WorldWideScience

Sample records for plant volatile emission

  1. Recent Advances in the Emission and Functions of Plant Vegetative Volatiles

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2016-01-01

    Full Text Available Plants synthesize and emit a large variety of volatile organic compounds, which possess extremely important ecological functions. In most case, most plant volatiles are liquids, rather than gases, at room temperature. Some volatiles are emitted “on demand” when plants, especially vegetative parts, are exposed to abiotic or biotic stress. In this review, we summarize some of the highlights of plant vegetative volatile emission and functions research published during the past few years.

  2. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    Science.gov (United States)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  3. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  4. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine

    2015-01-01

    emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions...

  5. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  6. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  7. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  8. Prey and non-prey arthropods sharing a host plant : Effects on induced volatile emission and predator attraction

    NARCIS (Netherlands)

    de Boer, Jetske G.; Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile

  9. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  10. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    Science.gov (United States)

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  11. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.

    2012-01-01

    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named

  12. The Tree Drought Emission MONitor (Tree DEMON, an innovative system for assessing biogenic volatile organic compounds emission from plants

    Directory of Open Access Journals (Sweden)

    Marvin Lüpke

    2017-03-01

    Full Text Available Abstract Background Biogenic volatile organic compounds (BVOC emitted by plants play an important role for ecological and physiological processes, for example as response to stressors. These emitted compounds are involved in chemical processes within the atmosphere and contribute to the formation of aerosols and ozone. Direct measurement of BVOC emissions requires a specialized sample system in order to obtain repeatable and comparable results. These systems need to be constructed carefully since BVOC measurements may be disturbed by several side effects, e.g., due to wrong material selection and lacking system stability. Results In order to assess BVOC emission rates, a four plant chamber system was constructed, implemented and throughout evaluated by synthetic tests and in two case studies on 3-year-old sweet chestnut seedlings. Synthetic system test showed a stable sampling with good repeatability and low memory effects. The first case study demonstrated the capability of the system to screen multiple trees within a few days and revealed three different emission patterns of sweet chestnut trees. The second case study comprised an application of drought stress on two seedlings compared to two in parallel assessed seedlings of a control. Here, a clear reduction of BVOC emissions during drought stress was observed. Conclusion The developed system allows assessing BVOC as well as CO2 and water vapor gas exchange of four tree specimens automatically and in parallel with repeatable results. A canopy volume of 30 l can be investigated, which constitutes in case of tree seedlings the whole canopy. Longer lasting experiments of e.g., 1–3 weeks can be performed easily without any significant plant interference.

  13. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    NARCIS (Netherlands)

    Menzel, T.R.; Weldegergis, B.T.; David, A.; Boland, W.; Gols, R.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those

  14. Arctic emissions of biogenic volatile organic compounds – from plants, litter and soils

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel

    -terpenoid BVOCs were dominating the emission profile from the soils and the magnitude of the soil emissions depended greatly on the soil water content and temperature. A warmer arctic climate will likely alter the composition of plant species, cause a thawing of permafrost soil and change soil characteristics...... in adsorbent cartridges and analyzed using gas chromatography–mass spectrometry. Ecosystem BVOC emissions were highly dominated by terpenoids but the composition of terpenoids differed between different plant species. Litter emissions were less dominated by terpenoids than the ecosystem emissions, however...... they still constituted approximately 50 % of the total emissions. I suggested that the litter emissions derived both from microbial soil processes and from stores inside the litter tissue and that the relative importance of these two sources were plant species specific. Furthermore, emissions of non...

  15. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  16. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field.

    Science.gov (United States)

    Wason, Elizabeth L; Hunter, Mark D

    2014-02-01

    Volatile organic chemical (VOC) emission by plants may serve as an adaptive plant defense by attracting the natural enemies of herbivores. For plant VOC emission to evolve as an adaptive defense, plants must show genetic variability for the trait. To date, such variability has been investigated primarily in agricultural systems, yet relatively little is known about genetic variation in VOCs emitted by natural populations of native plants. Here, we investigate intraspecific variation in constitutive and herbivore-induced plant VOC emission using the native common milkweed plant (Asclepias syriaca) and its monarch caterpillar herbivore (Danaus plexippus) in complementary field and common garden greenhouse experiments. In addition, we used a common garden field experiment to gauge natural enemy attraction to milkweed VOCs induced by monarch damage. We found evidence of genetic variation in the total constitutive and induced concentrations of VOCs and the composition of VOC blends emitted by milkweed plants. However, all milkweed genotypes responded similarly to induction by monarchs in terms of their relative change in VOC concentration and blend. Natural enemies attacked decoy caterpillars more frequently on damaged than on undamaged milkweed, and natural enemy visitation was associated with higher total VOC concentrations and with VOC blend. Thus, we present evidence that induced VOCs emitted by milkweed may function as a defense against herbivores. However, plant genotypes were equally attractive to natural enemies. Although milkweed genotypes diverge phenotypically in their VOC concentrations and blends, they converge into similar phenotypes with regard to magnitude of induction and enemy attraction.

  17. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  18. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06

    Directory of Open Access Journals (Sweden)

    Jianfei Wang

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs released by plant growth-promoting rhizobacteria (PGPR are involved in promoting growth and triggering systemic resistance (ISR in plants. Importantly, the release of VOCs by some PGPR strains confers improved plant uptake of nutrient elements from the soil. However, the underlying mechanisms of VOCs-regulated nutrient acquisition remain elusive. In this study, VOCs were extracted and identified from Bacillus amyloliquefaciens (strain BF06 using gas chromatography–mass spectrometry (GC–MS. BF06 VOCs exposure significantly promoted the growth and photosynthesis of Arabidopsis plants. To explore how microbial VOCs stimulate growth in plants, gene expression profiles of Arabidopsis seedlings exposed to BF06 VOCs were examined using transcriptomic analyses. In screening differentially expressed genes (DEGs, most upregulated DEGs were found to be related to amino acid transport, iron (Fe uptake and homeostasis, and sulfate transport. Furthermore, BF06 VOCs significantly enhanced Fe absorption in plants under Fe-limited conditions. However, when nitric oxide (NO synthesis was inhibited, BF06 VOCs exposure could not substantially augment Fe acquisition in plants under alkaline stress, indicating that VOCs-mediated plant uptake of Fe was required for induction of root NO accumulation. In addition, BF06 VOCs exposure led to a marked increase in some genes encoding for sulfate transporters, and further increased Se accumulation in plants. Intriguingly, BF06 VOCs exposure failed to increase Se uptake in sultr1;2 mutants, which may indicate that high-level transcription of these sulfate transporters induced by BF06 VOCs was essential for enhancing Se absorption by plants. Taken together, our results demonstrated the potential of VOCs released by this strain BF06 to increase Fe and Se uptake in plants.

  19. The biogenic volatile organic compounds emission inventory in France: application to plant ecosystems in the Berre-Marseilles area (France).

    Science.gov (United States)

    Simon, Valérie; Dumergues, Laurent; Ponche, Jean-Luc; Torres, Liberto

    2006-12-15

    An inventory describing the fluxes of volatile organic compounds (VOCs), isoprene and monoterpenes, and other VOCs (OVOCs) from the biosphere to the atmosphere, has been constructed within the framework of the ESCOMPTE project (fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions). The area concerned, located around Berre-Marseilles, is a Mediterranean region frequently subject to high ozone concentrations. The inventory has been developed using a fine scale land use database for the year 1999, forest composition statistics, emission potentials from individual plant species, biomass distribution, temperature and light intensity. The seasonal variations in emission potentials and biomass were also taken into account. Hourly meteorological data for 1999 were calculated from ALADIN data and these were used to predict the hourly isoprene, monoterpene and OVOC fluxes for the area on a 1 kmx1 km spatial grid. Estimates of annual biogenic isoprene, monoterpene and OVOC fluxes for the reference year 1999 were 20.6, 38.9 and 13.3 kt, respectively, Quercus pubescens, Quercus ilex, Pinus halepensis and garrigue vegetation are the dominant emitting species of the area. VOC emissions from vegetation in this region contribute approximately 94% to the NMVOC (non-methane volatile organic compounds) of natural origin and are of the same order of magnitude as NMVOC emissions from anthropogenic sources. These results complete the global ESCOMPTE database needed to make an efficient strategy for tropospheric ozone reduction policy.

  20. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    Science.gov (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  1. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  2. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  3. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.

    Science.gov (United States)

    Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel

    2010-05-01

    Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.

  4. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  5. Development and Application of a Fast Chromatography Technique for Analysis of Biogenic Volatile Organic Compounds in Plant Emissions

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Yamazakii, S.; Kajii, Y. J.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetation constitute the largest fraction (>90 %) of total global non-methane VOC supplied to the atmosphere, yet the chemical complexity of these emissions means that achieving comprehensive measurements of BVOCs, and in particular the less volatile terpenes, is not straightforward. As such, there is still significant uncertainty associated with the contribution of BVOCs to the tropospheric oxidation budget, and to atmospheric secondary organic aerosol (SOA) formation. The rate of BVOC emission from vegetation is regulated by environmental conditions such as light intensity and temperature, and thus can be highly variable, necessitating high time-resolution BVOC measurements. In addition, the numerous monoterpene and sesquiterpene isomers, which are indistinguishable by some analytical techniques, have greatly varying lifetimes with respect to atmospheric oxidants, and as such quantification of each individual isomer is fundamental to achieving a comprehensive characterisation of the impact of BVOCs upon the atmospheric oxidation capacity. However, established measurement techniques for these trace gases typically offer a trade-off between sample frequency and the level of speciation; detailed information regarding chemical composition may be obtained, but with reduced time resolution, or vice versa. We have developed a Fast-GC-FID technique for quantification of a range of monoterpene, sesquiterpene and oxygenated C10 BVOC isomers, which retains the separation capability of conventional gas chromatography, yet offers considerably improved sample frequency. Development of this system is ongoing, but currently a 20 m x 0.18 mm i.d resistively heated metal column is employed to achieve chromatographic separation of thirteen C10-C15 BVOCs, within a total cycle time of ~15 minutes. We present the instrument specifications and analytical capability, together with the first application of this Fast-GC technique

  6. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars.

    Science.gov (United States)

    Sobhy, Islam S; Bruce, Toby Ja; Turlings, Ted Cj

    2018-04-01

    The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Emission of climate relevant volatile organochlorines by plants occurring in temperate forests

    Czech Academy of Sciences Publication Activity Database

    Forczek, Sándor; Laturnus, F.; Doležalová, Jana; Holík, Josef; Wimmer, Zdeněk

    2015-01-01

    Roč. 61, č. 3 (2015), s. 103-108 ISSN 1214-1178 R&D Projects: GA ČR GA13-11101S Institutional support: RVO:61389030 Keywords : volatile chlorinated hydrocarbons * biodegradation * Sphagnum moss Subject RIV: EF - Botanics Impact factor: 1.039, year: 2015

  8. Biogenic volatile emissions from the soil.

    Science.gov (United States)

    Peñuelas, J; Asensio, D; Tholl, D; Wenke, K; Rosenkranz, M; Piechulla, B; Schnitzler, J P

    2014-08-01

    Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed. © 2014 John Wiley & Sons Ltd.

  9. UV-B radiation affects plant volatile emissions and shade avoidance responses

    NARCIS (Netherlands)

    Gankema, P.

    2015-01-01

    Plants detect and integrate an assortment of signals from their environment, and use these signals to maximise their performance by adjusting their growth and development as well as their secondary metabolite production. In this thesis, we investigated how plants integrate visual and olfactory

  10. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  11. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  12. Data from: Compatible and incompatible pathogen-plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps

    NARCIS (Netherlands)

    Ponzio, C.A.M.; Weldegergis, B.T.; Dicke, M.; Gols, R.

    2016-01-01

    The three data sheets show the data for the three types of comparisons that were made: (1) wasp choice when offered acaterpillar infested plant and a caterpillar + pathogen infected plant (2) wasp choice when offered a healthy plant against a singleattacker infected/infected plant and (3) wasp

  13. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  14. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-08-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis), the model predicts significant increases of 59 Tg C a-2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases

  15. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use

  16. Chirospecific analysis of plant volatiles

    International Nuclear Information System (INIS)

    Tkachev, A V

    2007-01-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  17. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  18. Exposure of Lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?

    NARCIS (Netherlands)

    Choh, Y.; Shimoda, T.; Ozawa, R.; Dicke, M.; Takabayashi, J.

    2004-01-01

    There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive

  19. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Science.gov (United States)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  20. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  1. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Science.gov (United States)

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  2. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  4. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    Science.gov (United States)

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  5. Emission of floral volatiles from Mahonia japonica (Berberidaceae).

    Science.gov (United States)

    Picone, Joanne M; MacTavish, Hazel S; Clery, Robin A

    2002-07-01

    Flowering Mahonia japonica plants were subjected to controlled environments and the floral volatiles emitted from whole racemes (laterals) were trapped by Porapak Q adsorbent and analysed by GC-FID. An experiment with photoperiods of 6 and 9 h at constant temperature (10+/-1 degrees C) demonstrated that photoperiod was the stimulus for enhanced emission of most volatiles. Small quantitative differences in emitted fragrance composition were observed between light and dark periods and between plants acclimatised to different photoperiods. Maximum rates of emission occurred in the middle of the light period; aromatic compounds (benzaldehyde, benzyl alcohol and indole) displayed a more rapid increase and subsequent decline compared with monoterpenes (cis- and trans-ocimene and linalool). When the photoperiod was extended from 6 to 9 h, maximum rates of emission continued throughout the additional 3 h. Total emission (microg/h) of volatiles was 2-fold greater in the day-time (DT) (39.7 microg/h) compared with the night-time (NT) (19.8 microgg/h) under a 6 h photoperiod and was not significantly different from total emission under a 9 h photoperiod.

  6. Volatilization of iodine from soils and plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Cataldo, D.A.; Garland, T.R.

    1985-04-01

    Elevated levels of 129 I, a long-lived fission product, are present in the environment as a result of nuclear weapons testing and fuel reprocessing. To aid in understanding the anomalous behavior of this element, relative to natural I ( 127 I), in the vicinity of nuclear fuel reprocessing plants, preliminary laboratory-growth chamber studies were undertaken to examine the possible formation of volatile inorganic and organic I species in soil and plant systems. Inorganic 129 I added to soil was volatilized from both the soil and plant during plant growth, at average ratios of 2 x 10 -3 %/day soil and 9 x 10 -3 %/day foliage, respectively. Volatilization rates from soil were an order of magnitude less in the absence of growing roots. Less than 2% of soil or plant volatiles was subsequently retained by plant canopies. Volatile I, chemically characterized by selective sorption methods, consisted principally of alkyl iodides formed by both soil and plant processes. However, plants and soils containing actively growing roots produced a larger fraction of volatile inorganic I than soil alone. 14 refs., 1 fig., 3 tabs

  7. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri, vector of Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Joseph M Patt

    Full Text Available Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las. Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri. Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ, a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected 'Valencia' sweet orange (Citrus sinensis trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid

  8. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing.

    Science.gov (United States)

    Patt, Joseph M; Robbins, Paul S; Niedz, Randy; McCollum, Greg; Alessandro, Rocco

    2018-01-01

    Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected 'Valencia' sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during

  9. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing

    Science.gov (United States)

    Robbins, Paul S.; Niedz, Randy; McCollum, Greg; Alessandro, Rocco

    2018-01-01

    Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected ‘Valencia’ sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during

  10. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  11. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  12. Volatile chemical interaction between undamaged plants

    OpenAIRE

    Glinwood, Robert

    2010-01-01

    This chapter discusses whether plant chemical communication is a mechanism by which plant genetic diversity can affect the natural enemies of herbivores. Plant genetic diversity influences natural enemies, and these insects use volatile chemical cues to locate suitable habitats. However, the importance of chemical communication for these interactions has not been considered. In this chapter, the latest research on chemical communication between undamaged plants is reviewed. ...

  13. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  14. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  15. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    Science.gov (United States)

    Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia

    2017-06-30

    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  17. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    Science.gov (United States)

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.

  18. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Saleem, A.R.

    2013-01-01

    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  19. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract parasitoids of the diamondback moth to cabbage plants

    NARCIS (Netherlands)

    Charleston, D.S.; Gols, R.; Hordijk, C.A.; Kfir, R.; Vet, L.E.M.; Dicke, M.

    2006-01-01

    Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5®, were investigated for their impact on the flight response of two

  20. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...

  1. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  2. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  3. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  4. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott; Herrington, Jason S.; Winterrowd, Chris K.; Roberts, William L.; Wendt, Jost O L; Linak, William P.

    2013-01-01

    to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA

  5. Volatile diterpene emission by two Mediterranean Cistaceae shrubs.

    Science.gov (United States)

    Yáñez-Serrano, A M; Fasbender, L; Kreuzwieser, J; Dubbert, D; Haberstroh, S; Lobo-do-Vale, R; Caldeira, M C; Werner, C

    2018-05-01

    Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m -2 s -1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m -2 s -1 ) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m -2 s -1 ) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13 C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.

  6. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  7. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  8. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    Directory of Open Access Journals (Sweden)

    Daniel M Mutyambai

    Full Text Available Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs. These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L. volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe (Lepidoptera: Crambidae egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and

  9. Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Protection

    Directory of Open Access Journals (Sweden)

    Amanuel Tamiru

    2017-09-01

    Full Text Available Plants have evolved highly intriguing ways of defending themselves against insect attacks, including through emission of defense volatiles. These volatiles serve the plant’s defense by directly repelling phytophagous insects and/or indirectly through attracting natural enemies antagonistic to the herbivores. Several laboratory studies established the potential of improving plant resistance against insect attacks by manipulating the plant-derived volatile semiochemicals emissions. Yet, more efforts need to be conducted to translate the promising laboratory studies to fight economically-important crop pests under real field conditions. This is needed to address an increasing demand for alternative pest control options driven by ecological and environmental costs associated with the use of broad-spectrum insecticides. The practical examples discussed in this review paper demonstrate the real prospect of exploiting an inducible and constitutive plant volatile semiochemicals for developing novel and ecologically-sustainable pest management strategies to protect cereal crops from damaging insect pests.

  10. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    Science.gov (United States)

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  12. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  13. Power plant emissions reduction

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  14. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  15. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    Mroueh, U.M.

    1988-01-01

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  16. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    Science.gov (United States)

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  17. Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps.

    Science.gov (United States)

    Davis, Thomas Seth; Boundy-Mills, Kyria; Landolt, Peter J

    2012-11-01

    Microbes are ubiquitous on plant surfaces. However, interactions between epiphytic microbes and arthropods are rarely considered as a factor that affects arthropod behaviors. Here, volatile emissions from an epiphytic fungus were investigated as semiochemical attractants for two eusocial wasps. The fungus Aureobasidium pullulans was isolated from apples, and the volatile compounds emitted by fungal colonies were quantified. The attractiveness of fungal colonies and fungal volatiles to social wasps (Vespula spp.) were experimentally tested in the field. Three important findings emerged: (1) traps baited with A. pullulans caught 2750 % more wasps on average than unbaited control traps; (2) the major headspace volatiles emitted by A. pullulans were 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethyl alcohol; and (3) a synthetic blend of fungal volatiles attracted 4,933 % more wasps on average than unbaited controls. Wasps were most attracted to 2-methyl-1-butanol. The primary wasp species attracted to fungal volatiles were the western yellowjacket (Vespula pensylvanica) and the German yellowjacket (V. germanica), and both species externally vectored A. pullulans. This is the first study to link microbial volatile emissions with eusocial wasp behaviors, and these experiments indicate that volatile compounds emitted by an epiphytic fungus can be responsible for wasp attraction. This work implicates epiphytic microbes as important components in the community ecology of some eusocial hymenopterans, and fungal emissions may signal suitable nutrient sources to foraging wasps. Our experiments are suggestive of a potential symbiosis, but additional studies are needed to determine if eusocial wasp-fungal associations are widespread, and whether these associations are incidental, facultative, or obligate.

  18. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.

    2000-01-01

    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  19. Noctuidae-induced plant volatiles: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Vanusa Rodrigues Horas

    2014-01-01

    Full Text Available Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

  20. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.

    1989-11-01

    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  1. Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions.

    Directory of Open Access Journals (Sweden)

    Thomas Degen

    Full Text Available Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.

  2. Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis.

