of high interest rates. Low and stable fuel costs are the prime advantage of nuclear plants against other sources of generating electricity. There will be significant demand for new generating capacity, both incremental and replacement, in the next 20 years. Under present conditions, where there is access to a stable and cheap supply of piped gas, nuclear and coal plants find it difficult to compete against gas-fired plants. The nuclear industry is addressing the need for new reactor designs, offering significant capital and operating cost reductions from the previous generation of reactors. This development and the need for carbon abatement on a worldwide basis offers nuclear plants a further economic advantage against alternative technologies. (author)

  12. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    International Nuclear Information System (INIS)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  13. The problem of ensuring the seismic stability of atomic electric power plant equipment and ways of solving it

    International Nuclear Information System (INIS)

    Kaznovskii; Filippov, G.A.

    1983-01-01

    By seismic stability the authors mean the ability of the equipment and buildings to retain certain properties when subjected to seismic loads: leakproofness, strength, the absence of any residual changes of shape, which interfere with normal operation, ability to be repaired, nuclear and radiation safety. The latter requirement is the main thing which differentiates atomic electric power plants from other constructions, including other power-generation plants. Whereas, for example, an accident in the event of an earthquake in a thermal electric power plant can be regarded as a local accident, and the measures to ensure seismic stability are determined by economic factors and safety requirements for the operating staff, to ensure the seismic stability of an AES it is essential to take account in the first instance of the possibility of dangerous radiation effects both in the AES and in the vast area around it

  14. The effect of plant growth regulators and their interaction with electric current on winter wheat development

    Czech Academy of Sciences Publication Activity Database

    Biesaga-Koscielniak, J.; Koscielniak, J.; Filek, M.; Marcinska, I.; Krekule, Jan; Macháčková, Ivana; Kubon, M.

    2010-01-01

    Roč. 32, č. 5 (2010), s. 987-995 ISSN 0137-5881 Institutional research plan: CEZ:AV0Z50380511 Keywords : In vitro culture * Plant growth regulators * Electric current Subject RIV: EF - Botanics Impact factor: 1.344, year: 2010

  15. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  16. 1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available [approx. 233 MW(e)] could be used for alumina electrolysis

  17. Czechoslovakia's electrical energy industry with special regard on the development of nuclear power plants

    International Nuclear Information System (INIS)

    Paulina, A.

    1979-01-01

    In electric energy production and consumption, Czechoslovakia holds a remarkable place. Its development after the second world war can be divided into four characteristic periods. The author summarizes the features of the past development and points out the tasks of the future in which the extension of nuclear power plant building plays an important role. (author)

  18. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  19. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  20. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  1. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  2. Electric power development in the USSR

    International Nuclear Information System (INIS)

    Rudenko, Y.N.

    1993-01-01

    The generation of electric power in the USSR is based on the Unified Electric Power System (UEPS) whose network cover most of the habitable territory of the country. Therefore, the development of the UEPS governs the overall evolution of the electric power generation in the country. At present, eleven out of thirteen joint electric power systems, which supply electricity to most of the USSR, are operating within the UEPS. The total electric power generation in the country reached 1728 billion kWh in 1990, of which the UEPS supplied approximately 90%. About 70% of installed capacity of the UEPS is fossil-fuelled power plants, about 12 % is nuclear power plants, and about 18% is hydroelectric power plants. The system-forming grid of the UEPS is made up of transmission lines of 220, 330, 500 and 750 kV. The on-line supervisory control of the UEPS is achieved by four-level automated system of dispatch control (UEPS, joint electric power systems, regional electric power systems, electric power plants, substations,electric grid regions). The development and extension of the UEPS in the USSR ensure higher reliability and quality of electric power supply to end-users, combined with higher efficiency. The principal problem facing the UEPS are as follows: the need to ensure environmental protection and efficiency of the steam power plants; to improve the safety and efficiency of nuclear power plants. The solution to these problems will define the conditions of the UEPS development, as well as electric power systems of other countries, at least for the coming two decades. This paper characterizes the peculiarities of the UEPS development over the last 20 years, including the installed capacity structure and the system-forming electric power grid. Special attention is paid to the environmental problems related to functioning and development of the UEPS and to the means of their solution. (author)

  3. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  4. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  5. Field report-Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power

    International Nuclear Information System (INIS)

    Nakamura, Etsuji

    2011-01-01

    Although the accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. was foreseen to be an end with bringing the reactor a stable cooling condition and mitigating the release of radioactive materials, there would be various uncertainties and risks. The public was turned to 'nuclear power phase-out ' or 'nuclear power reduced' and Fukushima prefecture launched a restoration vision not dependent on nuclear power. In July editors joined the visit on Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was organized by Energy and Environmental Email Forum. This feature consisted of six articles based on interviews with respective mayor and discussion meeting of participants. Nuclear world would be responsible for the cooperation and support of Fukushima moving toward restoration with the same stance. Development of renewable energy utilizing damaged fields might be promoted. Respective district was tried to restore based on the trademark of 'Iidate-village in the world' or introduction of central facilities of decommission technology or medical care against radiation hazards. Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was 14.8 m above sea level, was not damaged so much by the tsunami of 13 m high and after the disaster many residents in a neighboring area came to the nuclear power plant office for the refuge. (T. Tanaka)

  6. Estimation of the Levelised Electricity Generation Cost for a PWR-Power Plant and Preliminary Evaluation of National Participation

    International Nuclear Information System (INIS)

    Saba, G; Hainoun, A

    2008-01-01

    This work deals with the detailed economic evaluation of the Levelised discounted electricity generation costs (LDEGC) for a nuclear power plant with pressurized water reactor (PWR). The total generation costs are splited in base construction costs, supplementary costs, owner's costs, financial costs, fuel cycle costs and operation and maintenance costs. The evaluation covers also the sensitivity of the estimated energy unit cost to various factors (real annual discount rate, escalation rate, interest rate, load factor, ..) including the role of national participation, that depends upon the development of national infrastructure. For performing this study the IAEA's program package for economic bid evaluation (Bideval-3) has been employed. The program is designed to assist the user in the economic evaluation of bids for nuclear power plant (NPP). It follows the recommended method of determining the present worth value of all costs components for generated electricity unit. The performed study aims at developing national expertise in the field of bid evaluation for electric power plants with main emphasis on NPP. Additional goal is to convoying the technical and economic development of NPP technology that can help in supporting the decision maker with adequate information related to the future development of energy supply system and measures required for ensuring national energy supply security. (author)

  7. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity

    International Nuclear Information System (INIS)

    Czarnowska, Lucyna; Frangopoulos, Christos A.

    2012-01-01

    Energy conversion systems generate pollution that causes damages to the environment and the society. The objective of this work is to study the dispersion of pollutants and assess the environmental and social cost due to pollution from such a system. For this purpose, a pulverized coal power plant is selected. Using thermodynamic principles combined with empirical techniques, the quantities of pollutants emitted by the plant are estimated. Then, using the EcoSenseWeb software, which is based on the results of the ExternE project, the external environmental cost (externalities) of pollution is assessed. The plant is considered as located in four different cities in Poland and the externalities are calculated for each city separately. It is shown that the external environmental cost has a strong influence on the unit cost of electricity. In addition, the dispersion of pollutants is presented for the plant located in Olsztyn city. Furthermore, the plant is considered as located near the capitals of European countries and the environmental externalities are calculated for each city. The neighboring countries that are strongly affected by the plant in each particular city are identified. The sensitivity of the unit cost of electricity to certain important parameters is investigated. -- Highlights: ► The external cost of pollution has a significant impact on the cost of electricity. ► The results depend on the particular plant, location and level (local-global). ► Externalities make the installation of abatement equipment economical. ► The source location of emissions has a significant effect on the external cost. ► The transboundary pollution has a strong effect on the environmental cost.

  8. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring

    Directory of Open Access Journals (Sweden)

    Alex Humberto Calori

    Full Text Available ABSTRACT The recent introduction in Brazil of production of quality seed potatoes in hydroponic systems, such as aeroponics, demands studies on the nutritional and crop management. Thus, this study evaluated the influence of electrical conductivity of the nutrient solution and plant density on the seed potato minitubers production in aeroponics system. The Agata and Asterix cultivars were produced in a greenhouse under tropical conditions (winter/spring. The experimental design was a randomized block in a split-split plot design. The plot consisted of 4 electrical conductivities of the nutrient solution (1.0; 2.0; 3.0; and 4.0 dS∙m−1; the subplot, of 4 plant densities (25; 44; 66; and 100 plants∙m−2; and the subsubplot, of the 2 potato cultivars (Ágata and Asterix, totaling 4 blocks. The 2.2 and 2.1 dS∙m−1 electrical conductivities yielded the highest productivity of seed potato minitubers, for Ágata and Asterix cultivars, respectively, regardless of plant density. For both cultivars, the highest yield was observed for the 100 plants∙m−2 density.

  9. Analysis of electrical energy consumers operation in the heating plant with proposal of energy savings measures

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2016-01-01

    Full Text Available The results of power quality measurements, obtained during an energy audit in the heating plant Vreoci in the Electric Power System of Serbia, are presented in the paper. Two steam boilers, rated at 120MW each, are installed in this heating plant, using coal as a fuel. The energy audit encompassed the measurements of the complete set of parameters needed to determine the thermal efficacy of boilers and the entire heating plant. Based on the measurement results, several technical measures for improving energy efficiency of the plant are proposed. The measures evaluated in the paper should contribute to the reduction of fossil fuel usage and CO2 emissions, thereby resulting in a significant impact in both financial and ecological areas.

  10. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  11. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  12. 75 FR 21664 - Underwriters Laboratories Inc.; Application for Expansion of Recognition

    Science.gov (United States)

    2010-04-26

    ... in Metal-Enclosed Switchgear \\a\\ IEEE C37.20.6 4.76 kV to 38 kV Rated Grounding and Testing Devices Used in Enclosures \\a\\ IEEE C37.23 Metal-Enclosed Bus \\a\\ IEEE C37.41 High-Voltage Fuses, Distribution... Electrical Equipment UL 852 Metallic Sprinkler Pipe for Fire Protection Service UL 962 Household and...

  13. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  14. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  15. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    Directory of Open Access Journals (Sweden)

    Sara Samimi Loghmani

    2014-05-01

    Full Text Available Phosphorus (P is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa and duck weed (lemna minor with four treatments and three replications. Data were analyzed in a factorial completely randomized design. Treatments included effluent with and without the plants, and effluent diluted (dilution grade 1/2 with and without the plants. Total dissolved P, electrical conductivity (EC and pH value were measured after 8, 16 and 24 days in effluent samples. The results showed that pH value decreased up to 0.2 units during of 24 days of the experiment, but there was found no significant difference (p≤0.05 in pH values among the treatments. Both plants decreased EC about 7 % relative to the control (without plant after 24 days. The plants were also effective in reducing total dissolved phosphorus, so that duck weed and elodea decreased total dissolved P in the effluent about 49 and 7%, respectively. It is concluded that duck weed is more effective in the P removal from the effluent than the other plant.