    Science.gov (United States)

    Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R

    2005-04-01

    Plant tissues may show chemical changes following damage. This possibility was analyzed for Minthostachys mollis, a Lamiaceae native to Central Argentina with medicinal and aromatic uses in the region. Effects of mechanical damage on its two dominant monoterpenes, pulegone and menthone, were analyzed by perforating M. mollis leaves and then assessing essential oil composition at 24, 48, and 120 hr; emission of volatiles was also measured 24 and 48 hr after wounding. Mechanical damage resulted in an increase of pulegone and menthone concentration in M. mollis essential oil during the first 24 hr. These changes did not occur in the adjacent undamaged leaves, suggesting a lack of systemic response. Postwounding changes in the volatiles released from M. mollis damaged leaves were also detected, most noticeably showing an increase in the emission of pulegone. Inducible chemical changes in aromatic plants might be common and widespread, affecting the specific compounds on which commercial exploitation is based.

  3. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    Science.gov (United States)

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  4. Release of volatile mercury from vascular plants

    Science.gov (United States)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  5. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  7. How common is within-plant signaling via volatiles?

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-08-03

    Many plants respond to herbivory by releasing a complex blend of volatiles that may differ from that emitted by intact counterparts. These herbivore-induced plant volatiles (HIPV) mediate many interactions among plants and their community members, including alerting undamaged leaves of the attacked or neighboring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signaling and that other organisms subsequently evolved to use them. However, only 7 studies have reported HIPV-mediated within-plant signaling, most conducted in the laboratory or greenhouse. This leaves open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signaling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants in which within-plant signaling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits.

  8. Volatile organic matter emission trade. Pitfalls and chances. Final report

    International Nuclear Information System (INIS)

    Wind, M.H.A.

    2001-01-01

    The aim of this report is to provide policy makers non-specialist information on a system for tradeable emission rights (VER, abbreviated in Dutch) for volatile matter in the Netherlands in order to be able to choose the best trading system. The information is based on an environmental-economical theory of VER and the results of practical experiments, mainly from the USA. 18 refs [nl

  9. Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting.

    Science.gov (United States)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete; Rosenørn, Thomas; Michelsen, Anders

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass, and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight-carbon compounds and sesquiterpenes. In the Deschampsia heath, the overall low BVOC emissions originated mainly from soil. In the mixed heath, root, and soil emissions were negligible. Net BVOC emissions from roots and soil of these well-drained heaths do not significantly contribute to ecosystem emissions, at least outside the growing season. If insect outbreaks become more frequent with climate change, ecosystem BVOC emissions will periodically increase due to herbivory.

  10. Are bursts of green leaf volatile emissions from plants following light to dark transitions associated with de-novo biosynthesis of free fatty acids and not stress-induced membrane degradation? J. Norman- University of North Carolina K. Jardine- University of Arizona G. Barron-Gafford- University of Arizona

    Science.gov (United States)

    Norman, J. P.; Jardine, K. J.; Barron-Gafford, G. A.

    2011-12-01

    Green Leaf Volatiles (GLVs) are a diverse group of fatty acid-derived Volatile Organic Compounds (VOCs) emitted by all plants. These GLVs are involved in a wide variety of stress-related biological functions, as well as the formation of secondary organic aerosols and ozone in the troposphere. To date, GLV emissions have primarily been associated with acute stress responses wherein fatty acids are released from plant membranes and enzymatically oxidized to GLVs via the lipoxygenase pathway. However the biochemical role of these gases within unwounded plants has remained unknown so far. Recently, GLV emissions were reported following light-dark transitions and were hypothesized to also be related to a mechanical stress response (i.e. leaf cutting). However in this study we show that GLV emissions from mesquite trees have a separate biochemical pathway for their production that is unrelated to stress. GLV emission rates following light-dark transitions were quantified from young and mature Mesquite branches. It was found that young branches had very high photosynthetic rates and displayed strong bursts of a wide array of GLVs following darkening, while mature branches had much lower photosynthetic rates showed much weaker or no bursts. This is interesting because neither the mature nor the juvenile plants were subjected to any type of stress during measurement. Moreover, the older plant samples (which had the lower emissions) were collected by clipping branches from a tree and re-clipping their stems under water. Given what has previously been established concerning the relationship of GLV emissions to mechanical stress, one would expect these older branches to have higher emissions than their juvenile counterparts rather than lower emissions. We speculate that the emission of GLVs during light-dark transitions is not the result of a stress response, but rather the result of rapid de-novo fatty acid biosynthesis occurring in chloroplasts of young branches fed by a

  11. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.

    2000-01-01

    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  12. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths.

    Science.gov (United States)

    Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M

    2013-04-22

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.

  13. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    Science.gov (United States)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  14. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.

    Science.gov (United States)

    Chang, Ken-Hui; Chen, Tu-Fu; Huang, Ho-Chun

    2005-06-15

    Elevated tropospheric ozone is harmful to human health and plants. It is formed through the photochemical reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO(x)). The elevated ozone episodes occur mainly in summer months in the United States, while the high-ozone episodes frequently occur during the fall in Taiwan. The unique landscape of Taiwan produces tremendous amounts of biogenic VOCs in the mountain regions that are adjacent to concentrated urban areas. The urban areas, in turn, generate prodigious amounts of anthropogenic emissions. Biogenic VOC emissions have direct influence on tropospheric ozone formation. To explore the air quality problems in Taiwan, this study attempts to develop a biogenic VOC emission model suitable for air quality applications in Taiwan. The emission model is based on the Biogenic Emissions Inventory System Version 2 and coupled with a detailed Taiwan land use database. The 1999 total Taiwan biogenic VOC emissions were estimated at 214,000 metric tons. The emissions of isoprene, monoterpenes, and other VOCs were about 37.2%, 30.4%, and 32.4% of total biogenic VOC emissions, respectively. The annual total biogenic VOC emission per unit area was more than two times the value of that in any European country, implying that detailed emissions estimates in any size of region will benefit the global biogenic emission inventories.

  15. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  16. Spatio-temporal variation of biogenic volatile organic compounds emissions in China.

    Science.gov (United States)

    Li, L Y; Chen, Y; Xie, S D

    2013-11-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Spatio-temporal variation of biogenic volatile organic compounds emissions in China

    International Nuclear Information System (INIS)

    Li, L.Y.; Chen, Y.; Xie, S.D.

    2013-01-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. -- Highlights: •An emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km and 1 h is established. •High-resolution meteorological data simulated by MM5 is used. •We update the land cover data used in MEGAN based on the most detailed and latest vegetation investigations. •A new vegetation classification with 82 plant functional types is developed in MEGAN. •The leaf biomass is estimated based on vegetation volume and production with biomass-apportion models. -- An emission inventory of BVOCs in China was established based on the most detailed and latest vegetation investigations, and high-resolution meteorological data

  18. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  19. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    Science.gov (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  20. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  1. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  2. Pesticide volatilization from soil and plant surfaces: Measurements at different scales versus model predictions

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, A.

    2003-07-01

    Simulation of pesticide volatilization from plant and soil surfaces as an integral component of pesticide fate models is of utmost importance, especially as part of the PEC (predicted environmental concentrations) models used in the registration procedures for pesticides. Experimentally determined volatilization rates at different scales were compared to model predictions to improve recent approaches included in European registration models. To assess the influence of crucial factors affecting volatilization under well-defined conditions, a laboratory chamber was set-up and validated. Aerodynamic conditions were adjusted to fulfill the requirements of the German guideline on assessing pesticide volatilization for registration purposes. At the semi-field scale, volatilization rates were determined in a wind-tunnel study after soil surface application of pesticides to gleyic cambisol. The following descending order of cumulative volatilization was observed: chlorpyrifos > parathion-methyl > terbuthylazine > fenpropimorph. Parameterization of the models PEARL (pesticide emission assessment at regional and local scales) and PELMO (pesticide leaching model) was performed to mirror the experimental boundary conditions. (orig.)

  3. Effects of airborne volatile organic compounds on plants

    International Nuclear Information System (INIS)

    Cape, J.N.

    2003-01-01

    Possible adverse effects of VOCs on vegetation in urban areas cannot be rejected. - Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in

  4. Characterization of volatile organic compounds from different cooking emissions

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  5. Assessment of volatile organic emissions from a petroleum refinery land treatment site

    International Nuclear Information System (INIS)

    Wetherold, R.G.; Eklund, B.M.; Blaney, B.J.; Throneloe, S.A.

    1990-01-01

    This paper reports on a field assessment performed to measure the emissions of volatile organics from a petroleum refinery land treatment site. As part of this study, the emissions of total volatile organics from surface-applied and subsurface-injected oily sludge were measured over a 5-week period. The effect of soil tilling on the emissions also was monitored. Volatile organics emission rates were measured using the emission isolation flex chamber method. Soil samples were collected during the test periods to determine soil properties, oil levels and microbe count. Soil surface and ambient temperatures, both inside and outside the flux chambers, were measured throughout the test periods

  6. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  7. Methane emissions form terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, P.; Dentener, F.; Grassi, G.; Leip, A.; Somogyi, Z.; Federici, S.; Seufert, G.; Raes, F. [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2006-07-01

    In a recent issue of Nature Keppler et al. (2006) report the discovery that terrestrial plants emit CH4 under aerobic conditions. Until now it was thought that bacterial decomposition of plant material under anaerobic conditions, such as in wetlands and water flooded rice paddies, is the main process leading to emissions from terrestrial ecosystems. In a first attempt to upscale these measurements, the authors estimate that global total emissions may be 149 Tg CH4/yr (62-236 Tg CH4/yr), with the main contribution estimated from tropical forests and grasslands (107 Tg CH4/yr with a range of 46-169 Tg CH4/yr). If confirmed, this new source of emission would constitute a significant fraction of the total global methane sources (estimated 500-600 Tg CH4/yr for present day total natural and anthropogenic sources) and have important implications for the global CH4 budget. To accommodate it within the present budget some sources would need to be re-assessed downwards and/or some sinks re-assessed upwards. Furthermore, also considering that methane is a {approx}23 times more powerful greenhouse gas than CO2, the possible feedbacks of these hitherto unknown CH4 emissions on global warming and their impacts on greenhouse gases (GHG) mitigation strategies need to be carefully evaluated. The merit of the paper is without doubt related to the remarkable discovery of a new process of methane emissions active under aerobic conditions. However, we think that the applied approach of scaling up emissions from the leaf level to global totals by using only few measured data (mainly from herbaceous species) and the Net Primary Productivity of the main biomes is scientifically questionable and tends to overestimate considerably the global estimates, especially for forest biomes. Furthermore, some significant constraints on the upper limit of the global natural CH4 emissions arise from the pre-industrial CH4 budget. Pre-industrial atmospheric CH4 mixing ratios have been measured

  8. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  9. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  10. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  11. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  12. Simple plant-based design strategies for volatile organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M.; Erickson, L.E.; Davis, L.C.

    1999-12-31

    Vegetation which enhances in-situ biodegradation of organic compounds can play a key role in the bioremediation of such contaminants in polluted soils and groundwater. Plants may act directly on some contaminants by degrading them, but their main effect is to enhance microbial populations in the thizosphere. Microbially mediated transformations are thus indirectly facilitated by root exudates which nourish the indigenous microorganisms. Plants may also be viewed as a solar driven pump-and-treat system which can contain a plume and reduce the spread of contaminated water. Laboratory investigations carried out in a growth chamber with alfalfa plants provide evidence for the (microbially mediated) biodegradation of organic compounds such as toluene, phenol and TCE. Alfalfa plants tolerate concentrations of these organics in contaminated water up to 100 mg/L. They facilitate transfer of the contaminants from the saturated to the vadose zone. For volatile organic compounds such as TCE, vegetation provides a controlled release of compounds and hence assures dilution of the TCE evapotranspired into the atmosphere from contaminated soils. Using a range of calculated plausible scenarios, it is shown that intermedia transfer caused by volatilization associated with plants is most unlikely to lead to exceedance of standards for gas phase contamination, for most volatile contaminants. Possible action level exceedances might occur with highly toxic substances including vinyl chloride and carbon tetrachloride, if they re present in ground water at levels above kilogram amounts in a single plume of a few hectares, and released by vigorously growing plants under hot dry conditions. Information needed for the calculation and design of plant-based bioremediation systems for typical sites is discussed in this paper.

  13. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  14. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest.

    Science.gov (United States)

    Moukhtar, S; Couret, C; Rouil, L; Simon, V

    2006-02-01

    Air quality studies need to be based on accurate and reliable data, particularly in the field of the emissions. Biogenic emissions from forests, crops, and grasslands are now considered as major compounds in photochemical processes. Unfortunately, depending on the type of vegetation, these emissions are not so often reliably defined. As an example, although the silver fir (Abies alba) is a very widespread conifer tree in the French and European areas, its standard emission rate is not available in the literature. This study investigates the isoprene and monoterpenes emission from A. alba in France measured during the fieldwork organised in the Fossé Rhénan, from May to June 2003. A dynamic cuvette method was used. Limonene was the predominant monoterpene emitted, followed by camphene, alpha-pinene and eucalyptol. No isoprene emission was detected. The four monoterpenes measured showed different behaviours according to micrometeorological conditions. In fact, emissions of limonene, alpha-pinene and camphene were temperature-dependant while eucalyptol emissions were temperature and light dependant. Biogenic volatile organic compounds emissions were modeled using information gathered during the field study. Emissions of the three monoterpenes previously quoted were achieved using the monoterpenes algorithm developed by Tingey et al. (1980) [Tingey D, Manning M, Grothaus L, Burns W. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 1980;65: 797-801.] and the isoprene algorithm [Guenther, A., Monson, R., Fall, R., 1991. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res 26A: 10799-10808.]; [Guenther, A., Zimmerman, P., Harley, P., Monson, R., Fall, R., 1993. Isoprene and monoterpene emission rate variability: model evaluation and sensitivity analysis. J Geophys Res 98D: 12609-12617.]) was used for the eucalyptol emission. With these

  15. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean

    International Nuclear Information System (INIS)

    Souza, Silvia R.; Blande, James D.; Holopainen, Jarmo K.

    2013-01-01

    The roles that ozone and nitric oxide (NO), the chief O 3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O 3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O 3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O 3 (NO/O 3 ) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O 3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O 3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds. -- Highlights: •NO and O 3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants. •Exposure to NO before exposure to O 3 does not alter the antioxidant defenses and malondialdehyde levels. •The total sum of induced volatiles is reduced in plants that are exposed to NO and then O 3 . •The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O 3 . -- Capsule: Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect

  16. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  17. Leaf enclosure measurement for determining marijuana volatile organic compound emission factors

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.; Harley, P. C.; Ortega, J. V.

    2017-12-01

    In 2014, Colorado became the first US state to legalize the industrial-scale cultivation of marijuana plants. There are now more than 700 marijuana cultivation facilities (MCFs) in operation in the greater Denver area. High concentrations of biogenic volatile organic compounds (VOCs), predominantly monoterpenes (C10H16) such as alpha-pinene, myrcene, and limonene have been observed in the grow rooms of MCFs, suggesting MCFs have the potential to release a significant amount of reactive VOCs into the atmosphere. Further, many MCFs are located in the urban core, where other urban emission sources are concentrated, resulting in interactions which can lead to the formation of ozone, impacting air quality. The little research done on marijuana has focused on indoor air quality and occupational exposure, or identification of the compounds associated with the characteristic smells of marijuana plants. We know of no previous studies that have identified or quantified the monoterpene emission rates from marijuana. Here, we collected air samples from leaf enclosures from different marijuana clones at different growth stages onto sorbent cartridges. These samples were analyzed using GC-MS/-FID to identify and quantify the VOCs emitted by growing marijuana plants. These results were then used to estimate basal emission rates at standard conditions (T=30 C, PPFD = 1000 umol/m2/s) using standard algorithms. We discuss the potential impact on air quality from these VOCs emitted into the atmosphere using air quality models.

  18. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-01-01

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2 S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2 ) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration (p −1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%

  19. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Science.gov (United States)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  20. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  1. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2007-01-01

    Full Text Available Boundary layer concentrations of several volatile organic compounds (VOC were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m−2 h−1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  2. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Science.gov (United States)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  3. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  4. Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, J. (Dept. of Physics, Univ. of Helsinki (Finland)); Baeck, J. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Hakola, H. (Finnish Meteorological Institute, Air Quality Research, Helsinki (Finland))

    2009-07-01

    n this paper, the research conducted on the emissions of the biogenic volatile organic compounds (BVOCs) from the European boreal zone, or taiga, is reviewed. We highlight the main findings and the key gaps in our knowledge. Ecosystem scale BVOC emissions from the Eurasian taiga are observed to be relatively low as compared with those from some forest ecosystems in warmer climates. One of the distinctive features of the Eurasian taiga is the predominance of monoterpene emitting coniferous trees. Recent research indicates that in addition to evaporation from storage structures, part of the monoterpene emission of conifers originates directly from synthesis. Monoterpene emission from boreal deciduous trees originates mainly directly from synthesis. The boreal trees exhibit distinct intra-species variation in the monoterpene mixtures they emit. Important sources of isoprene in the Eurasian taiga include Norway spruce, open wetland ecosystems and some non-dominant woody species, such as European aspen and willows. Many boreal tree species also emit non-terpenoid compounds and highly reactive sesquiterpenes. The future challenges in the research on BVOC emissions from the Eurasian taiga include (i) quantification and understanding the non-terpenoid VOC emissions from the taiga ecosystems, (ii) bringing ecosystems in the eastern Eurasian taiga into the sphere of BVOC emission studies, (iii) establishing long-term ecosystem flux studies combined with plant physiological measurements, and (iv) integrating knowledge and research skills on BVOC synthesis, storages and emissions, land cover changes and atmospheric processes in different spatial and temporal scales in order to better understand the impact of biosphere on atmospheric chemistry and composition in changing climate. (orig.)

  5. Volatile chemical cues guide host location and host selection by parasitic plants

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2006-01-01

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...

  6. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  7. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.

    1993-01-01

    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  8. A method for the solvent extraction of low-boiling-point plant volatiles.

    Science.gov (United States)

    Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne

    2005-01-01

    A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.

  9. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  10. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  11. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  12. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    OpenAIRE

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affe...

  13. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  14. Impact of Listeria Inoculation and Aerated Steam Sanitization on Volatile Emissions of Whole Fresh Cantaloupes.

    Science.gov (United States)

    Forney, Charles F; Fan, Lihua; Bezanson, Gregory S; Ells, Timothy C; LeBlanc, Denyse I; Fillmore, Sherry

    2018-04-01

    Rapid methods to detect bacterial pathogens on food and strategies to control them are needed to mitigate consumer risk. This study assessed volatile emissions from whole cantaloupe melons (Cucumis melo) as an indicator of Listeria contamination and in response to steam vapor decontamination. Cantaloupe were inoculated with Listeria innocua, a nonpathogenic surrogate for L. monocytogenes, then exposed to 85 °C steam for 240 s (4 min) followed by rapid chilling and storage for 0, 7, 10, or 14 days at 4, 7, or 10 °C. Volatile emissions from whole melons were collected on Carbopack B/Carboxen 1000 headspace collection tubes and analyzed by gas chromatography-mass spectroscopy following thermal desorption. Introduction of L. innocua to cantaloupe rind resulted in a reduction of aromatic compound emission. However, this response was not unique to Listeria contamination in that steam vapor treatment also reduced emission of these compounds. As well, steam vapor treatment diminished the number of viable Listeria and indigenous microflora while causing physiological injury to melon rind. Heat treatment had no significant effects on flesh firmness, color, titratable acidity, or soluble solids, but the production of typical aroma volatiles during postharvest ripening was inhibited. No unique volatile compounds were detected in Listeria contaminated melons. While changes in volatile emissions were associated with Listeria inoculation, they could not be differentiated from heat treatment effects. Results indicate that volatile emissions cannot be used as a diagnostic tool to identify Listeria contamination in whole cantaloupe melons. The detection of pathogen contamination on fresh produce is a continuing challenge. Using a nondestructive screening method, the presence of surrogate Listeria innocua on fresh whole cantaloupes was shown to alter the emissions of aromatic volatiles from whole cantaloupes. However, these altered emissions were not found to be unique to Listeria

  15. The impact of induced plant volatiles on lant-arthropod interactions

    NARCIS (Netherlands)

    Alba, J.M.; Bleeker, P.M.; Glas, J.J.; Schimmel, B.C.J.; van Wijk, M.; Sabelis, M.W.; Schuurink, R.C.; Kant, M.R.; Smagghe, G.; Diaz, I.