  16. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  17. Electricity generation in Germany under the conditions of climate policy and liberalized electricity market. Valuation of power plant investments with Bayesian influence diagrams

    International Nuclear Information System (INIS)

    Oetsch, Rainald

    2012-03-01

    Power plant investors face large uncertainties due to ongoing liberalization, climate policy, and long investment horizons. This study provides a probabilistic appraisal of power plant investments within the framework of Bayesian decision theory. A Bayesian influence diagram is used for setting up a discounted cash flow model and analysing the profitability of power plants. As the study explicitly models merit order pricing, the pass-through of random fuel and carbon costs may be analysed. The study derives probabilistic statements about net present values of single investments and company portfolios and explores the sensitivity of profits to variations of select input variables. In the majority of cases, an increase in the price of emission allowances also increases the net present value of existing power plant portfolios. A substantially increased carbon prices also is the prerequisite to diversify power plant portfolios by gas and CCS plants. For the currently prevailing German electricity market, we argue that investors may lack incentives for new investments in fossil generation, a finding that holds true also with implementation of CCS. Our estimates are conservative, as profitability will further deteriorate with the build-up of renewables.

  18. Fish protection at steam-electric power plants: alternative screening devices

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1978-01-01

    Since the enactment of the Federal Water Pollution Control Act Amendments of 1972, very few innovations have surfaced that advance the state of intake technology for fish protection at steam-electric power plants. After careful examination of basic hydrology, hydraulics, and ecology of the source water body is completed and after a suitable location for the intake is established, the design process reduces to the development of proper screening techniques and to the provision of a means of preventing resident and migratory species from entering the intake structure. As a result of this design process, three basic fish protection concepts have evolved: fish deterrence, fish collection and removal, and fish diversion. Intake screening devices that protect fish are discussed

  19. Resolution 147/012. It authorize the Central Libertador / SA aeolian generation company to generate an aeolian electricity source by an electric power generating plant located in Maldonado town 4 AA Catastral section, and the Sistema inerconectado Nacional connection

    International Nuclear Information System (INIS)

    2012-01-01

    This decree authorizes the generation of electricity using aeolian energy as the primary electricity source. This project was presented by the 'Libertador / S.A' aeolian generation company with the proposal to install an electrical plant in Maldonado town. This authorization is according to the Electric Wholesale Market regulation

  20. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  1. Electrical Switchgear Building No. 5010-ESF Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    N.M. Ruonavaara

    2001-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event

  2. IEA Statistics 1993: electricity information

    International Nuclear Information System (INIS)

    1994-01-01

    Gross electricity production in 1993 in the OECD (including generation from pumped storage plants) was 7 466 TWh, a rise of 1.2 per cent from the level of gross production in 1992 (Tables 1 and 3). Nuclear plants accounted for 24.2 per cent of total gross electricity production in 1993, hydroelectric plants 16.7 per cent, total thermal plants 58.7 per cent and geothermal and other renewables 0.4 per cent. In 1992 total OECD heat production that is sold to third parties by public producers was 25 Mtoe (Table 6). About 86 per cent of this heat (21.6 Mtoe) was produced in CHP plants, about 12 per cent (3.1 Mtoe) in heat plants, and the remainder (0.3 Mtoe) in nuclear power plants (in Canada and Switzerland only). Based on preliminary data, apparent consumption of electricity (gross production plus imports less exports) in 1993 in OECD was 7 474 TWh. The corresponding figure for 1992 was 7 379 TWh, indicating a rise of 1.3 per cent in apparent electricity consumption in OECD countries in 1993. OECD countries imported a total of 219 TWh of electricity in 1993 (including from other OECD countries) and exported 211 TWh (including to other OECD countries). Accordingly, net imports of electricity in 1993 amounted to 7.7 TWh. Real electricity prices (as measured by the indices of real energy prices) in the OECD fell slightly in 1993 from 1992 levels for both industry and household end-users (Table 20). Electricity prices for industrial consumers vary widely across OECD countries. Based on data that are available for 1993, prices varied from 3.3 US cents per kWh in New Zealand to 12.1 US cents per kWh in Portugal. Electricity prices for industry are reported in Tables 24 and 25. Electricity prices for domestic consumers also vary widely across OECD countries. Based on data that are available for 1993, prices varied from 5.8 US cents per kWh in New Zealand to 18.0 US cents per kWh in Denmark (Tables 26 and 27)

  3. Aging and condition monitoring of electric cables in nuclear power plants

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed

  4. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  5. Calculation of investment cost and electricity tariff on first building of Nuclear power plant in Indonesia

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Sudi Arianto

    2005-01-01

    Nuclear power plant as one alternative power plant for Indonesia is expected to attract interest of investors to invest in electricity sector. Calculation of investment cost and electricity tariff is a nearly necessary Information needed by investors. Spread sheet calculations on construction cost including Interest During Construction and escalation as well as financial viability are implemented. Result of the study show that overnight cost before escalation is US $ 2.682.865.200,- and after IDC and escalation it becomes US $ 3.795.712.088 or 1.807,5 US$/k We. Levelized Tariff is at around 4,57 cents/kWh. Levelized Tariff is 3,5 cents/kWh not feasible to the project of because all financial parameter show negative value. The project is financially feasible if calculated levelized tariff within arrange of 4,0 cents/kWh-5,5 cents/kWh. The most profitable tariff for investor is within arrange of 4,87 cents/kWh - 5,11 cents/kWh. (author)

  6. Electrical Systems at Laguna Verde Nuclear Power Plant (LVNPP) after the Fukushima accident

    International Nuclear Information System (INIS)

    Lopez Jimenez, Jose Francisco

    2015-01-01

    During the accident occurred in Fukushima Daiichi Nuclear Power Station in Japan, the onsite and offsite electrical systems were affected and lost for a long time with irreversible consequences, therefore, the Mexican Regulatory Body known as the National Commission for Nuclear Safety and Safeguards (CNSNS: for its acronym in Spanish) has taken several actions to review the current capacity of the electrical systems installed at Laguna Verde NPP to cope with an event beyond of the design basis. The first action was to require to Laguna Verde NPP the compliance with Information Notice 2011-05 'Tohoku-Taiheiyou-Oki earthquake effects on Japanese Nuclear Power Plants' and with 10 CFR 50.54 'Conditions of licenses' section 'hh', both documents were issued by the United States Nuclear Regulatory Commission (USNRC). Additionally, CNSNS has taken into account the response actions emitted by other countries after the Fukushima accident. This involved the review of documents generated by Germany, Canada, United Arab Emirates, Finland, France, the United Kingdom and the Western European Nuclear Regulator's Association (WENRA). CNSNS made special inspections to verify the current capacity of the electrical systems of AC and DC. As a result of these inspections, CNSNS issued requirements that must be addressed by Laguna Verde NPP to demonstrate that it has the capacity to cope with events beyond the design basis. Parallel to the above, Mexico has participated in the Ibero-american Forum to address matters related to the 'Resistance Tests', the evaluations of the Forum have reached similar conclusions to those required by European Nuclear Safety Regulators Group (ENSREG), under the format proposed by WENRA. The actions carried out here are closely linked to the requirements established by the USNRC. It is also important to mention that: 1) the Extended Power Up-rate project was implemented in both Units of the Laguna Verde NPP before

  7. Bioelectric potentials in the soil-plant system

    Science.gov (United States)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  8. Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation

    International Nuclear Information System (INIS)

    Kai Wu; Nagurney, A.; University of Massachusetts, Amherst, MA; Zugang Liu; Stranlund, J.K.

    2006-01-01

    Global climate change and fuel security risks have encouraged international and regional adoption of pollution/carbon taxes. A major portion of such policy interventions is directed at the electric power industry with taxes applied according to the type of fuel used by the power generators in their power plants. This paper proposes an electric power supply chain network model that captures the behavior of power generators faced with a portfolio of power plant options and subject to pollution taxes. We demonstrate that this general model can be reformulated as a transportation network equilibrium model with elastic demands and qualitatively analyzed and solved as such. The connections between these two different modeling schemas is done through finite-dimensional variational inequality theory. The numerical examples illustrate how changes in the pollution/carbon taxes affect the equilibrium electric power supply chain network production outputs, the transactions between the various decision-makers the demand market prices, as well as the total amount of carbon emissions generated. (author)

  9. Nuclear plants in the expansion of the Mexican electrical system

    International Nuclear Information System (INIS)

    Estrada S, G. J.; Martin del Campo M, C.

    2009-10-01

    In this work the results of four studies appear that were realized to analyze plans of long term expansion of Mexican electrical system of generation for the study period 2005-2025. The objective is to identify between the two third generation reactors with greater maturity at present which is it is that it can be integrated better in the expansion of the Mexican electrical system of generation. It was analyzed which of the four cases represents the best expansion plan in terms of two only parameters that are: 1) total cost of generation and, 2) the diversity of generated energy in all the period. In all studies candidates three different units of combined cycle were considered (802, 583 and 291 MW), a turbo gas unit of 267 MW, units of 700 MW with coal base and integrated de sulphur, geo thermo electrical units of 26.95 MW and two different types of nuclear units. In both first studies the Advanced Boiling Water Reactor (A BWR) for the nuclear units is considered, considering that is technology with more maturity of all the third generation reactors. In the following two studies were considered the European Pressurized Reactor (EPR), also of third generation, that uses in essence technology more spread to world-wide level. For this task was used the uni nodal planning model WASP-IV, developed by the IAEA to find the expansion configuration with less generation cost for each study. Considering the present situation of the generation system, the capacity additions begin starting from the year 2012 for the four studies. It is not considered the installation of nuclear plants before 2016 considering that its planning period takes 3 years, and the construction period requires at least of 5 years. In order to evaluate the diversity of each study it was used the Stirling Index or of Shannon-Weiner. In order to classify the studies in cost terms and diversity it was used like decision tool the Savage criterion, called also of minimal repentance. With this data, taking

  10. Power supply trip control for nuclear reactor

    International Nuclear Information System (INIS)

    Hager, R.E.; Gutman, Jerzy.

    1987-01-01

    A control system for a trip coil in a switchgear mechanism controls the supply of electrical power to a process control device and ensures de-energization of the trip coil shortly after the trip coil is energized. The trip coil is energized not by an independent dc source as in prior art, but from rectified power from a step down transformer supplied from the switchgear output side. The transformer feeds a rectifier which is connected to the trip coil via a trip activation device. The output of the rectifier can be monitored using an optical converter to determine the ability of the control system to activate the trip coil and the condition of the power supplied to the process control device. The control device may be a rod positioner in a pressurised water nuclear reactor. (author)

  11. Magnet power system for the Microwave Tokamak Experiment (MTX)

    International Nuclear Information System (INIS)

    Jackson, M.C.; Musslewhite, R.C.

    1987-01-01

    The system configuration, layout, and general philosophy for the MTX magnet power system is described. The vast majority of the magnet power equipment was quite successfully used on the ALCATOR-C experiment at the Massachusetts Institute of Technology. The AC power for the magnet system at MIT was obtained from a 225MVA alternator. The power for the system at LLNL is obtained directly from the local utility's 230 kV line. This installation, therefore, necessitates the addition of a great deal of equipment in ranges from new switchgear in the substation to using existing switchgear obtained from MIT as contractors for intershop electrical isolation as well as safety isolation for personnel entry into the experimental area. Additionally, some discussion is made of the unique layout of this facility and the tradeoffs made to accommodate them. 2 refs., 6 figs

  12. Life Cycle Assessment of Electricity Systems

    DEFF Research Database (Denmark)

    Turconi, Roberto

    and discussed. For example, electricity used during the manufacturing of the power plant, reference year and data collection approach (process-chain or input-output analysis) strongly affected the impacts of hydro, wind and solar power. This information needs to be documented, to ensure comparability between......), as the efficiency may vary depending on the operation of the plant within the power system. The choice of LCA approach used to solve multi-functionality for combined heat and power plants strongly influenced how the environmental impact of electricity produced at such plants was estimated. When it is not possible...... on aggregated modelling. The results showed that an increase in wind power causes greater emissions from other power plants in the electricity system (which need to ‘cycle’ – adjust their production – more frequently); however, considering the entire electricity system, increasing wind power penetration reduces...

  13. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  14. 1E Qualification of Electrical Equipment - Requirement for Safety Nuclear Power Plants

    International Nuclear Information System (INIS)

    Geambasu, C.; Segarceanu, D.; Albu, J.

    2002-01-01

    The paper presents the qualification methods of the safety related equipment according to the safety class 1E. There are presented the qualification principles, procedure and documents, emphasis being laid on the qualification approach by type tests. This approach assumes the equipment test under both normal and accident conditions (design basis events) simulating the operational conditions and covers the largest part of electrical equipment from a nuclear power plant.The safety related equipment is to be qualified is subjected to a sequential test that will be detailed in the paper. (author)

  15. Unavailability evaluation and allocation at the design stage for electric power plants. Methods and tools

    International Nuclear Information System (INIS)

    Bouissou, M.; Bourgade, E.

    1997-01-01

    Electricite de France is currently carrying out a project called CIDEM with the objective of integrating availability operational feedback, and maintenance in the design of future power plants (especially nuclear power plants) in order to improve their profitability. The work reported in this paper was performed in the framework of the research part of the CIDEM project, managed by the R and D Division of EDF. The paper shows that the availability assessment of an electric power plant raises a number of specific modeling problems. Only fault-tree models have been used in spite of the fact that they are essentially static models: they can be calculated in very short times, especially with the new generation of fault-tree processing codes, based on BDDs (Binary Decision Diagrams). (author)

  16. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    Science.gov (United States)

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  17. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Directory of Open Access Journals (Sweden)

    Markku Järvelä

    2017-07-01

    Full Text Available There is no natural inertia in a photovoltaic (PV generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive feed-in tariffs that ensure a certain price for the energy. On the other hand, electricity markets operate on a supply-demand principle and a typical imbalance settlement period is one hour. This paper presents the energy, power and corresponding requirements for an energy storage system in a solar PV power plant to feed the power to the grid meeting the electricity spot markets practices. An ideal PV energy production forecast is assumed to be available to define reference powers of the system for the studied imbalance settlement periods. The analysis is done for three different PV system sizes using the existing irradiance measurements of the Tampere University of Technology solar PV power station research plant.

  18. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode.

    Science.gov (United States)

    Sarma, Pranab Jyoti; Mohanty, Kaustubha

    2018-04-13

    In this study, two different unexploited indoor plants, Epipremnum aureum and Dracaena braunii were used to produce clean and sustainable bio-electricity in a plant microbial fuel cell (PMFC). Acid modified carbon fiber brush electrodes as well as bare electrodes were used in both the PMFCs. A bentonite based clay membrane was successfully integrated in the PMFCs. Maximum performance of E. aureum was 620 mV which was 188 mV higher potential than D. braunii. The bio-electricity generation using modified electrode was 154 mV higher than the bare carbon fiber, probably due to the effective bacterial attachment to the carbon fiber owing to hydrogen bonding. Maximum power output of 15.38 mW/m 2 was obtained by E. aureum with an internal resistance of 200 Ω. Higher biomass yield was also obtained in case of E. aureum during 60 days of experiment, which may correlate with the higher bio-electricity generation than D. braunii. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. A technology-assessment methodology for electric utility planning: With application to nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    Electric utilities and public service commissions have not taken full advantage of the many proven methodologies and techniques available for evaluating complex technological issues. In addition, evaluations performed are deficient in their use of (1) methods for evaluating public attitudes and (2) formal methods of analysis for decision making. These oversight are substantiated through an examination of the literature relevant to electric utility planning. The assessment process known as technology assessment or TA is proposed, and a TA model is developed for route in use in utility planning by electric utilities and state regulatory commissions. Techniques to facilitate public participation and techniques to aid decision making are integral to the proposed model and are described in detail. Criteria are provided for selecting an appropriate technique on a case-by-case basis. The TA model proved to be an effective methodology for evaluating technological issues associated with electric utility planning such as decommissioning nuclear power plants. Through the use of the nominal group technique, the attitudes of a group of residential ratepayers were successfully identified and included in the decision-making process

  20. 750V DC substation facility of electric railway for PUTRA, Malaysia; Malaysia PUTRA muke DC750V dentetsuyo chokuryu henden setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-29

    The first subway was put into full service operation in Kuara Lumpur, Malaysia on July 21. This east-west subway of 29km runs from Kelana Jaya through the downtown KLCC famous for the twin tower to Terminal PUTRA including 24 stations. As power facilities for the electric railway, 2 receiving substations and 13 DC substations were provided. The subway transforms voltage from 132kV to 33kV at the receiving substations, and from AC 33kV to DC 750V at the DC substations to supply power to trains. Features of these facilities are as follows. (1) Gas-insulated switchgears (GIS) and silicon oil-filled transformers are adopted from the viewpoint of disaster prevention. (2) Regenerative power from trains is consumed by the regenerative resistance equipment (resistor control using GTO device) installed in the substations. (3) The fourth-rail system is adopted as current collection system of trains. (translated by NEDO)

  1. Perception of the People Concerning Nuclear Power Plant for Electricity

    International Nuclear Information System (INIS)

    Suroyo, A.M. Djuliati

    2003-01-01

    Preliminary research on the perception and resistance of the people concerning government's plan to build a nuclear power plant for electricity at Muria peninsula, in Jepara, has that some people refused, some were ready to accept, and some just hesitated. In general the beaurocrats accepted the plan, although some felt doubtful since they are in change of environment conservation. Parliament members and religious leaders have the tendency to be doubtful in response of the government's plan on nuclear power plant. Those NGO members, especially these under young activist leaders have refused the plan, while other religious leaders and some rural leaders tend to accept it. The various perception and attitudes which exist in the society are mostly caused by conditions such as one's position, his group's perception in which he attached to, and factors either socio-cultural, socio-political, or socio-economics. Especially those with negative perception were actually influenced by the feeling of distrust to the government. At this time the government is trying to rebuild people's confidence by planning some development programs with bottom-up approach, but since it has a bad reputation in the post, that different attitudes have emerged toward state's projects, since in the past many persons have corrupted the project they carried-out for their own benefit. The various attitudes of the people toward the government have their impact on the government plan to build nuclear plant in Jepara. In this situation it will be more who reject the plan. To this moment is seems that the government has not successfully changed its image to have public trust, due to their prejudice to government projects, more over for its nuclear power plant. Input of information, especially about nuclear. They select information about nuclear mostly from the negative side only, although there should be also positive side

  2. Electric Power Monthly, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-13

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.

  3. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  4. Electric Power Monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-12

    The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

  5. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  6. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  7. Electric Power Monthly, June 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants ; and the Form EIA-826, M onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent

  8. Germany's nuclear power plant closures and the integration of electricity markets in Europe

    International Nuclear Information System (INIS)

    Menezes, Lilian M. de; Houllier, Melanie A.

    2015-01-01

    This paper examines the potential implications of national policies that lead to a sudden increase of wind power in the electricity mix for interconnected European electricity markets. More specifically, it examines market integration before and after the closures of eight nuclear power plants that occurred within a period of a few months in Germany during 2011. The short- and- long run interrelationships of daily electricity spot prices, from November 2009 to October 2012, in: APX-ENDEX, BELPEX, EPEX-DE, EPEX-FR, NORDPOOL, OMEL and SWISSIX; and wind power in the German system are analysed. Two MGARCH (Multivariate Generalized Autoregressive Conditional Heteroscedasticity) models with dynamic correlations are used to assess spot market behaviour in the short run, and a fractional cointegration analysis is conducted to investigate changes in the long-run behaviour of electricity spot prices. Results show: positive time-varying correlations between spot prices in markets with substantial shared interconnector capacity; a negative association between wind power penetration in Germany and electricity spot prices in the German and neighbouring markets; and, for most markets, a decreasing speed in mean reversion. -- Highlights: •Associations between spot prices and wind power are time-varying. •Greater spot price and volatility associations across markets are observed. •In the long run, the German market is less integrated with neighbouring markets. •Policies on a local electricity mix can affect spot prices in connected markets

  9. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  10. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  11. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  12. Portland General Electric Company report on the operating and startup experience with control and instrumentation and electrical systems at the Trojan Nuclear Plant

    International Nuclear Information System (INIS)

    Zimmerman, G.A.