    2012-01-01

    Plants release volatile organic compounds from their vegetative tissues into their environment during most of their life cycle. The functions of these volatiles are diverse and not always known but some of these volatiles repel foraging herbivores while others, in turn, attract them and are feeding

  16. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  17. Improving the Sustainability of Office Partition Manufacturing: Balancing Options for Reducing Emissions of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2009-06-01

    Full Text Available Options are examined to improve the sustainability of office partition manufacturing by reducing volatile organic compounds (VOC emissions. Base VOC emissions for a typical plant are estimated using a mass balance approach. Pollution prevention and sustainability measures are assessed using realistic criteria and weightings. Sustainability has been considered from an industry perspective, considering factors like economics, environmental impact, quality, health and safety. Through a case study, it is demonstrated that several advantageous options are available for reducing VOC emissions in manufacturing office furniture partitions, and thereby enhancing the sustainability of that industrial operation. The measures deemed most viable include implementing several best management practices, not painting of non-visible parts, switching gluing processes, recycling solvent and modifying attachments. The results are intended to be balanced so as to improve their acceptability and adoptability by industry. It appears that it would be advantageous for manufacturers of office panels to evaluate the feasibility of these measures and to implement the most appropriate. The results are likely extendable to other operations in the wood furniture industry, and would improve their sustainability.

  18. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions.

    Science.gov (United States)

    Jardine, K; Barron-Gafford, G A; Norman, J P; Abrell, L; Monson, R K; Meyers, K T; Pavao-Zuckerman, M; Dontsova, K; Kleist, E; Werner, C; Huxman, T E

    2012-09-01

    Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.

  19. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  20. Reconciling functions and evolution of isoprene emission in higher plants.

    Science.gov (United States)

    Loreto, Francesco; Fineschi, Silvia

    2015-04-01

    Compilation and analysis of existing inventories reveal that isoprene is emitted by c. 20% of the perennial vegetation of tropical and temperate regions of the world. Isoprene emitters are found across different plant families without any clear phylogenetic thread. However, by critically appraising information in inventories, several ecological patterns of isoprene emission can be highlighted, including absence of emission from C4 and annual plants, and widespread emission from perennial and deciduous plants of temperate environments. Based on this analysis, and on available information on biochemistry, ecology and functional roles of isoprene, it is suggested that isoprene may not have evolved to help plants face heavy or prolonged stresses, but rather assists C3 plants to run efficient photosynthesis and to overcome transient and mild stresses, especially during periods of active plant growth in warm seasons. When the stress status persists, or when evergreen leaves cope with multiple and repeated stresses, isoprene biosynthesis is replaced by the synthesis of less volatile secondary compounds, in part produced by the same biochemical pathway, thus indicating causal determinism in the evolution of isoprene-emitting plants in response to the environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.

    Science.gov (United States)

    Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D

    2015-02-01

    Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  3. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Ildikó [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Soran, Maria-Loredana, E-mail: loredana.soran@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Opriş, Ocsana; Truşcă, Mihail Radu Cătălin [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Niinemets, Ülo [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Copolovici, Lucian [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Drăgoi Street, Arad 310330 (Romania)

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  4. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    International Nuclear Information System (INIS)

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-01-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  5. Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England

    Science.gov (United States)

    Cao, X.-L.; Boissard, C.; Juan, A. J.; Hewitt, C. N.; Gallagher, M.

    1997-08-01

    Volatile organic compound (VOC) emission fluxes from Gorse (Ulex europaeus) were measured during May 30-31, 1995 at Kelling Heath in eastern England by using bag enclosure and gradient methods simultaneously. The enclosure measurements were made from branches at different stages of physiological development (flowering, after flowering, and mixed). Isoprene was found to represent 90% of the total VOC emissions, and its emission rates fluctuated from 6 ng (g dwt)-1 h-1 in the early morning to about 9700 ng(g dwt)-1 h-1 at midday. Averaged emission rates standardized to 20°C were 1625, 2120, and 3700 ng (g dwt)-1 h-1 for the new grown, "mixed," and flowering branch, respectively. Trans-ocimene and α-pinene were the main monoterpenes emitted and represented, on average, 47.6% and 36.9% of the total monoterpenes. Other monoterpenes, camphene, sabinene, β-pinene, myrcene, limonene and γ-terpinene, were positively identified but together represented less than 1.5% of the total VOC emissions from gorse. Maximum isoprene concentrations in air at the site were measured around midday at 2 m (174 parts per trillion by volume, or pptv) and 6 m (149 pptv), and minimum concentrations were measured during the night (8 pptv at both heights). Mean daytime α-pinene air concentrations of 141 and 60 pptv at 2 and 6 m height were determined, but trans-ocimene concentrations were less than the analytical detection limit (4 pptv), suggesting rapid chemical removal of this compound from air. The isoprene fluxes calculated by the micrometeorological gradient method showed a pattern similar to that of those calculated by the enclosure method, with isoprene emission rates maximum at midday (100 μg m-2 h-1) and not detectable during the nighttime. Assessment of the fraction of the site covered by gorse plants enabled an extrapolation of emission fluxes from the enclosure measurements. When averaged over the 2 day experiment, isoprene fluxes of 29.8 and 27.8 μg m-2 h-1 were obtained from

  6. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions

    NARCIS (Netherlands)

    Timovsky, J.; Gankema, Paulien; Pierik, Ronald; Holzinger, Rupert

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants,

  7. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  8. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  9. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  10. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  11. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.

    Science.gov (United States)

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-09-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push-pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography-mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  12. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  13. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  14. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    Science.gov (United States)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.

  15. Emission from power plants 1989-1998

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Emissions from power plants consist of several substances with different environmental effects. Most important is emission of CO 2 ,SO 2 and NO x . The actual emission of CO 2 declined from 33 million ton in 1997 to 29 million ton in 1998, while the corrected emission of CO 2 declined from 27 million ton to 26 million ton. The primary cause to the decline in the actual emission of CO 2 is the constant changing of the energy consumption from coal towards natural gas. The corrected emission of CO 2 increased a little from 1989 to 1991, but has declined since 1991. The actual emission of CO 2 has been more variable, which especially reflects the fluctuating import and export of electricity. The actual emission of SO 2 has in the period varied, but the tendency is declining emission of SO 2 . In the years 1991 and 1996 the actual emission of SO 2 increased, these being the years where the net export of electricity increased. The corrected emission of SO 2 has generally declined during the period. The actual emission of NO x has varied during the period, but the tendency is declining emission. Emission of NO x has been large this year with large electricity export. Correction the emission for net import and export of electricity the NO x emission has declined during 1989-1998. The corrected emission of NO x has declined 54 % during the period 1989-1998. The reason is primary the usage of low NO x burners. (EHS)

  16. Influence of char texture and volatile matter content on NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Parra, J.B.; Moreno, A.H.; Pis, J.J. [Inst. National Vacional del Carbon, Oviedo (Spain)

    1997-12-31

    A low volatile bituminous coal was pyrolysed in a quartz reactor under nitrogen at different heating rates (5, 10, 50 and 150 C/min) up to a final temperature of 850 C. Textural characterisation (mercury porosimetry, adsorption isotherms of N{sub 2} and CO{sub 2}, ASA) of the chars was carried out in order to study the influence of textural properties on char reactivity and NO emissions. The role of volatile matter content in the emission of nitrogen compounds was also investigated. A thermogravimetric analyser linked to a quadrupole mass spectrometer (TG-MS) was used to study the compounds evolved during pyrolysis and combustion. (orig.)

  17. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development

    Directory of Open Access Journals (Sweden)

    Yuying Li

    2016-04-01

    Full Text Available Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS was employed to identify the volatile organic compounds (VOCs emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%–83% followed by (E,E-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.

  18. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    Energy Technology Data Exchange (ETDEWEB)

    Maja, Mengistu M., E-mail: mengistu.maja@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Kasurinen, Anne; Holopainen, Toini [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Julkunen-Tiitto, Riitta [University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu (Finland); Holopainen, Jarmo K. [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland)

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  19. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    International Nuclear Information System (INIS)

    Maja, Mengistu M.; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K.

    2016-01-01

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  20. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    Science.gov (United States)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  1. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  2. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Science.gov (United States)

    2010-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  3. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Geron, C. [United States Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Guenther, A.; Greenberg, J. [National Center for Atmospheric Research, Boulder, CO (United States); Loescher, H.W. [University of Florida, Gainesville, FL (United States). School of Forest Resources and Conservation; Clark, D. [University of Missouri-St. Louis, MS (United States). Dept. of Biology; Baker, B. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2002-08-01

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCs) at a lowland tropical wet forest site in Costa Rica. Ten of the species examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total basal area of old-growth forest on the major edaphic site types, indicating that a high proportion of the canopy leaf area is a source of isoprene. A limited number of canopy-level BVOC flux measurements were also collected by relaxed eddy accumulation (REA). These measurements verify that the forest canopy in this region is indeed a significant source of isoprene. In addition, REA fluxes of methanol and especially acetone were also significant, exceeding model estimates and warranting future investigation at this site. Leaf monoterpene emissions were non-detectable or very low from the species surveyed, and ambient concentrations and REA fluxes likewise were very low. Although the isoprene emission rates reported here are largely consistent with phylogenetic relations found in other studies (at the family, genus, and species levels), two species in the family Mimosaceae, a group previously found to consist largely of non-isoprene emitters, emitted significant quantities of isoprene. One of these, Pentaclethra macroloba (Willd.) Kuntze, is by far the most abundant canopy tree species in the forests of this area, composing 30-40% of the total basal area. The other, Zygia longifolia (Humb. and Bonpl.) Britton and Rose is a common riparian species. Our results suggest that the source strength of BVOCs is important not only to tropical atmospheric chemistry, but also may be important in determining net ecosystem carbon exchange.(author)

  4. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  5. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    Science.gov (United States)

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  6. Trader types and volatility of emission allowance prices. Evidence from EU ETS Phase I

    International Nuclear Information System (INIS)

    Balietti, Anca Claudia

    2016-01-01

    This paper studies the relation between the trading activity of market participants and the volatility of the European Emission Allowance price during Phase I of the European Union Emission Trading System (EU ETS). We focus on the contrasting roles of different trader types. We find evidence of a positive and significant trading activity–volatility relation, which appears to be stronger when accounting for trader type. The positive relation can be mainly attributed to energy providers. In contrast, industrial companies seem to have traded more frequently when volatility levels were lower. Finally, the non-liable players, represented by financial intermediaries, appear to have acted as a flexible counterparty, trading more with the energy sector when volatility was higher, and more with the industrial firms when volatility was lower. We discuss possible explanations for these contrasted positions. Understanding the trading activity–volatility link is relevant for evaluating the efficiency of the EU ETS. Although the relation is generally positive, many players remained often inactive and traded mostly when volatility levels were lower. Policies targeting the engagement of less active players could lead to a smoother incorporation of information into prices and to an increase in market efficiency. - Highlights: • We study the permit price volatility–trading activity link in the EU ETS Phase I. • We focus on the contrasting roles of different market players. • We show that the relation was overall positive, mainly due to energy providers. • Many other players remained inactive and traded more when volatility was lower. • Policies for the engagement of less active traders could increase market efficiency.

  7. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  8. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  9. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    Science.gov (United States)

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  10. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...

  11. Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization

    International Nuclear Information System (INIS)

    Koo, Jamin; Han, Kyusang; Yoon, En Sup

    2011-01-01

    In this paper, a new approach has been proposed that allows a robust optimization of sustainable energy planning over a period of years. It is based on the modified energy flow optimization model (EFOM) and minimizes total costs in planning capacities of power plants and CCS to be added, stripped or retrofitted. In the process, it reduces risks due to a high volatility in fuel prices; it also provides robustness against infeasibility with respect to meeting the required emission level by adopting a penalty constant that corresponds to the price level of emission allowances. In this manner, the proposed methodology enables decision makers to determine the optimal capacities of power plants and/or CCS, as well as volumes of emissions trading in the future that will meet the required emission level and satisfy energy demand from various user-sections with minimum costs and maximum robustness. They can also gain valuable insights on the effects that the price of emission allowances has on the competitiveness of RES and CCS technologies; it may be used in, for example, setting appropriate subsidies and tax policies for promoting greater use of these technologies. The proposed methodology is applied to a case based on directions and volumes of energy flows in South Korea during the year 2008. (author)

  12. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  13. Olfactory antennal responses of the black vine weevil (Otiorhynchus sulcatus) to plant volatiles

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Visser, J.H.

    2002-01-01

    Electroantennograms (EAGs) were recorded from the vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) to a broad range of volatile plant compounds. The response profile is restricted to a small number of volatiles that evoke substantial EAGs. Large EAG responses were particularly found

  14. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, Aad J; Lievens, Bart; Hoffland, Ellis; De Boer, W.

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  15. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Agtmaal, van Maaike; Straathof, Angela L.; Termorshuizen, Aad; Lievens, Bart; Hoffland, Ellis; Boer, de Wietse

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  16. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  17. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    Science.gov (United States)

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  18. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.

  19. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants

    International Nuclear Information System (INIS)

    Pare, P.W.; Tumlinson, J.H.

    1997-01-01

    In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-alpha-farnesene, (E)-beta-farnesene, (E)-beta-ocimene, linalool,(E)-4,8-dimethyl-1,3,7-nonatriene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetrane, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores

  20. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Directory of Open Access Journals (Sweden)

    Phillip Trefz

    Full Text Available Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP emits volatile organic compounds (VOCs. Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0, 10(-2, 10(-4 and 10(-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME, thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to

  1. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Science.gov (United States)

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0), 10(-2), 10(-4) and 10(-6). Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP

  2. "Juice Monsters": Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions.

    Science.gov (United States)

    Talih, Soha; Salman, Rola; Karaoghlanian, Nareg; El-Hellani, Ahmad; Saliba, Najat; Eissenberg, Thomas; Shihadeh, Alan

    2017-10-16

    An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.

  3. Savannah River Plant airborne emissions and controls

    International Nuclear Information System (INIS)

    Dukes, E.K.; Benjamin, R.W.

    1982-12-01

    The Savannah River Plant (SRP) was established to produce special nuclear materials, principally plutonium and tritium, for national defense needs. Major operating facilities include three nuclear reactors, two chemical separations plants, a fuel and target fabrication plant, and a heavy-water rework plant. An extensive environmental surveillance program has been maintained continuously since 1951 (before SRP startup) to determine the concentrations of radionuclides in a 1200-square-mile area centered on the plant, and the radiation exposure of the population resulting from SRP operations. This report provides data on SRP emissions, controls systems, and airborne radioactive releases. The report includes descriptions of current measurement technology. 10 references, 14 figures, 9 tables

  4. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Ammagarahalli, Byrappa; Gemeno, César

    2015-10-01

    In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    Science.gov (United States)

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  6. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    Science.gov (United States)

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  7. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  8. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  9. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  10. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  11. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... emissions from the arctic region are assumed to be low, but data from the region is lacking. BVOC emissions are furthermore expected to change drastically due to the rapidly proceeding climate change in the Arctic, which can provide a feedback to climate warming of unknown direction and magnitude. BVOC...

  12. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders

    2016-01-01

    emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil...

  13. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.

    2018-03-01

    Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC

  14. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  15. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    Science.gov (United States)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  16. Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces.

    Science.gov (United States)

    Ren, Yuan; Ge, Ying; Gu, Baojing; Min, Yong; Tani, Akira; Chang, Jie

    2014-06-03

    Biogenic volatile organic compound (BVOC) emissions from urban greenspace have recently become a global concern. To identify key factors affecting the dynamics of urban BVOC emissions, we built an estimation model and utilized the city of Hangzhou in southeastern China as an example. A series of single-factor scenarios were first developed, and then nine multifactor scenarios using a combination of different single-factor scenarios were built to quantify the effects of environmental changes and urban management strategies on urban BVOC emissions. Results of our model simulations showed that (1) annual total BVOC emissions from the metropolitan area of Hangzhou were 4.7×10(8) g of C in 2010 and were predicted to be 1.2-3.2 Gg of C (1 Gg=10(9) g) in our various scenarios in 2050, (2) urban management played a more important role in determining future urban BVOC emissions than environmental changes, and (3) a high ecosystem service value (e.g., lowest BVOC/leaf mass ratio) could be achieved through positive coping in confronting environmental changes and adopting proactive urban management strategies on a local scale, that is, to moderately increase tree density while restricting excessive greenspace expansion and optimizing the species composition of existing and newly planted trees.

  17. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  18. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    Science.gov (United States)

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  19. Calcium dips enhance volatile emission of cold-stored 'Fuji Kiku-8' apples.

    Science.gov (United States)

    Ortiz, Abel; Echeverría, Gemma; Graell, Jordi; Lara, Isabel

    2009-06-10

    Despite the relevance of volatile production for overall quality of apple (Malus x domestica Borkh.) fruit, only a few studies have focused on the effects of calcium treatments on this quality attribute. In this work, 'Fuji Kiku-8' apples were harvested at commercial maturity, dipped in calcium chloride (2%, w/v), stored at 1 degrees C and 92% relative humidity for 4 or 7 months under either air or ultralow oxygen (ULO; 1 kPa of O(2)/2 kPa of CO(2)), and placed subsequently at 20 degrees C. Ethylene production, standard quality parameters, emission of volatile compounds, and the activities of some related enzymes were assessed 7 days thereafter. Calcium concentration was higher in CaCl(2)-treated than in untreated fruit, suggesting that the treatment was effective in introducing calcium into the tissues. Higher calcium contents were concomitant with higher flesh firmness and titratable acidity after storage. Furthermore, calcium treatment led to increased production of volatiles in middle-term stored apples, probably arising from enhanced supply of precursors for ester production as a consequence of increased pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities. After long-term storage, higher volatile emission might have arisen also from the enhancement of alcohol o-acyltransferase (AAT) activity, which was increased as a result of calcium treatment. In addition to storage period, the effects of calcium treatment were also partially dependent on storage atmosphere and more noticeable for fruit stored in air.

  20. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  1. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  2. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  3. Biochar application reduce ammonia volatilization in a soil-plant system: A closed chamber experiment

    Science.gov (United States)

    Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo

    2017-04-01

    Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased

  4. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China

    DEFF Research Database (Denmark)

    Guo, Hanwen; Duan, Zhenhan; Zhao, Yan

    2017-01-01

    Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index...... in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R2 = 0.918 (n = 15, P technology to deal...... with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission....

  5. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  6. Photochemical production of aerosols from real plant emissions

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2009-07-01

    Full Text Available Emission of biogenic volatile organic compounds (VOC which on oxidation form secondary organic aerosols (SOA can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC, suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.

  7. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    Science.gov (United States)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  9. An air transfer experiment confirms the role of volatile cues in communication between plants.

    Science.gov (United States)

    Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi

    2010-09-01

    Previous studies reported that sagebrush plants near experimentally clipped neighbors experienced less herbivory than did plants near unclipped neighbors. Blocking air flow with plastic bags made this effect undetectable. However, some scientists remained skeptical about the possibility of volatile communication between plants since the existence and identity of a cue that operates in nature have never been demonstrated. We conducted an air transfer experiment that collected air from the headspace of an experimentally clipped donor plant and delivered it to the headspace of an unclipped assay plant. We found that assay plants treated with air from clipped donors were less likely to be damaged by naturally occurring herbivores in a field experiment. This simple air transfer experiment fulfills the most critical of Koch's postulates and provides more definitive evidence for volatile communication between plants. It also provides an inexpensive experimental protocol that can be used to screen plants for interplant communication in the field.

  10. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  11. Metabolic engineering of volatile isoprenoids in plants and microbes

    NARCIS (Netherlands)

    Vickers, C.; Bongers, M.; Liu, Q.; Delatte, T.L.; Bouwmeester, H.J.

    2014-01-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural

  12. Impacts of carbon capture on power plant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Narula, R.; Wen, H. [Bechtel Power, San Francisco, CA (United States)

    2009-07-01

    Post-combustion carbon dioxide capture processes currently include amine-based solvent scrubbing and ammonia solution scrubbing technologies. Both result in high emissions of volatile organic compounds (VOC) and ammonia, as well as liquid discharge that contain chemical solvent. Additional solid wastes include sludge and spent solvent filtration medias. Process simulation software can be used to predict the amount of solvent vapor in the stack gas for both amine and ammonia solvent based capture processes. However, amine could decompose in most amine-based processes and release ammonia gas due to degradation by exposure to oxygen, sulfur impurities, and thermal conditions. As a regulated pollutant for emission control for some plants, ammonia emissions are a major concern for ammonia scrubbing processes. The energy requirement for carbon capture can be reduced by cooling the flue gas before entering the carbon dioxide absorber column. The resulting low flue gas temperature could create difficulties in dispersing the flue gas plume in the atmosphere. This paper presented a computer simulation of stack emission reduction.