    1977-01-01

    The Trojan Nuclear Plant is an 1178 MWe nuclear plant located on the Columbia River 40 miles northwest of Portland, Oregon. The Nuclear Stream Supply System vendor is Westinghouse with a General Electric turbine generator. The reactor is rated and licensed for 3423 MWt (1178 MWe) and the turbine generator is designed for 3570 MWt(1219 MWe). The startup phase testing of Trojan commenced on November 21, 1975, upon receipt of our NRC Operating License. The startup testing program was completed on May 22, 1976, following 100 hours of full-power operation, at which time a scheduled summer maintenance outage began. Some of the highlights and milestones of the startup testing program are described

  13. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  14. Trade in electricity certificates: a new means for stimulating electricity from renewable energy sources: final report from the electricity certificate inquiry

    International Nuclear Information System (INIS)

    2001-01-01

    We recommend the introduction of a quota-based Swedish certificate system to promote production of electricity from renewable energy sources commencing on 1 January 2003. We recommend that the certificate system should be based on the following principles: The quota obligation should be set for the years 2003 to 2010 and for all intervening years. The quota is expressed as a share of the total amount of electricity used. It is proposed that as a guideline, a target of an increase in electricity production from renewable energy sources of 10 TWh, in a period from 2003 to 2010 inclusive, is adopted. It is estimated that approximately half of this increase can come from expansion of existing production and half from new plants. The following electricity production plants are to be entitled to certificates provided they comply with the requirement that electricity is to be produced from renewable energy sources and that they meet the environmental criteria set, including fuel requirements, where electricity is produced with the aid of: 1. wind power, 2. solar energy, 3. geothermal energy, 4. certain types of biofuel, 5. wave energy, 6. hydroelectric power at existing plants which, at the time of the Electricity Certificate law coming into effect, have a capacity not exceeding 1 500 kilowatt, 7. hydroelectric power at plants which have not been in operation after 1 July 2001 but which were commissioned after the coming into effect of the Electricity Certificate law, 8. increased installed capacity at existing hydroelectric power plants to the extent that capacity is increased by measures undertaken after 1 July 2002, and 9. hydroelectric power produced at plants, which started operation for the first time after 1 July 2002. The quota period is defined as one calendar year. Certificates may be 'banked' by those subject to quota should they have more certificates at the end of the quota period than need to be submitted. A certificate is valid for an unlimited period of

  15. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  16. Valuation of marginal CO2 abatement options for electric power plants in Korea

    International Nuclear Information System (INIS)

    Park, Hojeong; Lim, Jaekyu

    2009-01-01

    The electricity generation sector in Korea is under pressure to mitigate greenhouse gases as directed by the Kyoto Protocol. The principal compliance options for power companies under the cap-and-trade include the application of direct CO 2 emission abatement and the procurement of emission allowances. The objective of this paper is to provide an analytical framework for assessing the cost-effectiveness of these options. We attempt to derive the marginal abatement cost for CO 2 using the output distance function and analyze the relative advantages of emission allowance procurement option as compared to direct abatement option. Real-option approach is adopted to incorporate emission allowance price uncertainty. Empirical result shows the marginal abatement cost with an average of Euro 14.04/ton CO 2 for fossil-fueled power plants and confirms the existence of substantial cost heterogeneity among plants which is sufficient to achieve trading gains in allowance market. The comparison of two options enables us to identify the optimal position of the compliance for each plant. Sensitivity analyses are also presented with regard to several key parameters including the initial allowance prices and interest rate. The result of this paper may help Korean power plants to prepare for upcoming regulations targeted toward the reduction of domestic greenhouse gases.

  17. Standard technical specifications: General Electric plants, BWR/4. Volume 1, Revision 1: Specifications

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  18. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Science.gov (United States)

    2011-04-07

    .../D Battery Room), 36 (E42 Switchgear Room), 37 (E22 Switchgear Room), 43 (E-4 Emergency Diesel... this exemption have a combustible fuel load that is considered to be low with fuel sources consisting... 3 B/D Action M....... 9--39* 60 Battery Room). Fire Area 36 (E42 Switchgear Action R....... 12--42...

  19. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  20. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  1. The use of reliability analysis techniques applied to nuclear power station emergency core cooling systems

    International Nuclear Information System (INIS)

    Danielsen, A.; Snaith, E.R.

    1975-01-01

    A reliability investigation carried out by the Safety and Reliability Services of the UKAEA, and the SSEB, of the essential system/reactor coolant system for a large nuclear power station is described. In AGR type reactors, after all reactor shutdown conditions, it is necessary to restore forced gas circulation and sufficient boiler feed to maintain the heat removal capacity of the boilers. The coolant requirements are provided by several independent mechanical systems of primary coolant fans, feedwater pumps, and valves integrated with electrical power sources, switchgear, and automatic control equipment. Reliability is treated as one aspect of system performance and quantified in terms of failure to meet a specific objective. Based on the reliability performance of the constituent components the optimum system configuration is determined together with the preferred plant operating procedures and maintenance requirements. (author)

  2. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis

    Czech Academy of Sciences Publication Activity Database

    Krausko, M.; Perůtka, M.; Šebela, M.; Šamajová, O.; Šamaj, J.; Novák, Ondřej; Pavlovič, A.

    2017-01-01

    Roč. 213, č. 4 (2017), s. 1818-1835 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : action potential * carnivorous plant * Drosera * electrical signal * enzymes * jasmonates * long-distance signalling * sundew Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 7.330, year: 2016

  3. The electricity market

    International Nuclear Information System (INIS)

    2015-01-01

    After a first part proposing predictions for electricity production and consumption for 2016, for the turnovers of electricity suppliers and producers, an indication of important recent important events regarding enterprises belonging to the sector, and a dashboard of the sector activity, an annual report proposes a detailed overview of trends and of the competition context for the electricity market. It identifies the main market opportunities for electricity suppliers, identifies eight determining factors for the sector activity, gives an overview of the sector context evolution between 2004 and 2014 (temperatures, rainfalls, manufacturing industry production, housing and office building stock, projected housing and office building). It analyses the evolution of the sector activity by presenting and commenting various activity indicators and financial performance of electricity producers. It analyses the sector economic structure: evolution of the economic fabric, presentation of various structural characteristics (cross-border exchanges, production capacities per energy source, nuclear plant fleet, thermal plant fleet, location, electricity supply market). It proposes a presentation of the various actors and of their respective market shares, and presentations of groups, electricity suppliers, and electricity producers. It indicates highlights and presents various rankings of the main enterprises in 2014

  4. The effects of aging on electrical and I ampersand C components: Results of US Nuclear Plant Aging Research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1993-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  5. The effects of aging on electrical and I ampersand C components: Results of US nuclear plant aging research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1991-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  6. Analysis of constraints to the introduction of LNG plants in the Brazilian electric sector; Analise dos condicionantes para a introducao de plantas a GNL no setor eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Tatiane Moraes Pestana

    2010-03-15

    This work aims analyze the constraints to the introduction of LNG in the Brazilian energy matrix. Therefore, considers the current regulatory framework and the investments recently made by PETROBRAS to acquire LNG in the international market in order to supply power plants in the country. In order to assess the current status of the LNG plants in the electricity sector, factors are analyzed in terms of the natural gas industry and electric power industry, such as: storage, LNG contracts, operating dispatch, LNG plants pricing and operational flexibility. Despite the increase in LNG international trade and the prospect of using this product in Brazil, there are some challenges for the effective use of LNG plants by Brazilian electric sector. Some of the challenges are the need to review the methodology of calculating the cost benefit of LNG power plants. Another important challenge is to examine the use of underground storage and its influence in the operating dispatch of LNG plants. (author)

  7. Alberta electric industry annual statistics for 1998

    International Nuclear Information System (INIS)

    1999-06-01

    Tables containing data on electric energy generation and capacity for Alberta are provided for the following aspects: capacity and generation of power plants for 1998; capacity of power plants by type, unit, and energy resource for 1998; generating units approved for construction for 1998; generating units completed in 1998; transmission additions approved for construction and completed for 1998; net annual generating capacity and generation for 1988-1998; net monthly generation by plant for 1998; net annual generation by energy resource and type for 1988-1998; net monthly generation by energy resource and type for 1998; generation capacity reserve; relative capacity and generation by type of energy resource for 1998; capacity, generation and fuel consumption of isolated plants for 1998; other industrial on-site plant capacity and generation for 1998. Also listed are: energy resource consumption and energy conversion efficiency of thermal power plants for 1998; stack emissions from thermal generating plants for 1998; non-utility electric generators, wind and hydro for 1998; and hydroelectric energy utilization and conversion efficiency for 1998. Tables contain information on electric energy generation and capacity for hydroelectric energy stored in reservoirs in 1998; details of non-coincident net peak generation and load by utility operators for the Alberta electric system for 1998; and Alberta electric system generation and load at peak load hour for 1998. Further tables cover electric energy distribution for interchange and distribution for 1998 and 1981-1998; annual energy distribution to ultimate customers for 1988-1998 and to ultimate customers for 1998; and the number of electric utility customers in 1998. Final tables cover the transmission and distribution systems with data on: circuit km of such lines for 1988-1998; total circuit km of such lines by major electric utility for 1998 and number of rural electric utility customers for 1998

  8. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf Borelli, Samuel Jose [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil)], E-mail: sborelli@terra.com.br; Oliveira Junior, Silvio de [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)], E-mail: silvio.oliveira@poli.usp.br

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.

  9. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel Jose Sarraf [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil); De Oliveira Junior, Silvio [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (author)

  10. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    International Nuclear Information System (INIS)

    Sarraf Borelli, Samuel Jose; Oliveira Junior, Silvio de

    2008-01-01

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters

  11. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  12. 76 FR 388 - Southern Nuclear Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice...

    Science.gov (United States)

    2011-01-04

    ... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance... Web site http://www.regulations.gov . Because your comments will not be edited to remove any... will not edit their comments to remove any identifying or contact information, and therefore, they...

  13. 75 FR 11918 - General Electric Kentucky Glass Plant, Lighting, LLC, Including On-Site Leased Workers From the...

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,011] General Electric Kentucky Glass Plant, Lighting, LLC, Including On-Site Leased Workers From the Patty Tipton Company, Aetna Building Maintenance, and Concentra, Lexington, KY; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordanc...

  14. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  15. The impact of the year 2000 issue on electricity grid performance and nuclear power plant operation in Bulgaria, the Russian Federation and Slovakia

    International Nuclear Information System (INIS)

    1999-07-01

    The Y2K date conversion is a potential source of problems to the operation of nuclear power plants through external events and interfaces with electrical power systems, telecommunication systems, and other supporting infrastructures, even if diagnostic and corrective actions within the plant itself, both planned or implemented, are successful. At the end of 1998 there were 425 nuclear power plants in operation in 31 Member States. Most countries and regions are conducting intensive diagnostic and corrective activities to 'find and fix' Y2K software (including embedded software) and equipment problems in their nuclear power plants. These efforts are supplemented by contingency plans. Other countries and regions have not been making comparable efforts and are relying mainly on contingency planning and preparedness. Results of diagnostic and corrective activities can be of benefit to all Member States. Activities on 'find and fix' Y2K problems in electricity grid control systems and computer related technology in national and regional dispatch centers could be of considerable benefit due to the widespread use of the same components, equipment, and software. Consistent with the objectives of the International Atomic Energy Agency's Y2K program, an experts meeting was convened to collect information on Y2K activities related to grid operation in countries that operate nuclear power plants and also to identify specific actions to be taken and issues to be addressed in connection with expected grid disturbances. The countries of eastern Europe and the Russian Federation were considered to be a very important region due to delays in taking Y2K corrective actions but also due to the similarity of their electricity grid systems both in components and design but also in mode of operation. Most of these countries either operate their own nuclear power plants or are linked through their electricity grid interconnections to a neighboring country that operates nuclear power

  16. Component fragilities. Data collection, analysis and interpretation

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1985-01-01

    As part of the component fragility research program sponsored by the US NRC, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment with emphasis on electrical equipment. To date, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical and control devices, e.g., switches, transmitters, potentiometers, indicators, relays, etc., of various manufacturers and models. BNL has also obtained test data from EPRI/ANCO. Analysis of the collected data reveals that fragility levels can best be described by a group of curves corresponding to various failure modes. The lower bound curve indicates the initiation of malfunctioning or structural damage, whereas the upper bound curve corresponds to overall failure of the equipment based on known failure modes occurring separately or interactively. For some components, the upper and lower bound fragility levels are observed to vary appreciably depending upon the manufacturers and models. For some devices, testing even at the shake table vibration limit does not exhibit any failure. Failure of a relay is observed to be a frequent cause of failure of an electrical panel or a system. An extensive amount of additional fregility or high level test data exists

  17. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  18. The little hydro-electricity: the boosting?