  13. The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties

    Directory of Open Access Journals (Sweden)

    Tomescu Daniel

    2017-05-01

    Full Text Available Soil salinity is one of the best known stress factors of plants that can lead to crop yield reduction. Therefore, it is important to identify new tolerance varieties of plants that can grow on saline soils. We have studied the influence of salt on five different tomato varieties from the Western region of Romania and compared them with a commercial hybrid and found that one of them (Rudna is a very salt-tolerant variety (up to 200 mM NaCl. The assimilation rates and stomata conductance of water vapour are affected by salinity but some of the local varieties of tomato exhibit quite good tolerance. We found that all plants under salinity stress emit (Z-3-hexenol (a C6, green leaf volatile and the emission of all terpenes increased in proportion to the salt concentration. The emission of three terpenes, (Z-beta-ocimene. 2-carene and beta-phellandrene, have been quantitatively correlated with salt concentration.

  14. Complexity of plant volatile-mediated interactions beyond the third trophic level

    NARCIS (Netherlands)

    Poelman, E.H.; Kos, M.

    2016-01-01

    Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their

  15. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  16. Biogenic volatile organic compounds (BVOCs) emission of Scots pine under drought stress - a 13CO2 labeling study to determine de novo and pool emissions under different treatments

    Science.gov (United States)

    Lüpke, M.

    2015-12-01

    Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13

  17. Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chang

    2017-10-01

    Full Text Available Recent research shows that the efforts to limit climate change should focus on reducing the emissions of carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention to carbon emissions to improve air quality and public health. The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, and transportation. The prices of fuel and carbon emissions can influence each other. Owing to the importance of carbon emissions and their connection to fossil fuels, and the possibility of [1] Granger (1980 causality in spot and futures prices, returns, and volatility of carbon emissions, crude oil and coal have recently become very important research topics. For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily futures prices for carbon emissions. For the European Union (EU, there are no daily spot prices for coal or carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. As the estimators are based on quasi-maximum likelihood estimators (QMLE under the incorrect assumption of a normal distribution, we modify the likelihood ratio (LR test to a quasi-likelihood ratio test (QLR to test the multivariate conditional volatility Diagonal BEKK model, which estimates and tests volatility spillovers, and has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which also estimates volatility spillovers, but has valid regularity conditions and asymptotic properties only under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies by using optimal hedge ratios are suggested to analyse market fluctuations in the

  18. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  19. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  20. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  1. A process-based emission model of volatile organic compounds from silage sources on farms

    DEFF Research Database (Denmark)

    Bonifacio, H. F.; Rotz, C. A.; Hafner, S. D.

    2017-01-01

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources...... was evaluated using ethanol and methanol emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations (TMR), and loose corn silage (LCS) at a commercial dairy farm in central California. With transport coefficients for ethanol refined using experimental data from our previous......% if feeds were delivered as four feedings per day rather than as one. Reducing the exposed face of storage can also be useful. Simulated use of silage bags resulted in 90% and 18% reductions in emissions from the storage face and whole farm, respectively....

  2. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    OpenAIRE

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not suitable for large sample sizes. In contrast we propose a fast and non-destructive detection method for plant diagnosis using volatiles as an early indicator of plant diseases. This report presents...

  3. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  4. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles.

    Directory of Open Access Journals (Sweden)

    Salme Timmusk

    Full Text Available Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates.

  5. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide.

    Science.gov (United States)

    Garcia-Jimenez, Pilar; Brito-Romano, Olegario; Robaina, Rafael R

    2013-08-01

    The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula. © 2013 Phycological Society of America.

  6. How common is within-plant signalling via volatiles?

    DEFF Research Database (Denmark)

    Li, Tao; Blande, James D.

    2017-01-01

    or neighbouring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signalling and that other organisms subsequently evolved to use them. However, only seven studies have reported HIPV-mediated within-plant signalling, most conducted in the laboratory or greenhouse. This leaves...... open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signalling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants...... in which within-plant signalling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits....

  7. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming.

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Asmund; Michelsen, Anders; Holopainen, Jarmo K; Rinnan, Riikka

    2010-07-01

    *Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.

  8. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  9. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    Science.gov (United States)

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  10. Reassessment of biogenic volatile organic compound emissions in the Atlanta area

    International Nuclear Information System (INIS)

    Geron, C.D.; Pierce, T.E.; Guenther, A.B.

    1995-01-01

    Localized estimates of biogenic volatile organic compound (BVOC) emissions are important inputs for photochemical oxidant simulation models. Since forest tree species are the primary emitters of BVOCs, it is important to develop reliable estimates of their areal coverage and BVOC emission rates. A new system is used to estimate these emissions in the Atlanta area for specific tree genera at hourly and county levels. The U.S. Department of Agriculture, Forest Service Forest Inventory and Analysis data and an associated urban vegetation survey are used to estimate canopy occupancy by genus in the Atlanta area. A simple canopy model is used to adjust photosynthetically active solar radiation at five vertical levels in the canopy. Lraf temperature and photosynthetically active radiation derived from ambient conditions above the forest canopy are then used to drive empirical equations to estimate genus level emission rates of BVOCs vertically through forest canopies. These genera-level estimates are then aggregated to county and regional levels for input into air quality models and for comparison with (1) the regulatory model currently used and (2) previous estimates for the Atlanta area by local researchers. Estimated hourly emissions from the three approaches during a documented ozone event day are compared. The proposed model yields peak diurnal isoprene emission rates that are over a factor of three times higher than previous estimates. This results in total BVOC emission rates that are roughly a factor of two times higher than previous estimates. These emissions are compared with observed emissions from forests of similar composition. Possible implications for oxidant events are discussed. (author)

  11. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  12. An Estimate of Biogenic Emissions of Volatile Organic Compounds during Summertime in China (7 pp).

    Science.gov (United States)

    Heinrich, Almut

    2007-01-01

    and Aim. An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smog and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated from forests and woodlands. The averaged emission intensity was 4.11 mgC m-2 hr-1 for forests and 1.12 mgC m-2 hr-1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the

  13. Emissions control of volatile organic compounds in petroleum industry; Controle de emissoes de compostos organicos volateis na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Gutierres, Ricardo; Moreira, Andrea Cristina de Castro Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). P e D de Energia e Desenvolvimento Sustentavel (PDEDS)

    2004-07-01

    Volatile organic compounds are among the most common pollutants emitted by refining processes. The sources of these emissions should be controlled for preserving the ambient air quality. This article outlines the main factors to be considered for defining an effective emissions control strategy and compares the major characteristics of the available control technologies. (author)

  14. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  15. Estimation of volatile organic compound emissions for Europe using data assimilation

    Directory of Open Access Journals (Sweden)

    M. R. Koohkan

    2013-06-01

    Full Text Available The emissions of non-methane volatile organic compounds (VOCs over western Europe for the year 2005 are estimated via inverse modelling by assimilation of in situ observations of concentration and then subsequently compared to a standard emission inventory. The study focuses on 15 VOC species: five aromatics, six alkanes, two alkenes, one alkyne and one biogenic diene. The inversion relies on a validated fast adjoint of the chemical transport model used to simulate the fate and transport of these VOCs. The assimilated ground-based measurements over Europe are provided by the European Monitoring and Evaluation Programme (EMEP network. The background emission errors and the prior observational errors are estimated by maximum-likelihood approaches. The positivity assumption on the VOC emission fluxes is pivotal for a successful inversion, and this maximum-likelihood approach consistently accounts for the positivity of the fluxes. For most species, the retrieved emissions lead to a significant reduction of the bias, which underlines the misfit between the standard inventories and the observed concentrations. The results are validated through a forecast test and a cross-validation test. An estimation of the posterior uncertainty is also provided. It is shown that the statistically consistent non-Gaussian approach based on a reliable estimation of the errors offers the best performance. The efficiency in correcting the inventory depends on the lifetime of the VOCs and the accuracy of the boundary conditions. In particular, it is shown that the use of in situ observations using a sparse monitoring network to estimate emissions of isoprene is inadequate because its short chemical lifetime significantly limits the spatial radius of influence of the monitoring data. For species with a longer lifetime (a few days, successful, albeit partial, emission corrections can reach regions hundreds of kilometres away from the stations. Domain-wide corrections of the

  16. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  17. Volatile organic compound analysis in wood combustion and meat cooking emissions

    International Nuclear Information System (INIS)

    Zielinska, B.; McDonald, J.

    1999-01-01

    Residential wood combustion and meat cooking emissions were each analyzed for volatile organic compounds (VOC). Emissions were diluted 60--100 times, cooled to ambient temperature, and allowed 80 seconds for condensation prior to collection with the aid of a DRI-constructed dilution stack sampler. Fireplace and wood-stove emissions testing was conducted at the DRI facilities. Wood type, wood moisture, burn rate, and fuel load were varied for different experiments. Meat emissions testing was conducted at the CE-CERT stationary emissions lab, University of California, Riverside. Meat type, fat content, and cooking appliance were changed in different tests. VOCs were collected using stainless-steel 6 L canisters and Tenax cartridges, whereas for carbonyl compound collection 2,4-dinitrophenylhydrazine (DNPH)-impregnated C 18 SepPack cartridges were used. Analysis of VOC collected with canisters and Tenax cartridges was conducted by Gas Chromatography/Mass Spectrometry (GC/MS) and by GC/FID/ECD (flame ionization detection/electron capture detection). DNPH-impregnated cartridges were analyzed for fourteen C 1 --C 7 carbonyl compounds, using the HPLC method. The results of these measurements are discussed

  18. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    Science.gov (United States)

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  19. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile

    NARCIS (Netherlands)

    Sznajder, B.; Sabelis, M.W.; Egas, M.

    2011-01-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific

  20. Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid

    NARCIS (Netherlands)

    Kos, M.; Houshyani, B.; Overeem, A.J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2013-01-01

    BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be

  1. A model Apparatus for Isolation of Volatile Oils from Various Plant Materials

    Directory of Open Access Journals (Sweden)

    Mahdi T. AI-Kaisey

    2018-02-01

    The present paper givas a detailed description of apparatus which were sutable for isola.tion the lighter and tile heavier u.('-m water volatile oils fronl differenet plant materials. Meanwhile tbe purity of tile concentrates were ex lrined by g-aS liquid chromato graphy( GLe.

  2. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    NARCIS (Netherlands)

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  3. Determining the vapour pressures of plant volatiles from gas chromatographic retention data

    Czech Academy of Sciences Publication Activity Database

    Hoskovec, Michal; Grygarová, D.; Cvačka, Josef; Streinz, Ludvík; Zima, J.; Verevkin, S. P.; Koutek, Bohumír

    2005-01-01

    Roč. 1083, - (2005), s. 161-172 ISSN 0021-9673 Institutional research plan: CEZ:AV0Z4055905 Keywords : vapour pressure * thermodinamic parameters * plant volatiles Subject RIV: CC - Organic Chemistry Impact factor: 3.096, year: 2005

  4. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  5. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  6. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    mycorrhizal spores in the Indian Thar desert, colonizes the root cortex of a wide range of plants, enhancing plant growth and modulating plant specialized metabolism. The effect of S. indica colonization on the metabolism of the host can be potentially used in improving plant defence against pathogens...... and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused....... indica-inoculated and S. indica-free tomato plants. Preliminary data suggest that fungal colonization results in increased production of specific volatile terpenes. A transcriptome analysis on fungus-associated and fungus-free plant tissues is currently ongoing to elucidate in depth the mechanisms...

  7. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  9. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications

    Science.gov (United States)

    Geron, Chris; Owen, Sue; Guenther, Alex; Greenberg, Jim; Rasmussen, Rei; Hui Bai, Jian; Li, Qing-Jun; Baker, Brad

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVOC in and near the Xishuangbanna Tropical Biological Gardens in southern Yunnan Province, Peoples' Republic of China in February 2003. In situ measurements with leaf cuvettes and branch bag enclosures were used in combination with portable gas chromatography, flame ionization, photoionization, and mass spectral detection to identify and quantify BVOC emissions. Forty-four of the species examined emitted isoprene at rates exceeding 20 μg C g -1 (leaf dry weight) h -1. An emphasis was placed on the genus Ficus, which is important in the region and occupies a wide range of ecological niches. Several species in the footprint of a nearby flux tower were also examined. Several palm species and an abundant fern ( Cyclosorus parasiticus) emitted substantial amounts of isoprene, and probably accounted for observed daytime mean isoprene fluxes from the understory of a Hevea brasiliensis plantation of 1.0 and 0.15 mg C m -2 h -1 during the wet and dry seasons, respectively. These measurements verify that both the forest floor and canopy in this region can be sources of isoprene. Monoterpene emissions exceeded 1.0 μg-C g -1 (leaf dry weight) h -1 from only 4 of 38 species surveyed, including some Ficus species and H. brasiliensis. However most of the trees of the latter species were sparsely foliated due to dry season senescence, and emission factors are approximately an order of magnitude lower than those reported during the wet season. BVOC emission rates and physiology of many species are impacted by reduced moisture availability, especially Mangifera indica. South Asia is a region undergoing rapid landuse change and forest plantation establishment, with large increases in area of high BVOC

  11. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence.

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2017-07-20

    Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Off-season biogenic volatile organic compound emissions from heath mesocosms

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete

    2013-01-01

    herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were...... measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight...

  13. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  14. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  15. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action

    Czech Academy of Sciences Publication Activity Database

    Sanchez-Lopez, A.; Baslam, M.; De Diego, N.; Jose Munoz, F.; Bahaji, A.; Almagro, G.; Ricarte-Bermejo, A.; Garcia-Gomez, P.; Li, J.; Humplík, J.F.; Novák, Ondřej; Spíchal, L.; Doležal, Karel; Baroja-Fernandez, E.; Pozueta-Romero, J.

    2016-01-01

    Roč. 39, č. 12 (2016), s. 2592-2608 ISSN 0140-7791 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : exceptionally high-levels * tandem mass-spectrometry * arabidopsis-thaliana * nitric-oxide * bacterial volatiles * floral transition * anthocyanin biosynthesis * transgenic arabidopsis * liquid-chromatography * organic-compounds * cytokinin * flowering * growth promotion * microbial volatile compounds * photoregulation * photosynthesis * plant-microbe interaction * starch Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.173, year: 2016

  16. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study.

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Chen, Weihua; Zheng, Junyu; Guenther, Alex; Fan, Qi; Chang, Ming

    2016-08-01

    This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region. Copyright © 2016. Published by Elsevier B.V.

  17. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  18. Volatile communication between plants that affects herbivory: a meta-analysis.

    Science.gov (United States)

    Karban, Richard; Yang, Louie H; Edwards, Kyle F

    2014-01-01

    Volatile communication between plants causing enhanced defence has been controversial. Early studies were not replicated, and influential reviews questioned the validity of the phenomenon. We collected 48 well-replicated studies and found overall support for the hypothesis that resistance increased for individuals with damaged neighbours. Laboratory or greenhouse studies and those conducted on agricultural crops showed stronger induced resistance than field studies on undomesticated species, presumably because other variation had been reduced. A cumulative analysis revealed that early, non-replicated studies were more variable and showed less evidence for communication. Effects of habitat and plant growth form were undetectable. In most cases, the mechanisms of resistance and alternative hypotheses were not considered. There was no indication that some response variables were more likely to produce large effects. These results indicate that plants of diverse taxonomic affinities and ecological conditions become more resistant to herbivores when exposed to volatiles from damaged neighbours. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data

    Science.gov (United States)

    Li, M.; Huang, X.; Li, J.; Song, Y.

    2012-04-01

    Because of the high emission intensity and reactivity, biogenic volatile organic compounds (BVOCs) play a significant role in the terrestrial ecosystems, human health, secondary pollution, global climate change and the global carbon cycle. Past estimations of BVOC emissions in China were based on outdated algorithms and limited meteorological data, and there have been significant inconsistences between the land surface parameters of dynamic models and those of BVOC estimation models, leading to large inaccuracies in the estimated results. To refine BVOC emission estimations for China and to further explore the role of BVOCs in atmospheric chemical processes, we used the latest algorithms of MEGAN (Model of Emissions of Gases and Aerosols from Nature) with MM5 (the Fifth-Generation Mesoscale Model) providing highly resolved meteorological data, to estimate the biogenic emissions of isoprene (C5H8) and seven monoterpene species (C10H16) in 2006. Real-time MODIS (Moderate Resolution Imaging Spectroradiometer) data were introduced to update the land surface parameters and improve the simulation performance of MM5, and to modify the influence of leaf area index (LAI) and leaf age deviation from standard conditions. In this study, the annual BVOC emissions for the whole country totaled 12.97 Tg C, a relevant value much lower than that given in global estimations but higher than the past estimations in China. Therein, the most important individual contributor was isoprene (9.36 Tg C), followed by α-pinene (1.24 Tg C yr-1) and β-pinene (0.84 Tg C yr-1). Due to the considerable regional disparity in plant distributions and meteorological conditions across China, BVOC emissions presented significant spatial-temporal variations. Spatially, isoprene emission was concentrated in South China, which is covered by large areas of broadleaf forests and shrubs. On the other hand, Southeast China was the top-ranking contributor of monoterpenes, in which the dominant vegetation

  20. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2013-02-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  1. Biochar type and factors affecting N transformation, ammonia volatilization, and nitrous oxide emissions

    Science.gov (United States)

    Soil amendment with biochar has shown the potential to improve nitrogen (N) availability for plant uptake and reduce environmental losses via ammonia (NH3) and nitrous oxide (N2O) emissions. There are still many unknowns on how biochar type and soil conditions affect N dynamics and processes associa...

  2. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant-soil system.

    Science.gov (United States)

    Ruppert, L; Lin, Z-Q; Dixon, R P; Johnson, K A

    2013-11-15

    Phytoremediation, the use of plants and microbes to clean up inorganic and organic pollutants, has shown great promise as an inexpensive and feasible form of remediation. More recently, studies have shown that some plants have an amazing capacity to volatilize contaminants and can be an effective remediation strategy if the chemicals released are non-toxic. Arsenic contamination and remediation has drawn great attention in the scientific community. However, its toxicity also varies depending on its form. We evaluated, optimized, and then utilized a solid phase microfiber extraction (SPME) head space sampling technique to characterize the organoarsinical emissions from rabbitfoot grass (Polypogon monspeliensis) in arsenic treated soils to determine if the potentially more toxic organic forms of arsenic (AsH3, AsH2CH3, AsH(CH3)2, and As(CH3)3) were being emitted from the plant-soil system. The SPME fiber that proved best fitted for this application was the DVB/CAR/PDMS fiber with a 45 min sampling period. We did detect and confirm the emissions of dimethylchloroarsine (AsCl(CH3)2) and pentamethylarsine (As(CH3)5). However, it was determined that the more toxic organic forms of arsenic were not released during phytovolatilization. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  4. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  5. Volatile Metabolites Emission by In Vivo Microalgae-An Overlooked Opportunity?

    Science.gov (United States)

    Achyuthan, Komandoor E; Harper, Jason C; Manginell, Ronald P; Moorman, Matthew W

    2017-07-31

    Fragrances and malodors are ubiquitous in the environment, arising from natural and artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has a broad range of civilian, industrial, military, medical, and national security applications. The VOC metabolic profile of an organism has been referred to as its 'volatilome' (or 'volatome') and the study of volatilome/volatome is characterized as 'volatilomics', a relatively new category in the 'omics' arena. There is considerable literature on VOCs extracted destructively from microalgae for applications such as food, natural products chemistry, and biofuels. VOC emissions from living (in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the organism's state of health (SoH) along with their contributions to the environment and ecology. This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical activities, predator-prey interactions, and general SoH.