    International Nuclear Information System (INIS)

    Brunier, S.; Najac, C.; Roussel, A.M.; Claustre, R; Baril, D.; Marty, D.; Lefevre, P.; Arnould, M.

    2007-01-01

    The hydraulic energy could be easily developed in France to reach the objectives of the european directive on the renewable energies. This development can be assured by the construction of power plants perfectly integrated in their environment and respecting the rivers and assured also by the increase of the capacities of existing power plants as it is allowing by the new regulations. This document presents the place and the capacity of the hydro-electricity in France, the implementing of a green electricity, the existing regulation, the river biological continuation, the ecosystems and the little hydro-electricity and the example of the hydro-electric power plant of Scey-sur-Saone. (A.L.B.)

  19. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  20. SOFC solid oxide fuel cell power plants for the decentralised electric energy supply; SOFC-Brennstoffzellen-Kraftwerke fuer die dezentrale elektrische Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Fogang Tchonla, Etienne

    2012-07-01

    To use the fuel cell economically, the efficiency of the system must still be raised so that it can be set up in the market. Within the scope of analysis on this topic, a 120-kW-SOFC-demonstration power plant was to be considered. Since not enough information about the demonstration power plant from the operator was available for the investigation, we had to calculate with the help of the known technical data of similar power plants. After that a model was build and simulated by means of MATLAB/Simulink. Before that the single power plant components were being described. Two of them (the boost converter as well as the inverter) were looked at more thoroughly. As a result of the analysis, it was found that a standard inverter which had been conceived for other applications, for example, Photovoltaic or Wind Power can also be used for fuel cells. Unfortunately, this was not the case for the added boost converter. It had to be precisely conceived for the used fuel cell type. After this discovery information was won for the realization of a 1-MW-Fuel Cell Power Plant. The topology of the 1-MW-power plant was fixed on the basis of the 120-kW-system. A parallel connection of eight 120-kW SOFC-fuel cell aggregates is intended, as well as a connection at the outlet side 120-kW boost converters. A standard inverter with 1 MW electrical power as well as a 1-MVA-transformer could be used for the realization of the 1-MW-power plant. The binding of the power plant in the three-phase current network was examined in view of the norms, laws and connection conditions. Beside the distinction of the operating forms of the power plant (parallel or isolated operation) the security of the plant was emphasized with regard to quick fault recognition, safe supply line isolation in the fault case as well as a compliance of the prescribed regulations. To verify the calculated results as well as the provided models, a 10-kW-labor sample was built and examined in the lab. This experimental

  1. Slovak Electric, Plc., 1998

    International Nuclear Information System (INIS)

    1997-06-01

    Slovenske elektrarne, a.s. (Slovak Electric, Plc., abbrevation 'SE, a.s.') is the Slovak electricity generating utility, incorporated on November 1, 1994 as one of new companies formed from substantially all of the assets and a legal successor of Slovensky energeticky podnik, s.p., founded on January 1, 1969 in the form of SEP group. From its predecessor, Slovak Electric, Plc., took over generation of power, operation of 220 kV and 400 kV power system, transit, import, export, and sale of electricity. It is also involved in generation, distribution, and sale of heat. At present, SE's share of electriciry sales in the Slovak Republic is 88.47%. Electricity is delivered to three regional distribution companies and directly to several major industrial enterprises. SE, a.s. operates one nuclear power station, three thermal power plants, and 30 hydro power plants. The second nuclear power plant is under construction (state up tu June 1997) and SE is participating in the construction of two hydro power plants and one combined cycle power plant. The efforts of SE, s.a. focus on the generation of power and heat with minimal environmental impacts. Ecology is given priority in the SE, a.s. development programmes. SE's mission is to permanently satisfy customers' needs, for an acceptable price and with minimal environmental impact. On this CD ROM next chapters are presented: (1) The structure of the Company; (2) Production units; (3) The economic power of the Company; (4) The operation culture; (5) The strategic plans of the Company

  2. Maintenance Tools applied to Electric Generators to Improve Energy Efficiency and Power Quality of Thermoelectric Power Plants

    Directory of Open Access Journals (Sweden)

    Milton Fonseca Junior

    2017-07-01

    Full Text Available This paper presents a specific method to improve the reliability of the equipment and the quality of power supplied to the electrical systems with the frequency and voltage control of a thermoelectric plant, to guarantee a more stable system. The method has the novelty of combining Total Productive Maintenance (TPM using only four pillars, with Electrical Predictive Maintenance based in failure analysis and diagnostic. It prevents voltage drops caused by excessive reactive consumption, thus guaranteeing the company a perfect functioning of its equipment and providing a longer life of them. The Maintenance Management Program (MMP seeks to prevent failures from causing the equipment to be shut down from the electrical system, which means large financial losses, either by reducing billing or by paying fines to the regulatory agency, in addition to prejudice the reliability of the system. Using management tools, but applying only four TPM pillars, it was possible to achieve innovation in power plants with internal combustion engines. This study aims to provide maintenance with a more reliable process, through the implantation of measurement, control and diagnostic devices, thus allowing the management to reduce breakdown of plant equipment. Some results have been achieved after the implementation, such as reduction of annual maintenance cost, reduction of corrective maintenance, increase of MTBF (Mean Time between Failures and reduction of MTTR (Mean Time to Repair in all areas. Probabilistic models able to describe real processes in a more realistic way, and facilitate the optimization at maximum reliability or minimum costs are presented. Such results are reflected in more reliable and continual power generation.

  3. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  4. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  5. Safety Research Experiment Facility Project. Conceptual design report. Volume III. Utilities

    International Nuclear Information System (INIS)

    1975-12-01

    The SAREF Electric Power System supplies and distributes power from the EBR-II switchgear for operation of all normal facilities on the site, from an on-site Experiment Diesel Generator for operation of all experiment related loads, and from an emergency engine generator and/or an uninterruptible power supply for operation of all essential and critical loads during a failure of both of the other two systems

  6. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  7. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  8. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    International Nuclear Information System (INIS)

    Jeon, Eunyong; Lee, Junghoon; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L

    2017-01-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device. (paper)

  9. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    Science.gov (United States)

    Jeon, Eunyong; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L.; Lee, Junghoon

    2017-08-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device.

  10. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  11. Microstructural evolution of pipelines for thermal electric power plants after a prolongated operation

    International Nuclear Information System (INIS)

    Twentyman, M.; Rosetti, R.; Porta, G.

    1991-01-01

    The study of failures originated in pipelines for thermal electric power plants allows an evaluation of the limit microstructural conditions that turn the system to critical conditions. A set of pipe samples with different microsctructural evolution which had been affected by direct flame were prepared. The samples were taken close to failures, away from them, from out of use pipes, etc. Metallographic studies were carried out using optical microscopy and scanning electron microscopy. Phase distribution, morphology and their relation with the different stages of aging were observed. (Author) [es

  12. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  13. Generic Virtual Power Plants: Management of Distributed Energy Resources under Liberalized Electricity Market

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    The emergence of Virtual Power Plant (VPP) can be attributed to the major boost of distributed energy resources (DER), which satisfies the changing needs of modern society on energy industry. Based on this concept, DER units disregarding the differences in each individualtechnology are loosely...... aggregated with a unique interface to the external grid and energy market. This paper gives a broad overview of state-of-the-art VPP concepts and proposes a detailed generic VPP (GVPP) model running in liberalized electricity market environment. An attempt is made to provide an outline of the main functions...

  14. Environmental impacts assessment of future electricity generating plants for the State of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Pinheiro, Ricardo Brandt; Ribeiro, Leonardo Marcio Vilela; Loures, Marcelo de Melo Gomide

    1999-01-01

    The Energy and Power Evaluation Program was used for energy planning analysis of the entire energy system of the state of Minas Gerais, Brazil. The environmental impact and resource requirements were estimated with the IMPACTS module, using results obtained from the electricity generating system expansion plan generated by WASP, together with results of marketplace energy supply and demand balances over the study period (1995-2015) computed with the BALANCE module for five different scenarios. The results for the electricity generating system show that: the air emission levels increase in all scenarios: the growth rate of the economy and energy conservation are the most important factors affecting the emissions; the land use increase significantly, the new hydroelectric power plants contributing to almost the total of this increase. (author)

  15. Nuclear Power as an Option in Electrical Generation Planning for Small Economy and Electricity Grid

    International Nuclear Information System (INIS)

    Tomsic, Z.

    2012-01-01

    Implementing a NPP in countries with relatively small total GDP (small economy) and usually with small electricity grid face two major problems and constrains: the ability to obtain the considerable financial resources required on reasonable terms and to connect large NPP to small electricity grid. Nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved. The main topics covered by paper will be the: special circumstances related to the financing of NPP, costs and economic feasibility of NPP, conventional approaches for financing power generation projects in developing countries, alternative approaches for mobilizing financial resources. The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe start-up, operation and normal or emergency shut-down of the plant. Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability. Paper shows the comparative assesment of differrent base load technologies as an option in electrical generation planning for small economy and electricity grid.(author).

  16. Guidance for emergency planning in nuclear power plants; Vaegledning foer insatsplanering i kaerntekniska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ekdahl, Maria (Ringhals AB, Vaeroebacka (Sweden))

    2008-06-15

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  17. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Science.gov (United States)

    2011-05-24

    ... Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice of Consideration of Issuance..., http://www.regulations.gov . Because your comments will not be edited to remove any identifying or... received from other persons for submission to the NRC inform those persons that the NRC will not edit their...

  18. Optimizing electricity distribution using two-stage integer recourse models

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; van der Vlerk, Maarten H.