  6. Volatile Constituents of Different Plant Parts and Populations of Malabaila aurea Boiss. from Montenegro

    Directory of Open Access Journals (Sweden)

    Ivan Vučković

    2014-03-01

    Full Text Available The volatile constituents of different plant parts and populations of Malabaila aurea Boiss. from Montenegro were obtained by simultaneous distillation-extraction and analyzed by GC-FID and GC-MS. A total of 12 samples were examined and 45 compounds were identified. The volatile content of different M. aurea populations was very similar, while the volatile fractions obtained from different plant parts showed significant qualitative and quantitative differences. The most abundant compounds found in stems & leaves were apiole (51.0-56.3%, myristicin (16.3-25.4%, and falcarinol (4.1-10.7%. The roots showed the same major components, but with different relative abundances: 30.9-49.1% of apiole, 12.9-34.7% of falcarinol, and 9.9-31.1% of myristicin. The volatile constituents of fruits & flowers were remarkably different, containing up to 71.2-80.5% octyl butyrate, 11.4-18.0% octanol, and 2.7-6.8% octyl hexanoate. The results were discussed as possible indication of relatedness of Malabaila aurea and Pastinacasativa (parsnip .

  7. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  8. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    Science.gov (United States)

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  9. Kimberlina: a zero-emissions demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Pronske, K. [Clean Energy Systems Inc. (USA)

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  10. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  11. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    Science.gov (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  12. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    Science.gov (United States)

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  13. Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions

    Directory of Open Access Journals (Sweden)

    J. N. Smith

    2011-02-01

    Full Text Available Biogenic volatile organic compounds (VOCs are a significant source of global secondary organic aerosol (SOA; however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber laboratory work, focusing on SOA formation via oxidation of the emissions of two dominant tree species from boreal forest area, Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies, by hydroxyl radical (OH and ozone (O3. Oxidation of α-pinene was also studied as a reference system. Tetramethylethylene (TME and 2-butanol were added to control OH and O3 levels, thereby allowing SOA formation events to be categorized as resulting from either OH-dominated or O3-initiated chemistry. SOA mass yields from α-pinene are consistent with previous studies while the yields from the real plant emissions are generally lower than that from α-pinene, varying from 1.9% at an aerosol mass loading of 0.69 μg m−3 to 17.7% at 26.0 μg m−3. Mass yields from oxidation of real plant emissions are subject to the interactive effects of the molecular structures of plant emissions and their reaction chemistry with OH and O3, which lead to variations in condensable product volatility. SOA formation can be reproduced with a two-product gas-phase partitioning absorption model in spite of differences in the source of oxidant species and product volatility in the real plant emission experiments. Condensable products from OH-dominated chemistry showed a higher volatility than those from O3-initiated systems during aerosol growth stage. Particulate phase products became less volatile via aging process which continued after input gas-phase oxidants had been completely consumed.

  14. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  15. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies

    International Nuclear Information System (INIS)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-01-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m −2 yr −1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. - Highlights: • Urban core is the hotspot of biogenic volatile organic compounds (BVOCs) emissions in the Greater Beijing Area. • Neglecting BVOCs emissions from urban green spaces leads to a 62% underestimation of the related health damage. • BVOCs contribute significantly to ozone pollution while make limited contribution to PM 2.5 pollution. • BVOCs emissions from urban green spaces will triple by 2050, and 61% of these emissions can be reduced through management. - Although BVOCs emissions from urban green spaces make limited contribution to regional emissions, their health impacts could be significant in urban areas.

  16. The influence of temperature on the emission of volatile organic compounds from PVC flooring, carpet, and paint

    NARCIS (Netherlands)

    Wal, J.F. van der; Hoogeveen, A.W.; Wouda, P.

    1997-01-01

    The influence of temperature on the emission rate of volatile organic compounds (VOC) from four indoor materials was investigated in a small dynamic test chamber. The materials investigated were two carpets, a PVC flooring and a paint; the temperature range investigated was 23-50°C. The general

  17. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers

    Directory of Open Access Journals (Sweden)

    Riru Zheng

    2017-10-01

    Full Text Available Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00–6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.

  18. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2015-12-30

    emissions demonstration . 46 6 Figure 24. T63 engine with extension pipe to direct exhaust outside of the test cell for exhaust sampling with tip...to assess their effectiveness in conditioning turbine engine exhaust for total PM emissions measurements. Both were designed to promote the... effectively control and mitigate PM emissions. Aircraft PM is formed in the engine combustor due to incomplete combustion of fuel, and in the

  20. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    Science.gov (United States)

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  1. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    Science.gov (United States)

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  2. Response of Sitophilus granarius L. to fumigant toxicity of some plant volatile oils

    Directory of Open Access Journals (Sweden)

    Ali F. Hamza

    2016-01-01

    Full Text Available One-week-old adults of Sitophilus granarius (L. reared on wheat were subjected to pure plant volatile oils of Thuja, Eucalyptus and Peppermint. Volatile oil of Thuja was extracted from unripe fruits of Thuja orientalis plant by water distillation. The objective of the current study was to determine the fumigant toxicity of these volatile oils against adults of S. granarius. The fumigant toxicity of the volatile oils was tested against 1week old adults of S. granarius at 28±2 °C and 65±5% RH in darkness. The mortality of adults was tested at different concentrations ranging from 20 to 100 μl of Thuja, 10–30 μl of Eucalyptus and 3–15 μl of Peppermint at different exposure times (24, 48 and 72 h. The results demonstrated that the mortality increased with increases in concentration and exposure periods. The percent mortality of S. granarius reached 91.2, 95.0 and 91.2% when 1-w-old adult exposed to higher concentration of Thuja, Eucalyptus and Peppermint oils, respectively, comparing to 0% in the control after 24 h. After 72 h the percent mortality was 100% at the higher concentration of the three volatile oils. LC50 and LC90 were determined for each volatile oil and each exposure period. Data probit analysis demonstrated that concentrations of 70.71 μl Thuja, 16.95 μl Eucalyptus and 10.48 μl Peppermint, recorded 50% mortality after 24 h, however it reached 90% when concentrations increased to 104.04 μl Thuja, 25.48 μl Eucalyptus and 15.92 μl Peppermint after the same period. LC50 and LC90 values were decreased by increasing the exposure periods. These results showed that the three volatile oils could be applicable to the management of populations of S. granarius (L..

  3. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  4. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products.

    Science.gov (United States)

    Szczepańska, Natalia; Marć, Mariusz; Kudłak, Błażej; Simeonov, Vasil; Tsakovski, Stefan; Namieśnik, Jacek

    2018-09-30

    The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the

  5. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  6. Volatilization from borosilicate glass melts of simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Wilds, G.W.

    1979-01-01

    Laboratory scale studies determined the rates at which the semivolatile components sodium, boron, lithium, cesium, and ruthenium volatilized from borosilicate glass melts that contained simulated Savannah River Plant waste sludge. Sodium and boric oxides volatilize as the thermally stable compound sodium metaborate, and accounted for approx. 90% of the semivolatiles that evolved. The amounts of semivolatiles that evolved increased linearly with the logarithm of the sodium content of the glass-forming mixture. Cesium volatility was slightly suppressed when titanium dioxide was added to the melt, but was unaffected when cesium was added to the melt as a cesium-loaded zeolite rather than as a cesium carbonate solution. Volatility of ruthenium was not suppressed when the glass melt was blanketed with a nonoxidizing atmosphere. Trace quantities of mercury were removed from vapor streams by adsorption onto a silver-exchanged zeolite. A bed containing silver in the ionic state removed more than 99.9% of the mercury and had a high chemisorption capacity. Beds of lead-, copper-, and copper sulfide-exchanged zeolite-X and also an unexchanged zeolite-X were tested. None of these latter beds had high removal efficiency and high chemisorption capacity

  7. Volatilization from borosilicate glass melts of simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Wilds, G.W.

    1978-01-01

    Laboratory scale studies determined the rates at which the semivolatile components sodium, boron, lithium, cesium, and ruthenium volatilized from borosilicate glass melts that contained simulated Savannah River Plant waste sludge. Sodium and boric oxides volatilize as the thermally stable compound sodium metaborate, and accounted for approx. 90% of the semivolatiles that evolved. The amounts of semivolatiles that evolved increased linearly with the logarithm of the sodium content of the glass-forming mixture. Cesium volatility was slightly suppressed when titanium dioxide was added to the melt, but was unaffected when cesium was added to the melt as a cesium-loaded zeolite rather than as a cesium carbonate solution. Volatility of ruthenium was not suppressed when the glass melt was blanketed with a nonoxidizing atmosphere. Trace quantities of mercury were removed from vapor streams by adsorption onto a silver-exchanged zeolite. A bed containing silver in the ionic state removed more than 99.9% of the mercury and had a high chemisorption capacity. Beds of lead-, copper-, and copper sulfide-exchanged zeolite-X and also an unexchanged zeolite-X were tested. None of these latter beds had high removal efficiency and high chemisorption capacity

  8. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol

    Science.gov (United States)

    Fu, Y.; Liao, H.

    2012-12-01

    We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2

  9. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  10. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, Jenni, E-mail: jenni.k.lehtinen@jyu.fi [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland); Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland)

    2013-04-15

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most

  11. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    International Nuclear Information System (INIS)

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari

    2013-01-01

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m 3 which clearly exceeded the threshold value of 90 EU/m 3 . In the wheel loader cabin the endotoxin concentrations were below 1 EU/m 3 . High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m 3 , a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic factor was

  12. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    Science.gov (United States)

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Science.gov (United States)

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  14. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at t...... concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results....... that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC...

  15. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.

    Science.gov (United States)

    Perestrelo, R; Silva, C; Silva, P; Câmara, J S

    2017-07-15

    The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Danish emission inventories for stationary combustion plants. Inventories until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2010-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3}, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2008 was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2008 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (Author)

  17. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  18. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi

    2009-01-01

    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  19. Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain

    International Nuclear Information System (INIS)

    Parra, R.; Gasso, S.; Baldasano, J.M.

    2004-01-01

    An estimation of the magnitude of non-methane volatile organic compounds (NMVOCs) emitted by vegetation in Catalonia (NE of the Iberian Peninsula, Spain), in addition to their superficial and temporal distribution, is presented for policy and scientific (photochemical modelling) purposes. It was developed for the year 2000, for different time resolutions (hourly, daily, monthly and annual) and using a high-resolution land-use map (1-km 2 squared cells). Several meteorological surface stations provided air temperature and solar radiation data. An adjusted mathematical emission model taking account of Catalonia's conditions was built into a geographic information system (GIS) software. This estimation uses the latest information, mainly relating to: (1) emission factors; (2) better knowledge of the composition of Catalonia's forest cover; and (3) better knowledge of the particular emission behaviour of some Mediterranean vegetal species. Results depict an annual cycle with increasing values in the March-April period with the highest emissions in July-August, followed by a decrease in October-November. Annual biogenic NMVOCs emissions reach 46.9 kt, with monoterpenes the most abundant species (24.7 kt), followed by other biogenic volatile organic compounds (e.g. alcohols, aldehydes and acetone) (16.3 kt), and isoprene (5.9 kt). These compounds signify 52%, 35% and 13%, respectively, of total emission estimates. Peak hourly total emission for a winter day could be less than 10% of the corresponding value for a summer day

  20. Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies.

    Science.gov (United States)

    Stönner, C; Edtbauer, A; Williams, J

    2018-01-01

    Human beings emit many volatile organic compounds (VOCs) of both endogenous (internally produced) and exogenous (external source) origin. Here we present real-world emission rates of volatile organic compounds from cinema audiences (50-230 people) as a function of time in multiple screenings of three films. The cinema location and film selection allowed high-frequency measurement of human-emitted VOCs within a room flushed at a known rate so that emissions rates could be calculated for both adults and children. Gas-phase emission rates are analyzed as a function of time of day, variability during the film, and age of viewer. The average emission rates of CO 2 , acetone, and isoprene were lower (by a factor of ~1.2-1.4) for children under twelve compared to adults while for acetaldehyde emission rates were equivalent. Molecules influenced by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to decrease over the course of day and then rise for late evening screenings. These results represent average emission rates of people under real-world conditions and can be used in indoor air quality assessments and building design. Averaging over a large number of people generates emission rates that are less susceptible to individual behaviors. © 2017 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  1. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    Science.gov (United States)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the

  2. Perception of volatiles produced by UVC-irradiated plants alters the response to viral infection in naïve neighboring plants.

    Science.gov (United States)

    Yao, Youli; Danna, Cristian H; Ausubel, Frederick M; Kovalchuk, Igor

    2012-07-01

    Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants. Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants. We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants. To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial

  3. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  4. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - part B: applications.

    Science.gov (United States)

    Ortega, John; Helmig, Detlev; Daly, Ryan W; Tanner, David M; Guenther, Alex B; Herrick, Jeffrey D

    2008-06-01

    The focus of the studies presented in the preceding companion paper (Part A: Review) and here (Part B: Applications) is on defining representative emission rates from vegetation for determining the roles of biogenic volatile organic compound (BVOC) emissions in atmospheric chemistry and aerosol processes. The review of previously published procedures for identifying and quantifying BVOC emissions has revealed a wide variety of experimental methods used by various researchers. Experimental details become increasingly critical for quantitative emission measurements of low volatility monoterpenes (MT) and sesquiterpenes (SQT). These compounds are prone to be lost inadvertently by uptake to materials in contact with the sample air or by reactions with atmospheric oxidants. These losses become more prominent with higher molecular weight compounds, potentially leading to an underestimation of their emission rates. We present MT and SQT emission rate data from numerous experiments that include 23 deciduous tree species, 14 coniferous tree species, 8 crops, and 2 shrubs. These data indicate total, normalized (30 degrees C) basal emission rates from emissions have exponential dependencies on temperature (i.e. rates are proportional to e(betaT)). The inter-quartile range of beta-values for MT was between 0.12 and 0.17K(-1), which is higher than the value commonly used in models (0.09K(-1)). However many of the MT emissions also exhibited light dependencies, making it difficult to separate light and temperature influences. The primary light-dependent MT was ocimene, whose emissions were up to a factor of 10 higher than light-independent MT emissions. The inner-quartile range of beta-values for SQT was between 0.15 and 0.21K(-1).

  5. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  6. On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting

    International Nuclear Information System (INIS)

    Chevallier, Julien; Sevi, Benoit

    2009-01-01

    The recent implementation of the EU Emissions Trading Scheme (EU ETS) in January 2005 created new financial risks for emitting firms. To deal with these risks, options are traded since October 2006. Because the EU ETS is a new market, the relevant underlying model for option pricing is still a controversial issue. This article improves our understanding of this issue by characterizing the conditional and unconditional distributions of the realized volatility for the 2008 futures contract in the European Climate Exchange (ECX), which is valid during Phase II (2008-2012) of the EU ETS. The realized volatility measures from naive, kernel-based and sub-sampling estimators are used to obtain inferences about the distributional and dynamic properties of the ECX emissions futures volatility. The distribution of the daily realized volatility in logarithmic form is shown to be close to normal. The mixture-of-distributions hypothesis is strongly rejected, as the returns standardized using daily measures of volatility clearly departs from normality. A simplified HAR-RV model (Corsi, 2009) with only a weekly component, which reproduces long memory properties of the series, is then used to model the volatility dynamics. Finally, the predictive accuracy of the HAR-RV model is tested against GARCH specifications using one-step-ahead forecasts, which confirms the HAR-RV superior ability. Our conclusions indicate that (i) the standard Brownian motion is not an adequate tool for option pricing in the EU ETS, and (ii) a jump component should be included in the stochastic process to price options, thus providing more efficient tools for risk-management activities. (authors)

  7. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    Science.gov (United States)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-09

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

  8. Trajectories towards clean technology. Example of volatile organic compound emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Belis-Bergouignan, Marie-Claude; Oltra, Vanessa; Saint Jean, Maider [IFREDE-E3i, University Montesquieu-Bordeaux IV, Avenue Leon Duguit, Pessac 33608 (France)

    2004-02-20

    This article is based on the observation that, up until now, corporate investment has been limited in clean technologies despite the will of governmental authorities to stimulate them in order to cope with the demands of sustainable development. The paper deals with the issue of the development of clean technologies and the role of regulations as clean technology promoters. It tries to apprehend the characteristics and specificity of clean technology from both an empirical and a theoretical point of view, so as to understand which are the most favourable (or inversely, the most detrimental) conditions for their development. We use case studies concerning the reduction of volatile organic compound (VOC) emissions in the chemical and metallurgical industries. These two examples highlight the problems created by the shift from a 'with-solvent paradigm' to a 'solvent-free paradigm' and the way clean technology trajectories may spread within such paradigms. We show that the problem of clean technology development primarily resides in some factors that impede technological adoption, although a strong and mixed incentives framework prevails. Such impediments are sector-specific, leading to different clean technology trajectories among sectors and indicating areas of sectoral intervention that could become the cornerstones of complementary technology policy.

  9. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    Science.gov (United States)

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  10. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  11. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  12. Volatile Profiling of Aromatic Traditional Medicinal Plant, Polygonum minus in Different Tissues and Its Biological Activities

    Directory of Open Access Journals (Sweden)

    Rafidah Ahmad

    2014-11-01

    Full Text Available The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS. Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  13. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  14. Heavy metal atmospheric emissions from coal-fired power plants - Assessment and uncertainties

    International Nuclear Information System (INIS)

    Lecuyer, I.; Ungar, A.; Peter, H.; Karl, U.

    2004-01-01

    Power generation using fossil fuel combustion (coal and fuel-oil) participates, with other sectors, to heavy metal atmospheric emissions. The dispersion of these hazardous pollutants throughout the environment is more and more regulated. In order to assess the annual flows emitted from EDF coal-fired power plants, a computerized tool has been developed, based on the methodology defined by IFARE/DFIU in 1997. The heavy metal partition factors within the plant unit are determined according to the type of unit and the coal characteristics. Heavy metals output flows, and especially those emitted with flue gas at the stack, are then deduced from the actual coal consumption and chemical composition. A first inventory of heavy metal emissions from EDF coal-fired power plants has been achieved for year 2001. Values are accurate (± 40 %) for nonvolatile elements (Cr, Cu, Co, Mn, Ni, V) and for PM 10 and PM 2.5 (particulate matter below 10 μm and 2.5 μm). The uncertainty is higher (± 80 %) for volatile elements (As, Pb, Zn). Excess indicative values are given for elements which are both volatile and at low concentrations in coal (Hg, Se, Cd). (author)

  15. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  16. Emissions to the Atmosphere from Amine-Based Post Combustion CO2 Capture Plant - Regulatory Aspects

    International Nuclear Information System (INIS)

    Azzi, Merched; Angove, Dennys; Dave, Narendra; Day, Stuart; Do, Thong; Feron, Paul; Sharma, Sunil; Attalla, Moetaz; Abu Zahra, Mohammad

    2014-01-01

    Amine-based Post Combustion Capture (PCC) of CO 2 is a readily available technology that can be deployed to reduce CO 2 emissions from coal fired power plants. However, PCC plants will likely release small quantities of amine and amine degradation products to the atmosphere along with the treated flue gas. The possible environmental effects of these emissions have been examined through different studies carried out around the world. Based on flue gas from a 400 MW ultra-supercritical coal fired power plant Aspen-Plus PCC process simulations were used to predict the potential atmospheric emissions from the plant. Different research initiatives carried out in this area have produced new knowledge that has significantly reduced the risk perception for the release of amine and amine degradation products to the atmosphere. In addition to the reduction of the CO 2 emissions, the PCC technology will also help in reducing SO x and NO 2 emissions. However, some other pollutants such as NH 3 and aerosols will increase if appropriate control technologies are not adopted. To study the atmospheric photo-oxidation of amines, attempts are being made to develop chemical reaction schemes that can be used for air quality assessment. However, more research is still required in this area to estimate the reactivity of amino solvents in the presence of other pollutants such as NO x and other volatile organic compounds in the background air. Current air quality guidelines may need to be updated to include limits for the additional pollutants such as NH 3 , nitrosamines and nitramines once more information related to their emissions is available. This paper focuses on describing the predicted concentrations of major pollutants that are expected to be released from a coal fired power plant obtained by ASPEN-Plus PCC process simulations in terms of current air quality regulations and other regulatory aspects. (authors)

  17. Measurement of fugitive emissions from gas processing plants in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Edmonton, AB (Canada)

    2004-07-01

    This paper presents a new gas visualization camera created to detect leaks. An outline of the device's projected entry into the oil and gas industry was provided, and included: a demonstration of Differential Absorption Light Detection and Ranging (DIAL) and leak cameras to measure and reduce fugitive emissions; a comparison of DIAL measured emissions with estimated emissions; and a review of methods to measure particulate emissions. In addition, a background of gas leak visualisation technology was presented along with an an overview of DIAL and its results from sour gas plants. The results of a survey conducted in 2003 were presented, including leaks identified and repaired as well as a follow up leak survey. An analysis of pre and post-repair hydrocarbon emissions from the Deepcut area revealed a 60 per cent reduction with savings of $140,000 as well as additional savings from reduced carbon emissions. A similar survey conducted in another plant measured emissions from condensate tanks before and after cooler installation as well as from surrounding well sites, quantifying an 80 per cent reduction in methane emissions. Tasks identified for future research concerned particulate emissions and the development of Lidar methods which can currently identify particulates, but are not yet able to quantify them. Other tasks included a complete DIAL data workup and reporting; the quantification of both methane and carbon emissions reduction at a sour gas plant; a comparison of measured emissions with methods that estimate fugitives; and a complete review of particulate measurements. tabs, figs.

  18. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs are the key precursors of ozone (O3 and secondary organic aerosol (SOA formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions

  19. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Science.gov (United States)

    Zhao, Yu; Mao, Pan; Zhou, Yaduan; Yang, Yang; Zhang, Jie; Wang, Shekou; Dong, Yanping; Xie, Fangjian; Yu, Yiyong; Li, Wenqing

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography - mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9-29.9, 20.8-23.2 and 18.2-21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years

  20. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    Science.gov (United States)

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    NARCIS (Netherlands)

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  2. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    NARCIS (Netherlands)

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  3. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus.

    Directory of Open Access Journals (Sweden)

    Guillermo E Bachmann

    Full Text Available Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness.We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon.Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially.Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males.

  4. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus

    Science.gov (United States)

    Bachmann, Guillermo E.; Segura, Diego F.; Devescovi, Francisco; Juárez, M. Laura; Ruiz, M. Josefina; Vera, M. Teresa; Cladera, Jorge L.; Fernández, Patricia C.

    2015-01-01

    Background Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness. Objective and Methodology We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon. Results Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially. Conclusions Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males. PMID:25923584

  5. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    Science.gov (United States)

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  6. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies.

    Science.gov (United States)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-11-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m -2 yr -1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  8. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-04-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, harvesting, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisia species under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety of environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  9. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    Science.gov (United States)

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  10. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    Science.gov (United States)

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  11. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    Science.gov (United States)

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (emission rates compared to medium (≥100MW and emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    Science.gov (United States)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  13. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  14. Study of the emission of low molecular weight organic compounds of various plants

    International Nuclear Information System (INIS)

    Steinbrecher, R.; Stahl, K.; Slemr, J.; Hahn, J.

    1992-01-01

    Biogenic hydrocarbons are known to act as important precursors in tropospheric photochemical ozone formation. Large uncertainties exist about the composition of the mix of volatile organic compounds, emitted by various plant species and the respective emission rates. The emission and deposition behavior of wheat plants, as far as C 2 to C 9 hydrocarbons (NMHC), formaldehyde, and acetaldehyde are concerned, was studied both in the field (BIATEX experimental site, Manndorf, Bavaria) and in the laboratory. Vertical flux rates of the different compounds ranged from -4 to +4 nmol C m -2 surface area s -1 . Aldehydeemission showed a seasonal trend with high rates in spring and lower towards the end of the vegetation period. Ambient temperature appears to control only the flux of ethane, ethene, propane and propene, whereas acetaldehyde emission by wheat plants as well as by Norway spruce is controlled by light. Over a spruce canopy (BIATEX experimental site Schachtenau, Bayerischer Wald, national park, FRG) the 12 most abundant NMHC exhibited no distinct diurnal cycle, and only small differences in mixing ratios were detected between two heights (31 and 51 m) revealing that the impact of the canopy on the abundances of the non-terpenoid NMHCs present in the air above the canopy was small. Aldehyde mixing ratios above a spruce canopy, however, may significantly be influenced either by direct emission of aldehydes from spruce or by production of aldehydes during photochemical degradation of precursors. (orig.). 87 refs., 4 tabs., 25 figs [de

  15. The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles

    Directory of Open Access Journals (Sweden)

    Gigot, C.

    2010-01-01

    Full Text Available Lipoxygenase enzymatic pathway is a widely studied mechanism in the plant kingdom. Combined actions of three enzymes: lipase, lipoxygenase (LOX and hydroperoxide lyase (HPL convert lipidic substrates such as C18:2 and C18:3 fatty acids into short chain volatiles. These reactions, triggered by cell membrane disruptions, produce compounds known as Green Leaf Volatiles (GLVs which are C6 or C9-aldehydes and alcohols. These GLVs are commonly used as flavors to confer a fresh green odor of vegetable to food products. Therefore, competitive biocatalytic productions have been developed to meet the high demand in these natural flavors. Vegetable oils, chosen for their lipidic acid profile, are converted by soybean LOX and plant HPL into natural GLVs. However this second step of the bioconversion presents low yield due to the HPL instability and the inhibition by its substrate. This paper will shortly describe the different enzymes involved in this bioconversion with regards to their chemical and enzymatic properties. Biotechnological techniques to enhance their production potentialities will be discussed along with their implication in a complete bioprocess, from the lipid substrate to the corresponding aldehydic or alcoholic flavors.

  16. "Volatile Constituents of Amedicinal Plant of Iran , Echium Amoenim Fisch. and C.A. Mey "

    Directory of Open Access Journals (Sweden)

    Nasrolah Ghassemi

    2003-07-01

    Full Text Available Echium amoenum Fisch. & C.A. Mey. (Boraginaceae is an endemic Iranian plant, that its dry violet–blue petals has long been used in traditional medicine of Iran. The chemical composition of the volatile fraction of the dried petals of this plant which was isolated by steam distillation extraction with pentane (in yield of 0.05% was examined by GC-MS. The constituents were identified by their mass spectra and Kovats’ indices. The major components except aliphatic alkanes which belong to sesquiterpenes were: δ-cadinene (24.25%, viridiflorol (4.9%, α-muurolene (4.52%, ledene (3.8%, α-calacorene (3.04%, and γ-cadinene (2.9%.

  17. Host Plant Volatiles and the Sexual Reproduction of the Potato Aphid, Macrosiphum euphorbiae

    Directory of Open Access Journals (Sweden)

    Jessica Hurley

    2014-10-01

    Full Text Available In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, Rosa rugosa, would attract the gynoparae, the parthenogenetic alate morph that produce oviparae, as well as the alate males foraging for suitable mates. In wind tunnel assays, both gynoparae and males oriented towards and reached rose cuttings significantly more often than other odour sources, including potato, a major secondary host. The response of males was as high to rose cuttings alone as to potato with a calling virgin oviparous female. These findings are discussed within the seasonal ecology of host alternating aphids.

  18. A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach.

    NARCIS (Netherlands)

    Tikunov, Y.M.; Vos, de C.H.; Gonzalez Paramas, A.M.; Hall, R.D.; Bovy, A.G.

    2010-01-01

    A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from ripening tomato fruit (Solanum lycopersicum) upon fruit tissue disruption has been discovered in this study. Application of a multiinstrumental analytical platform for metabolic profiling of fruits from a

  19. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  20. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    Science.gov (United States)

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1

  1. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    Directory of Open Access Journals (Sweden)

    Geir K. Knudsen

    2017-12-01

    Full Text Available Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear or unrelated to the host (Pinaceae, spruce and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E-4

  2. Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China

    Directory of Open Access Journals (Sweden)

    H. Cai

    2009-09-01

    Full Text Available Emission inventories of sixty-seven speciated non-methane volatile organic compounds (NMVOC from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes.

    Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2778.2, 1244.5, 178.7, 1351.7 and 406.0 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period.

    Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde

  3. Plant oils thymol and eugenol affect cattle and swine waste emissions differently.

    Science.gov (United States)

    Varel, V H; Miller, D N; Lindsay, A D

    2004-01-01

    Wastes generated from the production of cattle and swine in confined facilities create the potential for surface and groundwater pollution, emission of greenhouse gases, transmission of pathogens to food and water sources, and odor. It is our hypothesis that something which inhibits microbial fermentation in livestock wastes will be beneficial to solving some of the environmental problems. Our work has concentrated on the use of antimicrobial plant oils, thymol, thyme oil, carvacrol, eugenol and clove oil. Anaerobic one-litre flasks with a working volume of 0.5 L cattle or swine manure were used to evaluate the effect of thymol and eugenol on production of fermentation gas, short-chain volatile fatty acids, lactate, and bacterial populations. Either oil at 0.2% in both wastes essentially stopped all production of gas and volatile fatty acids, and eliminated all fecal coliform bacteria. In cattle but not swine waste, thymol prevented the accumulation of lactate. However, eugenol stimulated lactate formation in cattle and swine wastes. Thus, eugenol may offer a distinct advantage over thymol, because lactate accumulation in the wastes causes the pH to drop more rapidly, further inhibiting microbial activity and nutrient emissions. We conclude that plant oils may offer solutions to controlling various environmental problems associated with livestock wastes, assuming that they are cost-effective.

  4. Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family

    Science.gov (United States)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.

    2013-11-01

    Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.

  5. Effect of plant age on fresh rhizome yield and volatile oil composition of Acorus calamus linn

    International Nuclear Information System (INIS)

    Osman, M.A.; Bahl, J.R.; Darokar, M. P.; Garg, S.N.; Lal, R.K.; Khanuja, S.P.S.

    2008-01-01

    The effect of plant age on growth, yield and oil content and composition of sweet flag (Acorus calamus) was studied in four populations at four different ages, raised at CIMAP experimental research Farm, India. The plant age had significant effect on total fresh yield and leaves and rhizomes fresh weights. These parameters showed increasing trend with advancement of harvesting age up to 6 years, and age increase to more than 15 years resulted in their decrease . Significantly highest number of shoots per square meter was recorded in more than 15 year old crop, and the lowest number was recorded in the 6 year old crop. The highest oil yield of rhizomes was obtained from the six year old plants. Shoot length, rhizome leaf ratio (R/L) and oil yield of leaves did not show significant differences with the age of the plant. However, 6 year old plants recorded the highest average shoot length, and the three year old plants gave the highest oil yield of leaves. The total fresh yield showed a highly significant positive correlation with rhizomes fresh weight (r = 0.999), leaves fresh weight (r=0.994) and with rhizome: leaf ratio (r = 0.998). Highly significant positive correlations (r = 0.999) were also obtained between rhizomes oil content and rhizomes oil yield and between leaves oil content and leaves oil yield. β-asarone was the most dominant constituent in the oils of both leaves and rhizomes , constituting an average of 84.2% in the leaves and 88.9% in the rhizomes oil. The study indicated that the oil content of fresh rhizomes and leaves is the main contributor to their oil yields, and selection for high oil content will be effective. The constituents of the volatile oil remained the same irrespective of the plant age.(Author)

  6. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta; Kivimäenpää, Minna; Faubert, Patrick

    2015-01-01

    -trometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements.When the momentary effect of temperature was diminished by standardization of emissions...

  7. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants

    Directory of Open Access Journals (Sweden)

    Yiguang Wang

    2018-01-01

    Full Text Available The green organs, especially the leaves, of many Compositae plants possess characteristic aromas. To exploit the utility value of these germplasm resources, the constituents, mainly volatile compounds, in the leaves of 14 scented plant materials were qualitatively and quantitatively compared via gas chromatography-mass spectrometry (GC-MS. A total of 213 constituents were detected and tentatively identified in the leaf extracts, and terpenoids (especially monoterpene and sesquiterpene derivatives, accounting for 40.45–90.38% of the total compounds, were the main components. The quantitative results revealed diverse concentrations and compositions of the chemical constituents between species. Principal component analysis (PCA showed that different groups of these Compositae plants were characterized by main components of α-thujone, germacrene D, eucalyptol, β-caryophyllene, and camphor, for example. On the other hand, cluster memberships corresponding to the molecular phylogenetic framework, were found by hierarchical cluster analysis (HCA based on the terpenoid composition of the tested species. These results provide a phytochemical foundation for the use of these scented Compositae plants, and for the further study of the chemotaxonomy and differential metabolism of Compositae species.

  8. Plant volatile aldehydes as natural insecticides against stored-product beetles.

    Science.gov (United States)

    Hubert, Jan; Münzbergová, Zuzana; Santino, Angelo

    2008-01-01

    Infestation by stored-product pests causes serious losses in food and feed commodities. Among possible strategies against these pests, which aim to reduce the use of synthetic insecticides, including fumigants, natural insecticides produced by plants represent one of the most promising approaches for their ecochemical control. Three six-carbon and nine-carbon aldehydes, natural plant volatiles produced by the plant lipoxygenase pathway, were tested for their insecticidal activity against five species of stored-product beetles in feeding, fumigation and combined bioassays. The compounds (2E,6Z)-nonadienal, (2E)-nonenal and (2E)-hexenal were incorporated into feeding discs in feeding bioassays or evaporated from filter paper in closed glass chambers in fumigation tests. Beetle sensitivity to aldehydes differed according to the different treatments. The highest activity was obtained by (2E)-hexenal in fumigation tests, with the LC(50) ranging from 4 to 26 mg L(-1), while (2E, 6Z)-nonadienal was the most effective in feeding tests, giving LD(50)s ranging from 0.44 to 2.76 mg g(-1) when applied to feeding discs. Fumigation tests in the presence of wheat grains confirmed that (2E)-hexenal was the most effective compound, with a calculated LC(99) ranging from 33 to 166 mg L(-1). The results of both feeding and fumigation tests indicated that natural plant aldehydes are potential candidates to control stored-product beetles.

  9. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    Science.gov (United States)

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  10. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  11. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  12. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2007-01-01

    Non-nuclear power plant emissions are of great concern to the public and to scientists alike. As energy demand tends to rise rapidly, especially in the developing countries, the negative effects to human health and to the environment from gaseous emissions together with hazardous particulate matter released by power plants can no longer be ignored. In this study, the impact of non-radioactive emissions is evaluated with the Analytic Hierarchy Process (AHP) by synthesizing objective and subjective criteria. There are five main emissions to be evaluated, non-methane volatile organic compounds (NMVOC), carbon dioxide equivalent (CO 2 -eq), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ) and particulates or particulate matter (PM). Objective evaluation is achieved by expressing the impact of each emission released in monetary terms following generally accepted market rules, international agreements and protocols. That is, the Euro per kilogram of each emission exceeding a specific limit that should be paid as a penalty for environmental pollution and human health damage. Subjective assessment requires an intuitive expression of the percentage of damage to human health and to the ecosystem that each emission causes. Sensitivity analysis is then used in order to examine how change of input data affects final results. Finally, 10 main types of power plant are evaluated according to the level and kind of emissions they release. These types are coal/lignite, oil, natural gas turbine, natural gas combined cycle (NGCC), nuclear, hydro, wind, photovoltaic, biomass and geothermal

  13. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  14. Short-Term Power Plant GHG Emissions Forecasting Model

    International Nuclear Information System (INIS)

    Vidovic, D.

    2016-01-01

    In 2010, the share of greenhouse gas (GHG) emissions from power generation in the total emissions at the global level was about 25 percent. From January 1st, 2013 Croatian facilities have been involved in the European Union Emissions Trading System (EU ETS). The share of the ETS sector in total GHG emissions in Croatia in 2012 was about 30 percent, where power plants and heat generation facilities contributed to almost 50 percent. Since 2013 power plants are obliged to purchase all emission allowances. The paper describes the short-term climate forecasting model of greenhouse gas emissions from power plants while covering the daily load diagram of the system. Forecasting is done on an hourly domain typically for one day, it is possible and more days ahead. Forecasting GHG emissions in this way would enable power plant operators to purchase additional or sell surplus allowances on the market at the time. Example that describes the operation of the above mentioned forecasting model is given at the end of the paper.(author).

  15. Apple proliferation phytoplasma influences the pattern of plant volatiles emitted depending on pathogen virulence

    Directory of Open Access Journals (Sweden)

    Margit eRid

    2016-01-01

    Full Text Available Apple proliferation (AP and pear decline (PD are the most severe diseases in pome fruit growing areas. AP-infected trees show typical symptoms such as witches’ broom, enlarged stipules, tasteless and dwarf fruits. PD-infected pears show a progressive weakening, reduced terminal growth, smaller fruits and die within weeks (quick decline or years (slow decline. The diseases are caused by the cell-wall lacking bacteria Candidatus Phytoplasma mali (AP phytoplasma and Ca. P. pyri (PD phytoplasma, respectively. In previous studies it has been shown that AP-infected apple trees emitted higher amounts of the sesquiterpene β-caryophyllene, an attractant of the insect vector Cacopsylla picta (Hemiptera: Psyllidae, thereby facilitating the dispersal of AP phytoplasma. In the present study, volatile organic compounds (VOCs occurring in the headspace of plants infected with Ca. P. mali strains causing different severity of symptoms in apple plants were collected, analyzed and identified. Headspace samples from healthy and AP-infected model plant tobacco (Nicotiana occidentalis and apple (Malus domestica as well as from healthy and PD-infected pear (Pyrus communis were investigated via thermodesorption and GC-MS analysis. Significantly higher concentrations of ethyl benzoate were produced in all phytoplasma-infected plants compared to healthy ones and an as yet unidentified sesquiterpene differed between the odor bouquets of healthy and by Ca. P. mali infected tobacco plants. Additionally, statistically significant higher amounts of both compounds were measured in the headspace of plants infected by the virulent AP strain. In apple, significantly higher concentrations of ethyl benzoate and methyl salicylate were observed for trees infected with strains of Ca. P. mali. Ethyl benzoate was also detected in the headspace of pear trees infected with Ca. P. pyri.

  16. Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler

    Science.gov (United States)

    Czech, Hendryk; Pieber, Simone M.; Tiitta, Petri; Sippula, Olli; Kortelainen, Miika; Lamberg, Heikki; Grigonyte, Julija; Streibel, Thorsten; Prévôt, André S. H.; Jokiniemi, Jorma; Zimmermann, Ralf

    2017-06-01

    Small-scale pellet boilers and stoves became popular as a wood combustion appliance for domestic heating in Europe, North America and Asia due to economic and environmental aspects. Therefore, an increasing contribution of pellet boilers to air pollution is expected despite their general high combustion efficiency. As emissions of primary organic aerosol (POA) and permanent gases of pellet boilers are well investigated, the scope of this study was to investigate the volatile organic emissions and the formation potential of secondary aerosols for this type of appliance. Fresh and aged emissions were analysed by a soot-particle aerosol time-of-flight mass spectrometry (SP-AMS) and the molecular composition of the volatile precursors with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) at different pellet boiler operation conditions. Organic emissions in the gas phase were dominated by unsaturated hydrocarbons while wood-specific VOCs, e.g. phenolic species or substituted furans, were only detected during the starting phase. Furthermore, organic emissions in the gas phase were found to correlate with fuel grade and combustion technology in terms of secondary air supply. Secondary organic aerosols of optimised pellet boiler conditions (OPT, state-of-the-art combustion appliance) and reduced secondary air supply (RSA, used as a proxy for pellet boilers of older type) were studied by simulating atmospheric ageing in a Potential Aerosol Mass (PAM) flow reactor. Different increases in OA mass (55% for OPT, 102% for RSA), associated with higher average carbon oxidation state and O:C, could be observed in a PAM chamber experiment. Finally, it was found that derived SOA yields and emission factors were distinctly lower than reported for log wood stoves.

  17. Methane emissions from digestate at an agricultural biogas plant.

    Science.gov (United States)

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J

    2016-09-01

    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  19. Volatile Organic Compound (VOC) Air Monitoring Program design for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Frank, L.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Volatile Organic Compound (VOC) Monitoring Program has been developed as part of the Department of Energy's (DOE's) No-Migration Variance petition submitted to the Environmental Protection Agency (EPA). The program is designed to demonstrate that there will be no migration of hazardous chemicals past the unit boundary in concentrations which exceed any health-based standards. The monitoring program will use EPA compendium Method TO-14. Both air and carbon sorption media samples will be collected as part of the program. Eleven separate monitoring sites have been selected where both 24-hour integrated and 1-hour grab samples will be collected and analyzed for five target compounds. The bin-scale experimental test rooms will be configured with a gas collection manifold and an activated carbon sorption bed to remove VOCs before they can be emitted into the WIPP underground atmosphere. 10 refs., 4 figs., 7 tabs

  20. Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications

    Directory of Open Access Journals (Sweden)

    Peter eTóth

    2016-03-01

    Full Text Available The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae, are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs, consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

  1. Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications

    Science.gov (United States)

    Tóth, Peter; Undas, Anna K.; Verstappen, Francel; Bouwmeester, Harro

    2016-01-01

    The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae. PMID:27014329

  2. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile.