    2000-01-01

    We consider two planning problems faced by an electricity distributor. Electricity can be ob-tained both from power plants and small generators such as hospitals and greenhouses, whereas the future demand for electricity is uncertain. The price of electricity obtained from the power plants depends

  19. Optimizing electricity distribution using two-stage integer recourse models

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; van der Vlerk, M.H.; Uryasev, SP; Pardalos, PM

    2001-01-01

    We consider two planning problems faced by an electricity distributor. Electricity can be obtained both from power plants and small generators such as hospitals and greenhouses, whereas the future demand for electricity is uncertain. The price of electricity obtained from the power plants depends on

  20. Model project for reduction of electric power consumption in cement plant. Report for fiscal 1999 on achievements of commissioned operation; Cement shosei plant denryoku shohi sakugen model jigyo 1999 nendo itaku gyomu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With objectives of utilizing energies efficiently and serving for environmental improvements, a model project was implemented for reduction of electric power consumption in cement plant in Vietnam. This paper reports the achievements in fiscal 1999. This project is intended to install waste heat boilers in waste gas lines in the preheating process in the cement plant, whose waste heat is recovered by steam to generate electric power by using steam turbines. The current fiscal year has executed the following activities: design of turbines, condensers, and oil units; discussions on the arrangement drawings thereof obtained from the Vietnam side; design of piping and provision of the detailed drawings thereof to the Vietnam side; planning of the electric cable routes; planning of instrumentation wiring routes; and grounding and interlocks. Results of the discussions on the proposed plant operation methods were reflected to the system design of the monitoring devices. Furthermore, the turbines were fabricated, and the associated facilities, valves, and piping materials were procured based on the detailed design. The piping materials were given pre-shipment inspections before having been transported to the site. (NEDO)

  1. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  2. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  3. A guide to qualification of electrical equipment for nuclear power plants. Final report, November 1983

    International Nuclear Information System (INIS)

    Marion, A.; Lamken, D.; Harrall, T.; Kasturi, S.; Holzman, P.; Carfagno, S.; Thompson, D.; Boyer, B.; Hanneman, H.; Rule, W.

    1983-09-01

    Equipment qualification demonstrates that nuclear power plant equipment can perform its safety function - that despite age or the adverse conditions of a design basis accident the equipment can work as needed. This report is a guide to the overall process of electrical equipment qualification. It should interest those who design such equipment, those who buy it, or test it, and even those who install and maintain it. (author)

  4. Evaluation of the electric power production cost growth due to decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Basso, G.

    1982-01-01

    The increase of production cost for electric power generated by nuclear plants, due to their decommissioning and the end of operating life, is analysed in respect to (a) waiting time from indefinite shut-down date to the start of dismantlement, (b) financing method, (c) interest and inflation rates. The analysis shows that the additional cost is always small for those solutions which have higher probability to be adopted

  5. Electric power monthly, April 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national Census division, and State level. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data are given for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 6 figs., 57 tabs

  6. Research on the availability and environmental aspects of geothermal electric power plants in Mexico

    International Nuclear Information System (INIS)

    Mulas, P.; Mercado, S.

    1984-01-01

    Although geothermal electric power plants will make only a modest contribution to annual power generation in Mexico until the year 2000 (at present there is a capacity of 205 MW(e) in operation and 440 MW(e) under construction), new areas are being developed and, in the plants that have been in operation for several years, criteria such as the capacity factor (>85%) and the cost per kW.h generated are favourable. The main problem lies in determining the generation capacity which should be installed at the end of the exploration period. There is an economic risk here since the generation capacity is extremely uncertain and in order to reduce this risk the well production record must be carefully studied. Considerable research is being carried out in this area to improve the physical and numerical techniques available. Research is also being conducted to improve the cementing quality of the well pipes and to try to prevent or eliminate corrosion of these pipes. Study of the problem of silica incrustation has led to the adoption of economic techniques for its prevention or removal. Possibilities for the commercial utilization of waste have been studied for brine and are about to be started for gases. Heat exchangers which could turn the heat at present being wasted to account for electricity generation are also being investigated. (author)

  7. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    Science.gov (United States)

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  9. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  10. New decisions on the nonpayment of electric power from nuclear power plants

    International Nuclear Information System (INIS)

    Gross, W.

    1981-01-01

    The author documents some decisions on the nonpayment of electricity from nuclear power plants that are difficult to be found out elsewhere, and discusses their tendencies. There are decisions of the Amtsgericht (District Court) Gelsenkirchen-Buer of the 30th of March, 1981-7C758/80, the Landgericht (Provincial Court) Stuttgart of the 18th of December, 1980-100164/80, the Amtsgericht Hamburg of the 14th of November, 1979-9C774/79, the Amtsgericht Marburg of the 27th of June, 1980-10C197/80 and the Landgericht Koeln of the 2nd of April, 1981-1S32/81. (HSCH) [de

  11. Non-electrical CANDU applications

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Kuran, Sermet; Zhou, Xi; Ivanco, Michael; Rolfe, Brian; Mancuso, Connie; Duffey, Romney

    2005-01-01

    AECL has performed studies to utilize CANDU nuclear energy in areas other than electrical generation. The studies presented in this paper include using CANDU for applications in non-traditional areas which expand the use of zero-greenhouse gas energy source. The Oil sands industry demands significant energy input and the majority of the energy required for bitumen extraction is steam and hot water. As the primary production of a CANDU plant is steam, it can satisfy the steam and hot water requirement without a major modification to the Nuclear Steam Plant (NSP). Reverse Osmosis (RO) has been identified by the IAEA as the most promising method for nuclear desalination. Since the RO desalination efficiency increases as its feedwater temperature rises, using condenser cooling water from a CANDU plant as the feedwater for a RO plant and sharing other facilities between these two plants results in significant benefits in capital and operating costs of a desalination plant. Electrolysis powered by nuclear-generated electricity is the technology currently available to produce hydrogen without greenhouse gas emissions. By using the cheaper electricity available at off-peak periods in an open electricity market, this technology could be economically competitive, improve overall energy system efficiency and reduce overall energy system carbon intensity. The paper summarizes the background, technical approaches, feasibility considerations, along with economic comparisons between CANDU nuclear energy and the traditional energy sources for each study. The results show that the CANDU technology is a promising energy source for various industries. (author)

  12. Dynamic analysis of electric equipment for nuclear power stations under seismic loads

    International Nuclear Information System (INIS)

    Buck, K.E.; Bodisco, U. von; Winkler, K.

    1977-01-01

    The response spectrum method, generally accepted as the most practical method for linear seismic analysis of power station components, is here applied in conjunction with the finite element method to electric components. The fully dynamic analysis based on the superposition of the natural modes as carried out for an electronics cabinet and for transmitter supports is outlined and selected results are presented. Several different methods are in use for the superposition of the contributions of the different modes. Here addition of absolute values, the square-root of the sum of squares, and a mixed method taking account of closely spaced modes is applied. For different structures, the degree of conservativity is thus demonstrated, the largest difference in the stresses computed by the different methods being approximately 30%. For structures whose natural frequencies are in the spectrum range with zero period response, a simplified response analysis using static loads is often carried out. This is demonstrated for the electronics cabinet and transmitter mountings, and the results are compared with the fully dynamic analyses. It is seen that this 'pseudo-dynamic' analysis yields useful approximations for the distributions of stresses. Practical details of the structural models as well as results are presented for several switchgear and electronics cabinets

  13. Electricity-cost savings obtained by means of nuclear plant life extension

    International Nuclear Information System (INIS)

    Forest, L.; Fletcher, T.; DuCharme, A.; Harrison, D.L.

    1987-01-01

    This study examines savings caused by nuclear-plant life extension (NUPLEX) and describes the effects of changes in assumptions on costs and technology using an approach simpler than the large economic-model simulations used in other reports. Under the simplified approach, we estimate savings at the broad national level by comparing projected costs/kWh for the typical NUPLEX plant with those for new coal-fired plants, which seem the most likely alternative in most regions. While ignoring some complications handled by the large, regionally disaggregated econometric models, the approach used in this study has advantages in sensitivity analyses. It reveals relationships between savings and basic assumptions on costs and technology in a more transparent way than in large-model simulations. We find that, absent major technological breakthroughs for present generating options, NUPLEX saves consumers money on their electric bills under most plausible economic scenarios. Using mid-range assumptions, we find that NUPLEX saves consumers a total of about dollar 180 billion spread over the period 2010-50. Under optimistic assumptions, the savings swell to over dollar 900 billion. Under extremely pessimistic assumptions, the savings actually turn negative. This wide range of estimates largely reflects the uncertainty in cost projections. Within plausible limits, higher- or lower-than-expected load growth does not affect the savings estimates. The NUPLEX construction costs stand out as the most critical unknown. If they turn out to be 50% (dollar 500 billion) above the baseline estimate savings would fall by almost 60% (dollar 105 billion). A 50% rise in nuclear fuel costs would drop baseline savings by almost 22%. A 50% increase in nuclear-plant operations-and-maintenance costs, would cut baseline savings by about 36%. These sensitivities highlight the need for continued monitoring of economic developments

  14. The future of fission-electric power

    International Nuclear Information System (INIS)

    Morowski, J.V.

    1983-06-01

    Future worldwide electricity supply needs dictate the necessity of maintaining a sound capability for electricity and electric power generating facilities, including nuclear, as viable export commodities. A survey of fission-power plant types and the status of worldwide nuclear electric power illustrates the primary emphasis on LWR's and HWR's as two leading types in the export market. This survey examines the factors affecting the market prospects for the next five to fifteen years and provides a discussion on some possible improvements to current market circumstances. A comparative description is provided for some of the types of LWR and CANDU characteristics such as quantities, schedules, constructability factors, and equipment and system. Important factors in the selection process for future nuclear power plants are discussed. Some factors included are seismic design requirements; plant design description and possible site layout; plant protection, control and instrumentation; thermal cycle design and arrangement; and special construction and rigging requirements

  15. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  16. Slovak Electric, Plc., 1997

    International Nuclear Information System (INIS)

    1997-06-01

    Slovenske elektrarne, a.s. (Slovak Electric, Plc.) was established on November 1, 1994 as one entity among new entities created as successors to the former Slovensky energeticky podnik. The subject activity is the generation of electric power, operation of transmission 220 kV and 400 kV systems, transit, import, export, and sales of electric power. Besides these activities the company deals with generation, distribution, and sales of heat. The company operates one nuclear power station, three thermal power plants, and thirty hydro power plants. One nuclear Power plant is under construction (state up tu June 1997). On this CD ROM next chapters are presented: (1) The structure of the company; (2) The production Units; (3) The economic power of the company; (4) The operation culture of the company; (5) The strategic plans of the company

  17. Optimal short-term operation schedule of a hydropower plant in a competitive electricity market

    International Nuclear Information System (INIS)

    Perez-Diaz, Juan I.; Wilhelmi, Jose R.; Arevalo, Luis A.

    2010-01-01

    This paper presents a dynamic programming model to solve the short-term scheduling problem of a hydropower plant that sells energy in a pool-based electricity market with the objective of maximizing the revenue. This is a nonlinear and non-concave problem subject to strong technical and strategic constraints, and in which discrete and continuous variables take part. The model described in this paper determines, in each hour of the planning horizon (typically from one day to one week), both the optimal number of units in operation (unit commitment) and the power to be generated by the committed units (generation dispatch). The power generated by each unit is considered as a nonlinear function of the actual water discharge and volume of the associated reservoir. The dependence of the units' efficiency and operating limits with the available gross head is also accounted for in this model. The application of this model to a real hydropower plant demonstrates its capabilities in providing the operation schedule that maximizes the revenue of the hydro plant while satisfying several constraints of different classes. In addition, the use of this model as a supporting tool to estimate the economic feasibility of a hydropower plant development project is also analyzed in the paper. (author)

  18. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A1 to A3

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, I.; Jensen, Peter A.; Dam-Johansen, K.; Kloeft, H.; Boejer, M. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Esbjerg (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with incineration bottom ash leaching properties; design and construction of rotary kiln facility; manual to rotary kiln experiments. (Author)

  19. Potential of plug-in hybrid electric vehicle for reduction of CO2 emission and role of non-fossil power plant

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Yamamoto, H.

    2009-01-01

    A method to analyze the demand of electricity and the reduction of CO 2 emission and oil consumption by PHEV is established. Using the performance of PHEV optimized by EPRI and an estimation on the pattern of driving and charging in Japan, the following results are obtained. The electric demand for PHEV60(which has 60mile EV range) and PHEV20(which has 20mile EV range) is evaluated at 79.3 billion kWh and 41.2 billion kWh, respectively, in case that all vehicles in Japan (80 million cars) would be replaced by PHEV. The load leveling effect on the Japanese grid, which is hypothetically considered as one electric grid system, is evaluated at about 30 million kW, in case that all vehicles in Japan are replaced by PHEV60 and charged in the midnight. However, when the charge of PHEVs starts in the evening, that effect is not obtained. The reduction of CO 2 emission results in 64 million ton by the averaged CO 2 emissions intensity (emissions per unit of user end electricity) in Japan, and 98 million ton by electricity from the non-fossil power plant such as nuclear energy or renewable one. Those values are equivalent to 25% and 38% of CO 2 emission from the transport sector in Japan in 2003. Hence, non-fossil power plant enhances the reduction of CO 2 emission by the PHEV introduction. (author)

  20. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  1. Electricity from wetlands

    NARCIS (Netherlands)

    Wetser, K.

    2016-01-01

    Sustainable electricity generation by the plant microbial fuel cell

    Fossil fuels are currently the main source of electricity production. Combustion of fossil fuels causes air pollution severely affecting human health and nature. This results in an increasing demand for

  2. THE RESONANT OVERVOLTAGE IN NON-SINUSOIDAL MODE OF MAIN ELECTRIC NETWORK

    Directory of Open Access Journals (Sweden)

    V. G. Kuznetsov

    2018-04-01

    Full Text Available Purpose. The resonant overvoltage arises in main electrical networks as a result of random coincidence of some parameters of circuit and its mode and it may exist for a relatively long time. Therefore, the traditional means of limitation of short duration commutation surges are not effective in this case. The study determines conditions of appearance and development of non-sinusoidal mode after switching idle autotransformer to the overhead line of extra high voltage. The purpose of the paper is to choice measures for prevention overvoltage, too. Methodology. The study has used the result of extra high voltage line testing, the methods of electric circuit theory and the simulation in the MATLAB & Simulink package. Results. The simulation model of the extra high voltage transmission line for the study of resonant non-sinusoidal overvoltage is developed. The conditions for the appearance of resonant circuits in the real power line are found and harmonic frequency in which overvoltage arises are obtained. The study proposes using the controlled switching device as a measure to prevent resonance surges and determines the appropriate settings. Originality. The expression for calculation of resonant length of extra high voltage line was derived. The special investigation of processes in the resonant circuit of the extra high voltage transmission line for higher harmonic components of voltage is carried out. The program of switching for control apparatus that prevents non-sinusoidal overvoltage has been developed at the first time. Practical value. The using of the proposed settings of controlled switchgear will prevent the occurrence of hazardous resonant surge on higher harmonic components of voltage.

  3. Technical specifications, Vogtle Electric Generating Plant, Unit No. 1 (Docket No. 50-424): Appendix ''A'' to license No. NPF-61

    International Nuclear Information System (INIS)

    1987-01-01

    This technical specifications report presents information concerning the Vogtle Electric Generating Plant in the following areas: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  4. Electricity Delivery and its Environmental Impacts

    Science.gov (United States)

    Explains electricity delivery in the U.S. and its impacts on the environment. After a centralized power plant generates electricity, the electricity must be delivered to the end-user. Follow the path of electricity through transmission, substation, and dis

  5. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  6. Life extension of low and medium voltage equipment

    International Nuclear Information System (INIS)

    Bharteey, B.M.; Hart, T.J.

    1990-01-01

    Nuclear plant life extension is becoming a very important issue with the passing of each day. Within 3 to 10 years after the turn of the century, licenses of a number of nuclear power plants in the United States will expire. For the near future, new construction of nuclear power plants in the United States is expected to be inhibited, if the current economic and regulatory environment continues to persist. This situation, coupled with aging of utility equipment and the high cost of financing new construction is resulting in a growing emphasis on preserving and extending the capability of existing power plants. Until now, the utilities have placed more emphasis on high cost items, but experience shows that extending life of low cost of device/components in items like Motor Control Center Centers and switchgear pays big dividends. According to the current practice, devices of these items are replaced at the end of their assigned qualified life or attended to when there is a problem resulting in an unplanned outage. In this paper based on extensive experience in the field of motor control centers and medium switchgear, the authors proposed a cookbook methodology to determine the extent or absence of degradation and establish trends of the pertinent operational properties of devices of this type of equipment. The test results also provide satisfactory evidence of class 1E nuclear safety-related function

  7. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  8. Economic and environmental balancing in response to NEPA for electric power generating plants

    International Nuclear Information System (INIS)

    Bender, M.

    1976-01-01

    Discussion of principles that can provide guidance in responding to the National Environmental Policy Act (NEPA) in the planning of electric power generating plants. The environmental assessment procedure described is initiated by considering alternative decisions in concern for environmental assessment. Having defined the decision paths, the assessment proceeds in a four-phase sequence: Correlation of the alternatives with resource and marketing restraints; screening the alternatives for environmental adequacy and specifying the needed technological refinement; examination of the economics in terms of energy costs; comparing the energy cost with the environmental index and selecting the combination that best reflects the current social preference. (Auth.)

  9. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  10. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  11. Optimal bidding in Turkey day ahead electricity market for wind energy and pumped storage hydro power plant

    Directory of Open Access Journals (Sweden)

    Ceyhun Yıldız

    2016-10-01

    Full Text Available In electrical grid; when the demand power increases energy prices increase, when the demand decreases energy prices decrease. For this reason; to increase the total daily income, it is required to shift generations to the hours that high demand power values occurred. Wind Power Plants (WPP have unstable and uncontrollable generation characteristic. For this reason, energy storage systems are needed to shift the generations of WPPs in time scale. In this study, four wind power plants (WPP which are tied to the Turkish interconnected grid and a pumped hydro storage power plant (PSPP that meets the energy storage requirement of these power plants are investigated in Turkey day ahead energy market. An optimization algorithm is developed using linear programming technique to maximize the day ahead market bids of these plants which are going to generate power together. When incomes and generations of the plants that are operated with optimization strategy is analyzed, it is seen that annual income increased by 2.737% compared with WPPs ‘s alone operation and generations are substantially shifted to the high demand power occurred hours.

  12. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  13. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  14. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  15. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  16. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    International Nuclear Information System (INIS)

    Ganan, J.; Turegano, J.P.; Calama, G.; Roman, S.; Al-Kassir, A.

    2006-01-01

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 o C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H 2 , CO, CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 ), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA, located in Alto Alentejo, in the city

  17. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Ganan, J.; Turegano, J.P.; Calama, G. [Area de Engenharia. Escola Superior de Tecnologia e Gestao. Instituto Politecnico de Portalegre, Lugar da Abadesa, Apartado 148, 7301 Portalegre Codex (Portugal); Roman, S.; Al-Kassir, A. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, Badajoz, 06071 (Spain)

    2006-01-15

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 {sup o}C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H{sub 2}, CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA

  18. 2002 electricity statistics: EU and EU+

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Electricity generation in the European Union (EU) decreased by 0,7% in the period of 2001 to 2002, reaching 2521,3 billion kWh. Developments varied in different countries. Conventional thermal power plants generated 1340,1 billion kWh, which corresponds to a 53.0% share in the total generation and an increase by 2.7% over the level in the previous year. Generation in nuclear power plants increased by 2.7% to 855.5 billion kWh, which corresponds to a 33,8% share in EU-wide generation. Hydroelectric plants and other plants supplied 15.2% less electricity. Eurostat statistics do not differentiate these data any further. The volume of 332.2 kWh is tantamount to a 13.1% share. In the new EU member countries and the candidate countries, electricity generation showed a moderate increase by 0.4% and 2.1%, respectively. While generation both in conventional power plants and in other plants decreased, a considerable increase is shown for nuclear power generation of +13.5% and +10.6%, respectively [de

  19. Electric failure on the reactor n.3 of the nuclear power plant of Dampierre

    International Nuclear Information System (INIS)

    2007-05-01

    This note of information resumes the progress of the electric failure on the reactor n.3 of the nuclear power plant of Dampierre, the organization during the incident, it establishes then a comparison with the incident arisen to Forsmark in 2006 and reminds that it lead in an inspection on behalf of the Asn which noticed that all the procedures had been respected by the operators and did not noticed any abnormality in the maintenance. This event was classified at the level 1 of the international nuclear event scale (INES). (N.C.)

  20. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  1. Evaluation of uncertainties in benefit-cost studies of electrical power plants. II. Development and application of a procedure for quantifying environmental uncertainties of a nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Sullivan, W.G.