    Science.gov (United States)

    Sznajder, B; Sabelis, M W; Egas, M

    2011-06-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific herbivore-induced plant volatile, i.e. methyl salicylate (MeSa), could be found in a base population collected in the field (Sicily). To this end, we imposed purifying selection on individuals within iso-female lines of P. persimilis such that the lines were propagated only via the individual that showed either a preference or avoidance of MeSa. The responses of the lines were characterized as the mean proportion of individuals choosing MeSa when given a choice between MeSa and clean air. Significant variation in predator responses was detected among iso-female lines, thus confirming the presence of a genetic component for this behaviour. Nevertheless, we did not find a significant difference in the response to MeSa between the lines that were selected to avoid MeSa and the lines selected to prefer MeSa. Instead, in the course of selection the lines selected to avoid MeSa shifted their mean response towards a preference for MeSa. An inverse, albeit weaker, shift was detected for the lines selected to prefer MeSa. We discuss the factors that may have caused the apparent lack of a response to selection within iso-female line in this study and propose experimental approaches that address them.

  3. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    Science.gov (United States)

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.

  4. Monitoring of fugitive emissions in petrochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rozilda F. [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental

    1993-12-31

    COPENE (Petroquimica do Nordeste S/A) has been implanting a program of fugitive emissions adapted to its reality, trying to promote a continuous improvement in its employees` working conditions and in environmental protection. This paper presents the methodology for the elaboration of this program and the conclusions of some surveys which were already completed (author). 4 refs., 7 figs., 3 tabs.

  5. Monitoring of fugitive emissions in petrochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rozilda F [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental

    1994-12-31

    COPENE (Petroquimica do Nordeste S/A) has been implanting a program of fugitive emissions adapted to its reality, trying to promote a continuous improvement in its employees` working conditions and in environmental protection. This paper presents the methodology for the elaboration of this program and the conclusions of some surveys which were already completed (author). 4 refs., 7 figs., 3 tabs.

  6. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, C.; Sanz Landaluze, J.; Ximenez-Embun, P.; Madrid-Albarran, Y.; Camara, C

    2004-01-16

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed and multicapillary column was operated at moderate temperatures (30-100 deg. C). The method was optimized for organo-selenium species (dimethylselenide (DMSe), diethylselenide (DEtSe) and dimethyldiselenide (DMDSe)), using a chemometric approach. Stationary phases for the separation column were optimized using a conventional GC and contrasted with the results obtained with the MC. Application was focussed on selenium accumulating biological matter, such as lupine, yeast, Indian mustard and garlic. These samples were grown in hydroponic solution containing inorganic selenium (Na{sub 2}SeO{sub 3} and Na{sub 2}SeO{sub 4}). SPME sampling was carried out in fixed volume flow boxes in headspace above the living plants and in vials using treated samples. Results demonstrate inorganic selenium transformation into volatile organic species during metabolism. Separation is fast, a chromatogram can be obtained in less than 3 min and detection limits were at sub-ppb level for all investigated species. The system is independent from the use of a conventional gas chromatographic oven and can be used as a versatile alternative to highly cost intensive methods such as GC-ICP-MS.

  7. Volatile amines treatment: Corrosion rates and Atucha I nuclear power plant experience

    International Nuclear Information System (INIS)

    Iglesias, Alberto M.; Jimenez Rebagliati, Raul; Raffo Calderon, Maria C.; Manzi, Ricardo

    2000-01-01

    Steam generators water treatment with volatile amines in place of ammonia is usual today. This option seems an acceptable alternative to the generalize use of ammonia-sodium phosphate and has advantages when copper alloys are present. There are several amines that can work as corrosion inhibitor but the most useful for plant applications are: morpholine, ethanolamine and cyclohexylamine. In this work, are present the obtained results of corrosion rates measurements by electrochemical methods. The hydrothermal conditions of our experiences were similar to that of the Atucha I nuclear power plant (CNA I). pH, conductivity and dissolved oxygen measures were correlated with corrosion rates of the CNA I materials as carbon steel and admiralty brass. The faradaic impedance spectroscopy techniques allows a more detailed interpretation of corrosion rates process. Morpholine and ammonia behavior can be evaluated under power plant operations conditions with the accumulated experience of CNA I. Results are present throughout material release and his effects over heat transfer parameters. (author)

  8. Distribution of volatile liquid hydrocarbons in the vicinity of power/desalination plants in Kuwait

    International Nuclear Information System (INIS)

    Saeed, T.; Khordagui, H; AI-Bloushi, A.

    1999-01-01

    Volatile liquid hydrocarbons (VLHs) represent some 40% of crude oil and are considered to be the most toxic compounds of petroleum other than the carcinogenic polycyclic aromatic hydrocarbons. The distribution of these compounds in Kuwait's coastal waters in the vicinity and at the inlets of power plants was assessed. About 200 samples were collected from selected sampling stations over the four seasons. The VLHs in the samples were concentrated using Grob's closed-loop technique and analysed by GC using FID and confirmed by GC/MS. The results showed that VLHs were ubiquitous in the coastal water of Kuwait. The detected levels (ranged from 307 to 7882 ng/l in Kuwait Bay and from 331 to 5017 ng/l in the south) were comparable to the levels found in other parts of the world and were not alarming. However, the spotty higher levels encountered gave reason for some concern. Benzenoids (originating from petroleum) predominated, representing roughly 70% of the total VLHs. The levels were relatively low at the intake of the power plant located in the Kuwait Bay (annual average 677 ng/l) while higher levels (annual average 3006 ng/l) were encountered at the intake of the plant located at the south of oil the loading terminals and refineries. (author)

  9. Assessment of volatile organic compound removal by indoor plants-a novel experimental setup

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Müller, Renate; Svensmark, Bo

    2014-01-01

    plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0......Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor.......10-2.35 μg/L with deviations from theoretical values of 3.2-10.5 %. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 μg/m2/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant...

  10. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-03

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts.

  11. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  12. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated......Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  13. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production.

    NARCIS (Netherlands)

    Dicke, M.; Beek, van T.A.; Posthumus, M.A.; Dom, Ben N.; Bokhoven, van H.; Groot, de Ae.

    1990-01-01

    A volatile kairomone emitted from lima bean plants (Phaseolus lunatus) infested with the spider miteTetranychus urticae, was collected on Tenax-TA and analyzed with GC-MS. Two components were identified as the methylene monoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene and the methylene sesquiterpene

  14. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores

    NARCIS (Netherlands)

    Horiuchi, J.I.; Arimura, G.I.; Ozawa, R.; Shimoda, T.; Dicke, M.; Takabayashi, J.; Nishioka, T.

    2003-01-01

    We tested the response of the herbivorous mite Tetranychus urticae to uninfested lima bean leaves exposed to herbivore-induced conspecific plant volatiles by using a Y-tube olfactometer. First, we confirmed that exposed uninfested leaves next to infested leaves were more attractive to carnivorous

  15. Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore

    Science.gov (United States)

    Plant infection by pathogens can induce volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (graminearum, avenaceum, and culmorum). Both cereals had highest VOC induction 14 d after pathogen introduction, significantly slightly lower induc...

  16. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor.

    NARCIS (Netherlands)

    Dicke, M.; Baarlen, van P.; Wessels, R.; Dijkman, H.

    1993-01-01

    It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting

  17. Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2004-01-01

    Many natural enemies of herbivorous arthropods use herbivore-induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plantherbivore combinations, a situation that favours a flexible approach in the

  18. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2007-11-01

    Full Text Available Volatile Organic Compound (VOC emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS, Fourier Transform Infrared Spectroscopy (FTIR and gas chromatography (GC coupled to PTRMS (GC-PTR-MS. We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min and aged (>1 h–1 d smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer are presented.

  19. Evaluating the impacts of power plant emissions in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Villegas, M.T.; Tzintzun Cervantes, M.G.; Iniestra Gomez, R.; Garibay Bravo, V.; Zuk, M.; Rojas Bracho, L.; Fernandez Bremautz, A. [Direccion de Investigacion sobre Calidad del Aire, Inst. Nacional de Ecologia (Mexico)

    2004-07-01

    Mexican electricity generation has proven to be a large source of air pollution nationwide. According to the Energy Secretariat, electricity generation in Mexico accounts for 68% of SO{sub 2} emissions, 24% of PM{sub 10} emissions and 20% of NO{sub x} emissions nationwide. The country's total effective installed capacity is 42,067 MW, of which 67% corresponds to thermoelectric power plants. Heavy fuel oil, known as 'combustoleo', is used in many thermoelectric plants primarily for regular operation. The typical sulphur content of 'combustoleo' is approximately 2.5 to 4%. As a first step to determine the potential impacts of Mexican power plants on regional air pollution and health, we conducted a case study on the Adolfo Lopez Mateos power plant, located in the town of Tuxpan in the eastern state of Veracruz. The plant is located on the northern coast of the Gulf of Mexico; therefore greatly influenced by the weather of the region. We used the CALPUFF Lagrangian puff model (Earth Tech, Concord, MA) to simulate the dispersion of SO{sub 2}, NO{sub x} and primary PM{sub 10} emissions from the power plant stacks and the formation of secondary particulate matter. We considered a 120km x 120km grid, with a resolution of 2km x 2km and height of 2500 km. This area comprises approximately 791,000 inhabitants, including rural and urban populations. (orig.)

  20. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    Science.gov (United States)

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  1. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    Science.gov (United States)

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant

    DEFF Research Database (Denmark)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja

    2017-01-01

    (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could......A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing...... measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured...

  3. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    Science.gov (United States)

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However

  4. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    Directory of Open Access Journals (Sweden)

    Alberto Fereres

    2016-08-01

    Full Text Available Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV, a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV, a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own

  5. Electroantennogram Responses to Plant Volatiles Associated with Fenvalerate Resistance in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Houjun, Tian; Lin, Shuo; Chen, Yong; Chen, Yixin; Zhao, Jianwei; Gu, Xiaojun; Wei, Hui

    2018-05-28

    The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the main destructive insect pest of brassica vegetables around the world, and has developed resistance to numerous insecticides. Although host plant volatiles are important in pest control, the mechanism of low-level insecticide resistance in P. xylostella due to plant volatiles has not been examined. Here, electroantennograms (EAGs) were used to compare the responses of adult male and female DBMs of a susceptible strain (S-strain) and a derived resistant strain, Fen-R-strain (6.52-fold more resistant than the S-strain), to different concentrations of nine plant volatiles. We found significantly different relative EAG responses between S-strain and Fen-R-strain males to different concentrations of methyl jasmonate, methyl salicylate, and octanal. The relative EAG responses of S-strain and Fen-R-strain females to different concentrations of β-myrcene, methyl jasmonate, methyl salicylate, and allyl isothiocyanate were significantly different. Fen-R-strain females showed lower EAG responses to most of the tested plant volatiles (at concentrations of 1:10) than males, except for allyl isothiocyanate. A larger difference in relative EAG response to α-farnesene and β-myrcene was found between S-strain and Fen-R-strain females than between males of the two strains. A larger difference in relative EAG response to octanal, nonanal, and octan-1-ol was found between S-strain and Fen-R-strain males than between females of the two strains. These results illustrate the relationship between the function of plant volatiles and resistance in an insect pest species, and provide a scientific basis for resistance evolutionary theory in pest management research.

  6. Parasitic Wasps Can Reduce Mortality of Teosinte Plants Infested With Fall Armyworm: Support for a Defensive Function of Herbivore-Induced Plant Volatiles

    Directory of Open Access Journals (Sweden)

    Elvira S. de Lange

    2018-05-01

    Full Text Available Many parasitic wasps use volatiles emitted by plants under herbivore attack to find their hosts. It has therefore been proposed that these inducible plant volatiles serve an indirect defense function by recruiting parasitoids and other natural enemies. This suggested function remains controversial because there is little evidence that, in terms of fitness, plants benefit from the actions of natural enemies, particularly parasitoids, which do not immediately kill their hosts. We aimed to address this controversy in a semi-natural field experiment in Mexico, where we used large screen tents to evaluate how parasitoids can affect plant performance. The tritrophic study system comprised teosinte (Zea spp., the ancestor of maize, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae, which have a long evolutionary history together. In tents without parasitoids, S. frugiperda larvae inflicted severe damage to the plants, whereas in the presence of parasitoid wasps, leaf damage was reduced by as much as 80%. Parasitoids also mitigated herbivore-mediated mortality among young teosinte plants. Although these findings will not resolve the long-standing debate on the adaptive function of herbivore-induced plant volatiles (HIPVs, they do present strong support for the hypothesis that plants can benefit from the presence of parasitoid natural enemies of their herbivores.

  7. NOx emissions and potential NOx reduction for low volatile Australian coals: End-of-grant report

    International Nuclear Information System (INIS)

    Holcombe, D.; Nelson, P.F.; Kelly, M.D.; Gupta, R.P.; Wall, T.F.

    1994-09-01

    The objective of this project was to improve the understanding of NO x formation from the combustion of low-volatile Australian coals. A secondary objective was to develop NO x reduction techniques which will improve the export market potential of these coals. Low volatile coals frequently have high nitrogen levels. In addition, they differ from high volatile coals in their behaviour in the early part of the combustion process, which largely determines the level of NO x that will be formed. Low volatile coals were examined with respect to the release of nitrogen species during the early stage of PF combustion. These species are precursors to NO x and it is at this stage of combustion that furnace conditions are important in determining whether these species become NO x or are reduced to molecular nitrogen. Pilot scale measurements of NO x concentrations from the combustion of the coals were undertaken under a range of conditions to provide data on the relevance of furnace parameters as well as of coal properties. Finally, mathematical models of coal combustion with NO x formation were developed, to be able to incorporate data on nitrogen species released from coal, and to use this information as well as furnace conditions to predict NO x concentrations. (author). Tabs., figs., refs

  8. Estimation of emission fluxes from a horizontal flux budget method, exemplified with determination of pesticide volatilization

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Andersen, Helle Vibeke

    2008-01-01

    The paper describes an experimental set-up designed to measure the volatilization of different pesticides after application under full-scale field conditions. The pesticides were sprayed around the circumference of a circle and measurements of meteorology and air concentrations of pesticides were...

  9. Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark and Photochemical Aging Conditions in a Smog Chamber.

    Science.gov (United States)

    Hartikainen, Anni; Yli-Pirilä, Pasi; Tiitta, Petri; Leskinen, Ari; Kortelainen, Miika; Orasche, Jürgen; Schnelle-Kreis, Jürgen; Lehtinen, Kari E J; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli

    2018-04-17

    Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m 3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.

  10. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  11. Prediction of dioxin/furan incinerator emissions using low-molecular-weight volatile products of incomplete combustion.

    Science.gov (United States)

    Lemieux, P M; Lee, C W; Ryan, J V

    2000-12-01

    Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alkene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alkenes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.

  12. New global fire emission estimates and evaluation of volatile organic compounds

    Science.gov (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja

    2010-01-01

    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  13. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  14. Novel bioassay demonstrates attraction of the white potato cyst nematode Globodera pallida (Stone) to non-volatile and volatile host plant cues.

    Science.gov (United States)

    Farnier, Kevin; Bengtsson, Marie; Becher, Paul G; Witzell, Johanna; Witzgall, Peter; Manduríc, Sanja

    2012-06-01

    Potato cyst nematodes (PCNs) are a major pest of solanaceous crops such as potatoes, tomatoes, and eggplants and have been widely studied over the last 30 years, with the majority of earlier studies focusing on the identification of natural hatching factors. As a novel approach, we focused instead on chemicals involved in nematode orientation towards its host plant. A new dual choice sand bioassay was designed to study nematode responses to potato root exudates (PRE). This bioassay, conducted together with a traditional hatching bioassay, showed that biologically active compounds that induce both hatching and attraction of PCNs can be collected by water extraction of incised potato roots. Furthermore, our results demonstrated that PCN also were attracted by potato root volatiles. Further work is needed to fully understand how PCNs use host plant chemical cues to orientate towards hosts. Nevertheless, the simple attraction assay used in this study provides an important tool for the identification of host-emitted attractants.

  15. High Level of Nitrogen Makes Tomato Plants Releasing Less Volatiles and Attracting More Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Islam, Md. Nazrul; Hasanuzzaman, Abu Tayeb Mohammad; Zhang, Zhan-Feng; Zhang, Yi; Liu, Tong-Xian

    2017-01-01

    Tomato (Solanum lycopersicum) production is seriously hampered by the infestation of the sweetpotato whitefly, Bemisia tabaci MEAM 1 (Middle East-Asia Minor 1). The infestation behavior of the whiteflies could be affected by the quantity of plant released volatile organic compounds (VOCs) related to nitrogen concentrations of the plant. In this study, we determined the infestation behavior of B. tabaci to the tomato plants that produced different levels of VOCs after application of different levels of nitrogen with a wind tunnel and an olfactometer. We also analyzed the VOCs released from nitrogen-treated tomato plants using solid phase microextraction and gas chromatography-mass spectrometry. The results revealed that the production of eight VOCs (β-pinene, (+)-4-carene, α-terpinene, p-cymene, β-phellandrene, α-copaene, β-caryophyllene, and α-humulene) was reduced after the plants were treated with high levels of nitrogen. However, more whiteflies were attracted to the tomato plants treated with high levels of nitrogen than to the plants treated with normal or below normal levels of nitrogen. These results clearly indicated that nitrogen can change the quality and quantity of tomato plant volatile chemicals, which play important roles in B. tabaci host plant selection. PMID:28408917

  16. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    Science.gov (United States)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  17. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors, with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA. Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK as examples.

  18. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    Science.gov (United States)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  19. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  20. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  1. Radiological impact of emissions from reprocessing plants during normal operation

    International Nuclear Information System (INIS)

    Bonka, H.; Gruendler, D.; Hesel, D.; Muenster, M.; Schmidtlein, P.; Suender, B.

    1977-01-01

    When comparing the expected radiation exposure due to emissions from reprocessing plants with those from nuclear power plants it can be seen that the emissions from reprocessing plants contribute much more to the radiation exposure of the population than those from nuclear power plants. In the vicinity of reprocessing plants the highest contributions to the radiation exposure of the population are delivered by the following radionuclides: T, C 14 , Kr 85 , Sr 90 , Ru 106 , I 129 , Cs 134 , Cs 137 and Ce 144 as will as the Pu- and Cm-isotopes. Among these nuclides T, C 14 , Kr 85 und I 129 are globally distributed. While for T the contribution to the collective dose due to globally distributed T is small in comparison with the first pass exposure, the global contribution predominates for C 14 and Kr 85 . If an integration time of less than 10 5 years is considered, the contribution due to first pass exposure predominates for I 129 . When taking the radiation protection of the population into consideration, it seems sensible to retain 10% of T, 80 to 90% of C 14 , 90% of Kr 85 and 99,5% of I 129 in reprocessing plants and dispose of this material in a controlled manner. The fraction of the aerosols released should be about 10 -9 . Considering the global effects and the increasing number of nuclear power plants and reprocessing plants, an international agreement should be reached on these matters. (orig.) [de

  2. Volatile compounds from leaves of the African spider plant (Gynandropsis gynandra) with bioactivity against spider mite (Tetranychus urticae)

    DEFF Research Database (Denmark)

    Nyalala, Samuel Odeyo; Petersen, Mikael Agerlin; Grout, Brian William Wilson

    2013-01-01

    Previous studies have demonstrated that Gynandropsis gynandra emits acetonitrile as a foliar volatile from intact plants and isolated leaves, and that this compound is an effective spider mite repellent. This study has used gas chromatography–mass spectrometry to investigate volatile compounds...... emitted from homogenised G. gynandra leaves to evaluate their tissue acetonitrile content and to look for other compounds that might be exploited for the management of spider mites. Acetonitrile was absent from the homogenised tissues of five lines of G. gynandra, studied over two seasons. Thirteen...... volatile compounds were emitted by G. gynandra at significantly higher levels than mite-susceptible pot roses, including isothiocyanates, aldehydes, esters, alcohols and terpenes. Six representative compounds were selected to assess bioactivity. Spider mite populations were completely inactive after a 2¿h...