    1977-07-01

    Steam-electric generation plants are evaluated on a benefit-cost basis. Non-economic factors in the development and application of a procedure for quantifying environmental uncertainties of a nuclear power plant are discussed. By comparing monetary costs of a particular power plant assessed in Part 1 with non-monetary values arrived at in Part 2 and using an evaluation procedure developed in this study, a proposed power plant can be selected as a preferred alternative. This procedure enables policymakers to identify the incremental advantages and disadvantages of different power plants in view of their geographic locations. The report presents the evaluation procedure on a task by task basis and shows how it can be applied to a particular power plant. Because of the lack of objective data, it draws heavily on subjectively-derived inputs of individuals who are knowledgeable about the plant being investigated. An abbreviated study at another power plant demonstrated the transferability of the general evaluation procedure. Included in the appendices are techniques for developing scoring functions and a user's manual for the Fortran IV Program

  2. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  3. Electricity consumption and electricity saving in the Swedish households

    Energy Technology Data Exchange (ETDEWEB)

    Bernstroem, B M; Eklund, Y; Sjoeberg, L

    1997-03-01

    The objective of the present study is to determine which factors influence electricity consumption behavior of Swedish households, the level of knowledge about electricity use and the willingness to pay for the use of electricity. In Sweden, as in many other developed countries, the need for electric power is constantly increasing. The major reason for this increase in electricity consumption is the lifestyle of a modern society. A feature in the nuclear power discussion is that the government in Sweden is having a hard time to establish how to phase-out all nuclear power plants by 2010. An additional major change in Swedish energy policy is the deregulation of the electricity market, which started in the beginning of 1996. There is an increased demand for strategies to save electricity among households. The results of this study stress the difficulties in reducing electricity consumption and to develop new electricity saving strategies in Sweden 125 refs, 6 figs, 21 tabs

  4. Competition Between Different Sources of Electricity

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    To persons interested in nuclear energy questions, and especially administrators in the private or public sector, one of the most important questions is the competitive status of nuclear electricity in relation to electricity supplied from other sources. In this connection ''to compete'' means to produce at an equivalent or lower cost. Nuclear plants will be particularly attractive, and even preferable, when they can supply power at costs lower than conventional sources, e.g. water and fossil fuels. In many European countries and in the United States, the competitiveness of nuclear power is generally considered purely in comparison with thermal plants operating on coal or mineral oil, since such plants are predominant in those countries. This is not the case in Brazil and other countries where the bulk of the electricity produced comes from hydroelectric plants

  5. Electric utility deregulation - A nuclear opportunity

    International Nuclear Information System (INIS)

    DeMella, J.R.

    2002-01-01

    The implications of electric deregulation are and will continue to be pervasive and significant. Not only will the fundamental monopoly regulatory concepts of managing electric utilities change but deregulation will have a profound and dramatic impact on the way electric generating plants are managed and operated. In the past, under the various approaches to financial regulation, the economic benefits normally attributed to competition or that would have otherwise been derived from competitive or open market forces, were assumed to be embodied in and inherent to the various processes, methods and principles of financial oversight of utility companies by regional, state and municipal regulatory authorities. Traditionally, under the various forms of regulated monopolies, a utility company, in exchange for an exclusive franchise to produce and sell electricity in a particular region, was obligated to provide an adequate supply to all consumers wanting it, at a price that was 'just and reasonable'. The determination of adequate supply and reasonable price was a matter of interpretation by utility companies and their regulators. In essence, the ultimate economic benefits, normally attributed to price equilibrium, in balance with supply, demand and other market forces, were expected to be achieved through a complex, political process of financial regulatory oversight, in which utility companies were usually reimbursed for all annual expenses or their 'cost of service' and additionally allowed to earn a 'reasonable' rate of return on plant investments. The result was often escalating electric prices, over supplies of electric capacity, by justifying unnecessarily high reserve margins based on long planning horizons (typically 20 years or greater) with extrapolated demand requirements that were generally in excess of what actually occurred over time. Although the regulatory process varied from country or country and region-to-region, the fundamental principles, which

  6. Passive Nuclear Plants Program (UPDATE)

    International Nuclear Information System (INIS)

    Chimeno, M. A.

    1998-01-01

    The light water passive plants program (PCNP), today Advanced Nuclear Power Plants Program (PCNA), was constituted in order to reach the goals of the Spanish Electrical Sector in the field of advanced nuclear power plants, optimize the efforts of all Spanish initiatives, and increase joint presence in international projects. The last update of this program, featured in revision 5th of the Program Report, reflects the consolidation of the Spanish sector's presence in International programs of the advanced power plants on the basis of the practically concluded American ALWR program. Since the beginning of the program , the PCNP relies on financing from the Electrical sector, Ocide, SEPI-Endesa, Westinghouse, General Electric, as well as from the industrial cooperators, Initec, UTE (Initec- Empresarios Agrupados), Ciemat, Enusa, Ensa and Tecnatom. The program is made up of the following projects, already concluded: - EPRI's Advanced Light Water Plants Certification Project - Westinghouse's AP600 Project - General Electric's SBWR Project (presently paralyzed) and ABWR project Currently, the following project are under development, at different degrees of advance: - EPP project (European Passive Plant) - EBWR project (European Advanced Boiling Water Reactor)

  7. Cutting the electric power consumption of biogas plants. The impact of new technologies; Eigenstromverbrauch an Biogasanlagen senken. Der Einfluss neuer Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Julian; Gruessing, Fabian; Naegele, Hans-Joachim; Oechsner, Hans [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Agrartechnik und Bioenergie Baden-Wuerttemberg

    2013-03-01

    Due to permanently rising energy costs, the assessment of electric energy consumption for particular aggregates of a biogas plant proves to be a significant factor for the economic and technical efficiency calculation of biogas plants. At the University of Hohenheim, students of the Biobased Products and Bioenergy course have analyzed the energy consumption of biogas plants (BGP) in a project work at the State Institute of Agricultural Engineering and Bioenergy (Landesanstalt fuer Agrartechnik und Bioenergie). Detailed measurements at two operational plants show the effects of different facilities on the energy consumption. Furthermore, saving potentials and a possible efficient energy use via an exhaust gas power generator (ORC unit) are identified. (orig.)

  8. Gas supply and Yorkshire Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-04-01

    Yorkshire Electricity, among other independent suppliers of gas, now competes for a share of the United Kingdom gas market, previously monopolised by British Gas. The experience of this successful electric utility company, expanding into the industrial and domestic gas supply market is described in the article. The company`s involvement stems partly from the fact that significant volumes of gas are landed at three terminals within its franchise area. The company will also seek to use subsidaries to generate electric power from gas turbine power plants and explore the possibilities of developing combined heat and power (CHP) plants where appropriate. (UK)

  9. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  10. The projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2010-10-01

    This paper describes the outcomes from the joint report between the Nuclear Energy Agency and the International Energy Agency of the OECD on the projected costs of generating electricity. The study contains data on electricity generating costs for almost 200 power plants provided by 17 OECD member countries, 4 non-OECD countries and 4 industrial companies or industry organisations. The paper presents the projected costs of generating electricity calculated according to common methodological rules on the basis of the data provided by participating countries and organisations. Data were received for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. Cost estimates were also provided for combined heat and power plants, as well as for coal plants that include carbon capture. As in previous studies of the same series, all costs and benefits were discounted or capitalised to the date of commissioning in order to calculate the state of the electricity costs per MWh, based on plant operating lifetime data. In addition, the paper contains a discussion of a number of factors affecting the cost of capital, the outlook for carbon capture and storage and the working of electricity markets. (Author)

  11. Energy: Solar electricity gaining second wind. - The sun as a power plant. Energie: Sonnen-Strom im Aufwind. - Das Kraftwerk Sonne

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, F; Kippenhahn, R

    1990-03-01

    The blue cells that convert sunlight directly into electricity are becoming more and more efficient: the dream of cheap solar energy may soon become true. The competitors are more expensive than is often thought, for in the case of the conventional energies the costs of 'side effects' are often forgotten - for example, damage to the environment by power plants and cars. The radiation of the 'Sun Power Plant', on the other hand, creates no fumes and is inexhaustible. (orig.).

  12. New maintenance strategy of Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant for effective ageing management and safe long-term operation

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Yamashita, Norimichi

    2009-01-01

    Fukushima Dai-ichi Nuclear Power Plant is the oldest among three nuclear power plants owned and operated by Tokyo Electric Power Company, which consists of six boiling water reactor units. The commercial operation of Unit 1 was commenced in 1971 (37 years old) and Unit 6 in 1978 (29 years old). Currently ageing degradations of systems, structures and components are managed through maintenance programs, component replacement/refurbishment programs and long-term maintenance plans. The long-term maintenance plans are established through ageing management component replacement/refurbishment programs reviews performed before the 30th year of operation and they are for safe and reliable operation after 30 years (long-term operation). However the past maintenance actions and past component replacement/refurbishment programs were not always proactive and past operational experience and maintenance practices suggest that effective/proactive ageing management programs be introduced in earlier stage of the plant operation. In this circumstance, Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant are setting up a new maintenance strategy that includes 1) improving the normal maintenance programs by using ageing degradation data, 2) effective use of information on internal/external operational experience and maintenance practices related to ageing, and 3) proactive component/equipment refurbishment programs during a refreshment outage for safe and reliable long-term operation. To accomplish the goal of this strategy, strengthening engineering capability of plant staff members is a crucial required for the plant. The objective of this paper is to briefly explain main results ageing management reviews, past and current significant ageing issues and management programs against them, and the new maintenance strategy established by Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant. (author)

  13. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  14. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  15. Electric engineering summary

    International Nuclear Information System (INIS)

    Kang, Sing Eun; Park, Seong Taek; Lim, Yong Un

    1975-03-01

    This book is made up six parts, which deals with circuit theory about sinusoidal alternating current, basic current circuit, wave power, distorted wave, two terminal network, distributed circuit, laplace transformation and transfer function, power engineering on line, failure analysis transmission of line, substation and protection device and hydroelectric power plant, electricity machine like DC machine, electric transformer, induction machine and rectifier, electromagnetic on dielectric substance current, electromagnetic, electricity application like lighting engineering, heat transfer and electricity chemistry, industry, industry math with integer, rational number, factorization, matrix and differential.

  16. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  17. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  18. Resolution 148/012. It authorize the 'Central Libertador / SA aeolian generation' company to generate an aeolian electricity source by an electric power generating plant located in Lavalleja town 1 AA catastral section and in Maldonado town 4 AA Catastral section, and the 'Sistema inerconectado Nacional' connection

    International Nuclear Information System (INIS)

    2012-01-01

    This decree authorizes the generation of electricity using aeolian energy as the primary electricity source. This project was presented by the 'Libertador / S.A' aeolian generation company with the proposal to instal an electrical plant in Lavalleja town. This authorization is according to the Electric Wholesale Market regulation

  19. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. variation potentials and putative action potentials in intact plants

    Science.gov (United States)

    S.J. Barres; T.J.Sambeek Perry; Barbara G. Pickard

    1976-01-01

    Damaging representative plants from five angiosperm families by heating or crushing a small portion of a single leaf results in an electrical change which may spread throughout the shoot. In Mimosa similar changes have previously been identified as variation potentials.Except in one of the five plants, a variation...

  20. Electric power engineering in the Taiwan Chinese Republic

    International Nuclear Information System (INIS)

    Kozlov, V.B.

    1992-01-01

    The data charaterizing the status and prospects of development of electric power engineering in the Taiwan Chenese Republic are given. The Tainwan electric power consumptions are covered by operation of 56 large electric power plants (nuclear, thermal, hydroelectric ones). The marginal majority (58.1%) of the registered power is generated at thermal power plants. Electric power generation in 1991 amounted to 89639 million kWxh. At that 33878 million kWxh or about 37.9% were produced at NPPs