  3. Emissions of volatile organic compounds in the United Kingdom: a review of emission factors by species and process. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, I.T.; Richardson, S.J.; Dowsett, R.; Passant, N.R.; Coleman, P.; Loader, A.; Giddings, T.; Warde-Jones, S.; Richardson, J.L.; Lethlean, J.; McAlister, R.

    1992-01-01

    The objective was to prepare a comprehensive review of UK VOC emissions by species and process. The purpose was to: check that no major sources have been omitted; test the relative size ranking of sources; improve the estimate of the size of each sector; sub-divide each sector so that emissions could be related to abatement options; and add speciated data. Best emission estimates are provided for the following: solvent use, oil industry, chemical industry, stationary combustion, food industry, iron and steel, waste disposal and agriculture. 9 refs., 20 tabs.

  4. Abatement Technologies for Volatile Organic Compounds in Emissions from Biofuel Driers; Reningsteknik foer organiska aemnen i utslaepp till luft vid biobraensletorkning

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Karin; Ehrstedt, Thomas [Sycon Energikonsult AB, Malmoe (Sweden)

    2000-06-01

    This report is a part of a program at Vaermeforsk called Drying of Biofuels and deals with abatement technologies for volatile organic compounds (VOC) in biofuel drier emissions. The report gives an account of the amount of organic matter in wood and in drying gases and also of different abatement technologies for VOC. Processes from about 20 contractors are briefly described. The conclusions from this work are that thermal or catalytic oxidizing technologies in connection with regenerative heat recovery seems to be the most suitable technique for this application. Both technologies should give a degree of purification above 95 %. The purification cost for a typical case has been estimated to about 22 SEK per kg removed organic matter in both cases. The investment cost is higher for the catalytic oxidizer (6-20 MSEK for a 60.000 Nm{sup 3} /h catalytic plant compared to 4-6,5 MSEK for a thermal plant) but the fuel cost is lower. Condensation is a usable technique but it suffers from bad degree of purification. By using a wet electrostatic precipitator (WESP) the degree of purification can be enhanced but it will still be lower than for the oxidizers. Adsorption and absorption are not suitable for gases at high temperatures containing several different organic compounds at low concentrations, which is the case in biofuel drying. This means high purification costs and low degree of purification. Other technologies that have been found less suitable are biological purification and membrane technology. World-wide there are a few reference plants based on thermal oxidizing in connection with biofuel drying. Otherwise the experiences are very limited. According to this, tests in pilot plant scale are recommended before investment in a full-scale plant for biofuel driers.

  5. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - part A.

    Science.gov (United States)

    Ortega, John; Helmig, Detlev

    2008-06-01

    The high reactivity and low vapor pressure of many biogenic volatile organic compounds (BVOC) make it difficult to measure whole-canopy fluxes of BVOC species using common analytical techniques. The most appropriate approach for estimating these BVOC fluxes is to determine emission rates from dynamic vegetation enclosure measurements. After scaling leaf- and branch-level emission rates to the canopy level, these fluxes can then be used in models to determine BVOC influences on atmospheric chemistry and aerosol processes. Previously published reports from enclosure measurements show considerable variation among procedures with limited guidelines or standard protocols to follow. This article reviews this literature and describes the variety of enclosure types, materials, and analysis techniques that have been used to determine BVOC emission rates. The current review article is followed by a companion paper which details a comprehensive enclosure technique that incorporates both recommendations from the literature as well as insight gained from theoretical calculations and practical experiences. These methods have yielded new BVOC emission data for highly reactive monoterpenes (MT) and sesquiterpenes (SQT) from a variety of vegetation species.

  6. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns.

    Science.gov (United States)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Lisi, Roberto

    2017-12-15

    Emissions due to ship-loading of hydrocarbons are currently not addressed neither by the Directive on the integrated pollution prevention or by other environmental regulations. The scope of this study is to point towards the environmental and safety concerns associated with such emissions, even if proper attention has not been given to this issue until now. In order to achieve this goal, the modelling of the emission volatile organic compounds (VOC), due to ship-load operations at refineries has been made by means of the definition of a simulation procedure which includes a proper treatment of the hours of calm. Afterwards, a quantitative analysis of VOC dispersion for an Italian case-study is presented with the primary aims: (i) to develop and verify the validity of the approach for the modelling of the emission sources and of the diffusion of these contaminants into the atmosphere by a proper treatment of the hours of calm and (ii) to identify their contribution to the total VOC emitted in a typical refinery. The calculated iso-concentration contours have also been drawn on a map and allowed the identification of critical areas for people protecting by the adoption of abatement solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  8. Trend of CO2 emissions of the 30 largest power plants in Germany

    International Nuclear Information System (INIS)

    Hermann, Hauke

    2014-01-01

    The brochure on the trend of CO 2 emissions of the 30 largest power plants in Germany includes tables of the emissions of these power plants. The CO 2 emissions of these power plants in 2013 (25% of the total German greenhouse gas emissions) have increased by 5% compared to 2012. The total CO 2 emission sin Germany increased by 1.5%. The differences between brown coal and black coal fired power plants are discussed.

  9. Language of plants: Where is the word?

    Science.gov (United States)

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.

  10. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies and crickets: a convergent evolution or phylogenetic inheritance?

    Directory of Open Access Journals (Sweden)

    Naoko eYoshinaga

    2014-04-01

    Full Text Available Fatty acid amino acid conjugates (FACs, first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata, fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution can not be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a

  11. Emission of volatiles from spray polyurethane foam (SPF) insulated crawl spaces

    NARCIS (Netherlands)

    Havermans, J.B.G.A.

    2014-01-01

    The emission of (di)isocyantes, polyols and blowing agents from curing Spray Polyurethane Foam (SPF) was studied in a house having its crawl space recently insulated. Before insulation a blank measurement was made and he emission was followed up to 144 hours after the insolation application. The

  12. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  13. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  14. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant.

    Science.gov (United States)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte

    2017-10-01

    A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.

  15. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  16. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.

    Science.gov (United States)

    Wang, Hongli; Xiang, Zhiyuan; Wang, Lina; Jing, Shengao; Lou, Shengrong; Tao, Shikang; Liu, Jing; Yu, Mingzhou; Li, Li; Lin, Li; Chen, Ying; Wiedensohler, Alfred; Chen, Changhong

    2018-04-15

    Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EF person ), per kitchen stove (EF kitchen stove ) and per hour (EF hour ) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (S type ) and restaurant scales (S scale ). The range of S type and S scale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that S type and S scale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively

  17. Cancer near the Three Mile Island nuclear plant: radiation emissions.

    Science.gov (United States)

    Hatch, M C; Beyea, J; Nieves, J W; Susser, M

    1990-09-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation. Overall, the pattern of results does not provide convincing evidence that radiation releases from the Three Mile Island nuclear facility influenced

  18. Cancer near the Three Mile Island nuclear plant: Radiation emissions

    International Nuclear Information System (INIS)

    Hatch, M.C.; Beyea, J.; Nieves, J.W.; Susser, M.

    1990-01-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation

  19. Differences in Induced Volatile Emissions among Rice Varieties Result in Differential Attraction and Parasitism of Nilaparvata lugens Eggs by the Parasitoid Anagrus nilaparvatae in the Field

    OpenAIRE

    Lou , Yong-Gen; Hua, Xiaoyan; Turlings, Ted C. J.; Cheng, Jiaan; Chen, Xuexin; Ye, Gongyin

    2007-01-01

    We compared the volatiles of JA-treated plants of six rice varieties and then determined, in the laboratory and field, if they differed in attractiveness to Anagrus nilaparavate Pand et Wang, an egg parasitoid of rice planthoppers. Analyses of volatiles revealed significant differences among varieties, both in total quantity and quality of the blends emitted. On the basis of these differences, the six varieties could be roughly divided into three groups. In a Y-tube olfactometer, female wasps...

  20. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering

    2000-02-01

    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  1. Development & Characterization of a Whole Plant Chamber for the Investigation of Environmental Perturbations on Biogenic VOC Emissions

    Science.gov (United States)

    Holder, J.; Riches, M.; Abeleira, A.; Farmer, D.

    2017-12-01

    Accurate prediction of both climate and air quality under a changing earth system requires a full understanding of the sources, feedbacks, and ultimate fate of all atmospherically relevant chemical species, including volatile organic compounds (VOCs). Biogenic VOCs (BVOC) from plant emissions are the main source of VOCs to the atmosphere. However, the impact of global change on BVOC emissions is poorly understood. For example, while short-term increases in temperature are typically associated with increased BVOC emissions, the impact of long-term temperature increases are less clear. Our study aims to investigate the effects of long-term, singular and combined environmental perturbations on plant BVOC emissions through the use of whole plant chambers in order to better understand the effects of global change on BVOC-climate-air quality feedbacks. To fill this knowledge gap and provide a fundamental understanding of how BVOC emissions respond to environmental perturbations, specifically elevated temperature, CO2, and drought, whole citrus trees were placed in home-built chambers and monitored for monoterpene and other BVOC emissions utilizing thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Designing and building a robust whole plant chamber to study atmospherically relevant chemical species while accommodating the needs of live plants over timescales of days to weeks is not a trivial task. The environmental conditions within the chamber must be carefully controlled and monitored. The inter-plant and chamber variability must be characterized. Finally, target BVOCs need to be sampled and detected from the chamber. Thus, the chamber design, control and characterization considerations along with preliminary BVOC results will be presented and discussed.

  2. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    Science.gov (United States)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  3. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  4. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    Science.gov (United States)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  5. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  6. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris.

    Science.gov (United States)

    Sagae, Masanori; Oyama-Okubo, Naomi; Ando, Toshio; Marchesi, Eduardo; Nakayama, Masayoshi

    2008-01-01

    The floral scent emission and endogenous level of its components in Petunia axillaris under different conditions (20, 25, 30, and 35 degrees C) were investigated under the hypothesis that floral scent emission would be regulated by both metabolic and vaporization processes. The total endogenous amount of scent components decreased as the temperature increased, the total emission showing a peak at 30 degrees C. This decrease in endogenous amount was compensated for by increased vaporization, resulting in an increase of floral scent emission from 20 degrees C to 30 degrees C. The ambient temperature differently and independently influenced the metabolism and vaporization of the scent compounds, and differences in vapor pressure among the scent compounds were reduced as the temperature increased. These characteristics suggest the operation of an unknown regulator to change the vaporization of floral scent.

  7. Large Drought-induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Leaf level oak isoprene emissions and co2/H2O exchange in the Ozarks, USA BAGeron.csv is the speciated biomass displayed in Figure 1. Biomass Dry Weights.xlsx is...

  8. Analysis of carbon emission regulations in supply chains with volatile demand.

    Science.gov (United States)

    2014-07-01

    This study analyzes an inventory control problem of a company in stochastic demand environment under carbon emissions : regulations. In particular, a continuous review inventory model with multiple suppliers is investigated under carbon taxing and ca...

  9. Volatile Organic Compound Concentrations and Emission Rates in New Manufactured and Site-Built Houses

    Energy Technology Data Exchange (ETDEWEB)

    Armin Rudd

    2008-10-30

    This study was conducted with the primary objective of characterizing and comparing the airborne concentrations and the emission rates of total VOCs and selected individual VOCs, including formaldehyde, among a limited number of new manufactured and site-built houses.

  10. Proven approaches to emission control at 200 MW power plants

    International Nuclear Information System (INIS)

    Lilja, M.; Moilanen, E.; Bacalum, A.

    1999-01-01

    Due to the tendency fir stricter norms for emission, Eastern European power plants have committed themselves to for low NO x modifications and flu gas desulphurization (FGD) plants for the existing boiler plants. Fortum Engineering has gained experience in low NO x and FGD retrofit projects in Finland, Poland and Czech Republic. The presentation concentrates in two projects: low NO x combustion modifications Jawornzno III Power Plant, Poland and FGD retrofit for Chvaletice Power Station, Czech Republic. The aim of the first contract is to keep NO x emissions of the boilers under 170 mg/MJ after the modification. The project has been successfully completed during the year 1995. Key technology is the application of the newest generation NR-LCC low NO x burners and over firing (OFA) system to the existing boilers with minimum modifications and the auxiliary equipment. As a result during the first half of a year of operation after take-over the NO x emission has been continuously between 120 and 150 mg/MJ and unburned carbon in fly ash has been under 5%. There has been no increased slagging in the furnace. The Chvaltice Power Station burning brown coal had big problems with sulphur oxides in the flue gases. The aim of the project in the station was to reduce SO 2 emissions from 7000 mg/m 3 n. The project has been completed in 1998. Desulphurization in Chvaletice is performed by wet limestone-gypsum method. Flue gases outgoing from electrostatic precipitators are washed in spray absorbers by limestone slurry to remove gaseous sulphur dioxides in flue gases. The process is optimized to achieve the required 94% desulphurization. The aim to decrease SO 2 emissions under 400 mg/m 3 n had been achieved

  11. UV-induced N2O emission from plants

    Science.gov (United States)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  12. UV-induced N2O emission from plants

    DEFF Research Database (Denmark)

    Bruhn, Dan; Albert, Kristian Rost; Mikkelsen, Teis Nørgaard

    2014-01-01

    investigate for the fi rst time N 2 O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted fi eld site measurements to investigate N 2 O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory...... magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N 2 O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process...

  13. Attraction of Cerambycid Beetles to Their Aggregation-Sex Pheromones Is Influenced by Volatiles From Host Plants of Their Larvae.

    Science.gov (United States)

    Wong, J C H; Zou, Y; Millar, J G; Hanks, L M

    2017-06-01

    Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  15. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  16. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    International Nuclear Information System (INIS)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-01-01

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO 2 ) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m 2 s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and

  17. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  18. Emissions of volatile hydrocarbons (VOC) during drying of sawdust; Utslaepp av laettflyktiga kolvaeten vid torkning av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Granstroem, Karin

    2001-08-01

    In the project 'Emissions of volatile hydrocarbons (VOC) during drying of sawdust' the identity, amount and composition of monoterpenes found in the drying medium of a fluidized bed drier drying sawdust from Norwegian spruce and Scotch pine has been determined. The energy efficiency of the drier has also been measured. The aim of this project was to reduce both emissions and energy required for drying, to minimize environmental and health hazards, and make drying more competitive. This would help our primary target group - small scale saw mills - to make use of the sawdust produced as a by- product by making pellets and briquettes. If the VOC remains in the sawdust its energy content will improve and therefore also its value as a fuel. The sawdust was dried to different moisture levels in a spouted bed drier at atmospheric pressure, using either recirculating or not recirculating drying medium with temperatures 140, 170 or 200 deg C. The emissions of VOC were measured using a flame ionization detector (FID) and the nature of the emissions analyzed with a gas chromatograph with mass spectrometric detector (GC-MS). The GC-MS data is reported as emitted substance per oven dry weight (odw). Experiments show that terpenes do not leave the sawdust in great amounts until it is dried to a moisture content (water/total weight) below 10%. When sawdust is dried to a predetermined moisture level, the terpene emissions increase when warmer incoming drying medium is used. The monoterpenes found in greatest amount are a-pinene, b-pinene, 3-carene, limonene and myrcene. y-terpinene was detected in emissions from pine but not from spruce. The relative amounts of different monoterpenes did not vary significantly with post-drying moisture content, but drying medium of higher temperature caused an increase in the relative amount of less volatile monoterpenes. The FID data is reported as concentration of VOC in the drying medium, and as weight VOC per odw. The concentration

  19. Different bioassays for investigating orientation responses of the banana weevil, Cosmopolites sordidus, show additive effects of host plant volatiles and a synthetic male-produced aggregation pheromone

    NARCIS (Netherlands)

    Tinzaara, W.; Dicke, M.; Huis, van A.; Loon, van J.A.; Gold, C.S.

    2003-01-01

    Three different bioassay methods to investigate the orientation behaviour of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), to host plant volatiles and a synthetic pheromone (cosmolure+) were compared. A locomotion compensator was used to separately record walking

  20. Health evaluation of volatile organic compound (VOC) emission from exotic wood products

    DEFF Research Database (Denmark)

    Kirkeskov, L; Witterseh, T; Funch, L W

    2009-01-01

    The purpose of this study was to measure and evaluate the impact of the emissions of selected products of exotic wood on health. Ten products were screened for chemical compounds, and five of the most used products which emitted more than 800 microg/kg were selected for further quantitative...... analyses by climate chamber measurement (iroko, ramin, sheesham, merbau, and rubber tree). Samples of exotic wood (rubber tree and belalu) were further analyzed for emission of chemical compounds by migration into artificial saliva and for content of pesticides and allergenic natural rubber latex (NR latex......) (rubber tree). The toxicological effects of all substances identified were evaluated and the lowest concentrations of interest (LCI) assessed. An R-value was calculated for each wood product (R-value below 1 is considered to be unproblematic as regards health). Emission from the evaluated exotic wood only...

  1. Volatile organic compound emissions during hot-pressing of southern pine particleboard : panel size effects and trade-off between press time and temperature

    Science.gov (United States)

    Wenlong Wang; Douglas J. Gardner; Melissa G.D. Baumann

    2002-01-01

    In previous research, it was shown that decreasing either press temperature or press time generally resulted in decreased volatile organic compound (VOC) emissions during the hot-pressing of southern pine particleboard. However, because it is impossible to reduce both pressing time and temperature while maintaining panel physical and mechanical properties, this study...

  2. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Science.gov (United States)

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  3. The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.

    Science.gov (United States)

    Graham, Kelsey K; Brown, Steve; Clarke, Stephanie; Röse, Ursula S R; Starks, Philip T

    2017-11-01

    The plant-pollinator relationship is generally considered mutualistic. This relationship is less clear, however, when pollinators also cause tissue damage. Some Megachilidae bees collect plant material for nests from the plants they pollinate. In this study, we examined the relationship between Anthidium manicatum, the European wool-carder bee, and the source of its preferred nesting material - Stachys byzantina, lamb's ear. Female A. manicatum use their mandibles to trim trichomes from plants for nesting material (a behaviour dubbed "carding"). Using volatile organic compound (VOC) headspace analysis and behavioural observations, we explored (a) how carding effects S. byzantina and (b) how A. manicatum may choose specific S. byzantina plants. We found that removal of trichomes leads to a dissimilar VOC bouquet compared to intact leaves, with a significant increase in VOC detection following damage. A. manicatum also visit S. byzantina plants with trichomes removed at a greater frequency compared to plants with trichomes intact. Our data suggest that A. manicatum eavesdrop on VOCs produced by damaged plants, leading to more carding damage for individual plants due to increased detectability by A. manicatum. Accordingly, visitation by A. manicatum to S. byzantina may incur both a benefit (pollination) and cost (tissue damage) to the plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Atmospheric benzenoid emissions from plants rival those from fossil fuels.

    Science.gov (United States)

    Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  5. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been...... estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...

  6. Politics for emissions reduction at large combustion plants

    International Nuclear Information System (INIS)

    Dragos, L.; Persu, I.; Predescu, I.

    2005-01-01

    This article presents the harmonization process of Romanian national legislation with EU directives for the establishment of measures for the emission reduction of air pollutants from large combustion plants. The quantity of SO 2 , NO x and dust emissions from big combustion installation during the period 1980 - 2003 is given. The characteristics of the native fuels are also presented. Recently a reorganization and restructuring of the electricity production from lignite are accomplished. It is emphasised in the paper that the use of lignite for energy production is necessary even if the additional costs implied by the compliance with Directive 2001/80/EC are high. Clean combustion technologies and equipment promoted by the OVM-ICCPET, Bucharest will be applied for the improvement of the burning process and reduction of the emissions

  7. Monitoring of emissions and immissions from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H J [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Biblis (Germany, F.R.). Betriebsverwaltung

    1977-02-01

    The measurement of the emission and immission of radionuclides from nuclear power stations has already been established with the inception of the peaceful uses of atomic energy. Since then it has been a firm feature of the monitoring of effects of nuclear power plants on the environment. The considerations and procedures on which the measurement programs are based are described. The ecological behaviour of radionuclides is illustrated with the aid of examples.

  8. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund

    2010-01-01

    heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. • The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5°C, while litter addition had a minor influence...

  9. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-09-10

    ... satisfy Indiana's VOC RACT requirements for the Lake and Porter County portion of the Chicago-Gary-Lake... revised its Industrial Solvent Cleaning rule, 326 IAC 8-17, for sources in Lake and Porter Counties as... emissions because there are no coating, ink, adhesive and resin manufacturers in Lake and Porter Counties...

  10. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    Science.gov (United States)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal des