WorldWideScience

Sample records for plant systems initial

  1. Plant functional type classification for Earth System Models: results from the European Space Agency's Land Cover Climate Change Initiative

    Directory of Open Access Journals (Sweden)

    B. Poulter

    2015-01-01

    Full Text Available Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land-cover datasets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI, with land cover (LC_CCI as one of thirteen Essential Climate Variables targeted for research development. The LC_CCI was implemented in three phases, first responding to a survey of user needs, then developing a global, moderate resolution, land-cover dataset for three time periods, or epochs, 2000, 2005, and 2010, and the last phase resulting in a user-tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFT. The translation was performed as part of consultative process among map producers and users and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three-earth system modeling teams shows significant differences between the LC_CCI PFT dataset and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land–atmosphere interactions. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as Phase 2 of the European Space Agency CCI program continues.

  2. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative

    Science.gov (United States)

    Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S.; Herold, M.; Kirches, G.; Lamarche, C.; Lederer, D.; Ottlé, C.; Peters, M.; Peylin, P.

    2015-07-01

    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land-atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.

  3. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Science.gov (United States)

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  4. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Directory of Open Access Journals (Sweden)

    Geoffrey Fucile

    Full Text Available Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org.

  5. Emergency Prevention System (EMPRES) for transboundary animal and plant pests and diseases. The EMPRES-livestock: an FAO initiative.

    Science.gov (United States)

    Welte, Valdir Roberto; Vargas Terán, Moisés

    2004-10-01

    The Food and Agriculture Organization of the United Nations (FAO) decided that the Organization should be focusing on the goal of enhancing world food security and the fight against transboundary animal diseases and plant pests. A mandate was obtained from the Governing Council and Conference to establish two new Special Programmes to address these fundamental issues. The first is the Special Programme on Food Security and the second is the Emergency Prevention System against transboundary animal and plant pests and diseases (EMPRES). EMPRES has two components, created after 1994 by a new policy of the Director-General of the FAO to better direct the FAO: the plant pest component focuses on the desert locust, whereas the animal diseases component focuses primarily on rinderpest but also on other epidemic diseases (e.g., contagious bovine pleuropneumonia, foot-and-mouth disease, peste de petit ruminants). For the program as a whole, a high-level EMPRES Steering Committee was established. This is chaired by the FAO Director-General and consists of the heads of key departments (Assistant Directors-General) and Divisional Directors. For the animal diseases component (hereafter referred to as EMPRES-Livestock Programme), FAO established a management unit within its Animal Health Service (AGAH), that is, the Infectious Diseases-EMPRES Group, to be responsible for implementation, including liaison with the Joint FAO-International Atomic Energy Agency (IAEA) Division in Vienna for some of the functions suballocated there. This paper briefly describes FAO EMPRES Livestock, its vision, its mission, and its activities to assist FAO developing member countries and regions in improving the ability of veterinary services to reduce the risks of introduction and/or dissemination of transboundary animal disease, by preventing, controlling, and eradicating those diseases, assisting countries in building their own surveillance/early warning systems, establishing contingency plans

  6. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication.

    Science.gov (United States)

    Yao, Youli; Kathiria, Palak; Kovalchuk, Igor

    2013-01-01

    In the past, we showed that local infection of tobacco leaves with either tobacco mosaic virus or oilseed rape mosaic virus (ORMV) resulted in a systemic increase in the homologous recombination frequency (HRF). Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 h post-infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  7. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  8. ePlant and the 3D Data Display Initiative: Integrative Systems Biology on the World Wide Web

    OpenAIRE

    Geoffrey Fucile; David Di Biase; Hardeep Nahal; Garon La; Shokoufeh Khodabandeh; Yani Chen; Kante Easley; Dinesh Christendat; Lawrence Kelley; Provart, Nicholas J.

    2011-01-01

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide we...

  9. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  10. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative

    NARCIS (Netherlands)

    Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S.; Herold, M.; Kirches, C.; Lamarche, C.; Lederer, D.; Ottlé, C.; Peters, M.; Peylin, P.

    2015-01-01

    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily trans

  11. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  12. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  13. Systems 2020: Strategic Initiative

    Science.gov (United States)

    2010-08-29

    other services. Large companies use Manufacturing Enterprise Resource Planning ( ERP ) systems that are highly integrated and difficult to maintain and...www.informationweek.com/news/government/cloud- saas /showArticle.jhtml?articleID=225200398&queryText=cloud%20computing Accessed on June 25, 2010. FINAL

  14. System 2020 - Strategic Initiative

    Science.gov (United States)

    2010-08-26

    avionics ,   automotive   products,   and   financial   analysis   systems.   Organizations   in   these   sectors   report...series   of   Block   Upgrades   (major   aircraft   and   avionics   revisions),   software   and   avionics   (major...automation  mechanisms  may  be  employed,   ala  Microsoft’s   nightly   builds,   developer-­‐tester   buddy

  15. Initial Studies on Alkaloids from Lombok Medicinal Plants

    Directory of Open Access Journals (Sweden)

    John B. Bremner

    2001-01-01

    Full Text Available Initial investigation of medicinal plants from Lombok has resulted in the collection of 100 plant species predicted to have antimicrobial, including antimalarial, properties according to local medicinal uses. These plants represent 49 families and 80 genera; 23% of the plants tested positively for alkaloids. Among the plants testing positive, five have been selected for further investigation involving structure elucidation and antimicrobial testing on the extracted alkaloids. Initial work on structural elucidation of some of the alkaloids is reported briefly.

  16. Initial Survey Instructions for Invasive Plant Species Mapping and Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for Invasive Plant Species Mapping, 1.01a, and Invasive Plant Species Monitoring, 1.01b, at Fish Springs National Wildlife Refuge. These...

  17. Identification of minimal sequences of the Rhopalosiphum padi virus 5' untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems

    DEFF Research Database (Denmark)

    Groppelli, Elisabetta; Belsham, Graham; Roberts, Lisa O.

    2007-01-01

    Rhopalosiphum padi virus (RhPV) is a member of the family Dicistroviridae. The genomes of viruses in this family contain two open reading frames, each preceded by distinct internal ribosome entry site (IRES) elements. The RhPV 5' IRES is functional in mammalian, insect and plant translation systems...... (rabbit reticulocyte lysate), plant (wheatgerm extract) and insect (Sf21 cells) translation systems have now been defined. A fragment (nt 426–579) from the 3' portion of the 5' UTR can direct translation in each of these translation systems. In addition, a distinct region (nt 300–429) is also active. Thus...

  18. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  19. The Appalachian Rural Systemic Initiative

    Directory of Open Access Journals (Sweden)

    Stephen A. Henderson

    2000-03-01

    Full Text Available This article was written in response to "Top-Down, Routinized Reform in Low-income, Rural Schools: NSF's Appalachian Rural Systemic Initiative, by Robert Bickel, Terry Tomaskek, and Teresa Hardman Eagle which was published in the Education Policy Analysis Archives as Number 12 of Volume 8 on February 21, 2000.

  20. Determining the stages of tillering stage, initiation of primordia, flowering and maturity in the rice plant, with the system S, V and R correlated with the thermal sum at the time

    Directory of Open Access Journals (Sweden)

    Jennifer Velázquez

    2015-11-01

    Full Text Available Temperature is one of the major climatic factors that affect growth, development and yield of the rice crop, and also can reduce the time of change of phenological stages. The beginning stages of tillering, initiation of primordia, flowering and harvest maturity were determined with the S, V and R system recently proposed by Counce et ál. (2000; it consists on counting the number of fully developed leaves; in addition, a correlation was made with accumulated degree days that the plant had at that time, in order to estimate with how many degree days the plant began a phenological stage; this parameter is related to the average daily temperature and a base temperature of 10ºC. For the start of tillering the plant needed 140.9 degree days; for primordium start, 1268.9; for bloom 1746; and completed its cycle with a total of 2333.2 degree days. This allows to conclude that, for a variety of long cycle (130-135 days, when the accumulation of degree days is equal or similar to the previous data, the plant initiates one of the above-mentioned phenological stages; however, each one of the varieties in use by farmers must be calibrated, because there are differences in crop cycle length among them.

  1. General Atomic reprocessing pilot plant: description and results of initial testing

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing.

  2. 电站烟气余热利用系统浅析%Initial Analysis on Flue Gas Waste Heat Utilization System in Power Plant

    Institute of Scientific and Technical Information of China (English)

    陈晓文; 杜文智; 熊英莹; 谭厚章

    2014-01-01

    With the growing use of energy and awareness of environmental protection around the world, more and more attention has been attracted by the utilization of waste heat from flue gas. In order to provide theoretical guidance for cascade utilization of waste heat in power plant efficiently and reasonably by setting a flue gas waste heat utilization system for our country, this article not only showed the design criteria of the system, but also analyzed heat transfer equation, ways of heat transfer, types of cold source and setting locations of that.%随着全球范围内能源需求量持续增加,环保意识不断增强,电站烟气余热利用越来越受到重视。本文介绍了电站烟气余热利用系统的设计原则,并分析了烟气余热利用系统的换热方程、换热方式、冷源种类以及可设置位置,可以作为我国电站设置烟气余热利用系统、高效合理地梯级回收烟气余热过程的参考。

  3. Distributed Pyro Initiation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Evaluate Current State of the Art; Define Critical Performance Requirements; Select Components; Smart Initiator or Smart Connector; Perform Detailed Cost/Benefit...

  4. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  5. 30 CFR 56.6308 - Initiation systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Initiation systems. 56.6308 Section 56.6308 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Initiation systems. Initiation systems shall be used in accordance with the manufacturer's instructions. ...

  6. 30 CFR 57.6308 - Initiation systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Initiation systems. 57.6308 Section 57.6308 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Transportation-Surface and Underground § 57.6308 Initiation systems. Initiation systems shall be used in...

  7. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones.

    Science.gov (United States)

    Yang, Minglei; Jiao, Yuling

    2016-01-01

    One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying AM initiation and the role of auxins and cytokinins in AM initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple TFs to contribute to the initiation of AMs.

  8. Regulation of axillary meristem initiation by transcription factors and plant hormones

    Directory of Open Access Journals (Sweden)

    Minglei eYang

    2016-02-01

    Full Text Available One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past fifteen years have shown that several transcription factors and phytohormones affect axillary meristem initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying axillary meristem initiation and the role of auxins and cytokinins in axillary meristem initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple transcription factors to contribute to the initiation of axillary meristems.

  9. Initiation disruptor systems and methods of initiation disruption

    Science.gov (United States)

    Baum, Dennis W

    2014-09-23

    A system that may be used as an initiation disruption system (IDS) according to one embodiment includes an explosive charge; a plurality of particles in a layer at least partially surrounding the explosive charge; and a fire suppressant adjacent the plurality of particles. A method for disabling an object according to one embodiment includes placing the system as recited above near an object; and causing the explosive charge to initiate, thereby applying mechanical loading to the object such that the object becomes disabled. Additional systems and methods are also presented. A device according to another embodiment includes a plurality of particles bound by a binder thereby defining a sidewall having an interior for receiving an explosive; and a fire suppressant adjacent the plurality of particles and binder. Additional systems and methods are also presented.

  10. A review for identification of initiating events in event tree development process on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  11. Network support for system initiated checkpoints

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  12. 后处理厂溶剂再生系统始发事件的FMEA评价%Initial Event Evaluation of Solvent Regeneration System in Reprocessing Plant by FMEA

    Institute of Scientific and Technical Information of China (English)

    吕丹; 李锐柔; 张春龙; 刘运陶; 张敏; 童节娟; 赵军

    2015-01-01

    The identification of initial events is the basis of accident analysis.Currently, in the accident analysis of nuclear fuel reprocessing plants,the general method for initial event identification still has not been established.Taking solvent regeneration system of decontamination cycle in the reprocessing plant as the research example,the engineering reliability evaluation method of the failure modes and effects analysis (FMEA)was applied to the identification and screening of initial events.The analysis results show that the types of initial events mainly consist of the leakage from the breakage of the boundary of radioactive material confinements (including equipment,pipes and valves), the failure of interface measuring instruments of acid or alkaline washing mixed-settler, the failure of liquid level measuring instruments of each storage tank or washing mixed-settler,as well as the shaft sealing leakage of the organic phase export metering pump for contaminated solvent reception tank.With the comparison of the reprocessing plant safety analysis reports of the United States and the actual accident examples of foreign reprocessing plants,the analysis results of FMEA method show good coverage and prac-ticability to the accidents caused by equipment failure.Therefore,the FMEA method can be used as a reference method for initial events selection,and can be popularized to other process systems of reprocessing plants.%识别始发事件是事故分析的基础。目前后处理厂对始发事件的识别尚未形成通用方法。本文以后处理厂共去污分离循环的溶剂再生系统为研究示范对象,采用失效模式和影响分析(FMEA)的工程评价方法识别和筛选始发事件。分析结果表明,该系统始发事件的类型主要包括:包容放射性物料的边界(设备、管道、阀门)破损泄漏;酸、碱洗槽界面测量仪表失效;各贮槽和洗涤槽液位测量仪表失效;污溶剂接受槽有机相出口计量泵

  13. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  14. Temperature initiated passive cooling system

    Science.gov (United States)

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  15. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT- and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).

  16. Expert System Initiative in Logistic Readiness (EXSYN)

    Science.gov (United States)

    1987-03-01

    This initiative is to demonstrate the feasibility of using expert system technology to assist TRADOC combat developers with the assignment of...practices into rule sets; (2) develop a prototype expert system based on the rule sets, using a commercially available expert system development tool

  17. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  18. 77 FR 75425 - Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative-What's...

    Science.gov (United States)

    2012-12-20

    ... Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative--What's Next? AGENCY... Group on Plant Genomics (IWGPG). DATES: Saturday, January 12, 2013, 1:30 p.m. to 3:40 p.m. ADDRESSES... production, with a specific focus on the management of plant genomics data, metadata, and...

  19. Chapter 15. Plant pathology and managing wildland plant disease systems

    Science.gov (United States)

    David L. Nelson

    2004-01-01

    Obtaining specific, reliable knowledge on plant diseases is essential in wildland shrub resource management. However, plant disease is one of the most neglected areas of wildland resources experimental research. This section is a discussion of plant pathology and how to use it in managing plant disease systems.

  20. Damage detection in initially nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Bornn, Luke [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.

  1. Alert Systems for production Plants

    DEFF Research Database (Denmark)

    Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2005-01-01

    We present a new methodology for detecting faults and abnormal behavior in production plants. The methodology stems from a joint project with a Danish energy consortium. During the course of the project we encountered several problems that we believe are common for projects of this type. Most...... system operation, i.e., it does not rely on information about the possible faults. We illustrate the proposed method using real-world data from a coal driven power plant as well as simulated data from an oil production facility....

  2. Monitoring Systems for Hydropower Plants

    Directory of Open Access Journals (Sweden)

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  3. [Development characteristics of aquatic plants in a constructed wetland for treating urban drinking water source at its initial operation stage].

    Science.gov (United States)

    Zheng, Jun; Ma, Xin-Tang; Zhou, Lan; Zhou, Qing-Yuan; Wang, Zhong-Qiong; Wang, Wei-Dong; Yin, Cheng-Qing

    2011-08-01

    The development characteristics and improvement measures of aquatic plants were studied in Shijiuyang Constructed Wetland (SCW) at its initial operation stage. SCW was a large-scale wetland aiming to help relieve the source water pollution in Jiaxing City. A checklist of vascular plants in SCW was built, and species composition, life forms, biomass and association distributions were examined. Our objectives were to examine the diversity and community structure of aquatic plants in SCW at its initial operation stage, and to find out the possible hydrophyte improvement measures. The survey results showed that there were 49 vascular plant species belonging to 41 genera, 25 families in SCW, which greatly exceeded the artificially transplanted 13 species. The life forms of present aquatic plants in SCW were dominated by hygrophilous plants (20 species) and emerged plants (17 species), which accounted for 75.5% of the total number of aquatic plants. The aquatic plants transplanted artificially were dominated by emerged plants (accounted for 69.2%), while those naturally developed were predominated by hygrophilous plants (accounted for 47.2%). The horizontal distribution of aquatic plant community in SCW was mixed in the form of mosaics, which made up typical association complex. Except association Aeschynomene indica L., the dominant species of other associations were all those transplanted artificially. The naturally grown species scattered throughout the SCW and only occupied a small percentage. A marked difference was detected on the species and species richness of aquatic plants in different regions of SCW. Biomass of aquatic plant associations in SCW was 167.7 t. SCW has shown a trend of succession heading for quick increase of plant diversity at the primary operation stage. This trend provides a good material base for the future stable community of aquatic plants in SCW. According to the current status of aquatic plants, some suggestions were put forward on the

  4. Autonomous systems for plant protection

    DEFF Research Database (Denmark)

    Griepentrog, Hans W.; Ruckelshausen, Arno; Jørgensen, Rasmus Nyholm

    2010-01-01

    Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples of au...... and safe behaviors. In general the potential of saving e.g. of herbicides are huge when high precision targeting based on individual weed plant detections is used....

  5. LED Systems Target Plant Growth

    Science.gov (United States)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  6. Chitosan Effects on Plant Systems

    Directory of Open Access Journals (Sweden)

    Massimo Malerba

    2016-06-01

    Full Text Available Chitosan (CHT is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.

  7. Chitosan Effects on Plant Systems

    Science.gov (United States)

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  8. The Initial Development of a Computerized Operator Support System

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L Boring; Thomas A Ulrich; Ken Thomas

    2014-08-01

    A computerized operator support system (COSS) is a collection of resilient software technologies to assist operators in monitoring overall nuclear power plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast- moving, complex events. A prototype COSS for a chemical volume control system at a nuclear power plant has been developed in order to demonstrate the concept and provide a test bed for further research. The development process identified four underlying elements necessary for the prototype, which consist of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. An operational prototype resides at the Idaho National Laboratory (INL) using the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). Several human-machine interface (HMI) considerations are identified and incorporated in the prototype during this initial round of development.

  9. A novel initiating system for wool grafting

    Directory of Open Access Journals (Sweden)

    Magdy Kandil Zahran

    2016-05-01

    Full Text Available This paper describes a new method for the grafting of methacrylic acid (MAA and other acrylic monomers onto wool fabric in aqueous medium. The novelty principally concerns the chemical approach of the redox grafting reaction that was carried out in the presence of sodium perborate (SPB initiator. Before the grafting reaction was started, the wool fabric was treated first with a freshly prepared ferrous ammonium sulfate (FAS solution. The so-treated fabric formed, with SPB, an efficacious redox system capable of initiating grafting of methacrylic acid (MAA and other acrylic monomers onto the wool fabric. The effect of the polymerization conditions on the polymer criteria, namely, graft yield (%GY, homopolymer (%HP, total conversion (%TC, and grafting efficiency (%GE, was studied. These polymer criteria were found to depend spaciously upon concentrations of the Fe2+ ion (activator, SPB (initiator, and MAA, pH of the polymerization medium, duration and temperature of polymerization. The graft copolymerization reaction has also been carried out in the presence of polymerization activators (e.g. reductant transition metal ions and an inhibitor (e.g. hydroquinone. A suitable mechanism for the grafting processes has been suggested, in accordance with the experimental results.

  10. Plants for space plantations. [crops for closed life support systems

    Science.gov (United States)

    Nikishanova, T. I.

    1978-01-01

    Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.

  11. System dynamics in hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Stuksrud, Dag Birger

    1998-12-31

    The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.

  12. INITIAL DEVELOPMENT OF AÇAÍ PLANTS UNDER SHADE GRADATION

    Directory of Open Access Journals (Sweden)

    ELEANDRO CANDIDO DAPONT

    2016-01-01

    Full Text Available ABSTRACT In order to evaluate the effect of different levels of shading on açai (Euterpe oleracea Mart. plants development, an experiment was conducted at the nursery of Floresta, Rio Branco, AC. The experiment was arranged in a completely randomized design with six treatments and four replications of 25 plants, set as full sunlight and 18%, 35%, 50%, 70%, and 80% shading. The evaluation occurred 125 days after transplantation and the variables were stem diameter, root length, length of the aerial part, total length, dry matter of root, dry matter of aerial part, and total dry matter. With exception of root length, there was significant difference between treatments for all variables. The production of açai plants should be performed using 40% shading.

  13. A study of the state of the art on the determination of the threshold values of the performance indicators for safety systems and initiating events of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D. I.; Kim, K. Y.; Hwang, M. J.; Park, J. H.; Ha, J. J

    2004-02-01

    The threshold values of Korean Institute of Nuclear Safety (KINS) Performance Indicators (PIs)' determining the safety class of initiating events and safety systems can not sufficiently reflect the operating experience and PSA results of domestic NPPs. Therefore, the state of arts on the PI study of domestic and foreign countries is analyzed in order to reflect the operating experience and PSA results of domestic NPPs in the determination of the threshold values of the PIs for safety systems and initiating events of domestic NPPs. We identified the state of arts of PIs through reviewing the objectives and types of WANO, IAEA, NRC, OECD/NEA and domestic PIs, and the technical issues of the threshold values of SECY 99-007 and NUREG-1753. We also, identified the current status of recently developed MSPI (Mitigating System Performance Index) and IIIEI (Integrated Industry Initiating Event Indicator). From this study of the state of the arts on the PIs, we expect that if the NRC's MSPI and a PI similar to NRC's IIIEI would be introduced into the KINS, it is not necessary to determine the threshold values of PIs applied to the safety systems and initiating events of entire domestic NPPs. Otherwise the threshold values of PIs applied to the individual NPP should be developed using PSA models of typical reactor types. For the active development and use of the risk informed PIs for the domestic NPPs, we expect that the system and component reliability analysis and initiating events analysis for the domestic NPPs, MSPI, IIIEI, and PSA requirements for the PIs be further studied.

  14. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  15. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, S.L.; Memelink, Ilse; Hodgson, Edward; Jones, S.; Voorde, van de T.F.J.; Bezemer, T.M.; Mommer, L.; Groenigen, van J.W.

    2017-01-01

    Abstract


    Background and aim

    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope

  16. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, S.L.; Memelink, Ilse; Hodgson, Edward; Jones, S.; Voorde, van de T.F.J.; Bezemer, T.M.; Mommer, L.; Groenigen, van J.W.

    2017-01-01

    Abstract


    Background and aim

    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.


    Methods

  17. Plant health sensing system for determining nitrogen status in plants

    Science.gov (United States)

    Thomasson, J. A.; Sui, Ruixiu; Read, John J.; Reddy, K. R.

    2004-03-01

    A plant health sensing system was developed for determining nitrogen status in plants. The system consists of a multi-spectral optical sensor and a data-acquisition and processing unit. The optical sensor"s light source provides modulated panchromatic illumination of a plant canopy with light-emitting diodes, and the sensor measures spectral reflectance through optical filters that partition the energy into blue, green, red, and near-infrared wavebands. Spectral reflectance of plants is detected in situ, at the four wavebands, in real time. The data-acquisition and processing unit is based on a single board computer that collects data from the multi-spectral sensor and spatial information from a global positioning system receiver. Spectral reflectance at the selected wavebands is analyzed, with algorithms developed during preliminary work, to determine nitrogen status in plants. The plant health sensing system has been tested primarily in the laboratory and field so far, and promising results have been obtained. This article describes the development, theory of operation, and test results of the plant health sensing system.

  18. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  19. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.

    Science.gov (United States)

    Wang, Chuan; Zhou, Qiaohong; Zhang, Liping; Zhang, Yan; Xiao, Enrong; Wu, Zhenbin

    2013-01-01

    Six wetland plants were investigated for their effect on the degradation characteristics of chlorpyrifos in nonsterile hydroponic system at constant temperature of 28 degrees C. The results showed that the removal rates of chlorpyrifos in the water of plant systems were 1.26-5.56% higher than that in the control without plants. Scirpus validus and Typha angustifolia were better than other hygrophytes in elimination of chlorpyrifos. The removal rates of the two systems were up to 88%. Plants of acaulescent group had an advantage over caulescent group in removing chlorpyrifos. Phytoaccumulation of chlorpyrifos was observed, and the order of chlorpyrifos concentration in different plant tissues was root > stem > leaf. It was also found that chlorpyrifos and its metabolite TCP decreased rapidly at the initial step of the experiment.

  20. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  1. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  2. Regulation of Eukaryotic Initiation Factor 4E and Its Isoform: Implications for Antiviral Strategy in Plants

    Institute of Scientific and Technical Information of China (English)

    Yu-Yang Zhang; Han-Xia Li; Bo Ou-yang; Zhi-Biao Ye

    2006-01-01

    In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomicaiiy important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotic initiation factor 4E (elF4E). elF4E is one of the most important translation initiation factors involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by elF4E and its isoform elF (iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for elF4E/elL(iso)4E in resistance strategies against plant viruses. In this review, we briefly describe elF4E activity in plant translation, its potential role, and functions of the elF4E subfamily in plant-virus interactions. Other initiation factors such as elF4G could also play a role in plant resistance against viruses. Finally, the potential for developing elF4E-medlated resistance to plant viruses in the future is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by elF4E. Knowledge of a particular plant-virus interaction will help to deepen our understanding of elF4E and other eukaryotic initiation factors, and their involvement in virus disease control.

  3. Study on evaluation system for Chinese nuclear power plants

    Institute of Scientific and Technical Information of China (English)

    LI Song-bai; CHENG Jian-xiu

    2006-01-01

    This paper analyzes the meaning, structure, function and assessment methods of a nuclear power plant evaluation system, and the similarities and differences among various assessment methods. Based on this research an integrated and detailed suggestion is proposed on how to establish and improve internal and external evaluation systems for Chinese NPPs. It includes: to prepare and implement the nuclear power plant operational management program, to build an integrated performance indicator system, to improve the present audit system and conduct the comprehensive evaluation system, to set up and implement the integrated corrective action system, to position precisely the status of operation assessment of nuclear power plants, to conduct the assessment activities on constructing NPP, to initiate the specific assessment in some important areas, to establish industry performance indicator system, to improve the assessment methods, to share the assessment results, to select,cultivate and certify the reviewers, and to enhance international communication and cooperation.

  4. 30 CFR 56.6501 - Nonelectric initiation systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Nonelectric initiation systems. 56.6501 Section 56.6501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Nonelectric Blasting § 56.6501 Nonelectric initiation systems. (a) When the nonelectric initiation system uses...

  5. Putative Nitrogen Sensing Systems in Higher Plants

    Institute of Scientific and Technical Information of China (English)

    Hon-Ming Lam; Ying Ann Chiao; Man-Wah Li; Yuk-Kwong Yung; Sang Ji

    2006-01-01

    Nitrogen (N) metabolism is essential for the biosynthesis of vital biomolecules. N status thus exerts profound effects on plant growth and development, and must be closely monitored. In bacteria and fungi, a few sophisticated N sensing systems have been extensively studied. In animals, the ability to receive amino acid signals has evolved to become an integral part of the nervous coordination system. In this review, we will summarize recent developments in the search for putative N sensing systems in higher plants based on homologous systems in bacteria, fungi, and animals. Apparently, although plants have separated and diversified from other organisms during the evolution process, striking similarities can be found in their N sensing systems compared with those of their counterparts; however, our understanding of these systems is still incomplete. Significant modifications of the N sensing systems (including cross-talk with other signal transduction pathways) in higher plants may be a strategy of adaptation to their unique mode of life.

  6. Estimated recurrence frequencies for initiating accident categories associated with the Clinch River Breeder Reactor Plant design

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E R

    1982-04-01

    Estimated recurrence frequencies for each of twenty-five generic LMFBR initiating accident categories were quantified using the Clinch River Breeder Reactor Plant (CRBRP) design. These estimates were obtained using simplified systems fault trees and functional event tree models from the Accident Delineation Study Phase I Final Report coupled with order-of-magnitude estimates for the initiator-dependent failure probabilities of the individual CRBRP engineered safety systems. Twelve distinct protected accident categories where SCRAM is assumed to be successful are estimated to occur at a combined rate of 10/sup -3/ times per year while thirteen unprotected accident categories in which SCRAM fails are estimated to occur at a combined rate on the order of 10/sup -5/ times per year. These estimates are thought to be representative despite the fact that human performance factors, maintenance and repair, as well as input common cause uncertainties, were not treated explicitly. The overall results indicate that for the CRBRP design no single accident category appears to be dominant, nor can any be totally eliminated from further investigation in the areas of accident phenomenology for in-core events and post-accident phenomenology for containment.

  7. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.

  8. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John A.; Bower, Gordon R.

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  9. SNS Target Systems initial operating experience

    Science.gov (United States)

    McManamy, T.; Forester, J.

    2009-02-01

    The SNS mercury target started operation with low beam power when commissioned on April 28, 2006. The beam power has been following a planned ramp up since then and has reached 340 kW as of February 2008. The target systems supporting neutron production include the target and mercury loop, the cryogenic and ambient moderator systems, reflector and vessel systems, bulk shielding and shutters systems, utility systems, remote handling systems and the associated instrumentation and controls. Availability for these systems has improved with time and reached 100% for the first 2000 hour neutron production run in fiscal year 2008. An overview of the operating experience and the planning to support continued power increases to 1.4 MW for these systems will be given in this paper.

  10. [Bacteria ecology in planting-culturing system].

    Science.gov (United States)

    Huang, Fenglian; Xia, Beicheng; Dai, Xin; Chen, Guizhu

    2004-06-01

    Planting-culturing system in inter-tidal zone is a new type eco-culturing model. The survey on bacteria biomass and water quality in the designed planting-culturing system in inter-tidal zone showed that the mangrove planted in the system improved water quality and made water quality to II-III type, better than the IV and V type in the control pond. Designed ponds made heterotrophic bacteria, vibrio, phosphorus bacteria and enzyme-producing bacteria populations 1-2 order lower than the control pond without mongrove planting. Correlation analyses with CORREL software showed that the biomass of these bacteria was positively related with the nitrogen and phosphorus contents in water of the system, and the correlation coefficient for heterogeneous bacteria and vibrio was up to 0.9205. Heterotrophic bacteria and vibrio could be used as the water-quality monitoring organisms.

  11. Synthetic gene networks in plant systems.

    Science.gov (United States)

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  12. Improving pumping system efficiency at coal plants

    Energy Technology Data Exchange (ETDEWEB)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  13. "Plantas con madre": plants that teach and guide in the shamanic initiation process in the East-Central Peruvian Amazon.

    Science.gov (United States)

    Jauregui, X; Clavo, Z M; Jovel, E M; Pardo-de-Santayana, M

    2011-04-12

    We present and discuss a particular group of plants used by a diversity of healers in the initiation process and apprenticeship of traditional medicine, as practiced by Amazonian societies in East-Central Peru. Often, these plants are locally called plantas con madre (plants with a mother), and are thought to guide initiates in the process of seeking sacred knowledge, learning about plant usage, and understanding traditional medicine practices. We illustrate the diversity of plants used in the apprenticeship and practice of traditional medicine, and nurture the discussion to better understand the terminology used by Indigenous healers to describe plant uses and their practices. The study was conducted between 2003 and 2008 with the participation of 29 curanderos (healers; 23 men, 6 women), 3 apprentices and 4 herbalists. The participants belonged to four ethnic groups: 17 Mestizos, 15 Shipibo-Konibo, 1 Ashaninka, and 1 Matsiguenga; a Spanish apprentice and an Italian herbalist were also included in the study. The field data were collected using semi-structured interviews, participant observation, and the witnessing of numerous healing sessions. Oral informed consent was obtained from each participant. We identified 55 plant species belonging to 26 botanical families, which are used in initiation processes and apprenticeships of traditional medicine. This group of plants is administered under strict conditions during training and healing sessions called dietas (shamanic diets), with the supervision of one or more maestros curanderos (master healers). We observed that during the shamanic diets, maestros curanderos administered plants depending on the teachings or tools he/she was passing on, and were based on a particular sequence during the initiation process: (I) purification and cleansing species; (II) sensitivity and intuition; (III) strengthening; and (IV) protection and defence. Traditional healers continue to be a primary source of health care for the majority

  14. General digitalized system on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, Katsumi; Kadohara, Hozumi; Taniguchi, Manabu [Mitsubishi Electric Corp., Tokyo (Japan)

    2000-08-01

    Hitherto, instrumentation control system in a PWR nuclear power plant has stepwisely adopted digital technology such as application of digital instrumentation control device to ordinary use (primary/secondary system control device, and so on), application of CRT display system to monitoring function, and so forth, to realize load reduction of an operator due to expansion of operation automation range, upgrading of reliability and maintenance due to self-diagnosis function, reduction of mass in cables due to multiple transfer, and upgrading of visual recognition due to information integration. In next term PWR plant instrumentation control system, under consideration of application practice of conventional digital technology, application of general digitalisation system to adopt digitalisation of overall instrumentation control system containing safety protection system, and central instrumentation system (new type of instrumentation system) and to intend to further upgrade economics, maintenance, operability/monitoring under security of reliability/safety is planned. And, together with embodiment of construction program of the next-term plant, verification at the general digitalisation proto-system aiming at establishment of basic technology on the system is carried out. Then, here was described on abstract of the general digitalisation system and characteristics of a digital type safety protection apparatus to be adopted in the next-term plant. (G.K.)

  15. Satellite power system (SPS) initial insurance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The beginning of a process to educate the insurance industry about the Satellite Power System is reported. The report is divided into three sections. In the first section a general history describes how space risks are being insured today. This is followed by an attempt to identify the major risks inherent to the SPS. The final section presents a general projection of insurance market reactions to the Satellite Power System.

  16. Advanced Docking System With Magnetic Initial Capture

    Science.gov (United States)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  17. Operational development of small plant growth systems

    Science.gov (United States)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  18. Single Plant Root System Modeling under Soil Moisture Variation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  19. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  20. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    Directory of Open Access Journals (Sweden)

    Mariane Aparecida Nickele

    2012-07-01

    Full Text Available The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

  1. Diablo Canyon plant information management system and integrated communication system

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, J.W.; Groff, C.

    1990-06-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS.

  2. Effect of Initial Soluble Salt Composition of Saline Soil on Salinity Tolerance of Barley Plant

    Institute of Scientific and Technical Information of China (English)

    SHENQI-RONG; LIUZHAO-PU; 等

    1991-01-01

    A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.

  3. The renewable electric plant information system

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  4. Autonomous systems for plant protection

    DEFF Research Database (Denmark)

    Griepentrog, Hans W.; Ruckelshausen, Arno; Jørgensen, Rasmus Nyholm;

    2010-01-01

    Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples...... of autonomous operations related to crop protection probably commercially available in the near future. Scouting and monitoring together with the efficient application of chemicals or mechanical treatments are operations which can be successful automated. Drawbacks are that current systems are lacking robust...

  5. Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.

    Science.gov (United States)

    Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus

    2016-01-01

    Dodders (Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa. In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa. Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.

  6. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  7. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Science.gov (United States)

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  8. Establishment of Genetic Transformation System for Miscanthus sacchariflorus and Obtaining of Its Transgenic Plants

    Institute of Scientific and Technical Information of China (English)

    Yi Zili(易自力); Zhou Puhua; Chu Chengcai; Li Xiang; Tian Wenzhong; Wang Li; Cao Shouyun; Tang Zuoshun

    2004-01-01

    The initiation and regeneration system for embryogenic callus of Miscanthus sacchariflrus is established at very high frequency. Potato proteinaseⅡ(pinⅡ) genes are introduced into the callus of Miscanthus sacchariflorus and some transgenic plants are obtained by the particle bombardment transformation system. PCR and Southern analysis show that target genes are integrated into the genome of these transgenic plants.

  9. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  10. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Stephen M. [Sensortex, Inc., 515 Schoolhouse Road, Kennett Square, PA 19348 (United States)]. E-mail: smhess@sensortex.com; Albano, Alfonso M. [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States)

    2005-10-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries.

  11. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  12. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  13. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  14. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    Science.gov (United States)

    Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  15. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  16. Development of Information Management System for Plant Life Cycle Management

    Energy Technology Data Exchange (ETDEWEB)

    Byon, SuJin; Lee, SangHyun; Kim, WooJoong [KOREA HYDRO and NUCLEAR POWER CO. LTD, Daejeon (Korea, Republic of)

    2015-10-15

    The study subjects are S. Korean NPP(Nuclear Power Plant) construction projects. Design, construction, operations companies have different nuclear power plant construction project structures, and each company has its own Information Management System. In this study, the end user developed an Information Management System early in the project, and developed a management structure that systematically integrates and interfaces with information in each lifecycle phase. The main perspective of Information Management is moving from the existent document-centric management to the data-centric management. To do so, we intend to integrate information with interfaces among systems. Integrated information management structure and management system are essential for an effective management of the lifecycle information of nuclear power plants that have a lifespan over as much as 80 years. The concept of integration management adopted by the defence, ocean industries or various PLM solution providers is important. Although the NPP project has application systems in each key lifecycle phase, it is more effective to develop and use PLIMS in consideration of the interface and compatibility of information among systems. As an initial study for development of that integrated information management structure, this study is building the system and has interfaced it with a design-stage system.

  17. Mitochondria as a Possible Place for Initial Stages of Steroid Biosynthesis in Plants

    Directory of Open Access Journals (Sweden)

    Elena K. Shematorova

    2014-12-01

    Full Text Available With the aim of thorough comparison of steroidogenic systems of plants and animals, transgenic plants of Solanaceae family expressing CYP11A1 cDNA encoding cytochrome P450SCC of mammalian mitochondria were further analysed. Positive effect of CYP11A1 on resistance of the transgenic tobacco plants to the infection by fungal phytopathogene Botrytis cinerea was for the first time detected. Subtle changes in mitochondria of the transgenic Nicotiana tabacum plants expressing mammalian CYP11A1 cDNA were demonstrated by transmissive electron microscopy. The main components of the electron transfer chain of plant mitochondria were for the first time cloned and characterized. It was established that plants from the Solanacea family (tomato, tobacco and potato contain two different genes with similar exon-intron structures (all contain 8 exons encoding mitochondrial type ferredoxins (MFDX, and one gene for mitochondrial ferredoxin reductase (MFDXR. The results obtained point out on profound relatedness of electron transfer chains of P450-dependent monooxygenases in mammalian and plant mitochondria and support our previous findings about functional compatability of steroidogenic systems of Plantae and Animalia.

  18. ITER prototype fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Rodrigues, A.P.; Correia, M.; Batista, A. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Vega, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Ruiz, M.; Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Wallander, A.; Utzel, N.; Makijarvi, P.; Simrock, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Neto, A.; Alves, D.; Valcarcel, D.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Lousa, P.; Piedade, F.; Fernandes, L. [INOV, Lisbon (Portugal)

    2011-10-15

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  19. Model developed for an initiator event of loss of a system with five pumps shareable by two units of a plant. Comparative analysis of FCCs with simplified model APS; Modelo desarrollado para un suceso iniciador de perdida de un sistema con cinco bombas compartibles por las dos unidades de una plant. analisis comparativo de FCCs con modelo simplificado APS.

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lorenzo, M. A.; Perez Martin, F.

    2013-07-01

    In this paper is an analysis for a system with five pumps, each with 100% capacity, shared by two units of a plant, of which two are pre-assigned to each unit, one is common to both, and the possibility of assigning a pump of reserve of a unit to another unit. The purpose of this paper is to make a simplified model in which are taken into account all the possible combinations of independent failures and common cause, evaluating whether the inclusion in the complete model is required.

  20. Plant systems for recognition of pathogen-associated molecular patterns.

    Science.gov (United States)

    Postel, Sandra; Kemmerling, Birgit

    2009-12-01

    Research of the last decade has revealed that plant immunity consists of different layers of defense that have evolved by the co-evolutional battle of plants with its pathogens. Particular light has been shed on PAMP- (pathogen-associated molecular pattern) triggered immunity (PTI) mediated by pattern recognition receptors. Striking similarities exist between the plant and animal innate immune system that point for a common optimized mechanism that has evolved independently in both kingdoms. Pattern recognition receptors (PRRs) from both kingdoms consist of leucine-rich repeat receptor complexes that allow recognition of invading pathogens at the cell surface. In plants, PRRs like FLS2 and EFR are controlled by a co-receptor SERK3/BAK1, also a leucine-rich repeat receptor that dimerizes with the PRRs to support their function. Pathogens can inject effector proteins into the plant cells to suppress the immune responses initiated after perception of PAMPs by PRRs via inhibition or degradation of the receptors. Plants have acquired the ability to recognize the presence of some of these effector proteins which leads to a quick and hypersensitive response to arrest and terminate pathogen growth.

  1. Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants

    KAUST Repository

    Magana-Mora, Arturo

    2012-10-30

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. The Author(s) 2012. Published by Oxford University Press.

  2. Sexual Reproduction in Higher Plants Ⅰ: Fertilization and the Initiation of Zygotic Program

    Institute of Scientific and Technical Information of China (English)

    Yong-Feng Fan; Li Jiang; Hua-Qin Gong; Chun-Ming Liu

    2008-01-01

    Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca++ spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area.

  3. The System 80+ Standard Plant Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Turk, R.S.; Bryan, R.E. [ABB Combuions Engineering Nuclear Systems (United States)

    1998-07-01

    Historically, electric nuclear power plant owners, following the completion of construction and startup, have been left with a mountain of hard-copy documents and drawings. Hundreds of thousands of hours are spent searching for relevant documents and, in most cases, the documents found require many other documents and drawings to fully understand the design basis. All too often the information is incomplete, and eventually becomes obsolete. In the U.S., utilities spend millions of dollars to discover design basis information and update as-built data for each plant. This information must then be stored in an easily accessed usable form to assist satisfy regulatory requirements and to improve plant operating efficiency. ABB Combustion Engineering Nuclear Systems (ABB-CE) has an active program to develop a state-of-the-art Plant Information Management System (IMS) for its advanced light water reactor, the System 80+TM Standard Plant Design. This program is supported by ABB's Product Data Management (PDM) and Computer Aided Engineering (CAE) efforts world wide. This paper describes the System 80+ plant IMS and how it will be used during the entire life cycle of the plant. (author)

  4. Comparative analysis of contextual bias around the translation initiation sites in plant genomes.

    Science.gov (United States)

    Gupta, Paras; Rangan, Latha; Ramesh, T Venkata; Gupta, Mudit

    2016-09-07

    Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants.

  5. A dynamical systems model for nuclear power plant risk

    Science.gov (United States)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  6. Time to articulate a vision for the future of plant proteomics - A global perspective: An initiative for establishing the International Plant Proteomics Organization (INPPO).

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Job, Dominique; Zivy, Michel; Agrawal, Vishwanath P; Bradshaw, Ralph A; Dunn, Michael J; Haynes, Paul A; van Wijk, Klaas J; Kikuchi, Shoshi; Renaut, Jenny; Weckwerth, Wolfram; Rakwal, Randeep

    2011-05-01

    Given the essential role of proteomics in understanding the biology of plants, we are establishing a global plant proteomics organization to properly organize, preserve and disseminate collected information on plant proteomics. We call this organization 'International Plant Proteomics Organization (INPPO; http://www.inppo.com).' Ten initiatives of INPPO are outlined along with how to address them in multiple phases. As our vision is global, we sincerely hope the scientific communities around the world will come together to support and join INPPO.

  7. Beyond Cannabis: Plants and the Endocannabinoid System.

    Science.gov (United States)

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review.

  8. Effects of initial air removal methods on microorganisms and characteristics of fermented plant beverages.

    Science.gov (United States)

    Kantachote, Duangporn; Charernjiratrakul, Wilawan

    2008-01-15

    The effects of 3 different methods for removing the initial air on the properties of fermented plant beverages produced from phom-nang seaweed (Gracilaria fisheri) and wild forest noni (Morinda coreia Ham.) were investigated. Only method M which covered the space above the fermentation liquid with a water filled plastic bag produced no surface film of yeast, had the highest acidity and also antibacterial activity from both plants after 90 days of fermentation. However, the yeast count still exceeded the standard guidelines for plant beverages. The fermented beverage from wild forest noni showed more antibacterial activity against 3 of 4 pathogenic bacteria tested than that from the phomnang seaweed, probably for its higher levels of acidity and ethanol content. Lactic Acid Bacteria (LAB) isolated from the fermentation samples from days 1-5 using the method M from both fermented plant beverages were Leuconostoc mesenteroides supsp. mesenteroides and Leu. mesenteroides subsp. dextranicum while presence of Lactobacilus plantarum was only recorded at days 4-5 in the wild forest noni beverage. From days 6-14 the isolates were Lactobacillus plantarum, Lactobacillus fermentum and Lactobacillus brevis from wild forest noni beverage, whereas only L. brevis was not detected in the seaweed beverage. During days 21-45 both beverages had a similar LAB population of L. plantarum and L. brevis while L. coryniformis was only found in the wild forest noni beverage. Between days 60-90 in both plant beverages only L. plantarum and Lactobacillius sp. were detected.

  9. Positivity in the presence of initial system-environment correlation

    CERN Document Server

    Modi, Kavan; Aspuru-Guzik, Alán

    2012-01-01

    Dynamical maps can be nonpositive due to the constraints imposed by the initial system-environment correlation. We find the conditions for positivity and complete positivity of such dynamical maps by using the assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal and/or hide the nonpositivity of the assignment map. We discuss how this is related to many Markovian models.

  10. Observability at an initial state for polynomial systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2013-01-01

    We consider observability at an initial state for polynomial systems. When testing for local observability for nonlinear systems, the observability rank condition based on the inverse function theorem is commonly used. However, the rank condition is a sufficient condition, and we cannot test for glo

  11. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    Directory of Open Access Journals (Sweden)

    Chung-Ju Rachel Wang

    2014-09-01

    Full Text Available Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  12. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    Science.gov (United States)

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  13. Thermodynamics in nuclear power plant systems

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor powersystems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibilit

  14. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Science.gov (United States)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  15. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  16. Impacts of salt marsh plants on tidal channel initiation and inheritance

    Science.gov (United States)

    Schwarz, C.; Ye, Q. H.; Wal, D.; Zhang, L. Q.; Bouma, T.; Ysebaert, T.; Herman, P. M. J.

    2014-02-01

    At the transition between mudflat and salt marsh, vegetation is traditionally regarded as a sustaining factor for previously incised mudflat channels, able to conserve the channel network via bank stabilization following plant colonization (i.e., vegetation-stabilized channel inheritance). This is in contrast to recent studies revealing vegetation as the main driver of tidal channel emergence through vegetation-induced channel erosion. We present a coupled hydrodynamic morphodynamic plant growth model to simulate plant expansion and channel formation by our model species (Spartina alterniflora) during a mudflat-salt marsh transition with various initial bathymetries (flat, shoal dense, shoal sparse, and deep dense channels). This simulated landscape development is then compared to remote sensing images of the Yangtze estuary, China, and the Scheldt estuary in Netherlands. Our results propose the existence of a threshold in preexisting mudflat channel depth, which favors either vegetation-stabilized channel inheritance or vegetation-induced channel erosion processes. The increase in depth of preexisting mudflat channels favors flow routing through them, consequently leaving less flow and momentum remaining for vegetation-induced channel erosion processes. This threshold channel depth will be influenced by field specific parameters such as hydrodynamics (tidal range and flow), sediment characteristics, and plant species. Hence, our study shows that the balance between vegetation-stabilized channel inheritance and vegetation-induced channel erosion depends on ecosystem properties.

  17. An Initiative-Learning Algorithm Based on System Uncertainty

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun

    2005-01-01

    Initiative-learning algorithms are characterized by and hence advantageous for their independence of prior domain knowledge.Usually,their induced results could more objectively express the potential characteristics and patterns of information systems.Initiative-learning processes can be effectively conducted by system uncertainty,because uncertainty is an intrinsic common feature of and also an essential link between information systems and their induced results.Obviously,the effectiveness of such initiative-learning framework is heavily dependent on the accuracy of system uncertainty measurements.Herein,a more reasonable method for measuring system uncertainty is developed based on rough set theory and the conception of information entropy;then a new algorithm is developed on the bases of the new system uncertainty measurement and the Skowron's algorithm for mining propositional default decision rules.The proposed algorithm is typically initiative-learning.It is well adaptable to system uncertainty.As shown by simulation experiments,its comprehensive performances are much better than those of congeneric algorithms.

  18. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  19. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    Systems thinking is commonly applied to understand the complexities of human healthcare delivery. In contrast, plant health systems as an organising principle have evolved more recently from work with plant clinics as providers of plant healthcare services to farmers. As plant health systems evolve...... and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  20. Feedback system design with an uncertain plant

    Science.gov (United States)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  1. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  2. A hydroponic system for microgravity plant experiments

    Science.gov (United States)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  3. Could oxidative stress initiate programmed cell death in HIV infection? A role for plant derived metabolites having synergistic antioxidant activity.

    Science.gov (United States)

    Greenspan, H C; Aruoma, O I; Arouma, O

    1994-06-01

    Evidence supports the premise that a pro-oxidant condition exists in HIV-seropositive patients, a result of an overabundance in production of reactive oxygen forms combined with a multilevel deficiency in nutritional and metabolic sources of antioxidants. Apoptosis (a programmed cell death) is recognized as a possible pathway of immune cell loss in patients with HIV infection and AIDS. The cascade of events that results from 'oxidative stress' (OS) is markedly similar to that which can initiate apoptosis and includes oxidation of cellular membranes, alteration of metabolic pathways, disruption of electron transport systems, depletion of cellular ATP production, loss of Ca2+ homeostasis, endonuclease activation and DNA/chromatin fragmentation. Downstream events secondary to these effects may also play a role in activation of latent virus and subsequent viral replication. Primary and secondary metabolites found in plants act as synergistic antioxidants, and can protect plants from oxidation-induced cell death. Experiments have shown that some of these same metabolites can inhibit cell killing by HIV. Can these compounds be useful in inhibiting viral activation and the death of immune cells in HIV/AIDS through their synergistic antioxidant properties? A brief review of the evidence for OS in HIV is presented and the potential basis for OS playing a role in the initiation of cell death and viral replication is explored. The functional antioxidant activities of plant metabolites are illustrated and the use of these synergistic antioxidants from plants are proposed as a mechanism by which viral replication and cell killing in HIV infection can be inhibited.

  4. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  5. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  6. Initiating events study of the first extraction cycle process in a model reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renze; Zhang, Jian Gang; Zhuang, Dajie; Feng, Zong Yang [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

  7. System identification of the Arabidopsis plant circadian system

    Science.gov (United States)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  8. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  9. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  10. Time domain system identification of unknown initial conditions

    Institute of Scientific and Technical Information of China (English)

    SUNGWen-pei; MATZENVernonC.; SHIHMing-hsiang

    2004-01-01

    System identification is a method for using measured data to create or improve a mathematical model of the object being tested. From the measured data however, noise is noticed at the beginning of the response. One solution to avoid this noise problem is to skip the noisy data and then use the initial conditions as active parameters, to be found by using the system identification process. This paper describes the development of the equations for setting up the initial conditions as active parameters. The simulated data and response data from actual shear buildings were used to prove the accuracy of both the algorithm and the computer program, which include the initial conditions as active parameters. The numerical and experimental model analysis showed that the value of mass, stiffness and frequency were very reasonable and that the computed acceleration and measured acceleration matched very well.

  11. New initiation system for polymerization of acryl acid

    Institute of Scientific and Technical Information of China (English)

    LI Hai-pu; ZHONG Hong; CHEN Qi-yuan; YIN Zhou-lan

    2005-01-01

    The redox initiation system for polyacrylate sodium of high molecular mass was designed and its effect with varying component dosage on the degree of polymerization was investigated. The results show that the proper type and amount of inorganic salt, as well as amine initiator, are conductive to the increase of degree of polymerization. The fine ingredient of the initiation system is as follows:the dosages of amine, persulphate and inorganic salt are 0.75%, 0.10% and 1.00% by mass based on acryl acid respectively, the molar ratio of sulphite to the persulphate is 1:1. Under such conditions the degree of polyacrylate can reach 7.43×107 with a acceptable polymerization time for industrial production.

  12. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research, and in vegetative propagation of many plant species. The development...

  13. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research and in vegetative propagation of many plant species. The development of...

  14. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J S; Hrousis, C A

    2010-03-09

    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  15. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  16. 30 CFR 57.6501 - Nonelectric initiation systems.

    Science.gov (United States)

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Nonelectric Blasting-Surface and Underground § 57.6501 Nonelectric initiation systems. (a) When the... blasts, the trunkline layout shall be designed so that the detonation can reach each blasthole from...

  17. Management Control System Support of Initiatives for Disruptive Students

    Science.gov (United States)

    Scott, Colin

    2011-01-01

    Purpose: The purpose of the paper is to investigate the management control system (MCS) support of school initiatives to develop the school climate and to re-engage disruptive students. Design/methodology/approach: The paper adopts an approach of critical action research interviews with management and document reviews informed by Habermasian…

  18. Management Control System Support of Initiatives for Disruptive Students

    Science.gov (United States)

    Scott, Colin

    2011-01-01

    Purpose: The purpose of the paper is to investigate the management control system (MCS) support of school initiatives to develop the school climate and to re-engage disruptive students. Design/methodology/approach: The paper adopts an approach of critical action research interviews with management and document reviews informed by Habermasian…

  19. Field Guide to Plant Model Systems.

    Science.gov (United States)

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2012-10-01

    Full Text Available In initial ecosystems concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degraders' food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this regions' dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, mainly the amount of N stored in the litter material and its bioavailability for the degradation process and the development of microbial communities in the detritusphere and bulk soil. Whereas the degradation process of the L. corniculatus litter which had a low C/N ratio was fast and most pronounced changes in the microbial community structure were observed 1–4 weeks after litter addition, the degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred at between 4 and 30 weeks after litter addition to the soil. However for both litter materials a clear indication for the importance of fungi for the degradation process was observed both on the abundance level as well as on the level of 13C incorporation (activity.

  1. The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods

    Institute of Scientific and Technical Information of China (English)

    CONRAD LABANDEIRA

    2007-01-01

    The early fossil record of terrestrial arthropod herbivory consists of two pulses.The first pulse was concentrated during the latest Silurian to Early Devonian (417 to 403 Ma),and consists of the earliest evidence for consumption of sporangia and stems (and limited fungivore borings). Herbivorization of most of these tissues was rapid, representing 0 to 20 million-year (m.y.) lags from the earliest occurrences of these organs in the fossil record to their initial consumption (Phase 1). For approximately the next 75 m.y., there was a second,more histologically varied origination and expansion of roots, leaves, wood and seeds,whose earliest evidence for herbivorization occurred from the Middle-Late Mississippian boundary to the Middle Pennsylvanian (327 to 309 Ma). The appearance of this second herbivory pulse during the later Paleozoic (Phase 2) is accompanied by major lags of 98 to 54 m.y. between times of appearance of each of the four organ and tissue types and their subsequent herbivory. Both pulses provide a context for three emerging questions. First is an explanation for the contrast between the near instantaneous consumption of plant tissues during Phase 1, versus the exceptionally long lags between the earliest occurrences of plant tissues and their subsequent herbivorization during Phase 2. Second is the identity of arthropod herbivores for both phases. Third is the cause behind the overwhelming targeting of seed-fern plant hosts during Phase 2. Regardless of the answers to these questions, the trace fossil record of plant-arthropod associations provides primary ecological data that remain unaddressed by the body-fossil record alone.

  2. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  3. Initiating nuclear-chemical transformations in native systems: Phenomenology

    Science.gov (United States)

    Timashev, S. F.

    2016-10-01

    A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell's cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor-acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino-antineutrino pairs that are harmless to living organisms.

  4. Generalization versus specialization in plant pollination systems.

    Science.gov (United States)

    Johnson; Steiner

    2000-04-01

    The long-standing notion that most angiosperm flowers are specialized for pollination by particular animal types, such as birds or bees, has been challenged recently on the basis of apparent widespread generalization in pollination systems. At the same time, biologists working mainly in the tropics and the species-rich temperate floras of the Southern hemisphere are documenting pollination systems that are remarkably specialized, often involving a single pollinator species. Current studies are aimed at understanding: (1) the ecological forces that have favoured either generalization or specialization in particular lineages and regions; (2) the implications for selection on floral traits and divergence of populations; and (3) the risk of collapse in plant-pollinator mutualisms of varying specificity.

  5. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    Science.gov (United States)

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively.

  6. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, K. D.

    2002-02-25

    of issues across contract boundaries is a more difficult matter. This aspect, one of a seamless systems approach to the treatment of tank wastes at the Hanford site, is the focus of the Optimization Studies. This ''big O''Optimization of Life-Cycle operations is what is meant when the term ''optimization'' is used on the River Protection Project and initiatives cited in this paper. From the early contractor centric methods and processes used to move toward an integrated solution, through extensive partnering approaches, to the current quality initiatives with multi-organizational participation, significant progress is being made towards achieving the goal of truly integrated life-cycle optimization for the Department of Energy's River Protection Project and Waste Treatment Plant.

  7. The Danish SAR system: design and initial tests

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Christensen, Erik Lintz; Skou, Niels

    1991-01-01

    , its implementation, and its performance. They show how digital technology has been utilized to realize a very flexible radar with variable resolution, swath-width, and imaging geometry. The motion-compensation algorithms implemented to obtain the high resolution and the special features built...... into the system to ensure proper internal calibration are outlined. The data processing system, developed for image generation and quality assurance, is sketched, with special emphasis on the flexibility of the system......In January 1986, the design of a high-resolution airborne C -band synthetic aperture radar (SAR) started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system...

  8. Initial airworthiness determining the acceptability of new airborne systems

    CERN Document Server

    Gratton, Guy

    2015-01-01

    Designed as an introduction for both advanced students in aerospace engineering and existing aerospace engineers, this book covers both engineering theory and professional practice in establishing the airworthiness of new and modified aircraft. Initial Airworthiness includes information on: ·         how structural, handling, and systems evaluations are carried out; ·         the processes by which safety and fitness for purpose are determined; and ·         the use of both US and European unit systems Covering both civil and military practice and the current regulations and standards across Europe and North America, Initial Airworthiness will give the reader an understanding of how all the major aspects of an aircraft are certified, as well as providing a valuable source of reference for existing practitioners.

  9. Design of a requirements system for decommissioning of a nuclear power plant based on systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Choi, Jong won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The nuclear industry has required an advanced system that can manage decommissioning information ever since the Korean government decide to decommission the Gori No.1 nuclear power plant. The D and D division at KAERI has been developing a system that can secure the reliability and sustainability of the decommissioning project based on the engineering system of the KRR-2 (Korean Research Reactor-2). To establish a decommissioning information system, a WBS that needs to be managed for the decommissioning of an NPP has been extracted, and requirements management research composed of system engineering technology has progressed. This paper propose a new type of system based on systems engineering technology. Even though a decommissioning engineering system was developed through the KRR-2, we are now developing an advanced decommissioning information system because it is not easy to apply this system to a commercial nuclear power plant. An NPP decommissioning is a project requiring a high degree of safety and economic feasibility. Therefore, we have to use a systematic project management at the initial phase of the decommissioning. An advanced system can manage the decommissioning information from preparation to remediation by applying a previous system to the systems engineering technology that has been widely used in large-scale government projects. The first phase of the system has progressed the requirements needed for a decommissioning project for a full life cycle. The defined requirements will be used in various types of documents during the decommissioning preparation phase.

  10. Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    Rodrigo Amato Moreira

    2016-09-01

    Full Text Available The knowledge about the amount of nutrient uptake in pitaya plants helps the balanced fertilizer recommendation for the crop, providing adequate nutrition and contributing to the maximum expression of this species potential. This research was carried out in order to evaluate the growth, nutrient accumulation and efficiency of absorption, transportation and use of P by pitaya according to phosphorus fertilization. A randomized blocks design was used, with five doses of P (0 mg dm-3, 20 mg dm-3, 40 mg dm-3, 80 mg dm-3 and 160 mg dm-3 incorporated into the soil, with four replications, three pots per plot and one cutting per pot. Differences in the nutrient accumulation of all doses were evident in the pitaya shoots and roots, as well as in the efficiency of absorption, transport and use of P, according to phosphorus fertilization. The nutrient accumulation in the pitaya roots was ranked in the following order: N > K > Ca > S > P > Mg > Fe > Mn > Zn > B ≥ Cu. For the shoots, the order was: K > N > Ca > S > Mg > P > Mn > Fe > Zn > B ≥ Cu. The initial growth of pitaya plants was maximum with 81 mg dm-3 of P, in a Red-Yellow Dystrophic Latosol. The application of 44-67 mg dm3 of P to the soil promoted the highest accumulation of macro and micronutrients in the pitaya.

  11. Collectivity in small collision systems : an initial state perspective

    CERN Document Server

    Schlichting, Sören

    2016-01-01

    Measurements of multi-particle correlations in the collisions of small systems such as $p+p$, $p/d/^3He+A$ show striking similarity to the observations in heavy ion collisions. A number of observables measured in the high multiplicity events of these systems resemble features that are attributed to collectivity driven by hydrodynamics. However alternative explanations based on initial state dynamics are able to describe many characteristic features of these measurements. In this brief review we highlight some of the recent developments and outstanding issues in this direction.

  12. Towards an improved European plant germplasm system

    NARCIS (Netherlands)

    Frese, L.; Palmé, A.; Bülow, L.; Kik, C.

    2016-01-01

    This chapter focuses on recommendations addressing the main problems of managing ex situ plant genetic resources in Europe. Information on the plant genetic resources conservation and use problems in Europe are also presented.

  13. Wheels within wheels: the plant circadian system

    Science.gov (United States)

    Hsu, Polly Yingshan; Harmer, Stacey L.

    2014-01-01

    Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including: a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits. PMID:24373845

  14. Wheels within wheels: the plant circadian system.

    Science.gov (United States)

    Hsu, Polly Yingshan; Harmer, Stacey L

    2014-04-01

    Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.

  15. European initiatives to develop information systems in oceanography

    Science.gov (United States)

    Le Grand, P.

    2009-04-01

    Various initiatives are currently in preparation or ongoing at the European level to improve information systems in Earth Sciences and oceanographic systems are at the forefront of these efforts. Europe is playing a leading role in the Group on Earth Observation (GEO) that aims to implement the Global Earth Observation System of Systems (GEOSS). The GEO Architecture and Data Committee, oversees the development of the GEOSS Common Infrastructure (GCI) which consists of a web-based portal, a clearinghouse for searching data, information and services, registries containing information about GEOSS components and associated standards and best practices. This development is detailed in the various tasks of the GEO Work Plan . Several European projects in the marine domain funded under the research framework program participate in the development of the GEOSS. EMODNET is another initiative to develop a system that will allow a better identification and access to marine data that are being collected, that will permit the identification of data gaps and that will shape a data collection and monitoring infrastructure directly suited to multiple applications. A number of measures have already been taken at EU level - the INSPIRE Directive obliges Member States to facilitate discovery of data holdings, the Environmental Information Directive requires them to release the data when asked, the Public Sector Information Directive facilitates the re-use of public data and the revised Data Collection Regulation has improved the availability of fisheries data. Moreover, prototype marine data catalogues and quality procedures for measurement laboratories have been developed through successive EU research programmes. EMODNET is complementary to other EU initiatives in the marine domain. Parameters made available through EMODNET will facilitate the GMES marine core service which aims to deliver both short term and seasonal forecasts, hindcasts, nowcasts, and time series and climate

  16. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    Science.gov (United States)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include

  17. SUDBIOTECH: A Training Initiative in Plant Biotechnology Dedicated to Scientific Communities in Developing and Emerging Countries

    Directory of Open Access Journals (Sweden)

    Alain RIVAL

    2010-09-01

    , practical sessions, etc. SudBiotech relies on original research results, which support and illustrate the various different basic notions evoked during lectures. The case of the bio-production of high added value pharmaceutical products by genetically engineered cells or plants under confined condition is a good example of this integration. Our priority is to establish a long-term, continuous system for training and capacity building, based on appropriate tools for scientific communities in developing and emerging countries: training of PhD students, job opportunities in their native country/region, overseas training, access to scientific information and literature and access to funders and international networks. It is important to note that any training material which is produced under the framework of SudBiotech is graciously given without any Intellectual Property Rights to partner institutions, in order to constitute a local basis for training in Plant Biotechnologies in beneficiary countries.

  18. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  19. National Plant Germplasm System: Critical Role of Customer Service

    Science.gov (United States)

    The National Plant Germplasm System (NPGS) conserves plant genetic resources, not only for use by future generations, but for immediate use by scientists and educators around the world. With a great deal of interaction between genebank curators and users of plant genetic resources, customer service...

  20. Induced systemic resistance by plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Pelt, J.A. van; Verhagen, B.W.M.; Ton, J.; Wees, A.C.M. van; Léon-Kloosterziel, K.M.; Loon, L.C. van

    2003-01-01

    Rhizobacteria are present in large numbers on the root surface, where plant exudates and lysates provide nutrients. Selected strains of beneficial, plant growth-promoting rhizobacteria (PGPR) trigger a plant-mediated induced systemic resistance (ISR) response that is effective against a broad spectr

  1. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  2. Load averaging system for co-generation plant; Jikayo hatsuden setsubi ni okeru fuka heijunka system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1995-07-30

    MAZDA Motor Corp. planed the construction of a 20.5MW co-generation plant in 1991 for responding to an increase in power demand due to expansion of the Hofu factory. On introduction of this co-generation plant, it was decided that the basic system would adopt the following. (1) A circulating fluidized bed boiler which can be operated by burning multiple kinds of fuels with minimum environmental pollution. (2) A heat accumulation system which can be operated through reception of a constant power from electric power company despite a sudden and wide range change in power demand. (3) A circulating-water exchange heat recovery system which recovers exhaust heat of the turbine plant as the hot water to be utilized for heating and air-conditioning of the factory mainly in winter. Power demand in MAZDA`s Hofu factory changes 15% per minute within a maximum range from 20MW to 8MW. This change is difficult to be followed even by an oil burning boiler excellent in load follow-up. The circulating Fluidized bed boiler employed this time is lower in the follow-up performance than the oil boiler. For the newly schemed plant, however, load averaging system named a heat accumulation system capable of responding fully to the above change has been developed. This co-generation plant satisfied the official inspection before commercial operation according the Ministerial Ordinance in 1993. Since then, with regard to the rapid load following, which was one of the initial targets, operation is now performed steadily. This paper introduces an outline of the system and operation conditions. 10 refs.

  3. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  4. Abbreviations, acronyms, and initialisms frequently used by Martin Marietta Energy Systems, Inc.. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.T.

    1994-09-01

    Guidelines are given for using abbreviations, acronyms, and initialisms (AAIs) in documents prepared by US Department of Energy facilities managed by Martin Marietta Energy Systems, Inc., in Oak Ridge, Tennessee. The more than 10,000 AAIs listed represent only a small portion of those found in recent documents prepared by contributing editors of the Information Management Services organization of Oak Ridge National Laboratory, the Oak Ridge K-25 Site, and the Oak Ridge Y-12 Plant. This document expands on AAIs listed in the Document Preparation Guide and is intended as a companion document

  5. Suppression of Salicylic Acid-Mediated Plant Defense Responses During Initial Infection of Dyer's Woad by Puccinia thlaspeos

    Directory of Open Access Journals (Sweden)

    Elizabeth Thomas

    2011-01-01

    Full Text Available Problem statement: Puccinia thlaspeos is a microcyclic rust pathogen that is being investigated as a potential biocontrol agent of the noxious weed, dyer’s woad (Isatis tinctoria. Although, the initial events in the colonization of dyer’s woad by the rust pathogen has been elucidated using scanning electron microscopy and PCR, little is known regarding the susceptibility response of this plant to its rust pathogen. Approach: The induction kinetics and amplitude of the Salicylic Acid (SA-responsive Pathogenesis-Related (PR genes, PR-1, â-1, 3-glucanase and ChiA in the compatible interaction between the rust pathogen Puccinia thlaspeos and dyer’s woad were examined during the first 72 h of the infection process. Furthermore SA, an inducer of plant defense response was applied to infected plants in order to reprogram the host defense response at periods that coincided with key events of the infection process. Results: PR genes were upregulated following host penetration by the pathogen. A subsequent pathogen-mediated suppression of PR genes was seen that corresponded with haustorium formation. This was followed by a second up-regulation of these genes that was, in turn, followed by a second long-term pathogen-induced suppression of the defense response that appears to allow successful infections in dyer’s woad. Exogenous application of SA to uninoculated plants led to activation of defense responses by 8 h after treatment. In treatments where inoculated plants were treated with SA, responses differed depending on the timing of SA application. Application of SA at times corresponding to the pre-haustorial and posthaustorial phases of infection triggered an up-regulation of defense genes and increased protection against the pathogen. However, the application of SA during haustorium formation could not override the pathogen-mediated suppression of defense responses and consequently, did not offer the host increased protection. Conclusion

  6. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  7. Carrier system for a plant extract or bioactive compound from a plant

    DEFF Research Database (Denmark)

    2016-01-01

    This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound.......This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound....

  8. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  9. Afghanistan Digital Library Initiative: Revitalizing an Integrated Library System

    Directory of Open Access Journals (Sweden)

    Yan HAN

    2007-12-01

    Full Text Available This paper describes an Afghanistan digital library initiative of building an integrated library system (ILS for Afghanistan universities and colleges based on open-source software. As one of the goals of the Afghan eQuality Digital Libraries Alliance, the authors applied systems analysis approach, evaluated different open-source ILSs, and customized the selected software to accommodate users’ needs. Improvements include Arabic and Persian language support, user interface changes, call number label printing, and ISBN-13 support. To our knowledge, this ILS is the first at a large academic library running on open-source software.

  10. Dynamic response to initial stage blindness in visual system development.

    Science.gov (United States)

    Long, Erping; Zhang, Xiayin; Liu, Zhenzhen; Wu, Xiaohang; Tan, Xuhua; Lin, Duoru; Cao, Qianzhong; Chen, Jingjing; Lin, Zhuoling; Wang, Dongni; Li, Xiaoyan; Li, Jing; Wang, Jinghui; Li, Wangting; Lin, Haotian; Chen, Weirong; Liu, Yizhi

    2017-07-01

    Sensitive periods and experience-dependent plasticity have become core issues in visual system development. Converging evidence indicates that visual experience is an indispensable factor in establishing mature visual system circuitry during sensitive periods and the visual system exhibits substantial plasticity while facing deprivation. The mechanisms that underlie the environmental regulation of visual system development and plasticity are of great interest but need further exploration. Here, we investigated a unique sample of human infants who experienced initial stage blindness (beginning at birth and lasting for 2-8 months) before the removal of bilateral cataracts. Retinal thickness (RT), axial length (AL), refractive status, visual grating acuity and genetic integrity were recorded during the preoperative period or at surgery and then during follow-up. The results showed that the development of the retina is malleable and associated with external environmental influences. Our work supported that the retina might play critical roles in the development of the experience-dependent visual system and its malleability might partly contribute to the sensitive period plasticity. © 2017 The Author(s).

  11. Plant species in the kilimanjaro agroforestry system

    Energy Technology Data Exchange (ETDEWEB)

    O' kting' ati, A.; Maghembe, J.A.; Fernandes, E.C.M.; Weaver, G.H.

    1984-01-01

    An inventory of plant species was conducted on 30 farms, farm boundaries and homesteads in 6 villages in Hai District on the slopes of Mt. Kilimanjaro, Tanzania. Of 111 plant species identified, 53 were tree species, 29 food crop species, 21 non-woody plants of economic value and 8 weed species. Information on uses was obtained through interviews with farmers. Useful plants (most with 2 or more uses) were carefully chosen and closely intercropped on the same unit of land. Of the tree species, 90% were used for fuelwood, 30% for medicines, 25% for poles, 24% for shade, 23% for timber and 10% for fodder. These, and food, were the most important plant uses.

  12. The circadian system in higher plants.

    Science.gov (United States)

    Harmer, Stacey L

    2009-01-01

    The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.

  13. Understanding plant immunity as a surveillance system to detect invasion.

    Science.gov (United States)

    Cook, David E; Mesarich, Carl H; Thomma, Bart P H J

    2015-01-01

    Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.

  14. Formaldehyde removal by potted plant-soil systems.

    Science.gov (United States)

    Xu, Zhongjun; Wang, Li; Hou, Haiping

    2011-08-15

    Formaldehyde is a major indoor air pollutant. Formaldehyde removal from indoor air conduces to decrease the health risk for urban inhabitants. In this study, a dynamic chamber technique was employed to investigate formaldehyde removal by potted spider plant (Chlorphytum comosum), aloe (Aloe vera) and golden pothos (Epipremnum aureum) with potted soils. The results showed that the potted plant-soil systems could remove formaldehyde from air in a long time. The spider plant-soil system had the highest formaldehyde removal capacity compared with others. Higher metabolisms in plants and microorganisms in daytime may give a reasonable explanation for higher formaldehyde removal capacities for plant-soil systems in daytime. The order of formaldehyde removal capacity for the three plant species agreed well with the sequence of formaldehyde dehydrogenase activities from plant leaves. Formaldehyde removal by plant may be diffusion-limited rather than reaction-limited since the detached formaldehyde dehydrogenase activities from the leaves of the three plant species were higher than in vivo metabolic capacities. Formaldehyde in air can be largely absorbed and metabolized by the microorganisms in the potted soils indicating that further elevating formaldehyde removal capacity for plant-soil system will be realized by increasing exposed surface of potted soil.

  15. Pharmaceutically important plants used in traditional system of Arab ...

    African Journals Online (AJOL)

    Pharmaceutically important plants used in traditional system of Arab medicine for the treatment of livestock ailments ... African Journal of Biotechnology ... removal, deworming, carminative, paralysis and flatulence in Arab system of medicine.

  16. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  17. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  18. Initial Progress in Developing the New ICSU World Data System

    Science.gov (United States)

    Minster, J. H.; Capitaine, N.; Clark, D. M.; Mokrane, M.

    2009-12-01

    On October 24, 2008, at the 29th International Council for Science (ICSU) General Assembly in Maputo, Mozambique, a decision to form a new ICSU World Data System (WDS) was taken. The new ICSU World Data System (WDS) will replace the framework within which the current ICSU World Data Centers (WDCs) and services of the Federation of Astronomical and Geophysical data-analysis Services (FAGS) are currently organized. The transition from the old organizations to the new WDS was facilitated by the ICSU ad-hoc WDS Transition Team which developed a white paper with recommendations for the new WDS Scientific Committee (WDS-SC). The WDS-SC was appointed by ICSU and reports to the Executive Board and the General Assembly of ICSU. The WDSSC met for the first time in October 2009. WDS-SC shall be the governing body of WDS with the following tasks: 1) to ensure that the WDS clearly supports ICSU’s mission and objectives by ensuring the long-term stewardship and provision of quality-assessed data and data services to the international science community and other stakeholders; 2) to develop, and keep under continuous review, an implementation plan for the creation of the WDS by incorporating the ICSU WDCs, the Services of FAGS and a wide range of other data centers and services; 3) to define agreed standards, establish and oversee the procedures for the review and accreditation of existing and new facilities; 4) to monitor the geographic and disciplinary scope of the system and to develop strategies for the recruitment and establishment of new WDS facilities as necessary; 5) to consider resource issues and provide guidance on funding mechanisms for facilities within WDS when appropriate; 6) to develop strong cooperative links with the ICSU Strategic Coordinating Committee on Information and Data (SCCID);and 7) to cooperate closely with the ICSU Committee on Data for Science and Technology (CODATA). WDS development will proceed from these initial concepts: history and legacy of

  19. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  20. Initial operating experience of the 12-MW La Ola photovoltaic system.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  1. Impact of policy initiatives on civil registration system in haryana.

    Science.gov (United States)

    Singh, Pravin Kumar; Kaur, Manmeet; Jaswal, Nidhi; Kumar, Rajesh

    2012-04-01

    Despite the existence of Registration of Birth and Death Act (1969), Civil Registration System (CRS) in India registered only 68.3% of the births and 63.2% of the deaths. Hence, National Population Policy (2000) emphasized the need to improve registration of vital events. In 2005, Haryana initiated policy changes to enhance registration of vital events. We evaluated the impact of these policy changes on CRS in 2009. Records and reports of CRS were reviewed. On the basis of the birth and deaths reported by the Sample Registration System, the proportion of births and deaths registered by CRS were estimated using the projected population from 2001 Census. Before 2005, Police Stations were the registration centers in rural Haryana. On 1(st) January 2005, the birth and death registration was made the responsibility of Primary Health Centers (PHCs). Medical Officers at PHCs were designated as Registrar and Pharmacists as Sub-Registrar of Births and Deaths. Auxiliary Nurse Midwife and Anganwadi Workers facilitated the registration. Till 2004, the registration of births was stagnant at the level of 70% for several years, which increased to 95% by 2009. Similarly registration of death events increased from 73.5% to 92.1%. Haryana state is still to achieve complete registration of births and deaths, but certainly shift of registration from police to health department has strengthened the CRS.

  2. Impact of policy initiatives on civil registration system in Haryana

    Directory of Open Access Journals (Sweden)

    Pravin Kumar Singh

    2012-01-01

    Full Text Available Background: Despite the existence of Registration of Birth and Death Act (1969, Civil Registration System (CRS in India registered only 68.3% of the births and 63.2% of the deaths. Hence, National Population Policy (2000 emphasized the need to improve registration of vital events. In 2005, Haryana initiated policy changes to enhance registration of vital events. We evaluated the impact of these policy changes on CRS in 2009. Materials and Methods: Records and reports of CRS were reviewed. On the basis of the birth and deaths reported by the Sample Registration System, the proportion of births and deaths registered by CRS were estimated using the projected population from 2001 Census. Results: Before 2005, Police Stations were the registration centers in rural Haryana. On 1 st January 2005, the birth and death registration was made the responsibility of Primary Health Centers (PHCs. Medical Officers at PHCs were designated as Registrar and Pharmacists as Sub-Registrar of Births and Deaths. Auxiliary Nurse Midwife and Anganwadi Workers facilitated the registration. Till 2004, the registration of births was stagnant at the level of 70% for several years, which increased to 95% by 2009. Similarly registration of death events increased from 73.5% to 92.1%. Conclusion: Haryana state is still to achieve complete registration of births and deaths, but certainly shift of registration from police to health department has strengthened the CRS.

  3. Some features of secretory systems in plants.

    Science.gov (United States)

    Juniper, B E; Gilchrist, A J; Robins, R J

    1977-09-01

    Recent work on secretion in plants is reviewed, with emphasis on the anatomy and physiology of root cap cells in higher plants, the stalked glands of Drosera capensis, and the secretory mechanism of Dionaea muscipula. Cells of the root cap of higher plants switch from a geo-perceptive role to one of mucilage secretion at maturation. Features of this process, the role of the Golgi and the pathway for mucilage distribution are reviewed. In contrast, the stalked glands of the leaves of Drosera capensis are much longer lived and have a complex anatomy. The mechanisms for mucilage secretion, protein absorption and the role of the cell membranes in the internal secretion of the protein are described, using data from X-ray microscopv. The secretion of fluid and protein by Dionaea is stimulated by various nitrogen-containing compounds. Uric acid, often excreted by captured insects, is particularly effective in this respect.

  4. A Plant Damage State Early Warning System

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chih Yao; Chou, Hwai Pwu [National Tsing Hua University, Hsinchu (China)

    2014-08-15

    In case of a severe accident, operators need to follow the emergency operating procedures (EOPS) to limit the damage. In order to assist operators to face a lot of Plant Damage States (PDS) suddenly, we try to predict and identify the Plant Damage State (PDS) for early warning and decision making. In this study, Containment Event Tree (CET) is used in this event-oriented approach to help severe accident management. The Taipower Lungmen nuclear power station (LNPS), an advanced boiling water reactor, is chosen for case study. The LNPS full scope engineering simulator is used to generate the testing data for method development.

  5. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  6. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress.

  7. 75 FR 17760 - Endangered and Threatened Wildlife and Plants; Spectacled Eider (Somateria fischeri): Initiation...

    Science.gov (United States)

    2010-04-07

    ... is in danger of extinction throughout all or a significant portion of its range; and (C) Threatened... Fish and Wildlife Service Endangered and Threatened Wildlife and Plants; Spectacled Eider (Somateria... or endangered on the List of Endangered and Threatened Wildlife and Plants is accurate. We request...

  8. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  9. Dynamics of a plant-herbivore-predator system with plant-toxicity

    Science.gov (United States)

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  10. A systems approach to plant bioprocess optimization.

    Science.gov (United States)

    Cloutier, Mathieu; Chen, Jingkui; De Dobbeleer, Caroline; Perrier, Michel; Jolicoeur, Mario

    2009-12-01

    A dynamic model for plant cell metabolism was used as a basis for a rational analysis of plant production potential in in vitro cultures. The model was calibrated with data from 3-L bioreactor cultures. A dynamic sensitivity analysis framework was developed to analyse the response curves of secondary metabolite production to metabolic and medium perturbations. Simulation results suggest that a straightforward engineering of cell metabolism or medium composition might only have a limited effect on productivity. To circumvent the problem of the dynamic allocation of resources between growth and production pathways, the sensitivity analysis framework was used to assess the effect of stabilizing intracellular nutrient concentrations. Simulations showed that a stabilization of intracellular glucose and nitrogen reserves could lead to a 116% increase in the specific production of secondary metabolites compared with standard culture protocol. This culture strategy was implemented experimentally using a perfusion bioreactor. To stabilize intracellular concentrations, adaptive medium feeding was performed using model mass balances and estimations. This allowed for a completely automated culture, with controlled conditions and pre-defined decision making algorithm. The proposed culture strategy leads to a 73% increase in specific production and a 129% increase in total production, as compared with a standard batch culture protocol. The sensitivity analysis on a mathematical model of plant metabolism thus allowed producing new insights on the links between intracellular nutritional management and cell productivity. The experimental implementation was also a significant improvement on current plant bioprocess strategies.

  11. Parameterizing the soil - water - plant root system

    NARCIS (Netherlands)

    Feddes, R.A.; Raats, P.A.C.

    2004-01-01

    Root water uptake is described from the local scale, to the field scale and to the regional and global scales. The local macroscopic model can be incorporated in Soil-Plant-Atmosphere Continuum (SPAC) numerical models, like the SWAP, HYSWASOR, HYDRUS, ENVIRO-GRO and FUSSIM models. These SPAC models

  12. Use of expert systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  13. Allelophaty - the chemical information system in plants adaptation

    Directory of Open Access Journals (Sweden)

    Eugenia CHIRCA

    1985-08-01

    Full Text Available The plant, as a living system, is an informational system too, with transmission and reception of different messages between the individuals of the community in which is integrated. The most common and most efficient system in the plant kingdom is of chemical nature. Through this system energy and information are transmitted among individuals, or even communities, in order to ensure the homeostasis of the system. The study of these signals in the supraindividual level is designated as ecochemistry (Florkin, 1966 or ecological biochemistry (Schlee, 1981. Plant metabolic substance - especially those designed as "secondary" organic substances works as allelopathic information signalsin plant communities and function as stabilisers in a agiven community Owing to this chemical mediators the stability of the structure and the function in an ecosystem is granted. In industrialized societies a lot of pseudosignals of chemical nature may occur (pollution, pesticides, herbicides, fertilizers which may alter considerably the normal allelopathic relations. Research in this direction is almost neglected.

  14. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  15. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  16. Plutonium finishing plant safety systems and equipment list

    Energy Technology Data Exchange (ETDEWEB)

    Bergquist, G.G.

    1995-01-06

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

  17. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  18. The plant vascular system: Evolution, development and functions

    Science.gov (United States)

    William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...

  19. Nuclear power plant alarm systems: Problems and issues

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  20. Lupus Enteritis as an Initial Presentation of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Sisira Sran

    2014-01-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder which can affect multiple organs and clinical presentation is often a myriad of symptoms; therefore, the index of suspicion should rise when evaluating patients with multiorgan symptomatology. Lupus enteritis is a distinct subset of SLE, defined as either vasculitis or inflammation of the small bowel, with supportive image and/or biopsy findings. The clinical picture of lupus enteritis is often nonspecific, with mild to severe abdominal pain, diarrhea, and vomiting being the cardinal manifestations. Although considered a form of visceral or serosal vasculitis, lupus enteritis is seldom confirmed on histology, making computerized tomography (CT the gold standard for diagnosis. Lupus enteritis is generally steroid-responsive, and the route of administration is based on clinical status and organ involvement, with preference for intravenous (IV route in flares with significant tissue edema. The following case describes a young woman presenting with lupus enteritis and lupus panniculitis as an initial manifestation of SLE, the utilization of abdominal CT in diagnosis, and current treatment protocols used for lupus enteritis.

  1. Embolic Stroke as the Initial Manifestation of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Reshma M. Khan

    2015-01-01

    Full Text Available We present a case of a 21-year-old African-American female with no significant medical history, who presented to the emergency department with a one-week history of blurry and double vision. Ophthalmology evaluation revealed bilateral retinal artery occlusion. Further workup with imaging of the brain was consistent with an ischemic stroke. Hereditary hypercoagulable workup was unremarkable and initial testing for antiphospholipid syndrome was positive. She underwent transesophageal echocardiogram (TEE, which showed severe mitral regurgitation and thickening of mitral valve leaflets consistent with Libman-Sacks endocarditis. Autoimmune workup was positive for IF-ANA, anti-RNP, and anti-Smith antibody. She fulfilled 4/11 of the ACR criteria and met 5 of the SLICC (Systemic Lupus International Collaborating Clinics criteria for lupus (nonscaring alopecia, thrombocytopenia, positive ANA, and positive anti-Smith and positive anti-phospholipid antibodies. This case highlights the importance of early recognition of underlying connective tissue diseases and timely management of these diseases in young patients with no previous manifestations of diseases.

  2. DNA Extraction from Eriocaulon Plants and Construction of RAPD System

    Institute of Scientific and Technical Information of China (English)

    Xue Xian; Lin Shanzhi; Zhang Zhixiang

    2004-01-01

    There have been many arguments on the classification of Eriocaulon Linn. by morphology so far, and little is known about the use of molecular marker for genetic for genetic diversity of Eriocaulon plants. To apply the technique of molecular marker to the research of genetic diversity of Eriocaulon plants, the study of the extraction method of DNA from the Eriocaulon plants and the RAPD system are essential for researchers. In this paper, the extraction of genome DNA from the silica-gel-dried leaves of several species of Eriocaulon distributed in China was studied, and the best RAPD analysis technique condition of Eriocaulon plants was analyzed.

  3. Thermoeconomic Evaluation of Cogeneration Systems for a Chemical Plant

    Directory of Open Access Journals (Sweden)

    Silvio de Oliveira Júnior

    2001-09-01

    Full Text Available

    This paper presents the comparative exergy and thermoeconomic analysis of three cogeneration systems designed for a chemical plant. These systems must produce steam and electricity for the processes of the plant. These comparisons are developed for two scenarios: in the first one the systems generate steam and electricity for the plant and in the second one the systems generate steam and electricity for the plant and export electricity. The cogeneration systems are: a steam cycle with condensation-extraction steam turbine, a gas turbine based system and a combined cycle based system.

    The exergy analysis developed for the cogeneration systems evaluates the exergy efficiency and the exergy destroyed in each set of equipment, as well as the overall cogeneration plant performance. The overall exergy efficiency of the plants and the exergy efficiency of each set of equipment are defined as the ratio of the useful exergetic effect of the equipment/system to the consumed exergy. The importance of each set of equipment in the overall exergy efficiency is quantified by the use of the factor f, defined as the ratio of the supplied exergy in a particular set of equipment to the consumed exergy in the plant. Equality and extraction cost partition methods are utilised (in the steam and gas turbines in order to determine the production costs of steam (at 6 and 18 bar and electricity, for each one of the considered operating scenarios of the plants. This comparison indicates the feasibility of the cogeneration systems for each production scenario.

  4. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  5. Plant growth-promoting rhizobacteria and root system functioning

    Directory of Open Access Journals (Sweden)

    Jordan eVacheron

    2013-09-01

    Full Text Available The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, Plant Growth-Promoting Rhizobacteria (PGPR colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  6. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  7. Singular Perturbation Analysis of a Mode Initialization Algorithm for Simulating Mode Switching Systems, long version

    OpenAIRE

    Edström, Krister

    1998-01-01

    An initialization algorithm for the continuous states in mode switching systems is shown to give correct initial values. The mode switching systems are modeled with switched bond graphs, and the proof is based on singular perturbation theory.

  8. Singular Perturbation Analysis of a Mode Initialization Algorithm for Simulating Mode Switching Systems

    OpenAIRE

    Edström, Krister

    1998-01-01

    An initialization algorithm for the continuous states in mode switching systems is shown to give correct initial values. The mode switching systems are modeled with switched bond graphs, and the proof is based on the singular perturbation theory.

  9. Pacific Remote Islands MNM: Initial Survey Instructions for Terrestrial Plant Observations

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the terrestrial plant observations survey is to document vegetation species presence/absence and distribution on the island unit of the refuge. The...

  10. Initial assessment of the operability of the VHTR-HTSE nuclear hydrogen plant.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Nuclear Engineering Division

    2007-11-01

    The generation of hydrogen from nuclear power will need to compete on three fronts: production, operability, and safety to be viable in the energy marketplace of the future. This work addresses the operability of a coupled nuclear and hydrogen-generating plant while referring to other work for progress on production and safety. Operability is a measure of how well a plant can meet time-varying production demands while remaining within equipment limits. It can be characterized in terms of the physical processes that underlie operation of the plant. In this work these include the storage and transport of energy within components as represented by time constants and energy capacitances, the relationship of reactivity to temperature, and the coordination of heat generation and work production for a near-ideal gas working fluid. Criteria for assessing operability are developed and applied to the Very High Temperature Reactor coupled to the High Temperature Steam Electrolysis process, one of two DOE/INL reference plant concepts for hydrogen production. Results of preliminary plant control and stability studies are described. A combination of inventory control in the VHTR plant and flow control in the HTSE plant proved effective for maintaining hot-side temperatures near constant during quasi-static change in hydrogen production rate. Near constant electrolyzer outlet temperature is achieved by varying electrolyzer cell area to control cell joule heating. It was found that rates of temperature change in the HTSE plant for a step change in hydrogen production rate are largely determined by the thermal characteristics of the electrolyzer. It's comparatively large thermal mass and the presence of recuperative heat exchangers result in a tight thermal coupling of HTSE components to the electrolyzer. It was found that thermal transients arising in the chemical plant are strongly damped at the reactor resulting in a stable combined plant. The large Doppler reactivity

  11. Therapeutically important proteins from in vitro plant tissue culture systems.

    Science.gov (United States)

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production.

  12. Integrated modeling of natural and human systems - problems and initiatives

    Science.gov (United States)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  13. Photosynthesis and photoprotective systems of plants in response to ...

    African Journals Online (AJOL)

    Photosynthesis and photoprotective systems of plants in response to aluminum ... limited data are available on the effects of Al toxicity on leaf photosynthesis. ... ultrastructure, pigments and light absorption, water relations, photochemistry, lipid ...

  14. Reliability of emergency ac power systems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  15. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  16. Multimedia-based Medicinal Plants Sustainability Management System

    CERN Document Server

    Omogbadegun, Zacchaeus; Ayo, Charles; Mbarika, Victor; Omoregbe, Nicholas; Otofia, Efe; Chieze, Frank

    2011-01-01

    Medicinal plants are increasingly recognized worldwide as an alternative source of efficacious and inexpensive medications to synthetic chemo-therapeutic compound. Rapid declining wild stocks of medicinal plants accompanied by adulteration and species substitutions reduce their efficacy, quality and safety. Consequently, the low accessibility to and non-affordability of orthodox medicine costs by rural dwellers to be healthy and economically productive further threaten their life expectancy. Finding comprehensive information on medicinal plants of conservation concern at a global level has been difficult. This has created a gap between computing technologies' promises and expectations in the healing process under complementary and alternative medicine. This paper presents the design and implementation of a Multimedia-based Medicinal Plants Sustainability Management System addressing these concerns. Medicinal plants' details for designing the system were collected through semi-structured interviews and databas...

  17. A recombinase-mediated transcriptional induction system in transgenic plants

    DEFF Research Database (Denmark)

    Hoff, T; Schnorr, K M; Mundy, J

    2001-01-01

    We constructed and tested a Cre-loxP recombination-mediated vector system termed pCrox for use in transgenic plants. In this system, treatment of Arabidopsis under inducing conditions mediates an excision event that removes an intervening piece of DNA between a promoter and the gene to be expressed......-mediated GUS activation. Induction was shown to be possible at essentially any stage of plant growth. This single vector system circumvents the need for genetic crosses required by other, dual recombinase vector systems. The pCrox system may prove particularly useful in instances where transgene over...

  18. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  19. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  20. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  1. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    Science.gov (United States)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  2. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    Science.gov (United States)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  3. Construction of Initial Data Associated to the Characteristic Initial Value Problem for the Einstein-Yang-Mills-Higgs System

    CERN Document Server

    Tadmon, Calvin

    2012-01-01

    We show how to assign initial data for the characteristic Einstein-Yang-Mills-Higgs system on two intersecting smooth null hypersurfaces. We successfully adapt the hierarchical method set up by A. D. Rendall to solve the same problem for the Einstein equations in vacuum and with perfect fluid source. Unlike the work of Rendall, many delicate calculations and expressions are given in details so as to address, in a forthcoming work, the issue of global resolution of the characteristic initial value problem for the Einstein-Yang-Mills-Higgs system. The method obviously applies to the Einstein-Maxwell and the Einstein-scalar field models.

  4. Development of plant maintenance management system (pmms): a case study

    Science.gov (United States)

    Che Azhar, N. A.; Mansor, M. A.

    2013-12-01

    In large plant industry, it is not easy to maintain machine performance without using any method such as checklist system. Manual checklist is a common maintenance checklist used in industry. All machine, equipment and parts that need to be checked will be written down for the employee to do maintenance checks. Converting the manual checklist to the Plant Maintenance Management System (PMMS) can improve the way of employees work and make plant management easier. Therefore, a new system was designed to maintain the equipment so that the activities are more efficient and cost effective. The system consists of three frames that connect to each other. The frames divide to section, equipment and checklist. This system also builds to prevent data from arbitrarily changes. Only certain officers or staffs are permitted to make modifications to data. Using this system, a company can make the office environment a paperless environment.

  5. A Plant Documentation Information System Design

    OpenAIRE

    Bing Wang; Ma Feicheng

    2010-01-01

    Traditional systems do not have the descriptive ability to represent the complex, multi-facetednature of complex documentation structures such as engineering systems descriptions. This hasled to significant information management difficulties in maintaining documentation whichreflects, in a consistent and up-to-date way, the current state of the documentation systems. Theformal method has been widely recognized as a precise way to define the structure of a complexdocumentation system. In this...

  6. Bioelectric potentials in the soil-plant system

    Science.gov (United States)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  7. Analysis on energy consumption index system of thermal power plant

    Science.gov (United States)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  8. Application of Bioinformatics and Systems Biology in Medicinal Plant Studies

    Institute of Scientific and Technical Information of China (English)

    DENG You-ping; AI Jun-mei; XIAO Pei-gen

    2010-01-01

    One important purpose to investigate medicinal plants is to understand genes and enzymes that govern the biological metabolic process to produce bioactive compounds.Genome wide high throughput technologies such as genomics,transcriptomics,proteomics and metabolomics can help reach that goal.Such technologies can produce a vast amount of data which desperately need bioinformatics and systems biology to process,manage,distribute and understand these data.By dealing with the"omics"data,bioinformatics and systems biology can also help improve the quality of traditional medicinal materials,develop new approaches for the classification and authentication of medicinal plants,identify new active compounds,and cultivate medicinal plant species that tolerate harsh environmental conditions.In this review,the application of bioinformatics and systems biology in medicinal plants is briefly introduced.

  9. Chemotaxis signaling systems in model beneficial plant-bacteria associations.

    Science.gov (United States)

    Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M

    2016-04-01

    Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.

  10. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  11. [Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants].

    Science.gov (United States)

    Vinogradova, A P; Lebedeva, M A; Lutova, L A

    2015-01-01

    It is known that two key groups of plant hormones--auxins and cytokinins--play an important role in plant tumor development. The formation of Agrobacterium-induced tumors results from the horizontal transfer of bacterial oncogenes involved in the biosynthesis of these hormones in the plant genome. The role of transcriptional factors in plant tumor development is poorly investigated. It can be assumed that tumor development associated with abnormal cell proliferation can be controlled by the same set of transcription factors that control normal cell proliferation and, in particular, transcription factors that regulate meristem activity. In the present study, we analyzed the histological organization and distribution of proliferating cells in tumors induced by Agrobacterium tumefaciens on pea hypocotyls. In addition, the expression of a set of meristem-specific genes with Agrobacterium tumefaciens-induced tumor development was analyzed. In general, our results indicate that meristematic structures are present in A. tumefaciens-induced tumors and that the development of such tumors is associated with increased expression of a key gene regulating the root apical meristem--the WOX5 gene.

  12. Frugivory in Canopy Plants in a Western Amazonian Forest: Dispersal Systems, Phylogenetic Ensembles and Keystone Plants.

    Science.gov (United States)

    Stevenson, Pablo R; Link, Andrés; González-Caro, Sebastian; Torres-Jiménez, María Fernanda

    2015-01-01

    Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles) played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores.

  13. Frugivory in Canopy Plants in a Western Amazonian Forest: Dispersal Systems, Phylogenetic Ensembles and Keystone Plants.

    Directory of Open Access Journals (Sweden)

    Pablo R Stevenson

    Full Text Available Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores.

  14. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants.

    Science.gov (United States)

    Rausell, Antonio; Kanhonou, Rodolphe; Yenush, Lynne; Serrano, Ramon; Ros, Roc

    2003-05-01

    Protein synthesis is very sensitive to NaCl. However, the molecular targets responsible for this sensitivity have not been described. A cDNA library of the halotolerant plant sugar beet was functionally screened in a sodium-sensitive yeast strain. We obtained a cDNA clone (BveIF1A) encoding the eukaryotic translation initiation factor eIF1A. BveIF1A was able to partially complement the yeast eIF1A-deficient strain. Overexpression of the sugar beet eIF1A specifically increased the sodium and lithium salt tolerance of yeast. This phenotype was not accompanied by changes in sodium or potassium homeostasis. Under salt stress conditions, yeast cells expressing BveIF1A presented a higher rate of amino acid incorporation into proteins than control cells. In an in vitro protein synthesis system from wheat germ, the BveIF1A recombinant protein improved translation in the presence of NaCl. Finally, transgenic Arabidopsis plants expressing BveIF1A exhibited increased tolerance to NaCl. These results suggest that the translation initiation factor eIF1A is an important determinant of sodium tolerance in yeast and plants.

  15. Gravisensitivity of various host plant -virus systems in simulated microgravity

    Science.gov (United States)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  16. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  17. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  18. Co-adaptation mechanisms in plant-nematode systems.

    Science.gov (United States)

    Zinovieva, S V

    2014-01-01

    The review is aimed to analyze the biochemical and immune-breaking adaptive mechanisms established in evolution of plant parasitic nematodes. Plant parasitic nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The group of sedentary nematodes which are among the most damaging plant-parasitic nematodes cause the formation of special organs called nematode feeding sites in the root tissue called syncytium (cyst nematodes, CN; Heterodera and Globodera spp.) or giant cells (root-knot nematodes, RKN; Meloidogyne spp.). The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three esophageal gland cells that express products secreted into plant tissues through the stylet. Several gene products secreted by the nematode during parasitism have been identified. The current battery of candidate parasitism proteins secreted by nematodes to modify plant tissues for parasitism includes cell-wall-modifying enzymes, multiple regulators of host cell cycle and metabolism, proteins that can localize near the plant cell nucleus, potential suppressors of host defense, and mimics of plant molecules. Plants are usually able to recognize and react to parasites by activating various defense responses. When the response of the plant is too weak or too late, a successful infection (compatible interaction) will result. A rapid and strong defense response (e. g. due to the presence of a resistance gene) will result in the resistant (incompatible) reaction. Defense responses include the production of toxic oxygen radicals and systemic signaling compounds as well as the activation of defense genes that lead to the production of structural barriers or other toxins.

  19. The role of plants on isolation barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Link, S.O.; Downs, J.L. [Pacific Northwest Lab., Richland, WA (United States); Waugh, W.J. [UNC Chem-Nuclear Geotech, Grand Junction, CO (United States)

    1994-11-01

    Surface barriers are used to isolate buried wastes from the environment. Most have been built for short-term isolation. The need to isolate radioactive wastes from the environment requires that the functional integrity of a barrier be maintained for thousands of years. Barrier function strongly depends on vegetation. Plants reduce wind and water erosion and minimize drainage, but may transport contaminants if roots extend into buried wastes. Our review of the function of plants on surface barriers focuses on the role of plants across mesic to arid environments and gives special consideration to studies done at Hanford. The Hanford Barrier Development Program was created to design and test an earthen cover system to inhibit water infiltration, plant and animal intrusion, and wind and water erosion, while isolating buried wastes for at least 1000 years. Studies at the Hanford have shown that plants will significantly interact with the barrier. Plants transpire soil water back into the atmosphere. Deep-rooted perennials best recycle water; soil water may drain through the root zone of shallow-rooted annuals. Lysimeter studies indicate that a surface layer of fine soil with deep-rooted plants precludes drainage even with three times normal precipitation. The presence of vegetation greatly reduces water and wind erosion, but deep-rooted plants pose a threat of biointrusion and contaminant transport. The Hanford barrier includes a buried rock layer and asphalt layer to prevent biointrusion.

  20. A Scintillator Purification Plant and Fluid Handling System for SNO+

    CERN Document Server

    Ford, Richard J

    2015-01-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  1. Advanced system design for solar power plants

    Science.gov (United States)

    Cordes, V.; Korupp, K. H.

    The state-of-the-art in applied photovoltaic (PV) systems and system subcomponents is assessed. The control systems vary from microcomputers in large installations to analogous control units and simpler systems with increasingly less output. Module wiring aand various module connection techniques are reviewed, including the usage of shunt diodes to isolate malfunctioning modules. Junction boxes anad plug connections are cited as the most economic connection technique. Charge regulators are required to match the gassing voltage threshold with the temperature of the lead-acid batteries to optimize the charging as well as introduce a delay in the protective circuit against overdischarge. Inverters are necessarily matched to the load, and several types are discussed.

  2. DNA methylation as a system of plant genomic immunity.

    Science.gov (United States)

    Kim, M Yvonne; Zilberman, Daniel

    2014-05-01

    Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Normative Initiatives and Demilitarization: A Third System Approach.

    Science.gov (United States)

    Falk, Richard

    This paper explores and identifies initiatives in the struggle against militarization. It is one of a series of working papers commissioned by the World Order Models Project in its effort to stimulate research, education, dialogue, and political action aimed at contributing to a movement for a just world order. Taking into account the political…

  4. Determining effectiveness of the system monitoring initial processing of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, G.M.; Goryachev, V.M.; Nenyesyuk, A.A.; Tarnovskiy, Yu.P.

    1980-01-01

    This paper discusses methodology for determining effectivess of the processing subsystem that stabilizes qualitative factors of initially processed petroleum products. This methodology differs in the approach to the problem to evaluating effectiveness due to variability of light oil products in the raw material.

  5. SMALL HYDRO PLANTS IN LAND USE SYSTEM PLANNING IN POLAND

    Directory of Open Access Journals (Sweden)

    Anita Bernatek

    2014-10-01

    Full Text Available Small hydropower plants are present in the land use system planning in Poland. At the national level the important role of spatial planning in the development of renewable energy was highlighted, included small hydroplants. However, it seems that at the regional level this demand has not been realized. The necessity of developing small hydroplants as a renewable energy was highlighted, but negative environmental impact was not indicated. At local level legal instrument of small hydropower plants is specified.

  6. The effects of HGMFs on the plant gravisensing system

    Science.gov (United States)

    Kondrachuk, A. V.; Hasenstein, K. H.

    High Gradient Magnetic Fields (HGMFs) offer new opportunities for studying the gravitropic system of plants. However, it is necessary to analyze the influence that HGMF can have on cellular processes and structures that may not be related to amyloplasts displacement. This paper considers possible HGMF effects on plants, which may accompany HGMF stimulation of amyloplasts and contribute to the mechanisms of the HGMF-induced curvature.

  7. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  8. Automatic data acquisition system for a photovoltaic solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Barrio, C.L.; Guerra, A.G.

    1986-01-01

    An autonomous monitoring system for photovoltaic solar plants is described. The system is able to collect data about the plant's physical and electrical characteristics and also about the environmental conditions. It may present the results on a display, if requested, but its main function is measuring periodically a set of parameters, including several points in the panel I-V characteristics, in an unattended mode. The data are stored on a magnetic tape for later processing on a computer. The system hardware and software are described, as well as their main functions.

  9. Initial antimicrobial activity studies of plants of the riverside forests of the southern Uruguay River

    Directory of Open Access Journals (Sweden)

    Ana Bertucci

    2009-03-01

    Full Text Available Development of new antimicrobial compounds against different microorganisms is becoming critically important, as infectious diseases are still one of the leading causes of death in the world. Plants can be a useful source of these lead compounds. In this study, 66 extracts of 25 plants of the riverside forest of southern Uruguay River were studied for antimicrobial activity against Staphylococcus aureus, Listeria inocua, Escherichia coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Aspergillus niger and Candida albicans. Fifty-three of these extracts showed some kind of antimicrobial activity. Six of these (Eugenia mansoni, Eugenia repanda, Myrcianthes cisplatensis, Paullinia ellegans, Petunia sp and Ruprechtia laxiflora presented activity against Mycobacterium tuberculosis with MIC values as low as 50 μg/mL.

  10. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    OpenAIRE

    Chung-Ju Rachel Wang; Ching-Chih eTseng

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduc...

  11. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    resources as efficiently as possible. Using the advanced energy systems analysis tool EnergyPLAN and Denmark as a case, this analysis defines which of the three assessed types of CHP plants connected to district heating systems is most feasible in terms of total socioeconomic costs and biomass consumption...

  12. The plant management system of PP Vendsysselvaerket, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, P. [ABB Utility Automation GmbH, Minden (Germany); Larsen, J. [NV Kraft A/S Vendsysselvaerket, Vodskov (Denmark)

    2000-07-01

    The liberalization of the energy market in Denmark means growing importance of fuel economy, thermal efficiency, waste heat recovery, environmental compatibility and up-to-date control systems in power generation. Vendsysselvaerket Unit 3 that entered commercial operation in September 1998 is fulfilling these demands by using state-of-the-art control and plant management systems. (author)

  13. The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪

    2003-01-01

    The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.

  14. 75 FR 3190 - Endangered and Threatened Wildlife and Plants; Initiation of Status Review for Agave eggersiana

    Science.gov (United States)

    2010-01-20

    ... Status Review for Agave eggersiana and Solanum conocarpum AGENCY: Fish and Wildlife Service, Interior...), announce the initiation of a status review for Agave eggersiana (no common name) and Solanum conocarpum (no... best available scientific and commercial information, we request information on Agave eggersiana...

  15. Colonization of an empty island: how does a plant with a plastic gender system respond?

    Science.gov (United States)

    Philipp, M.; Adsersen, H.

    2014-12-01

    Honckenya peploides is the most common plant species on the island of Surtsey. It arrived in 1967 and after a juvenile period of 4 years it produced seeds and had increased its number from below 100 to several millions. Most populations had the individuals distributed in a regular or random pattern, suggesting that intraspecific competition is important. H. peploides has a subdioecious reproductive system consisting of pistillate plants producing capsules, and staminate plants delivering pollen. Some of the latter are in addition producing capsules and are denoted hermaphrodites. Populations at the south coast of Iceland had around equal numbers of pistillate and staminate plants. At Surtsey we found more pistillate plants, probably due to their higher water stress tolerance. We also found a tendency to a higher frequency of hermaphrodite plants with a higher number of seeds per capsule compared to populations at the south coast of Iceland and the nearby island of Heimaey. We suggest that this arises from the time right after the colonization of Surtsey where population size was small and the small generalist pollinators were not able to deposit sufficient pollen on pistillate plants, causing the hermaphrodites to have an advantage by being able to set seed after selfing. The result of this initial advantage of the hermaphrodites in combination with the inheritance of the sexes can still be seen due to the longevity of individuals. A generalized account of the colonization history of H. peploides is given.

  16. The effects of initial planting density on above- and below-ground biomass in a 25-year-old Fagus orientalis Lipsky plantation in Hopa, Turkey

    OpenAIRE

    Güner, Sinan; Yağcı, Volkan; Tilki, Fahrettin; Çelik, Nejat

    2010-01-01

    The aim of this study was to determine the influence of initial planting density on above- and below- ground biomass in 25 years old oriental beech stands located in Hopa, Artvin, Turkey. The initial spacings used in this study were 0.7 x 2.0 m ( high planting density) and 2.0 x 2.0 m (low planting density). To analyse the planting density response of trees of different sizes (diameter), the sample trees within each stand density class were classified into four dbh classes (dbh1, dbh2, dbh3, ...

  17. Design of Nuclear Power Plant Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang-ha; Jeong, Yong-hoon; Chang, Soon-heung [KAIST, Daejeon (Korea, Republic of); Lee, Song-kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2007-07-01

    Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability.

  18. Use of simulators for validation of advanced plant monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Uytterhoeven, G.; Vlaminck, M. De [Belgatom, Brussels (Belgium); Javaux, D. [Cognitive Ergonomics Work-Psychology Department, University of Liege, Sart-Tilman (Belgium)

    1999-07-01

    This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)

  19. Liposome-Based Delivery Systems in Plant Polysaccharides

    Directory of Open Access Journals (Sweden)

    Meiwan Chen

    2012-01-01

    Full Text Available Plant polysaccharides consist of many monosaccharide by α- or β-glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, antioxidation, antiaging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  20. Duckweed (Lemna minor as a model plant system for the study of human microbial pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals.

  1. Genetic Programming for Medicinal Plant Family Identification System

    Directory of Open Access Journals (Sweden)

    Indra Laksmana

    2014-11-01

    Full Text Available Information about medicinal plants that is available in text documents is generally quite easy to access, however, one needs some efforts to use it. This research was aimed at utilizing crucial information taken from a text document to identify the family of several species of medicinal plants using a heuristic approach, i.e. genetic programming. Each of the species has its unique features. The genetic program puts the characteristics or special features of each family into a tree form. There are a number of processes involved in the investigated method, i.e. data acquisition, booleanization, grouping of training and test data, evaluation, and analysis. The genetic program uses a training process to select the best individual, initializes a generate-rule process to create several individuals and then executes a fitness evaluation. The next procedure is a genetic operation process, which consists of tournament selection to choose the best individual based on a fitness value, the crossover operation and the mutation operation. These operations have the purpose of complementing the individual. The best individual acquired is the expected solution, which is a rule for classifying medicinal plants. This process produced three rules, one for each plant family, displaying a feature structure that distinguishes each of the families from each other. The genetic program then used these rules to identify the medicinal plants, achieving an average accuracy of 86.47%.

  2. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  3. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    Science.gov (United States)

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-07-08

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  4. A systems assessment of the five Starlite tokamak power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G.

    1996-07-01

    The ARIES team has assessed the power-plant attractiveness of the following five tokamak physics regimes: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Cost-based systems analysis of these five tokamak physics regimes suggests that an electric power plant based upon a reversed-shear tokamak is significantly more economical than one based on any of the other four physics regimes. Details of this comparative systems analysis are described herein.

  5. Systems assessment of the five Starlite tokamak power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The ARIES team has assessed the power-plant attractiveness of the following five tokamak physics regimes: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Cost-based systems analysis of these five tokamak physics regimes suggests that an electric power plant based upon a reversed-shear tokamak is significantly more economical than one based on any of the other four physics regimes. Details of this comparative systems analysis are described herein. 11 refs., 3 figs., 1 tab.

  6. A systems assessment of the five Starlite tokamak power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G.

    1996-07-01

    The ARIES team has assessed the power-plant attractiveness of the following five tokamak physics regimes: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Cost-based systems analysis of these five tokamak physics regimes suggests that an electric power plant based upon a reversed-shear tokamak is significantly more economical than one based on any of the other four physics regimes. Details of this comparative systems analysis are described herein.

  7. INCREASING METROLOGICAL AUTONOMY OF IN-PLANT MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mykola Mykyychuk

    2016-12-01

    Full Text Available The authors offer to solve the problem of providing traceability of measurements by increasing metrological autonomy of in-plant measuring systems. The paper shows the expedience of increasing metrological autonomy by creating a "virtual" reference. There are analysed possible variants of implementation of the "virtual" reference, which will provide high metrological stability of measurements at insignificant additional expenses. The authors point out the necessity of creation of universal technical and programmatic means of mutual comparison for the in-plant measuring systems to increase the reliability of measurements in the conditions of metrological autonomy.

  8. Highlights of the GURI hydroelectric plant computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Dal Monte, R.; Banakar, H.; Hoffman, R.; Lebeau, M.; Schroeder, R.

    1988-07-01

    The GURI power plant on the Caroni river in Venezuela has 20 generating units with a total capacity of 10,000 MW, the largest currently operating in the world. The GURI Computer Control System (GCS) provides for comprehensive operation management of the entire power plant and the adjacent switchyards. This article describes some highlights of the functions of the state-of-the-art system. The topics considered include the operating modes of the remote terminal units (RTUs), automatic start/stop of generating units, RTU closed-loop control, automatic generation and voltage control, unit commitment, operator training stimulator, and maintenance management.

  9. Operational energy performance assessment system of municipal wastewater treatment plants.

    Science.gov (United States)

    Yang, Lingbo; Zeng, Siyu; Chen, Jining; He, Miao; Yang, Wan

    2010-01-01

    Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.

  10. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  11. Plant-wide performance optimisation – The refrigeration system case

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Green, Torben; Razavi-Far, Roozbeh

    2012-01-01

    This paper investigates the problem of plant-wide performance optimisation seen from an industrial perspective. The refrigeration system is used as a case study, because it has a distributed control architecture and operates in steady state conditions, which is common for many industrial applicat......This paper investigates the problem of plant-wide performance optimisation seen from an industrial perspective. The refrigeration system is used as a case study, because it has a distributed control architecture and operates in steady state conditions, which is common for many industrial...

  12. Methodological aspects of systemic designing of foundry plants

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2008-10-01

    Full Text Available An approach is attempted to systematise the systemic research. A set of hypotheses are formulated, defining how a conceptual design of afoundry plant should be developed and improved when it is investigated as a system. The methodology aims to eliminate the particular approach to design to be replaced by integral design. The need of integral design seems a logical consequence of a transition from taskoriented design to situational design. The methodology outlined here offers an innovative and modern approach to engineering design, particularly in foundry plant design.

  13. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    Science.gov (United States)

    Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.

    1989-01-01

    This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  14. Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity.

    Science.gov (United States)

    Shahid, Muhammad; Ferrand, Emmanuel; Schreck, Eva; Dumat, Camille

    2013-01-01

    Zirconium (Zr) is a transition metal that has both stable and radioactive isotopes.This metal has gained significant attention as a major pollutant of concern, partly because it has been prominent in the debate concerning the growing anthropogenic pressure on the environment. Its numerous past and present uses have induced significant soil and water pollution. Zr is generally considered to have low mobility in soils. The behavior of Zr particularly depends on the characteristics of the media in which it exists, and even its presence in the biosphere as a contaminate may affect its behavior. In this chapter, we describe the relationship between the behavior of Zrand its speciation in soils, its uptake and accumulation by plants, its translocation and toxicity inside plants, and mechanisms by which plants detoxify it.Zr is abundant and occurs naturally in the earth's crust. Zr emissions to the atmosphere are increasing from anthropogenic activities such as its use in industry and nuclear reactors. Zr forms various complexes with soil components, which reduces its soil mobility and phytoavailabilty. The mobility and phytoavailabilty of Zr in soil depend on its speciation and the physicochemical properties of soil that include soil pH, texture, and organic contents. Despite having low soil mobility and phytoavailability,amounts of Zr are absorbed by plants, mainly through the root system and can thereby enter the food chain.After plant uptake, Zr mainly accumulates in root cells. Zr does not have any known essential function in plant or animal metabolism. Although little published data are available, we conclude that the phytotoxicity of Zr is generally low.Notwithstanding, Zr can significantly reduce plant growth and can affect plantenzyme activity. When exposed to Zr-induced toxicity, plants possess numerous defense mechanisms to cope with the toxicity. Such strategies include Zr sequestration in plant roots and activation of various antioxidants. Because Zr may have

  15. Cardiac tamponade as an initial manifestation of systemic lupus erythematosus.

    Science.gov (United States)

    Carrion, Diego M; Carrion, Andres F

    2012-06-12

    Clinical manifestations of pericardial disease may precede other signs and symptoms associated with systemic lupus erythematosus. Although pericardial effusion is one of the most common cardiac problems in patients with systemic lupus erythematosus, haemodynamically significant effusions manifesting as cardiac tamponade are rare and require prompt diagnosis and treatment.

  16. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-05-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  17. An initial bibliometric analysis and mapping of systems engineering research

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2016-07-01

    Full Text Available methods and tools from business and social sciences are required to address all the issues in systems engineering. This paper performs a bibliometric analysis on the Systems Engineering journal from INCOSE to capture and discuss the status and trends...

  18. Hardware and Initial Beam Commissioning of the LHC RF Systems

    CERN Document Server

    Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F

    2008-01-01

    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.

  19. Middleware to integrate heterogeneous Learning Management Systems and initial results

    Directory of Open Access Journals (Sweden)

    J. A. Hijar Miranda

    2014-10-01

    Full Text Available The use of the Learning Management Systems (LMS has been increased. It is desirable to access multiple learning objects that are managed by Learning Management Systems. The diversity of LMS allow us to consider them as heterogeneous systems; each ones with their own interface to manage the provided functionality. These interfaces can be Web services or calls to remote objects. The functionalities offered by LMS depend on their user roles. A solution to integrate diverse heterogeneous platforms is based on a middleware architecture. In this paper, a middleware architecture is presented to integrate different Learning Management Systems. Furthermore, an implementation of the proposed middleware is presented. This implementation integrates two different Learning Management Systems, using Web services and XML-RPC protocols to access student-role users capabilities. The result is a transparent layer that provides access to LMS contents.

  20. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  1. Plant disease management in organic farming systems.

    Science.gov (United States)

    van Bruggen, Ariena H C; Gamliel, Abraham; Finckh, Maria R

    2016-01-01

    Organic farming (OF) has significantly increased in importance in recent decades. Disease management in OF is largely based on the maintenance of biological diversity and soil health by balanced crop rotations, including nitrogen-fixing and cover crops, intercrops, additions of manure and compost and reductions in soil tillage. Most soil-borne diseases are naturally suppressed, while foliar diseases can sometimes be problematic. Only when a severe disease outbreak is expected are pesticides used that are approved for OF. A detailed overview is given of cultural and biological control measures. Attention is also given to regulated pesticides. We conclude that a systems approach to disease management is required, and that interdisciplinary research is needed to solve lingering disease problems, especially for OF in the tropics. Some of the organic regulations are in need of revision in close collaboration with various stakeholders.

  2. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  3. The Plant Vascular System: Evolution, Development and Functions

    Institute of Scientific and Technical Information of China (English)

    William J.Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yk(a) Helariutta; Xin-Qiang He

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology,in general,through its role in facilitating the development of plants with increased stature,photosynthetic output,and ability to colonize a greatly expanded range of environmental habitats.Recently,considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system.In this review,we first examine the evolutionary events that gave rise to the tracheophytes,followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms.The two essential functions performed by the vascular system,namely the delivery of resources (water,essential mineral nutrients,sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed.Here,we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem.Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental,physiological and defense-related processes,at the whole-plant level.A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology.Finally,areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.

  4. Increasing flexibility of coal power plant by control system modifications

    Directory of Open Access Journals (Sweden)

    Marušić Ante

    2016-01-01

    Full Text Available Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible “bottlenecks” are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.

  5. Sex determination in flowering plants: papaya as a model system.

    Science.gov (United States)

    Aryal, Rishi; Ming, Ray

    2014-03-01

    Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants.

  6. Standardization of Social Credit System Initiated in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Introduction The current government advances that the order of market economy should be standardized and the social credit system of market economy in modern times should be established and completed. The social credit system should be formed on the basis of property right, supported by moral and high consciousness of social credit. Therefore, the basic framework and operation mechanism of the standards system for social credit will be established in 5 years in China in order to make standards play an important role in a regular market and the aspect of credit management, to improve administration's compliance with the regulation, and to facilitate the market economic order.

  7. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  8. Initial-Value Problem of a Coupled Dispersionless System: Dynamical System Approach

    Institute of Scientific and Technical Information of China (English)

    Kuetche Kamgang Victor; Gambo Betchewe; Bouetou Bouetou Thomas; Timoleon Crepin Kofane

    2009-01-01

    We investigate the dynamical behaviour of a coupled dispersionlees system (CDS) by solving its initial-value problem following a dynamical system approach.As a result,we unearth a typical miscellaneous travelling waves including the localized and periodic ones.We also investigate the energy density of such waves and find that under some boundary conditions,the localized waves moving towards positive direction are more stable than the periodic waves which on contrary stand for the most stable travelling waves in another situation of boundary conditions.

  9. MultiCASE Expert Systems and the REACH Initiative.

    Science.gov (United States)

    Saiakhov, Roustem D; Klopman, Gilles

    2008-01-01

    ABSTRACT This article is a review of the MultiCASE Inc. software and expert systems and their use to assess acute toxicity, mutagenicity, carcinogenicity, and other health effects. It is demonstrated that MultiCASE expert systems satisfy the guidelines of the Organisation for Economic Cooperation and Development (OECD) principles and that the portfolio of available endpoints closely overlaps with the list of tests required by REACH.

  10. Influence of changes in initial conditions for the simulation of dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kotyrba, Martin [Department of Informatics and Computers, University of Ostrava, 30 dubna 22, Ostrava (Czech Republic)

    2015-03-10

    Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will be presented for the simulation of Lorenz system.

  11. New model concepts for dynamic plant uptake and mass flux estimates in the soil-plant-air system

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...... be coupled to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out in order to estimate chemical concentrations in the soil-plant-air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  12. Performance limitations for networked control systems with plant uncertainty

    Science.gov (United States)

    Chi, Ming; Guan, Zhi-Hong; Cheng, Xin-Ming; Yuan, Fu-Shun

    2016-04-01

    There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.

  13. Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae).

    Science.gov (United States)

    Mantegazza, Raffaella; Möller, Michael; Harrison, C Jill; Fior, Simone; De Luca, Chiara; Spada, Alberto

    2007-02-01

    In common with most Old World Gesneriaceae; Streptocarpus Lindl. shows anisocotylous growth, i.e., the continuous growth of one cotyledon after germination. Linked to this phenomenon is an unorthodox behaviour of the shoot apical meristem (SAM) that determines the growth pattern of acaulescent species (subgenus Streptocarpus). In contrast caulescent species develop a conventional central post-embryonic SAM (mainly subgenus Streptocarpella). We used S. rexii Lindl. as a model to investigate anisocotyly and meristem initiation in Streptocarpus by using histological techniques and analyses of the expression pattern of the meristematic marker SrSTM1 during ontogeny. In contrast to Arabidopsis thaliana (L.) Heynh., S. rexii does not establish a SAM during embryogenesis, and the first evidence of a SAM-like structure occurs during post-embryonic development on the axis (the petiolode) between the two cotyledons. The expression pattern of SrSTM1 suggests a function in maintaining cell division activity in the cotyledons before becoming localized in the basal meristem, initially at the proximal ends of both cotyledons, later at the base of the continuously growing macrocotyledon, and the groove meristem on the petiolode. The latter is equivalent to a displaced SAM seemingly originating de novo under the influence of endogenous factors. Applied cytokinin retains SrSTM1expression in the small cotyledon, thus promoting isocotyly and re-establishment of a central post-embryonic SAM. Hormone-dependent delocalization of the process of meristem development could underlie anisocotyly and the unorthodox SAM formation in Streptocarpus.

  14. Red/near-infrared reflectance sensor system for detecting plants

    Science.gov (United States)

    Von Bargen, Kenneth; Meyer, George E.; Mortensen, David A.; Merritt, Steven J.; Woebbecke, David M.

    1993-05-01

    Growing plants, soil types, and surfaces and residues on a soil surface have distinct natural light reflectances. These reflectance characteristics have been determined using current spectroradiometry technology. Detection of plants is possible based upon the distinct reflectance characteristics of plants, soil, and residues. An optical plant reflectance sensor was developed which utilizes a pair of red and near infrared sensitive photodetectors to measure the radiancy from the plant and soil. Another pair of sensors measures radiancy from a highly radiant reference surface to accommodate varying intensities of the natural light. The ratio of the target and reference radiancies is the target reflectance. Optical filters were used to select the spectral bandwidth sensitivities for the red and NIR photodetectors. The reflectance values were digitized for incorporation into a normalized difference index in order to provide a stronger indication that a live plant is present within the field of view of the sensor. This sensor system was combined with a microcontroller for activating a solenoid controlled spray nozzle on a single unit prototype spot agricultural sprayer.

  15. Aplicação tardia de glyphosate e estande e desenvolvimento inicial do arroz em sistema de cultivo mínimo Delayed application of glyphosate and stand and initial growth of rice plants (Oryza sativa under a minimum tillage system

    Directory of Open Access Journals (Sweden)

    C.A.C. Crusciol

    2002-04-01

    Full Text Available O controle de plantas daninhas na cultura do arroz é ainda um problema, mesmo em cultivo mínimo, em razão do revolvimento do solo na linha de semeadura, que proporciona o reaparecimento de infestantes. Assim, objetivou-se estudar o efeito do atraso da aplicação de glyphosate sobre a formação do estande e o desenvolvimento inicial das plantas de arroz cv. IAC 102 irrigado por inundação. O experimento foi conduzido sob túnel plástico, em caixas d'água de 500 L, contendo NEOSSOLO FLÚVICO Ta Eutrófico. O delineamento experimental foi o de blocos casualizados, com quatro repetições. Os tratamentos consistiram da aplicação de glyphosate: seis horas antes da semeadura do arroz (testemunha; no início da emergência; três dias após a emergência; e seis dias após, sem e com lâmina d'água. A dose do herbicida foi de 1.920 g i.a. ha-1. Para todas as variáveis analisadas houve efeito significativo dos tratamentos; aos 42 dias após a emergência, constatou-se que a testemunha foi estatisticamente superior, na formação do estande, na altura de plantas, no comprimento de raiz e na massa seca das partes aérea e de raiz, aos demais tratamentos em que ocorreram atrasos na aplicação do glyphosate.Weed control is still one of the most important problems of rice production, even under a reduced-tillage system. The purpose of this research was to study the effect of delayed application of glyphosate on paddy rice cv. IAC 102. The experiment was conducted under plastic tunnels with rice plants growing in water tanks of 500 liters of capacity, containing Alluvial soil. Treatments consisted of glyphosate application on the soil surface six hours before sowing, (control at seedling emergence, three days after, and six days after, combined or not with water flooding. The experimental design was a randomized block with four replications and the herbicide dosage was 1,920 g a.i. ha-1. There was a significant effect of the treatments on the

  16. Initial results for compressive sensing in electronic support receiver systems

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-04-01

    Full Text Available of 80 Gb/s which is 25% more than the optimistic assumption of 64 Gb/s for the fastest Serial RapidIO line. This means that data will take 25% longer to read from memory than it took to write into memory, so the above example will only be sampling 44... of compressive sensing are considered in Section V showing that real-time operation is possible. Finally, a brief conclusion and suggestions for future research are provided in Section VI. II. DATA RATES OF MODERN ES SYSTEMS AND THEIR EFFECT ON SYSTEM...

  17. Initial Performance of the Keck AO Wavefront Controller System

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E M; Acton, D S; An, J R; Avicola, K; Beeman, B V; Brase, J M; Carrano, C J; Gathright, J; Gavel, D T; Hurd, R L; Lai, O; Lupton, W; Macintosh, B A; Max, C E; Olivier, S S; Shelton, J C; Stomski, P J; Tsubota, K; Waltjen, K E; Watson, J A; Wizinowich, P L

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.

  18. Rapid evolution of manifold CRISPR systems for plant genome editing

    Directory of Open Access Journals (Sweden)

    Yiping Qi

    2016-11-01

    Full Text Available Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9’s utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  19. Plant-wide performance optimisation – The refrigeration system case

    DEFF Research Database (Denmark)

    Green, Torben; Razavi-Far, Roozbeh; Izadi-Zamanabadi, Roozbeh;

    2012-01-01

    This paper investigates the problem of plant-wide performance optimisation seen from an industrial perspective. The refrigeration system is used as a case study, because it has a distributed control architecture and operates in steady state conditions, which is common for many industrial applicat...

  20. Voltage regulator placement in radial distribution system using plant ...

    African Journals Online (AJOL)

    user

    Keywords: Plant Growth Simulation Algorithm (PGSA), Radial Distribution Systems (RDS), ... branches as well as load distribution and time variation and handles fast as a ... 1985a, 1985b and 1985c) deals with the determination of the optimal ..... that is called the preferential growth node will take priority of growing a new ...

  1. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  2. Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing

    Science.gov (United States)

    Lowder, Levi; Malzahn, Aimee; Qi, Yiping

    2016-01-01

    Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9's utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities, and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins. PMID:27895652

  3. Understanding plant immunity as a surveillance system to detect invasion

    NARCIS (Netherlands)

    Cook III, D.E.; Mesarich, C.H.; Thomma, B.P.H.J.

    2015-01-01

    Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in

  4. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  5. Seismic qualification of PWR plant auxiliary feedwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14.

  6. Multimedia-based Medicinal Plants Sustainability Management System

    Directory of Open Access Journals (Sweden)

    Zacchaeus Omogbadegun

    2011-09-01

    Full Text Available Medicinal plants are increasingly recognized worldwide as an alternative source of efficacious and inexpensive medications to synthetic chemo-therapeutic compound. Rapid declining wild stocks of medicinal plants accompanied by adulteration and species substitutions reduce their efficacy, quality and safety. Consequently, the low accessibility to and non-affordability of orthodox medicine costs by rural dwellers to be healthy and economically productive further threaten their life expectancy. Finding comprehensive information on medicinal plants of conservation concern at a global level has been difficult. This has created a gap between computing technologies' promises and expectations in the healing process under complementary and alternative medicine. This paper presents the design and implementation of a Multimedia-based Medicinal Plants Sustainability Management System addressing these concerns. Medicinal plants' details for designing the system were collected through semi-structured interviews and databases. Unified Modelling Language, Microsoft-Visual-Studio.Net, C#3.0, Microsoft-Jet-Engine4.0, MySQL, Loquendo Multilingual Text-to-Speech Software, YouTube, and VLC Media Player were used.

  7. Two patients with osteoporosis : initial presentation of systemic mastocytosis

    NARCIS (Netherlands)

    Donker, Marjolein L.; Bakker, Nicolaas A.; Jaspers, Wim J. M.; Verhage, Albert H.

    2008-01-01

    In two patients with osteoporosis, systemic mastocytosis ultimately turned out to be the underlying disease. Both patients had a history of anaphylactic reactions caused by wasp stings but did not have any skin or other symptoms. This observation reflects the need for careful history taking and phys

  8. Pericarditis as initial clinical manifestation of systemic lupus ...

    African Journals Online (AJOL)

    4. 123. CASE REPORT. The most common diagnostic features of systemic lupus .... cytokines, namely interleukins (IL-1β, IL-6, IL-10), tumour necrosis factor alpha .... Clin Rev Allergy. Immunol 2010;39:78-84. 4. Klein-Gitelman MS, Miller ML.

  9. The Battle Command Sustainment Support System: Initial Analysis Report

    Science.gov (United States)

    2016-09-01

    data.  Replica of Joint- Automatic Identification technology (J-AIT) database is stored on the NEDP Oracle database.  Materialized view of the...computing environment (CPCE) Command post client Battle command sustainment support System (BCS3) Logistics ...Overview 1 Effort Summary 1 Potential Roadblocks 2 National Enterprise Data Portal Analysis 2 Feed Dependencies 3 Data Feeds 3 Logistics

  10. Modeling of wind-initiated liberation of fungal propagules from host plant leaves

    Science.gov (United States)

    Gonzalinajec, Trevor

    2014-11-01

    Successful airborne propagule dispersal must begin with liberation into the air. The physical shedding mechanism of airborne propagules in the 100--250 μm size range are not well understood. Many fungal plant pathogens have propagules in this size range that are shed from the bottom of infected leaves. If turbulent air flow is sufficient to liberate the sporocarps of fungi from leaves then the aerodynamic forces exerted must be sufficient to overcome adhesive forces. In this study I have sought to quantify the magnitude and direction of these aerodynamic forces and their causal flow fields with dynamically scaled physical models. I chose a genus of powdery mildew because maturation of the sporocarp entails morphological changes that lever the sporocarp further away from the leaf surface and out of the viscous boundary layer. Consequently I varied the sporocarp morphology, the boundary layer thickness, and the flow velocity as forces on models were measured with a transducer. Additionally I analyzed the fluid velocity around the models using PIV, which allowed for quantification of the relative importance of shear forces and pressure-gradient forces. The results suggest that forces from steady and unsteady wind alike are insufficient to explain liberation.

  11. Z Number Based Fuzzy Inference System for Dynamic Plant Control

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.

  12. Resilient Plant Monitoring System: Design, Analysis, and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Humberto E. Garcia; Wen-Chiao Lin; Semyon M. Meerkov; Maruthi T. Ravichandran

    2013-12-01

    Resilient monitoring systems are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools, and the performance of the overall system is evaluated using simulations. The measure of resiliency of the resulting system is evaluated using Kullback Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  13. Planning of a Quadgeneration power plant for Jammerbugt energy system

    DEFF Research Database (Denmark)

    Rudra, Souman; Hoffmann, Jessica; Rosendahl, Lasse

    2011-01-01

    Quadgeneration is the simultaneous production of power, heat and cooling and different fuels from flexible feedstocks such as biomass, waste, refinery residue etc. In order to accommodate more renewable energy into the energy system, it is extremely necessary to develop new flexible power plants...... heating energy technology into a Quadgeneration energy system at Jammerbugt municipality in the north of Denmark in a creative and innovative manner that can reduce CO2 emission and fuel limitations, whilst not compromising security of delivering heat and power to the local resident. So, it is essential...... of some equipments in the Quadgeneration power plant. This paper presents two models for the investment planning of a Quadgeneration energy system in Jammerbugt municipality, and uses these models for different case studies addressing the system for production of heat, cooling, liquid fuels...

  14. STUDIES ON THE INITIATION MECHANISM OF CERIC ION AND ACETYLACETONE REDOX SYSTEM IN VINYL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Xinqiu; ZHANG Dong; FENG Xinde

    1991-01-01

    The initiation mechanism of acrylamide (AAM)polymerization using ceric ion/acetylacetone system as an initiator has been studied. The redox polymerization was revealed by the low value of overall activation energy ofAAm polymerization. The structure of free radicals formed from above-mentioned initiation sytem were detected by radical trapping and ESR spectra techniques and the end groups of polymers obtained were determined by FT-IR spectra analysis method. Based on these results the initiation mechanism is proposed.

  15. Software development for bistable module of SMART plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Park, H. S.; Jeo, C. W. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of); Lee, J. G.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Digitalized PPS(Plant Protection System) is going on development for SMART. The PPS consists of two different types of CPUs and DSP boards for the each functional processor modules of PPS. Software for the system has been progressed with teamwork of CASE TOOL to develop the reliable software. In this paper, we propose the software development method and show the examples for Bistable module through the functional analysis and the development of Structure Chart and M-Spec.

  16. Social-ecological system framework: initial changes and continuing challenges

    Directory of Open Access Journals (Sweden)

    Michael D. McGinnis

    2014-06-01

    Full Text Available The social-ecological system (SES framework investigated in this special issue enables researchers from diverse disciplinary backgrounds working on different resource sectors in disparate geographic areas, biophysical conditions, and temporal domains to share a common vocabulary for the construction and testing of alternative theories and models that determine which influences on processes and outcomes are especially critical in specific empirical settings. We summarize changes that have been made to this framework and discuss a few remaining ambiguities in its formulation. Specifically, we offer a tentative rearrangement of the list of relevant attributes of governance systems and discuss other ways to make this framework applicable to policy settings beyond natural resource settings. The SES framework will continue to change as more researchers apply it to additional contexts; the main purpose of this article is to delineate the version that served as the basis for the theoretical innovations and empirical analyses detailed in other contributions to this special issue.

  17. Legionnaires' Disease Bacterium in power-plant cooling systems: Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, S.W.; Solomon, J.A.; Gough, S.B.; Tyndall, R.L.; Fliermans, C.B.

    1983-06-01

    A survey was undertaken of the distribution, density, viability, and infectivity of Legionnaires' Disease Bacteria (Legionella) in power plant cooling systems. Water samples were collected during each of the four seasons at various locations within each of nine power plants and from ambient waters at each site. Measurements of a number of physical and chemical characteristics were made, and Legionella profiles (density, viability, and infectivity for guinea pigs) were obtained. Legionella were detected in nearly all samples. Water from closed-cycle cooling systems frequently had lower densities of Legionella than the ambient water. Nonetheless, infectious Legionella, as defined by their isolation from inoculated guinea pigs, were significantly more likely to be found in samples from the plant-exposed water of closed-cycle plants than in samples from once-through plants or in ambient samples. A new species (L. oakridgensis) was initially isolated from two of the sites, and it has since been found to have a widespread distribution. Two other organisms found to cause illness in guinea pigs may also be new species. Phase II of the project involves investigating possible cause/effect relationships between physicochemical variables and Legionella. This work may contribute toward eventual control techniques for this pathogen.

  18. Localization of equipment for digital plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Koo, I. S.; Park, H. Y.; Lee, C. K. and others

    2000-10-01

    The objective of this project lies on the development of design requirements, establishment of structure and manufacture procedures, development of the software verification and validation(V and V) techniques of the digital plant protection system. The functional requirements based on the analog protection system and digital design requirements are introduced, the processor and system bus for safety grade equipment are selected and the interface requirements and the design specification have been developed in order to manufacture the quick prototype of the digital plant protection system. The selection guidelines of parts, software development and coding and testing for digital plant protection system have been performed through manufacturing the quick prototype based on the developed design specification. For the software verification and validation, the software review plan and techniques of verification and validation have been researched. The digital validation system is developed in order to verify the quick prototype. The digital design requirements are reviewed by the software safety plan and V and V plans. The formal methods for verifying the safety-grade software are researched, then the methodology of formal analysis and testing have been developed.

  19. Induced systemic resistance (ISR) in plants: mechanism of action.

    Science.gov (United States)

    Choudhary, Devendra K; Prakash, Anil; Johri, B N

    2007-12-01

    Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a

  20. Plant natriuretic peptides control of synthesis and systemic effects

    KAUST Repository

    Wang, Yuhua

    2011-10-01

    Plant natriuretic peptides (PNPs) are signaling molecules that are secreted into the apoplast particularly under conditions of biotic and abiotic stress. At the local level, PNPs modulate their own expression via feed forward and feedback loops to enable tuning of the response at the transcript and protein level and to prevent overexpression. PNPs also employ a systemic signal, possibly electrical, to rapidly alter photosynthesis and respiration not only in treated leaves but also in upper and lower leaves thereby modulating and integrating physiological responses at the level of the whole plant. © 2011 Landes Bioscience.

  1. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  2. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob;

    2012-01-01

    to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans......Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  3. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought

    Science.gov (United States)

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction ...

  4. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  5. Danish landfill gas plants with automatic measuring and regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H. [Danish Land Development Service (Denmark)

    1996-12-31

    The first landfill gas plants in the USA were established on large and deep landfills. A number of wells were made and connected to a horizontal suction pipe through which the gas was sucked from the landfill. Most of the gas extraction systems are still constructed that way. However, control and optimising of the gas extraction can be problematic when a great number of drillings are connected to the same suction pipe. Since 1981 the Danish Ministry of Energy has supported selected research and development projects in connection with extraction and utilisation of landfill gas from Danish landfills, including a pilot plant implemented in 1983. In 1985 a EU-financed demonstration plant was established in Viborg, Denmark. In connection with the pilot and EU demonstration plant an automatic measuring and regulation system was developed to secure optimal gas recovery, identical gas quality and furthermore, it has the advantage of remote monitoring and regulation which save operational costs. The automatic measuring and regulation system is in particular well-suited when the landfill is of a relatively low depth and where regulation of the extraction may cause problems embodied in atmospheric air being sucked down in the landfill causing fluctuation of the gas quality and consequently of the gas quantity. (Author)

  6. Power plant system assessment. Final report. SP-100 Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Atkins, D.F.; Bost, D.S.; Berman, B.; Clinger, D.A.; Determan, W.R.; Drucker, G.S.; Glasgow, L.E.; Hartung, J.A.; Harty, R.B.

    1983-10-31

    The purpose of this assessment was to provide system-level insights into 100-kWe-class space reactor electric systems. Using these insights, Rockwell was to select and perform conceptual design studies on a ''most attractive'' system that met the preliminary design goals and requirements of the SP-100 Program. About 4 of the 6 months were used in the selection process. The remaining 2 months were used for the system conceptual design studies. Rockwell completed these studies at the end of FY 1983. This report summarizes the results of the power plant system assessment and describes our choice for the most attractive system - the Rockwell SR-100G System (Space Reactor, 100 kWe, Growth) - a lithium-cooled UN-fueled fast reactor/Brayton turboelectric converter system.

  7. [ZHU Lian's New Acupuncture Academic System and acupuncture science initialization].

    Science.gov (United States)

    Zhang, Shujian; Zhang, Lijian

    2015-11-01

    Acupuncture scientization was a consensus of most of acupuncture scholars who had long-term perspectives in the 20th century, among them Ms. ZHULian was the important one. Ms. ZHU Lian built a systemic new acupuncture" academic structure in practice and theory aspects. At the same time, as the main architect of Institute of Acupuncture-moxibustion of China Academy of Traditional Chinese Medicine, Ms. ZHU Lian was the first one who began to carry out the acupuncture clinical trail and laboratory experiment in modern way, which meant "acupuncture therapy" was transformed into "acupuncture science" by Ms. ZHULian's endeavor.

  8. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus.

    Science.gov (United States)

    de Holanda, Bruna A; Barreto, Isabela G Menna; de Araujo, Isadora S Gomes; de Araujo, Daniel B

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE.

  9. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus

    Science.gov (United States)

    de Holanda, Bruna A.; Barreto, Isabela G. Menna; de Araujo, Isadora S. Gomes

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE. PMID:27994272

  10. Cardiac tamponade as an initial presentation for systemic lupus erythematosus.

    Science.gov (United States)

    Li, William; Frohwein, Thomas; Ong, Kenneth

    2017-08-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease which follows a relapsing and remitting course that can manifest in any organ system. While classic manifestations consist of arthralgia, myalgia, frank arthritis, a malar rash and renal failure to name a few, cardiac tamponade, however, is a far less common and far more dangerous presentation. We highlight the case of a 61year-old male with complaints of acute onset shortness of breath and generalized body aches associated with a fever and chills in the ER. A bedside echocardiogram revealed a significant pericardial effusion concerning for pericardial tamponade. An emergent pericardiocentesis performed drained 800mL of serosanguinous fluid. While denying a history of any rash, photosensitivity, oral ulcers, or seizures, his physical examination did reveal metacarpal phalangeal joint swelling along with noted pulsus paradoxus of 15-200mmHg. Subsequent lab work revealed ANA titer of 1:630 and anti-DS DNA antibody level of 256IU/mL consistent with SLE. This case highlights cardiac tamponade as a rare but life-threatening presentation for SLE and raises the need to keep it in the differential when assessing patients presenting with pertinent exam findings. Published by Elsevier Inc.

  11. Intelligent Energy Management System for Virtual Power Plants

    DEFF Research Database (Denmark)

    Braun, Philipp

    . Once the BESS is purchased and grid connected: When should the VPP submit bids to which power market and in what quantity? 3. Once the awards on the power market are announced and the latest wind power production forecast is available: How should the VPP be operated in order to face minimum penalty...... power plants (VPPs). In this work, VPPs refer to wind power plants (WPPs) connected to an electrical battery energy storage system (BESS) which is in close proximity to the WPP, and both plants are able to participate in the Danish power market (ancillary service markets and day-ahead market). BESSs...... questions depending on the input parameters provided to the model. The model focuses on the BESS including capacity fade which is a battery specific property. It determines the performance, live-time, and - most important - the annualized costs of the BESS. Modeling capacity fade opens up the possibility...

  12. Systemic Acquired Resistance and Signal Transduction in Plant

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-qing; GUO Jian-bo

    2003-01-01

    Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity,is a defense response triggered by pathogen infection. The response starts from the recognition of plant resist-ance (R) with the corresponding avirulence (avr) gene from the pathogen. There are some genes for conver-gence of signals downstream of different R/avr interacting partners into a single signaling pathway. Salicylicacid (SA) is required for the induction of SAR and involved in transducing the signal in target tissues. The SAsignal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors thatare involved in regulating SA-mediated gene expression. Some chemicals that mimic natural signaling com-pounds can also activate SAR. The application of biochemical activators to agriculture for plant protection is anovel idea for developing green chemical pesticide.

  13. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    Science.gov (United States)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  14. Design and Realization of Geographic Information System for Plant Specimens

    Directory of Open Access Journals (Sweden)

    Zhenran Gao

    2016-03-01

    Full Text Available The thesis research work is based on adopting the combination of theory and technology research. For the unique characteristics of bambusoideae in yunnan province, analyses the characteristics, value and the present situation of resources of bambusoideae plant resources in yunnan province. According to the system requirements of the specimen of bambusoideae in Yunnan province, by Microsoft. Net framework platform, a collection of Web services and ASP.NET technology, based on the data of Microsoft SQL Server2008 and ADO.NET technology support, selecting desktop GIS Arc GIS platform (Arc GIS Desktop and server (Arc GIS Server as a system of GIS secondary development of GIS, and using developed tools of Microsoft Visual Studio 2010 Visual, Finally, the information system of plant specimen which based on GIS integration development of bambusoideae is finished .

  15. No association between plant mating system and geographic range overlap.

    Science.gov (United States)

    Grossenbacher, Dena; Briscoe Runquist, Ryan D; Goldberg, Emma E; Brandvain, Yaniv

    2016-01-01

    Automatic self-fertilization may influence the geography of speciation, promote reproductive isolation between incipient species, and lead to ecological differentiation. As such, selfing taxa are predicted to co-occur more often with their closest relatives than are outcrossing taxa. Despite suggestions that this pattern may be general, the extent to which mating system influences range overlap in close relatives has not been tested formally across a diverse group of plant species pairs. We tested for a difference in range overlap between species pairs for which zero, one, or both species are selfers, using data from 98 sister species pairs in 20 genera across 15 flowering plant families. We also used divergence time estimates from time-calibrated phylogenies to ask how range overlap changes with divergence time and whether this effect depends on mating system. We found no evidence that automatic self-fertilization influenced range overlap of closely related plant species. Sister pairs with more recent divergence times had modestly greater range overlap, but this effect did not depend on mating system. The absence of a strong influence of mating system on range overlap suggests that mating system plays a minor or inconsistent role compared with many other mechanisms potentially influencing the co-occurrence of close relatives. © 2016 Botanical Society of America.

  16. The Data Management System for the Shipboard Automated Meteorological and Oceanographic System (SAMOS) Initiative

    Science.gov (United States)

    Smith, S. R.; Arko, R. A.; Bourassa, M. A.; Hu, J.; McDonald, M.; Rettig, J.; Rolph, J.

    2009-12-01

    The data assembly center (DAC) for the SAMOS initiative has developed and implemented an automated data management system that collects, formats, quality controls, distributes, and archives near real-time surface marine data from research vessels. A SAMOS is a computerized data logging system that continuously records navigational (ship’s position, course, speed, and heading), meteorological (winds, air temperature, pressure, moisture, rainfall, and radiation), and near-surface oceanographic (sea temperature, salinity, conductivity, florescence) parameters while the vessel is at sea. The SAMOS initiative relies on the high-quality instrumentation purchased and deployed by the research vessel operators and does not provide instrumentation to the vessels. Currently, the SAMOS initiative receives measurements recorded at 1-min intervals and derived from higher frequency samples (on the order of 1 Hz). As of 2009, 21 research vessels provide routine SAMOS observations to the DAC. The data management system automatically tracks progress of the daily data acquisition and quality processing, stores metadata on instrumentation and ships, and provides data monitoring capability via a user-friendly web interface. An SQL database stores essential parameters to support tracking, data quality control, and version control for each file throughout the process. Presently, SAMOS data are acquired directly from research vessels at sea via a daily email transfer protocol. The steps of this NOAA funded protocol will be described along with lessons learned through the development process. A new DAC initiative, funded by NSF, to develop a 2nd SAMOS data acquisition protocol, via collaboration with the Rolling deck to Repository (R2R) project, will be outlined. The new protocol is envisioned to include transmission of the higher frequency meteorological and surface oceanic samples from participating vessels to real-time servers at R2R. The SAMOS DAC will access these samples for data

  17. Cardiac tamponade as initial presentation in systemic lupus erythematosus.

    Science.gov (United States)

    Jawaid, Ambreen; Almas, Aysha

    2014-05-01

    Systemic Lupus Erythematosus (SLE) is one of the many diseases known as 'the great imitators' because it can have diverse presentations and so is misunderstood for other illnesses. This case illustrates a 19 years old girl with SLE who presented as cardiac tamponade which is a rare feature of lupus pericarditis requiring medical and surgical treatment. Even after pericardiocentesis and steroid therapy there was a re-accumulation of the pericardial fluid resulting in cardiac tamponade which led to pericardial window formation. This case draws attention to the need to consider the diagnosis of tamponade in patients with connective tissue disease and dyspnea or hemodynamic compromise. It also outlines the treatment options available so that surgical referral, if needed, can be done timely for this rare but life threatening manifestation of SLE.

  18. Simulation model for plant growth in controlled environment systems

    Science.gov (United States)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  19. Ornamental plants for micropollutant removal in wetland systems.

    Science.gov (United States)

    Macci, Cristina; Peruzzi, Eleonora; Doni, Serena; Iannelli, Renato; Masciandaro, Grazia

    2015-02-01

    The objective of this paper was to evaluate the efficiency of micropollutant removal, such as Cu, Zn, carbamazepine, and linear alkylbenzene sulfonates (LAS), through the use of a subsurface vertical flow constructed wetland system with ornamental plants. Zantedeschia aethiopica, Canna indica, Carex hirta, Miscanthus sinensis, and Phragmites australis were selected and planted in lysimeters filled up with gravel. The lysimeters were completely saturated with synthetic wastewater (N 280 mg L(-1), P 30 mg L(-1), Cu 3.6 mg L(-1), Zn 9 mg L(-1), carbamazepine 5 μg L(-1), linear alkylbenzene sulfonates 14 mg L(-1)), and the leaching water was collected for analysis after 15, 30, and 60 days in winter-spring and spring-summer periods. Nutrients (N and P) and heavy metals decreased greatly due to both plant activity and adsorption. C. indica and P. australis showed the highest metal content in their tissues and also the greatest carbamazepine and LAS removal. In these plants, the adsorption/degradation processes led to particularly high oxidative stress, as evidenced by the significantly high levels of ascorbate peroxidase activity detected. Conversely, Z. aethiopica was the less efficient plant in metal and organic compound removal and was also less stressed in terms of ascorbate peroxidase activity.

  20. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    Science.gov (United States)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    Silica fluxes to soil solutions and water streams are controlled by both abiotic and biotic processes occurring in a Si soil-plant cycle that can be significant in comparison with Si weathering input and hydrological output. The quantification of Si-isotopic fractionation by these processes is highly promising to study the Si soil-plant cycle. Therein, the fate of aqueous monosilicic acid H4SiO4, as produced by silicate weathering, may take four paths: (1) uptake by plants and recycling through falling litter, (2) formation of clay minerals, (3) specific adsorption onto Al and Fe oxides, (4) leaching in drainage waters and export from watersheds. Here we report on detailed Si-isotopic compositions of various Si pools in a tropical soil-plant system involving old stands of banana (Musa acuminata Colla, cv Grande Naine) cropped on a weathering sequence of soils derived from andesitic volcanic ash and pumice deposits in Cameroon, West Africa. Si-isotopic compositions were measured by MC-ICP-MS in dry plasma mode with external Mg doping with a reproducibility of 0.08 permil (2stdev). Results were expressed as delta29Si vs NBS28. The compositions were determined in plant parts, bulk soils, clay fractions (less than 2um) and stream waters used for crop irrigation. Of the weathering sequence, we selected young (Y) and old (O) volcanic soils (vs). Yvs are rich in weatherable minerals, and contain large amounts of pumice gravels; their clay fraction (10-35 percent) contains allophane, halloysite and ferrihydrite. Oppositely, Ovs are strongly weathered and fine clayey soils (75-96 percent clay) rich in halloysite, kaolinite, gibbsite and goethite. Intra-plant fractionation between roots and shoots and within shoots confirmed our previous data measured on banana plants grown in hydroponics. The bulk plant isotopic composition was heavier at Ovs than at Yvs giving a fractionation factor per atomic mass unit between plants and their irrigation water Si source (+0.61 permil) of

  1. Plant-centered biosystems in space environments: technological concepts for developing a plant genetic assessment and control system.

    Science.gov (United States)

    Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E

    2003-06-01

    Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.

  2. System description and initial performance results for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Murray, J.R.; Campbell, J.H. [and others

    1996-06-01

    The Department of Energy has proposed to design and construct a National Ignition Facility (NIF) for Inertial Confinement Fusion (ICF) research. This facility will contain a frequency-tripled, Nd:Glass laser system capable of irradiating fusion targets at an energy and power of 1.8 MJ and 500 TW. The laser output pulse contains most of the energy, where the low-intensity leading foot is 15-20 ns long and the final high-intensity pulse is 3-4 ns long. The laser will have 192 independent {open_quotes}beamlets,{close_quotes} each having a final square clear aperture of 40 x 40 cm{sup 2} and an output beam area slightly smaller than the clear aperture. A Conceptual Design Report (CDR), prepared in May 1994, discusses the laser and facility design in detail. The authors have constructed and are now testing a scientific prototype of a single beamlet of the proposed NIF laser. The purpose of these tests is to show that the novel features proposed for the NIF laser design will perform as projected and that the laser is ready for final engineering design. The final dimensions and component arrangements for NIF will differ somewhat from the scientific prototype, but the differences are sufficiently small that tests on the prototype can be used to demonstrate performance essentially equivalent to a NIF beamlet.

  3. Initial commissioning results from the APS loss monitor system

    Science.gov (United States)

    Patterson, Donald R.

    1997-01-01

    The design of the beam loss monitor system for the Argonne National Laboratory Advanced Photon Source is based on using a number of air dielectric coaxial cables as long ionization chambers. Results to date show that the loss monitor is useful in helping to determine the cause of injection losses and losses large enough to limit circulating currents in the storage ring to short lifetimes. Sensitivities ranging from 13 to 240 pC of charge collected in the injector BTS (booster-to-storage-ring) loss monitor per picocoulomb of loss have been measured, depending on the loss location. These results have been used to predict that the storage ring loss monitor leakage current limit of 10 pA per cable should allow detection of losses resulting in beam lifetimes of 100 hours or less with 100 mA stored beam. Significant DC bias levels associated with the presence of stored beam have been observed. These large bias levels are most likely caused by the loss monitor responding to hard x-ray synchrotron radiation. No such response to synchrotron radiation was observed during earlier tests at SSRL. However, the loss monitor response to average stored beam current in APS has provided a reasonable alternative to the DC current transformer (DCCT) for measuring beam lifetimes.

  4. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A.

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  5. Plant mating system transitions drive the macroevolution of defense strategies.

    Science.gov (United States)

    Campbell, Stuart A; Kessler, André

    2013-03-05

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant-herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.

  6. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  7. Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions

    Science.gov (United States)

    Hampe, Arndt

    2011-11-01

    Recent climate change will presumably allow many plant species to expand their geographical range up to several hundred kilometres towards the poles within a few decades. Much uncertainty exists however to which extent species will actually be able to keep pace with a rapidly changing climate. A suite of direct and indirect research approaches have explored the phenomenon of range expansions, and the existing evidence is scattered across the literature of diverse research subdisciplines. Here I attempt to synthesise the available information within a population ecological framework in order to evaluate implications of patterns of seed dispersal and initial population establishment for range expansions. After introducing different study approaches and their respective contributions, I review the empirical evidence for the role of long-distance seed dispersal in past and ongoing expansions. Then I examine how some major ecological determinants of seed dispersal and colonisation processes - population fecundity, dispersal pathways, arrival site conditions, and biotic interactions during recruitment - could be altered by a rapidly changing climate. While there is broad consensus that long-distance dispersal is likely to be critical for rapid range expansions, it remains challenging to relate dispersal processes and pathways with the establishment of pioneer populations ahead of the continuous species range. Further transdisciplinary efforts are clearly needed to address this link, key for understanding how plant populations 'move' across changing landscapes.

  8. Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases

    Directory of Open Access Journals (Sweden)

    Hermann Restrepo-Diaz

    2013-08-01

    Full Text Available Leaf photosynthesis, a major determinant for yield sustainability in rice, is greatly conditioned by high temperature stress during growth. The effect of short-term high temperatures on leaf photosynthesis, stomatal conductance, Fv/Fm, SPAD readings and yield characteristics was studied in two Colombian rice cultivars. Two genotypes, cv. Fedearroz 50 (F50 and cv. Fedearroz 733 (F733 were used in pot experiments with heat stress treatment (Plants were exposed to 40°C for two and half hours for five consecutive days and natural temperature (control treatment. Heat treatments were carried out at the initiation of panicle primordial (IP or grain-filling (GF phases. The results showed that short-term high temperature stress produced a reduction on the photosynthesis rate in both cultivars either IP or GF phases. Similar trends were found on stomatal conductance in all cases due to high temperatures. Although Fv/Fm and SPAD readings were not affected by high temperatures, these variables diminished significantly among phenological phases. 'F733' rice plants showed higher number spikelet sterility due to heat stress treatments. These results seem to indicate that heat-tolerant cultivars of rice is associated with high levels of photosynthesis rate in leaves.

  9. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  10. Instrumentation/control systems for food and medicine plants; Shokuhin yakuhin plant no keisoku seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-10

    The food and medicine industries have been steadily investing facilities for producing new products and improving production efficiency, while coping with the problems associated with superannuated facilities. Fuji Electric has been supplying a new controlling system FOCUS, characterized by its capacity of minimizing cost and openness, since the fall of 1996. It has been adopted by a number of facilities as the monitoring/controlling system, becoming one of the favorite products of the related industries. The FOCUS system developed by the company, which has been supplying a variety of flexible network systems for controlling purposes, easily allows integration of the systems with office LAN`s. This leads to increased proposals for integrated information systems beyond the conventional concept of monitoring/controlling systems, and changed system businesses. (NEDO)

  11. 48 CFR 32.503-3 - Initiation of progress payments and review of accounting system.

    Science.gov (United States)

    2010-10-01

    ... payments and review of accounting system. 32.503-3 Section 32.503-3 Federal Acquisition Regulations System... on Costs 32.503-3 Initiation of progress payments and review of accounting system. (a) For..., (2) possessed of an adequate accounting system and controls, and (3) in sound financial...

  12. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  13. Integration of energy and environmental systems in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Suzanna Long, Elizabeth Cudney

    2012-01-01

    Full Text Available Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  14. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  15. Intercropping System for Protection the Potato Plant from Insect Infestation

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2015-06-01

    Full Text Available The use of intercropping system provides an option for insect control for organic farmers that are limited in their chemical use. Additionally, intercropping systems can be attractive to conventional growers as a cost-effective insect control solution. A study was carried out for two seasons 2011-2012 and 2012-2013 to evaluate the effect of intercropping of potato (Solanum tuberosum L. with onion (Allium cepa L. on whitefly (Bemicia tabasi Gennadius and aphids’ Myzus persicae Sulz. and Aphis gossypii Glover infestation in potato fields. Results indicated that intercropping significantly reduced potato plant infestation with whitefly by 42.7, 51.3% while it was 62.69% reduction with aphids during the two successive winter seasons than when potato plants were cultivated alone. Therefore, intercropping could be recommended as a protection method of reducing pest population in the fields.

  16. System configuration for advanced water management in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Queirazza, G.; Sigon, F.; Zagano, C. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Water ie required for power plant operation and electricity generation. The water demand is steadily increasing depending on the enrgy pro-capite demand, the available or innovative technologies for power generation and the need for emissions control. Water management is also required to comply with the regulatory trends and it agrees with the guidelines for the sustainable development, as recommended at the Rio conference (Agenda 21). In order to assess the design and the operating alternatives for the water system of power plants and the impact of innovative technologies, a simulation code has been developed. The ENEL proprietary WATERSOFT code is presented in this paper. Some significant results will be presented and discussed, within the frame of improving the water management and optimizing the overall performances of the actual water systems.

  17. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  18. Simulation Model for Stochastic Analysis and Performance Evaluation of Steam Generator System of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Yogesh Vora,

    2011-06-01

    Full Text Available This paper presents the stochastic analysis and performance evaluation of turbo generator system of a thermal plant by making the use of performance evaluation using probabilistic approach. The steam generator system of thermal power plant under the research study consists mainly sub-systems boiler, super heater and reheaterarranged in series with two feasible states: working and failed. Failure and repair rates for all the sub-systems are assumed to be constant. Initially transition diagram representing the operational behavior is drawn and then problem formulation is done using Markov approach. Based on the data collection and its analysis for thermal Power Plant, Performance matrix for each subsystem is also developed. Then from these results, availability matrices and graphs of failure and repair rates for maximum availability of each system is analysed and then condition based maintenance decisions are decided.

  19. VINYL RADICAL POLYMERIZATION INITIATED WITH CERIC ION AND ETHYL N,N-DIETHYLDITHIOCARBAMYL ACETATE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    XU Shoujun; QIU Kunyuan

    1997-01-01

    Acrylamide polymerization initiated with a redox initiation system consisting of ceric ion and ethyl N, N-diethyldithiocarbamyl acetate (EDCA) has been studied. It was found that the polymerization rate equation is in good agreement with that of a redox initiated polymerization, and the overall activation energy of the polymerization was determined to be 25.2 kJ·mol-1. Accordingly, the system belongs to a redox initiator. The initiation mechanism was proposed based on the end group analysis using FT-IR, UV spectroscopies.Analysis results revealed that the N, N-diethyldithiocarbamyl radical produced from the redox reaction of EDCA with ceric ion can initiate acrylonitrile (AN) polymerization and form the end group on PAN. The resulting PAN was photopolymerized with butyl acrylate (BA) to form PAN-b-PBA block copolymer.

  20. Network news: prime time for systems biology of the plant circadian clock truncated form of the title: Plant circadian clocks

    Science.gov (United States)

    McClung, C. Robertson; Gutiérrez, Rodrigo A.

    2011-01-01

    Summary Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. PMID:20889330

  1. Cytokinins, A classical multifaceted hormone in plant system

    Directory of Open Access Journals (Sweden)

    Mohd Mazid

    2011-12-01

    Full Text Available Today, owing to the versatile functionality and physiological importance of the phytohormone cytokinin (Ck is a major focus of attention in contemporary wide areas of plant science. Cytokinins (Cks have implicated in diverse essential processes of plant growth and development as well as in regulation of key genes responsible for the metabolism and activities of plants. Cytokinin interact in a complex manner to control a myriad of aspects related to growth, development and differentiation and its deficiency also causes pleiotropic developmental changes such as reduced shoot and increased root growth. Cytokinin signaling involves His Kinase receptors that perceive cytokinin and transmit the signal via a multi-step phosphorelay similar to bacterial two-component signaling system. Also, this review present a scheme for homeostatic regulation of endogenous cytokinins level in terms of the described mechanism of cytokinin action including its receptors and steps involved in regulation of gene expression at the post-transcriptional level and its role in whole plant as well as cell division. In addition, we also demonstrate a wide variety of biological effects including those on gene expression, inhibition of auxin action, stimulation of cell cycle etc.

  2. Phenolic Acids in Plant-Soil-Microbe System: A Review

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phenolic acids are very common compounds in pedosphere. The objective of this review was to summarize the current knowledge of the behaviors of phenolic acids in plant-soil-microbe system. When phenolic acids originated from leaching, decomposition and exudation of living and dead plant tissues enter soils, they can react physicochemically with soil particle surfaces and/or incorporate into humic matter. Phenolic acids desorbed from soil particle surfaces and remained in solution phase can be utilized by microbe as carbon sources and absorbed by plants. The degradation products of phenolic acids by microbe include some organic and/or inorganic compounds such as new phenolic acids. In addition, phenolic acids in soils can stimulate population and activity of microbe. Phenolic acids can inhibit plants growth by affecting ion leakage, phytohormone activity, membrane permeability, hydraulic conductivity, net nutrient uptake, and enzyme activity. Behaviors of phenolic acids in soils are influenced by other organic compounds (phenolic acids, methionine, glucose, etc.) and/or inorganic ions. The role of phenolic acids as allelopathic agents should not be neglected only based on their low specific concentrations in natural soils, because numbers and interactions of phenolic acids will increase their allelopathic activities.

  3. The Goursat Problem for the Einstein-Vlasov System: (I) The Initial Data Constraints

    CERN Document Server

    Calvin, Tadmon

    2011-01-01

    We show how to assign, on two intersecting null hypersurfaces, initial data for the Einstein-Vlasov system in harmonic coordinates. As all the components of the metric appear in each component of the stress-energy tensor, the hierarchical method of Rendall can not apply strictly speaking. To overcome this difficulty, an additional assumption have been imposed to the metric on the initial hypersurfaces. Consequently, the distribution function is constrained to satisfy some integral equations on the initial hypersurfaces.

  4. Development of Core Monitoring System for Nuclear Power Plants (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Kim, Y.B.; Park, M.G; Lee, E.K.; Shin, H.C.; Lee, D.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    1.Object and Necessity of the Study -The main objectives of this study are (1)conversion of APOLLO version BEACON system to HP-UX version core monitoring system, (2)provision of the technical bases to enhance the in-house capability of developing more advanced core monitoring system. 2.Results of the Study - In this study, the revolutionary core monitoring technologies such as; nodal analysis and isotope depletion calculation method, advanced schemes for power distribution control, and treatment of nuclear databank were established. The verification and validation work has been successfully performed by comparing the results with those of the design code and measurement data. The advanced graphic user interface and plant interface method have been implemented to ensure the future upgrade capability. The Unix shell scripts and system dependent software are also improved to support administrative functions of the system. (author). 14 refs., 112 figs., 52 tabs.

  5. ITER Fast Plant System Controller prototype based on PXIe platform

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M., E-mail: mariano.ruiz@upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J.; Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D.; Lopez, J.M.; Arcas, G. de; Barrera, E.; Nieto, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Goncalves, B.; Sousa, J.; Carvalho, B. [Associacao EURATOM/IST, Lisbon (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Efficient data acquisition and data movement using EPICS. Black-Right-Pointing-Pointer Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  6. Distribution System Optimization Planning Based on Plant Growth Simulation Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; CHENG Hao-zhong; HU Ze-chun; WANG Yi

    2008-01-01

    An approach for the integrated optimization of the construction/expansion capacity of high-voltage/medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.

  7. Dynamic Operations Wayfinding System (DOWS) for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Ulrich, Thomas Anthony [Idaho National Laboratory; Lew, Roger Thomas [Idaho National Laboratory

    2015-08-01

    A novel software tool is proposed to aid reactor operators in respond- ing to upset plant conditions. The purpose of the Dynamic Operations Wayfind- ing System (DOWS) is to diagnose faults, prioritize those faults, identify paths to resolve those faults, and deconflict the optimal path for the operator to fol- low. The objective of DOWS is to take the guesswork out of the best way to combine procedures to resolve compound faults, mitigate low threshold events, or respond to severe accidents. DOWS represents a uniquely flexible and dy- namic computer-based procedure system for operators.

  8. Global Weak Solutions of Initial Boundary Value Problem for Boltzmann-Poisson System with Absorbing Boundary

    Institute of Scientific and Technical Information of China (English)

    崔国忠; 张志平; 等

    2002-01-01

    This paper deals with the initial boundary value value problem for the Boltzmann-Poisson system ,which arises in semiconductor physics,with absorbing boundary.The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.

  9. Teacher Incentive Systems, Final Report. Policy Research Initiative: Haiti, Liberia, Somalia, Yemen Arab Republic.

    Science.gov (United States)

    Kemmerer, Frances; Thiagarajan, Sivasailam

    Findings of a study that examined the implementation of a teacher incentives initiative in four countries--Haiti, Liberia, Somalia, and Yemen--are presented in this paper. The countries are participating in a 10-year initiative founded in 1984, Improving the Efficiency of Educational Systems (IEES). Methodology involved interviews with…

  10. A Theory for the Initial Allocating of Real Time Tasks in Distributed Systems

    Institute of Scientific and Technical Information of China (English)

    鄢勇; 金灿明

    1992-01-01

    Referring to a set of real time tasks with arriving time,executing time and deadline,this paper discusses the problem of polynomial time initial-allocating approximation algorithms in a distributed system and five new results are gained which provide a theory for the designing of initial-allocating algorithms of real time tasks.

  11. The fate of arsenic in soil-plant systems.

    Science.gov (United States)

    Moreno-Jiménez, Eduardo; Esteban, Elvira; Peñalosa, Jesús M

    2012-01-01

    excluders), and some plants are useful for soil reclamation and in sustainable agriculture, The status of current scientific knowledge allows us to manage As contamination in the soil-plant system and to mitigate arsenic's effects. Phytoremediation is an emerging technology suitable for reclaiming As-contaminated soils and waters. Phytoextraction has been used to clean As-contaminated soils, although its applicability has not yet reached maturity. Phytostabilization has been employed to reduce environmental risk by confining As as an inert form in soils and has shown success in both laboratory experiments and in field trials. Phytofiltration has been used to treat As-enriched waters. Such treatment removes As when it is accumulated in plants grown in or on water. In agricultural food production, appropriate soil management and plant variety/species selection can minimize As-associated human dis- eases and the transfer of As within the food chain. Selecting suitable plants for use on As-contaminated soils may also enhance alternative land use, such as for energy or raw material production.

  12. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  13. Plant potassium channels are in general dual affinity uptake systems

    Directory of Open Access Journals (Sweden)

    Ingo Dreyer

    2017-02-01

    Full Text Available In plant science, we are currently at the dawn of an era, in which mathematical modeling and computational simulations will influence and boost tremendously the gain of new knowledge. However, for many plant scientists mathematical modeling is still rather dubious and is often negligently considered as an oversimplification of the real situation. The goal of this article is to provide a toolbox that allows first steps in the modeling of transport phenomena in plants. The provided framework is applied in the simulation of K+ uptake by cells via K+ channels. Historically, K+ uptake systems are divided into “high affinity” (e.g. H+-coupled K+ transporters and “low affinity” (K+ channels transporters. The computational cell biology studies presented here refute this separation. They show that K+ channels are in general uptake systems with “low” and “high affinity” components. The analyses clarify that constraints in wet-lab experiments usually mask the “high affinity” component. Consequently, the channels were widely assigned a “low affinity” component, only. The results presented here unmask the absurdity of the concept of “high- and low-affinity” transporters.

  14. Transient excitation boosting at Grand Coulee third power plant: Power system application and field tests

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.W.; Mechenbier, J.R.; Matthews, C.E. (Bonneville Power Administration, Portland, OR (United States))

    1993-08-01

    Transient excitation boosting (TEB) has been installed on the Grand Coulee Third Power Plant hydrogenerators (three 600 MVA units and three 700 MVA units). TEB is initiated for outages of the 3100 MW Pacific HVDC Intertie, and results in a decaying pulse input to the generator voltage regulators. TEB temporarily raises Pacific Northwest transmission voltages which increases voltage-sensitive loads. The increased load brakes Northwest generators which are accelerating because of the loss of HVDC Intertie power. Transient stability of the parallel Pacific AC Intertie is thus improved. Power system-wide commissioning tests were conducted on May 7, 1991. The authors describe the tests and compare test results with simulation results.

  15. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi [Nuclear Power Corp. (Japan)] [and others

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  16. Power plant technology 2014. Strategies, systems engineering and operation; Kraftwerkstechnik 2014. Strategien, Anlagentechnik und Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Michael; Hurtado, Antonio

    2014-07-01

    The book on power plant technology 2014 (strategies, systems engineering and operation) covers the following issues: Climate, politics and economy; wind power; fossil-fuel power plants, flexible power plants - plant operation, flexible power plants- materials, materials for energy technology, fuel feed and incineration, modeling of the water-vapor-circuit, corrosion, deposits and cleaning, vapor turbines, GUD power plants, fluidized bed combustion, energetic biomass use, combined heat and power generation and decentralized units, storage facilities, emissions - mitigation and measuring techniques.

  17. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  18. The Nonlinear Singularly Perturbed Initial Boundary Value Problems of Nonlocal Reaction Diffusion Systems

    Institute of Scientific and Technical Information of China (English)

    Jia-qi Mo; Wan-tao Lin

    2006-01-01

    In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Using the iteration method and the comparison theorem, the existence and its asymptotic behavior of the solution for the problem are studied.

  19. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  20. Fluid bed gasification pilot plant fuel feeding system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, W.A.; Fonstad, T.; Pugsley, T.; Gerspacher, R. (Univ. of Saskatchewan, Saskatoon (Canada)), Email: wac132@mail.usask.ca; Wang Zhiguo (Saskatchewan Research Council, Saskatoon (Canada)), Email: zhiguo.wang@src.sk.ca

    2009-07-01

    Fluidized bed gasification (FBG) is a method for thermally converting solid biomass to a gaseous product termed syngas, which can be used as fuel for heat or electricity generation. Accurate and consistent feeding of biomass fuel into biomass FBG converters is a continuing, challenge, and was the subject of experimentation at the University of Saskatchewan biomass FBG pilot plant. The 2-conveyor feeding system for this pilot plant was tested using meat and bone meal (MBM) as feedstock, by conveying the feedstock through the system, and measuring the output rate as the fuel was discharged. The relationship between average mass-flowrate (F{sub M}) and conveyor speed (S) for the complete feeding system was characterized to be F{sub M}=0.2188S-0.42 for the tests performed. Testing of the metering conveyor coupled to the injection conveyor showed that operating these conveyors at drive synchronized speeds, air pulsed into the injection hopper, and 50 slpm injection air, produced the most consistent feed output rate. Hot fluidized bed tests followed, which showed that plugging of the injection nozzle occurred as bed temperatures increased past 700C, resulting in loss of fuel flow. The pneumatic injection nozzle was subsequently removed, and the system was found to perform adequately with it absent. (orig.)

  1. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  2. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  3. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space station. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12-hr-dark may be needed for plant growth.

  4. Iterative Learning Control Design and Application for Linear Continuous Systems with Variable Initial States Based on 2-D System Theory

    OpenAIRE

    Wei Guan; Qiao Zhu; Xu-Dong Wang; Xu-Hui Liu

    2014-01-01

    This paper is concerned with the variable initial states problem in iterative learning control (ILC) for linear continuous systems. Firstly, the properties of the trajectory of 2-D continuous-discrete Roesser model are analyzed by using Lyapunov's method. Then, for any variable initial states which absolutely converge to the desired initial state, some ILC design criteria in the form of linear matrix inequalities (LMI) are given to ensure the convergence of the PD-type ILC rules. The converge...

  5. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.T.; Mullens, J.A. [Oak Ridge National Lab., TN (United States); Naser, J.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-10-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs.

  6. GLOBAL SOLUTIONS TO A HYPERBOLICPARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA

    Institute of Scientific and Technical Information of China (English)

    Guo Jun; Xiao Jixiong; Zhao Huijiang; Zhu Changjiang

    2009-01-01

    This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data.To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system.Moreover, the L∞-estimates and H2-estimates of solutions are obtained through some delicate estimates.In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].

  7. Iterative Learning Control Design and Application for Linear Continuous Systems with Variable Initial States Based on 2-D System Theory

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2014-01-01

    Full Text Available This paper is concerned with the variable initial states problem in iterative learning control (ILC for linear continuous systems. Firstly, the properties of the trajectory of 2-D continuous-discrete Roesser model are analyzed by using Lyapunov's method. Then, for any variable initial states which absolutely converge to the desired initial state, some ILC design criteria in the form of linear matrix inequalities (LMI are given to ensure the convergence of the PD-type ILC rules. The convergence for variable initial states implies that the ILC rules can be used to achieve the perfect tacking for variable initial states, even if the system dynamic is unknown. Finally, the micropropulsion system is considered to illustrate efficiency of the proposed ILC design criteria.

  8. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and... nuclear material control and accounting system requirements for nuclear power plants. This guide applies...

  9. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16, 2012...

  10. Scanning SQUID microscope system for geological samples: system integration and initial evaluation

    Science.gov (United States)

    Oda, Hirokuni; Kawai, Jun; Miyamoto, Masakazu; Miyagi, Isoji; Sato, Masahiko; Noguchi, Atsushi; Yamamoto, Yuhji; Fujihira, Jun-ichi; Natsuhara, Nobuyoshi; Aramaki, Yoshiyasu; Masuda, Takashige; Xuan, Chuang

    2016-11-01

    We have developed a high-resolution scanning superconducting quantum interference device (SQUID) microscope for imaging the magnetic field of geological samples at room temperature. In this paper, we provide details about the scanning SQUID microscope system, including the magnetically shielded box (MSB), the XYZ stage, data acquisition by the system, and initial evaluation of the system. The background noise in a two-layered PC permalloy MSB is approximately 40-50 pT. The long-term drift of the system is approximately ≥1 nT, which can be reduced by drift correction for each measurement line. The stroke of the XYZ stage is 100 mm × 100 mm with an accuracy of 10 µm, which was confirmed by laser interferometry. A SQUID chip has a pick-up area of 200 μm × 200 μm with an inner hole of 30 μm × 30 μm. The sensitivity is 722.6 nT/V. The flux-locked loop has four gains, i.e., ×1, ×10, ×100, and ×500. An analog-to-digital converter allows analog voltage input in the range of about ±7.5 V in 0.6-mV steps. The maximum dynamic range is approximately ±5400 nT, and the minimum digitizable magnetic field is 0.9 pT. The sensor-to-sample distance is measured with a precision line current, which gives the minimum of 200 µm. Considering the size of pick-up coil, sensor-to-sample distance, and the accuracy of XYZ stage, spacial resolution of the system is 200 µm. We developed the software used to measure the sensor-to-sample distance with line scan data, and the software to acquire data and control the XYZ stage for scanning. We also demonstrate the registration of the magnetic image relative to the optical image by using a pair of point sources placed on the corners of a sample holder outside of a thin section placed in the middle of the sample holder. Considering the minimum noise estimate of the current system, the theoretical detection limit of a single magnetic dipole is 1 × 10-14 Am2. The new instrument is a powerful tool that could be used in various

  11. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  12. Characterization of an urban-rural CO 2 /temperature gradient and associated changes in initial plant productivity during secondary succession

    Energy Technology Data Exchange (ETDEWEB)

    Ziska, L. H.; Bunce, J. A.; Goins, E. W.

    2004-05-01

    To examine the impact of climate change on vegetative productivity, we exposed fallow agricultural soil to an in situ temperature and CO2 gradient between urban, suburban and rural areas in 2002. Along the gradient, average daytime CO2 concentration increased by 21% and maximum (daytime) and minimum (nighttime) daily temperatures increased by 1.6 and 3.3°C, respectively in an urban relative to a rural location. Consistent location differences in soil temperature were also ascertained. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented. The urban-induced environmental changes that were observed were consistent with most short-term (~50 year) global change scenarios regarding CO2 concentration and air temperature. Productivity, determined as final above-ground biomass, and maximum plant height were positively affected by daytime and soil temperatures as well as enhanced [CO2], increasing 60 and 115% for the suburban and urban sites, respectively, relative to the rural site. While long-term data are needed, these initial results suggest that urban environments may act as a reasonable surrogate for investigating future climatic change in vegetative communities.

  13. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization...... Danish district heating system is financially sustainable. Added to the other advantages concerning flexibility and the environment, geothermal heating is considered to be a serious proposal for the future power and heating system in Eastern Denmark. Keywords: Geothermal plants, Electricity surplus...... of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating...

  14. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    Danish district heating system is financially sustainable. Added to the other advantages concerning flexibility and the environment, geothermal heating is considered to be a serious proposal for the future power and heating system in Eastern Denmark. Keywords: Geothermal plants, Electricity surplus......The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization...... of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating...

  15. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  16. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  17. Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    After pre-culture and treatment of osmosis,cotyledons of immature peanut(Arachis hypogaea L.)zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resistance to hygromycin and a chimeric intron-gus gene.Selection for hygromycin resistant calluses and somatic embryos was initiated at 10th d post-bombardment on medium containing 10-25 mg/L hygromycin.Under continuous selection,hygromycin resistant plantlets were regenerated from somatic embryos and were recovered from nearly 1.6% of the bombarded cotyledons.The presence and integration of foreign DNA in regenerated hygromycin resistant plants was confirmed by PCR(polymerase chain reaction)for the intron-gus gene and by Southern hybridization of the hph gene.GUS enzyme activity was detected in leaflets from transgenic plants but not from control,non-transformed plants.The production of transgenic plants are mainly based on a newly improved somatic embryogenesis regeneration system developed by us.

  18. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  19. Unification of witnessing initial system-environment correlations and witnessing non-Markovianity

    CERN Document Server

    Rodríguez-Rosario, César A; Mazzola, Laura; Aspuru-Guzik, Alán

    2012-01-01

    We show the connection between a witness that detects dynamical maps with initial system-environment correlations and a witness that detects non-Markovian open quantum systems. Our analysis is based on studying the role that state preparation plays in witnessing violations of contractivity of open quantum system dynamics. Contractivity is a property of some quantum processes where the trace distance of density matrices decrease with time. From this, we show how a witness of initial-correlations is an upper bound to a witness of non-Markovianity. We discuss how this relationship shows further connections between initial system-environment correlations and non-Markovianity at an instance of time in open quantum systems.

  20. The CAD System Development for Power Plants Pipe-Prefabrication

    Institute of Scientific and Technical Information of China (English)

    RUI Xiaoming; MA Zhiyong

    2006-01-01

    An intelligent design software system for the power station pipe-prefabrication (PPDS) has been developed in the paper, which is taking pipe material database as core and developed on the platform of AutoCAD and Borland C++.Whereas design and construction of power plants in China belong to different departments, the input and recognition problem of pipeline system disposition chart must be solved firstly for the prefabrication design. Based on AI technology, the model fast building subsystem (MFBS) was established for entering the 3-D pipeline graph data, so that the problems of reconstruction of pipeline digital model and computer identification of original 2-D design data can be solved. The optimization design scheme in the pipe-prefabrication process has been studied and also the corresponding algorithm put forward. The technique and system mentioned can effectively raise the pipe- prefabrication design quality and efficiency in the construction of large scale power plants, reduce the period of design and the waste of raw material. PPCADS has still offered the functions such as the construction design for pipeline prefabricated process, the detailing drawing for manufacturing pipe section and automatic generating the technical files for the completed project.

  1. Analysis of photovoltaic/thermal electric power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gluck, D.F.; Kelley, W.A.

    1979-03-01

    A conceptual definition and performance evaluation of a 100 megawatt (MW) hybrid photovoltaic/thermal electric power plant has been carried out. The concept utilizes the ability of gallium arsenide photovoltaic cells to achieve high conversion efficiency at high incident fluxes and elevated temperatures. Solar energy is focused by a field of steerable mirrors (heliostats) onto a tower mounted receiver whose outer surface is covered with gallium arsenide (AlGaAs/GaAs) solar cells and whose inner surface is a water boiler. The solar cells convert a fraction of the incident radiation into electrical energy, and the remaining energy is extracted at approximately 200/sup 0/C and used to power a Rankine cycle turbine generator (bottoming cycle). Water is used as the solar cell array coolant, as the thermodynamic working fluid, and as the thermal energy storage medium. Parametric studies were conducted to select conceptual design parameters and operational characteristics which imply the lowest levelized busbar electric energy costs. Parameters varied were collector area, condenser surface area, fan power, ambient temperature, and electric and thermal energy storage capacities. The report describes the concept, outlines the design analysis method, summarizes the parametric study results, and defines the selected plant configuration. The lowest levelized busbar electric energy generation cost, 70 mills/kilowatt-hr., was achieved with a relatively small collector area, 0.8 x 10/sup 6/ square meters, and no stored energy. A rough comparison of this combined power plant with a similar photovoltaic plant, operated at lower solar cell temperature and with no bottoming cycle, showed the busbar cost of electricity (BBEC) from the combined system to be approximately 9% lower.

  2. A plant resource and experiment management system based on the Golm Plant Database as a basic tool for omics research

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2008-05-01

    Full Text Available Abstract Background For omics experiments, detailed characterisation of experimental material with respect to its genetic features, its cultivation history and its treatment history is a requirement for analyses by bioinformatics tools and for publication needs. Furthermore, meta-analysis of several experiments in systems biology based approaches make it necessary to store this information in a standardised manner, preferentially in relational databases. In the Golm Plant Database System, we devised a data management system based on a classical Laboratory Information Management System combined with web-based user interfaces for data entry and retrieval to collect this information in an academic environment. Results The database system contains modules representing the genetic features of the germplasm, the experimental conditions and the sampling details. In the germplasm module, genetically identical lines of biological material are generated by defined workflows, starting with the import workflow, followed by further workflows like genetic modification (transformation, vegetative or sexual reproduction. The latter workflows link lines and thus create pedigrees. For experiments, plant objects are generated from plant lines and united in so-called cultures, to which the cultivation conditions are linked. Materials and methods for each cultivation step are stored in a separate ACCESS database of the plant cultivation unit. For all cultures and thus every plant object, each cultivation site and the culture's arrival time at a site are logged by a barcode-scanner based system. Thus, for each plant object, all site-related parameters, e.g. automatically logged climate data, are available. These life history data and genetic information for the plant objects are linked to analytical results by the sampling module, which links sample components to plant object identifiers. This workflow uses controlled vocabulary for organs and treatments. Unique

  3. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2009-07-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  4. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    Energy Technology Data Exchange (ETDEWEB)

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  5. Appalachian Rural Systemic Initiative (ARSI): Phase 1, Year 5 Annual Report, 2002.

    Science.gov (United States)

    Appalachian Rural Systemic Initiative, Lexington, KY.

    The Appalachian Rural Systemic Initiative (ARSI) is a collaborative mathematics, science, and technology education reform effort among six states in central Appalachia--Kentucky, North Carolina, Ohio, Tennessee, Virginia, and West Virginia. The project aims to stimulate sustainable systemic improvements in these subjects for K-12 students in a…

  6. An algebraic approach to local observability at an initial state for discrete-time polynomial systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2011-01-01

    In this paper, we consider local observability at an initial state for discrete-time autonomous polynomial systems. When testing for observability, for discrete-time nonlinear systems, a condition based on the inverse function theorem is commonly used. However, it is a sufficient condition. In this

  7. Existence of global solution for a differential system with initial data in Lp

    Directory of Open Access Journals (Sweden)

    Peter Bates

    1999-01-01

    field within the earth. The system is similar to the magnetohydrodynamic (MHD equations. By establishing a new priori estimates and following Calderón's procedure for the Navier Stokes equations [1], we obtained, for initial data in space Lp, the global in time existence and uniqueness of weak solution of the system subject to appropriate conditions.

  8. Comparative mutagenesis of plant flavonoids in microbial systems

    Energy Technology Data Exchange (ETDEWEB)

    Hardigree, A.A.; Epler, J.L.

    1978-01-01

    The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2'4'-pentahydroxyflavone), kaempferol (3,5,7,4'tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.

  9. S-sulfhydration: a cysteine posttranslational modification in plant systems.

    Science.gov (United States)

    Aroca, Ángeles; Serna, Antonio; Gotor, Cecilia; Romero, Luis C

    2015-05-01

    Hydrogen sulfide is a highly reactive molecule that is currently accepted as a signaling compound. This molecule is as important as carbon monoxide in mammals and hydrogen peroxide in plants, as well as nitric oxide in both eukaryotic systems. Although many studies have been conducted on the physiological effects of hydrogen sulfide, the underlying mechanisms are poorly understood. One of the proposed mechanisms involves the posttranslational modification of protein cysteine residues, a process called S-sulfhydration. In this work, a modified biotin switch method was used for the detection of Arabidopsis (Arabidopsis thaliana) proteins modified by S-sulfhydration under physiological conditions. The presence of an S-sulfhydration-modified cysteine residue on cytosolic ascorbate peroxidase was demonstrated using liquid chromatography-tandem mass spectrometry analysis, and a total of 106 S-sulfhydrated proteins were identified. Immunoblot and enzyme activity analyses of some of these proteins showed that the sulfide added through S-sulfhydration reversibly regulates the functions of plant proteins in a manner similar to that described in mammalian systems.

  10. Application of multispectral systems for the diagnosis of plant diseases

    Science.gov (United States)

    Feng, Jie; Liao, Ningfang; Wang, Guolong; Luo, Yongdao; Liang, Minyong

    2008-03-01

    Multispectral imaging technique combines space imaging and spectral detecting. It can obtain the spectral information and image information of object at the same time. Base on this concept, A new method proposed multispectral camera system to demonstrated plant diseases. In this paper, multispectral camera was used as image capturing device. It consists of a monochrome CCD camera and 16 narrow-band filters. The multispectral images of Macbeth 24 color patches are captured under the illumination of incandescent lamp in this experiment The 64 spectral reflectances of each color patches are calculated using Spline interpolation from 400 to 700nm in the process. And the color of the object is reproduced from the estimated spectral reflectance. The result for reproduction is contrast with the color signal using X-rite PULSE spectrophotometer. The average and maximum ΔΕ * ab are 9.23 and 12.81. It is confirmed that the multispectral system realizes the color reproduction of plant diseases from narrow-band multispectral image.

  11. A study on advanced man-machine interface system for autonomous nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Noboru; Miyazaki, Keiko; Sugasawa, Shinobu [Ship Research Inst., Mitaka, Tokyo (Japan)

    1997-01-01

    Research on Artificial Intelligence Systems for Nuclear Installations has been performed in cooperation with five research institutes (Ship Research Institute, Electrotechnical Laboratory, Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation, The Institute of Physical and Chemical Research), from 1989 to 1994 as the Cross-over Research Group with the support of the Science and Technology Agency. Ship Research Institute has been carrying out the research on the Man-Machine Interface (MMI) system for autonomous nuclear power plants. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous nuclear power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and a function of automatic classification of plant states by the COBWEB method. A plant simulator has been developed by using the expert system G2 (Gensym Co.). The simulator generates plant process data at each component of a plant. This simulator models a pressurized water reactor and some examples of autonomous functions are incorporated. A contracted function model of a plant state has been produced at the main part of the MMI system based on plant process data from the simulator. The main purpose of the present study is to give the MMI system a function to identify the plant operational state, to update and revise the function model, and to expand a knowledge. A plant state is expressed in a three-dimensional graphic display which receives sensor values from the plant simulator and expresses the plant state in nearly real time speed. A research on the automatic classification of plant states has been also performed, which shows us the relations among different plant states. The study is being continued to the 2nd stage Cross-over Research from 1994, as the Study on Divers, Cooperative Intelligent System for Autonomous Plants. (J.P.N.)

  12. Selection methodology with scoring system: application to Mexican plants producing podophyllotoxin related lignans.

    Science.gov (United States)

    Lautié, E; Quintero, R; Fliniaux, M-A; Villarreal, M-L

    2008-12-08

    As most anticancer drugs are derived from natural sources, the screening of local medicinal flora should be considered a primary step in the search for new sources for antineoplastic agents. In Mexico, more than 6000 medicinal plant species are used for the treatment of various diseases, including cancer. A multifactorial plant selection method, employing various criteria was designed and applied in order to select alternative sources of podophyllotoxin lignan analogues. For each criterion (chemotaxonomy, traditional medical uses and published scientific data), an arbitrary score system was ascribed to the species and the sum of these enabled us to compare potential candidates. The resulting selected plants were tested for cytotoxic activity and the compounds responsible for this activity were evaluated by liquid chromatography-mass spectroscopy (LC-MS). Around 50 species from the Mexican flora were initially considered. From these, six species were selected by referring to the results from the scoring system and these were then collected. Three extracts were evaluated as being highly cytotoxic against three different cancer cell lines. Finally, podophyllotoxin-like lignans could be identified by observing the fragmentation pattern on mass spectra, obtained from the LC-MS in two species: Linum scabrellum and Hyptis suaveolens.

  13. Behavior of iodine in the atmosphere-soil-plant system

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuyuki; Yoshida, Satoshi; Uchida, Shigeo [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Nakaminato Lab. Branch

    1996-12-31

    Levels and behavior of radioactive and stable iodine in the environment were studied to obtain parameter values for the assessment of {sup 129}I released from nuclear facilities. The deposition velocity (V{sub D}) of gaseous iodine from the atmosphere to rice grains (rough rice) was 0.00048 cm{sup 3} g{sup -1}s{sup -1} for CH{sub 3}I and 0.15 cm{sup 3} g{sup -1}s{sup -1} for I{sub 2}. The ratio of the iodine distribution in a grain exposed to CH{sub 3}I was as follows, rough rice : brown rice (hulled rice) : polished rice = 1.0 : 0.49 : 0.38. The distribution ratio in polished rice for CH{sub 3}I was about 20 times higher than that for I{sub 2}. The soil-solution distribution coefficient (K{sub d}) for both I{sup -} and IO{sub 3}{sup -} varied very widely, i.e. <0.1 to 8000 ml g{sup -1}. High values were found in soils having high concentrations of total organic carbon, active-Al and active-Fe (Al and Fe extracted by a mixture of oxalic acid and ammonium oxalate). Andosol, one of the most typical Japanese soils derived from deposits of volcanic ash, showed specifically high K{sub d} values. The soil-to-plant transfer factors (or concentration ratio) in the edible parts of crops were in the range 0.0002-0.016. The transfer factors for tomato, sweet potato, carrot, soybeans and rice were significantly lower than their leaf values. The value for rice (polished) was 0.002. Iodine was found to be evaporated from the soil-plant system as CH{sub 3}I. The emission of CH{sub 3}I from rice plants grown on flooded soil was much higher than that from oat plants grown on unflooded soil. The {sup 129}I levels in environmental samples collected in and around Tokai-mura, where a spent nuclear fuel reprocessing plant is located, have been determined by neutron activation analysis. The concentrations of {sup 129}I in surface soils ranged from <0.001 to 0.18 Bq kg{sup -1}. The {sup 129}I concentrations in forest soil tended to be higher than those in field soils. (Abstract Truncated)

  14. GOES Infrared and Reflectance 0-1 hour Lightning Initiation Indicators: Development and Initial Testing within a Convective Nowcasting System

    Science.gov (United States)

    Mecikalski, J. R.; Harris, R.; MacKenzie, W.; Durkee, P. A.; Iskenderian, H.; Bickmeier, L.; Nielsen, K. E.

    2010-12-01

    Within cumulus cloud fields that develop in conditionally unstable air masses, only a fraction of the cumuli may eventually develop into deep convection. Identifying which of these convective clouds most likely to generate lightning often starts with little more than a qualitative visual satellite analysis. The goal of this study is to identify the observed satellite infrared (IR) signatures associated with growing cumulus clouds prior to the first lightning strike, so-called lightning initiation (LI). This study quantifies the behavior of ten Geostationary Operational Environmental Satellite (GOES-12) IR interest fields in the 1-hour in advance of LI. A total of 172 lightning-producing storms that occurred during the 2009 convective season are manually tracked and studied over four regions: Northern Alabama, Central Oklahoma, the Kennedy Space Center and Washington D.C. Four-dimensional and cloud-to-ground lightning array data provide a total cloud lightning picture (in-cloud, cloud-to-cloud, cloud-to-air, cloud-to-ground) and thus precise LI points for each storm in both time and space. Statistical significance tests are conducted on observed trends for each of the ten LI fields to determine the unique information each field provides in terms of behavior prior to LI. Eight out of ten LI fields exhibited useful information at least 15 min in advance of LI, with 35 min being the average. Statistical tests on these eight fields are compared for separate large geographical areas. IR temperature thresholds are then determined as an outcome, which may be valuable when implementing a LI prediction algorithm into real-time satellite-based systems. The key LI indicators from GOES IR data (as well as 3.9 μm reflectance) will be presented. Beginning in 2010, the feasibility of using the satellite-based LI indicators found in the above analysis to forecast first lightning will be assessed within the Federal Aviation Administration’s (FAA) CoSPA nowcasting system. The goal

  15. Simulated coal gas MCFC power plant system verification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  16. The Family Compensation System as an Anti-Poverty Initiative in Colombia

    OpenAIRE

    Cajiao, Francisco; International Workshop of the Anti-Poverty Partnership Initatives Trust Fund (APPI Trust Fund): Fighting Urban Poverty,

    2001-01-01

    This report was presented in the session 'Fighting Exclusion and Providing Social Services' at the International Workshop of the Anti-Poverty Partnership Initiatives Trust Fund: Fighting Urban Poverty, (April 18-19 2001, York University). It looks primarily at the social situation of Colombia in the 1990s, with a focus on inequality, income distribution, and the family as a social institution. The author sees the System as an initiative in the fight against poverty en Colombia and argues t...

  17. Target detect system in 3D using vision apply on plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico

    2001-03-01

    This paper presents the preliminary results for a system in tree dimension that use a system vision to manipulate plants in a tissue culture process. The system is able to estimate the position of the plant in the work area, first calculate the position and send information to the mechanical system, and recalculate the position again, and if it is necessary, repositioning the mechanical system, using an neural system to improve the location of the plant. The system use only the system vision to sense the position and control loop using a neural system to detect the target and positioning the mechanical system, the results are compared with an open loop system.

  18. Analysis of initial performance of Solergy's HCPV/T system at Rome-Fiumicino International Airport

    Science.gov (United States)

    Micheli, Leonardo; Femia, Giuseppe; Liani, Martina; Poli, Ruggero; Banin, Yoav; Lanzara, Giovanni; Kurtz, Sarah

    2017-09-01

    A commercial HCPV/T system, developed by Solergy, is installed at the airport of Rome, in Italy, as part of a prototype smart grid. The system is rated at 15 kW AC electric and 20 kW thermal and is used to provide both electricity for charging electric vehicles and heat for a conventional thermal power plant. This paper presents an analysis of the performance of the system, operating since March 2017, which achieves a combined peak efficiency of 48%. This study incorporates also an investigation on the improvements that can benefit the system, including a new type of receiver with improved heat dissipation.

  19. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Science.gov (United States)

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  20. An improved system for routine performance testing in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.J.; Hansen, D.B.; March, P.A. [Tennessee Valley Authority, Norris, TN (United States)] [and others

    1996-05-01

    A data acquisition and analysis system has been developed that reduces the time and labor required to perform routine performance tests on power plant components. The system uses modem data acquisition and computation technologies to integrate the process of data acquisition, data analysis, and reporting of results. During a test run, the data acquisition system reads the data and transfers it to a Microsoft Excel workbook via a dynamic data exchange (DDE) link. In Excel, the system computes and displays real-time trend plots. Real-time plots typically include a display of precision errors, thus providing an immediate indication of the quality of the current test. Upon completion of a run, the system saves results and creates plots in a workbook dedicated to test results. The plots can display computed values such as turbine or boiler feedpump efficiency. Benchmark data can also be included in the plots to provide immediate feedback concerning the change in the performance of a component and the dollar cost due to the performance change. The data tables and plots provide a preliminary report that is available immediately upon completion of the test.

  1. Plant functional type mapping for earth system models

    Directory of Open Access Journals (Sweden)

    B. Poulter

    2011-08-01

    Full Text Available The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM rely on the concept of plant functional types (PFT to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 % uncertainty in the sensitivity of GPP (transpiration to precipitation. The availability of plant functional type datasets that

  2. Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants.

    Science.gov (United States)

    Li, Ying; Krouk, Gabriel; Coruzzi, Gloria M; Ruffel, Sandrine

    2014-10-01

    The ability of plants to sense their nitrogen (N) microenvironment in the soil and deploy strategic root growth in N-rich patches requires exquisite systems integration. Remarkably, this new paradigm for systems biology research has intrigued plant biologists for more than a century, when a split-root framework was first used to study how plants sense and respond to heterogeneous soil nutrient environments. This systemic N-signalling mechanism, allowing plants to sense and forage for mineral nutrients in resource-rich patches, has important implications for agriculture. In this review, we will focus on how advances in the post-genomic era have uncovered the gene regulatory networks underlying systemic N-signalling. After defining how local and systemic N-signalling can be experimentally distinguished for molecular study using a split-root system, the genetic factors that have been shown to mediate local and/or systemic N-signalling are reviewed. Second, the genetic mechanism of this regulatory system is broadened to the whole genome level. To do this, publicly available N-related transcriptomic datasets are compared with genes that have previously been identified as local and systemic N responders in a split-root transcriptome dataset. Specifically, (i) it was found that transcriptional reprogramming triggered by homogeneous N-treatments is composed of both local and systemic responses, (ii) the spatio-temporal signature of local versus systemic responsive genes is defined, and (iii) the conservation of systemic N-signalling between Arabidopsis and Medicago is assessed. Finally, the potential mediators, i.e. metabolites and phytohormones, of the N-related long-distance signals, are discussed.

  3. Construction and initial operation of the combined solar thermal and electric desiccant cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Mitamura, Teruaki [Faculty of Engineering, Ashikaga Institute of Technology, Ashikaga 326-8558 (Japan); Baba, Seizo [Earth Clean Tohoku Co., Ltd., Sendai 984-0038 (Japan)

    2009-08-15

    This paper reports the constructed combined solar thermal and electric desiccant cooling system - its initial operation and operational procedures. The system, as designed, can be operated during nighttime and daytime. The nighttime operation is for thermal energy storage using the auxiliary electric heater, while the daytime operation is for solar energy collection and desiccant cooling. Ongoing experimental evaluation is being undertaken to observe and determine the long-term performance of the system. (author)

  4. Increased belowground C release during initial plant development of Populus deltoides x nigra grown under light and C reserve limited conditions

    Science.gov (United States)

    Studer, Mirjam S.; Siegwolf, Rolf T. W.; Schmidt, Michael W. I.; Abiven, Samuel

    2014-05-01

    Plants might be a key factor for the long-term stabilisation of carbon (C) in the soil, e.g. through enhanced physical protection of root-derived C against microbial decomposition in soil aggregates. On the other hand C released by the plants into the soil might promote the decomposition of native soil organic matter (SOM) through the stimulation of microbial activity. We measured the C budget of developing plant-soil systems (Populus deltoides x nigra, Cambisol soil) in the laboratory under controlled environmental conditions. In order to distinguish plant-derived from native C in the SOM and the soil CO2 efflux, we labelled the poplar shoots continuously with 13C-CO2 from first emergence of leaves (sprouting from stem cuttings). Throughout the experiment the CO2 fluxes (photosynthetic assimilation, dark respiratory loss, soil CO2 efflux) were measured frequently (every 30 min) and the 13C was traced in the soil CO2 efflux (1-2 times a week). After 10 weeks the plant-soil systems were destructively harvested and the distribution of the 13C distribution was analysed. The plants developed slowly (compared to previous experiments), most likely due to limitation in C reserves (long term cutting storage) and C supply (low light intensities). The amount of 13C recovered in the roots, microbial biomass and soil CO2 efflux was directly correlated with the leaf area of the different plant individuals. After 3-4 weeks of plant development we observed a high peak in the total soil CO2 efflux. During this time the relative belowground C release was increased massively over the basal rate of 17 % of net C assimilated, whereby the variability between the plant individuals was large. The smallest plants, i.e. the plants that were most resource limited, obtained the highest belowground C release accounting at the peak time for up to 57 % of net assimilated C. We hypothesize that the plants released specific compounds, which either directly (enzymatically) or indirectly (priming

  5. The role of plant disease in the development of controlled ecological life support systems

    Science.gov (United States)

    Nelson, B.

    1986-01-01

    Plant diseases could be important factors affecting growth of higher plants in Closed Ecological Life Support Systems (CELSS). Disease control, therefore, will be needed to maintain healthy plants. The most important controls should be aimed at preventing the introduction, reproduction and spread of pathogens and preventing plant infection. An integrared ease control program will maximize that approach. In the design and operation of CELSS, plant disease should be considered an important aspect of plant growth. The effects of plant diseases are reviewed and several disease control measures are discussed.

  6. ESM Calculations for Hydroponic Plant and Fungi Growth Chambers, Biosolids Dewatering Plant System, and Tilapia Growth System--EAC Presentation 2004

    OpenAIRE

    Aydogan, Selen; Blau, Gary; Pekny, Joseph; Reklaitis, Gintaras

    2004-01-01

    In this work, preliminary Equivalent System Mass (ESM) estimations of the Hydroponic Plant and Fungi Growth Chambers, Biosolids Dewatering Plant and Tilapia Growth Systems are presented. ESM may be used to evaluate a system or technology based on its mass, volume, power, cooling and manpower requirements. This ESM analysis focuses on a hypothetical device, instead of the anticipated technology that is system flight proven in mission operations. We have examined the Evolved Mars Base mission, ...

  7. Identification of fractional-order systems with unknown initial values and structure

    Energy Technology Data Exchange (ETDEWEB)

    Du, Wei, E-mail: duwei0203@gmail.com [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Miao, Qingying, E-mail: qymiao@sjtu.edu.cn [School of Continuing Education, Shanghai Jiao Tong University, Shanghai 200030 (China); Tong, Le, E-mail: tongle0328@gmail.com [Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hong Kong (China); Tang, Yang [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2017-06-21

    In this paper, the identification problem of fractional-order chaotic systems is proposed and investigated via an evolutionary optimization approach. Different with other studies to date, this research focuses on the identification of fractional-order chaotic systems with not only unknown orders and parameters, but also unknown initial values and structure. A group of fractional-order chaotic systems, i.e., Lorenz, Lü, Chen, Rössler, Arneodo and Volta chaotic systems, are set as the system candidate pool. The identification problem of fractional-order chaotic systems in this research belongs to mixed integer nonlinear optimization in essence. A powerful evolutionary algorithm called composite differential evolution (CoDE) is introduced for the identification problem presented in this paper. Extensive experiments are carried out to show that the fractional-order chaotic systems with unknown initial values and structure can be successfully identified by means of CoDE. - Highlights: • Unknown initial values and structure are introduced in the identification of fractional-order chaotic systems; • Only a series of output is utilized in the identification of fractional-order chaotic systems; • CoDE is used for the identification problem and the results are satisfactory when compared with other DE variants.

  8. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis.

    Science.gov (United States)

    Huang, Nien-Chen; Jane, Wann-Neng; Chen, Jychian; Yu, Tien-Shin

    2012-10-01

    Floral initiation is orchestrated by systemic floral activators and inhibitors. This remote-control system may integrate environmental cues to modulate floral initiation. Recently, FLOWERING LOCUS T (FT) was found to be a florigen. However, the identity of systemic floral inhibitor or anti-florigen remains to be elucidated. Here we show that Arabidopsis thaliana CENTRORADIALIS homologue (ATC), an Arabidopsis FT homologue, may act in a non-cell autonomous manner to inhibit floral initiation. Analysis of the ATC null mutant revealed that ATC is a short-day-induced floral inhibitor. Cell type-specific expression showed that companion cells and apex that express ATC are sufficient to inhibit floral initiation. Histochemical analysis showed that the promoter activity of ATC was mainly found in vasculature but under the detection limit in apex, a finding that suggests that ATC may move from the vasculature to the apex to influence flowering. Consistent with this notion, Arabidopsis seedling grafting experiments demonstrated that ATC moved over a long distance and that floral inhibition by ATC is graft transmissible. ATC probably antagonizes FT activity, because both ATC and FT interact with FD and affect the same downstream meristem identity genes APETALA1, in an opposite manner. Thus, photoperiodic variations may trigger functionally opposite FT homologues to systemically influence floral initiation.

  9. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  10. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  11. Monoterpenes Released from Fruit, Plant, and Vegetable Systems

    Science.gov (United States)

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Ahn, Jeong Hyeon

    2014-01-01

    To quantify the emission rate of monoterpenes (MTs) from diverse natural sources, the sorbent tube (ST)-thermal desorption (TD) method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS) and flame ionization detector (FID), consistently exhibited high coefficient of determination values (R2 > 0.99). This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V) samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris), tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice) marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37%) for carrot, while it was myrcene (31%) for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants. PMID:25268921

  12. Monoterpenes Released from Fruit, Plant, and Vegetable Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Iqbal

    2014-09-01

    Full Text Available To quantify the emission rate of monoterpenes (MTs from diverse natural sources, the sorbent tube (ST-thermal desorption (TD method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS and flame ionization detector (FID, consistently exhibited high coefficient of determination values (R2 > 0.99. This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris, tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37% for carrot, while it was myrcene (31% for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants.

  13. Tempo and mode in plant breeding system evolution.

    Science.gov (United States)

    Goldberg, Emma E; Igić, Boris

    2012-12-01

    Classic questions about trait evolution-including the directionality of character change and its interactions with lineage diversification-intersect in the study of plant breeding systems. Transitions from self-incompatibility to self-compatibility are frequent, and they may proceed within a species ("anagenetic" mode of breeding system change) or in conjunction with speciation events ("cladogenetic" mode of change). We apply a recently developed phylogenetic model to the nightshade family Solanaceae, quantifying the relative contributions of these two modes of evolution along with the tempo of breeding system change, speciation, and extinction. We find that self-incompatibility, a genetic mechanism that prevents self-fertilization, is lost largely by the cladogenetic mode. Self-compatible species are thus more likely to arise from the isolation of a newly self-compatible population than from species-wide fixation of self-compatible mutants. Shared polymorphism at the locus that governs self-incompatibility shows it to be ancestral and not regained within this family. We demonstrate that failing to account for cladogenetic character change misleads phylogenetic tests of evolutionary irreversibility, both for breeding system in Solanaceae and on simulated trees. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  14. Initial Design and Construction of a Mobil Regenerative Fuel Cell System

    Science.gov (United States)

    Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)

    2003-01-01

    The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.

  15. LARP LHC 4.8 GHz Schottky System Initial Commissioning with Beam

    CERN Document Server

    Pasquinelli, R J; Jones, O R; Jansson, A

    2011-01-01

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place during the spring and summer of 2010. With nominal bunch beam currents of 1011 protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system.

  16. LARP LHC 4.8 GHZ Schottky System Initial Commissioning with Beam

    CERN Document Server

    Pasquinelli, Ralph J; Jones, O Rhodri; Caspers, Fritz

    2011-01-01

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 1011 protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system.

  17. The Probabilistic Method and large initial data for Generalized Navier-Stokes systems

    CERN Document Server

    Cortissoz, Jean C

    2011-01-01

    In this paper we introduce a probabilistic approach to show the existence of initial data with arbitrarily large $L^2(\\mathbb{R}^3)$, $\\dot{H}^{1/2}(\\mathbb{R}^3)$ and $\\mathcal{PM}^2$-norms for which a Generalized Navier-Stokes system generate a global regular solution. More precisely, we show that from a certain family of possible large initial data most of them give raise to global regular solutions to a given Generalized Navier-Stokes system.

  18. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  19. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  20. Reduced quantum dynamics with initial system-environment correlations characterized by pure Markov states

    Science.gov (United States)

    Türkmen, A.; Verçin, A.; Yılmaz, S.

    2016-09-01

    Any tripartite state which saturates the strong subadditivity relation for the quantum entropy is defined as the Markov state. A tripartite pure state describing an open system, its environment, and their purifying system is a pure Markov state if and only if the bipartite marginal state of the purifying system and environment is a product state. It has been shown that as long as the purification of the input system-environment state is a pure Markov state, the reduced dynamics of the open system can be described, on the support of the initial system state, by a quantum channel for every joint unitary evolution of the system-environment composite even in the presence of initial correlations. Entanglement, discord, and classical correlations of the initial system-environment states implied by the pure Markov states are analyzed and it has been shown that all these correlations are entirely specified by the entropy of environment. Some implications concerning perfect quantum error correction procedure and quantum Markovian dynamics are presented.

  1. A dynamic model of plants' blossom based on L-system

    Science.gov (United States)

    Zhang, Ruoran; Zhang, Wenhui; Zhu, Ying; Wang, Huijao

    2010-11-01

    The article study L-system theory to modeling a visualization system which can expresses plants' growth and blossom by the Delphi language. This is according to growth process in the topology evolution and fractal geometry shape of plant, which extracts plant's growth rules to establish blossom models. The simulation is aim at modeling dynamic procedures, which can produces the lifelike plant images and demonstrates animations of growth processes. This new model emphasizes various parts of plant between space's and time's relationships. This mathematical models use biology to produce plant compartments of blossoms on growth of plants with correct images which ranges from time to time, and provides the lifelike continual growth sequence and through the natural principles to imitates and controls plants' blossoms and plant's diseases.

  2. Segregation Analysis on Genetic System of Quantitative Traits in Plants

    Institute of Scientific and Technical Information of China (English)

    Gai Junyi

    2006-01-01

    Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes (up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.

  3. Industrial power monitoring and control : Power management system helps plant reduce energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, L.E. [E2MS Inc., Whitby, ON (Canada); Demysh, M. [Diversa Cast Technologies, Guelph, ON (Canada)

    2001-05-01

    A power management system, consisting of a real time demand management system designed to allow managers to reduce operating costs via the automatic control of plant furnace loads with interference to production kept to a minimum, was installed at Diversa Cast Technologies in Guelph, Ontario. Diversa Cast Technologies manufactures aluminium, gray and ductile iron automotive lost foam castings. The potential load at the plant is approximately 5000 kW, and comprises two coreless induction melters and supporting equipment. Used for iron batch melting in the off peak hours between 2300 hours and 0700 hours, the first melter is rated at 2750 kW with 8000 lbs capacity. The aluminium heal melting during the on peak hours is handled by the second melter rated at 1250 kW with a 2700 lbs capacity. The electric utility operates on a time-of-use basis which includes penalties for on-peak demand. The installation of the system is described, along with its operation. The software comprises a number of modules to control all the necessary functions associated with data acquisition and analysis. The modules include: communications module, display module, analysis module, report module, database filer, and a system and cost configuration module. Commissioned in February 2000, the system has operated for approximately two months. After the initial period of two weeks where the system was in a monitoring mode to determine the baseline of energy demand and consumption, the demand control was activated. The numerous advantages of the system include better efficiency in the way energy is used, a reduction in the power factor penalties, power factor savings. The payback for this system is less than 8 months. The overall demand was lowered, the productivity improved along with the energy consumption efficiency. 4 figs.

  4. [Purification of eutrophic wastewater by Cyperus alternifolius, Coleus blumei and Jasminum sambac planted in a floating phytoremediation system].

    Science.gov (United States)

    Liu, Shizhe; Lin, Dongjiao; Tang, Shujun; Luo, Jian

    2004-07-01

    In a greenhouse study, Cyperus alternifolius, Coleus blumei and Jasminum sambac were cultured in a floating phytoremediation system with plantation cups inserted into a polyfoam plate that floated in the upper part of a tank filled with 100 L domestic wastewater. The contents of chemical oxygen demand (CODCr), total P (T-P), total N (T-N), soluble P(S-P), ammonia-nitrogen (NH4+ -N) and nitrate-nitrogen (NO3- -N) in the domestic wastewater were tested during the growth of these three plants. The results showed that Cyperus alternifolius and Coleus blumei could grow well in the floating phytoremediation system, their dry weight being 285.8% and 371.4% of the initial weight of planting, respectively, but Jasminum sambac could not grow well, being 125.0% of the initial weight of planting. The removal rate of TN by these 3 plants was 68.0%, 62.0% and 45.0%, and that of NO3- -N, CODCr and TP was 98.0%, 80.0% and 92.0%, 78.0%, 66.0% and 55.0%, and 90.6%, 90.5% and 88.0% respectively. Cyperus alternifolius and Coleus blumei had good effects on the removal of pollutants in the floating phytoremediation system.

  5. A LOPA application to the hydrogen cooling system of the main electric generator of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Flavia M.; Frutuoso e Melo, Paulo Fernando Ferreira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)]. E-mails: flaviamvasconcelos@gmail.com; frutuoso@con.ufrj.br; Saldanha, P.L. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Reatores]. E-mail: saldanha@cnen.gov.br

    2008-07-01

    The Layer of Protection Analysis (LOPA) is a powerful analytical tool for assessing the adequacy of protection layers used to mitigate risks in a process plant. LOPA applies semi-quantitative measures to evaluate the frequency of potential incidents and the probability of failure of protection layers. This paper presents an application of the Layer of Protection Analysis technique to a nuclear power plant in order to evaluate the cooling system of an electric generator, so as to identify scenarios that might lead to a plant shutdown. Next, the frequencies of occurrence of these events and the probability of failure on demand of the independent protection layers are determined. Here a difficulty is related to the lack of failure and initiating event data. The consequences identified are listed as impact events and are classified as to their severity level. The initiating causes are listed for each impact event and the likelihood is estimated for each initiating cause. Independent Protection Layers (ILPs) are listed. The mitigated event likelihood is studied and additional ILPs can be evaluated and added to reduce the risk. As a conclusion, LOPA demonstrated that the hydrogen inner-cooling electric generator system is in compliance with the risk scenarios adopted for this study. Some suggestions were made in order to automate some manual actions to increase the system reliability. (author)

  6. Application of CG animation system to plant designing and its future prospect. Plant sekkei eno CG animation system no katsuyo to shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Kumazawa, T. (JGC Corp., Tokyo (Japan))

    1994-03-05

    This paper introduces an outline of four-dimensional real-time CG (computer graphics) animation system, which is applicable to the plant designing. It also describes a new type engineering work environment using a decision support system for the plant designing. This animation system is applied to the visualization of dynamic simulation analysis, preparation of presentation data at the stage of basic designing, arrangement of equipments, etc. Are illustrated examples of the application of this system to the multiform variable production type plant, physical distribution simulation, and multipurpose batch plant. Furthermore, effectiveness of the virtual space decision support system is emphasized, which is a visual design support system using the latest element technologies, such as CG, VR (virtual reality), hologram, tele-existence, telepresence, multimedia, etc. 6 refs., 10 figs.

  7. The development of robotic system for the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Jae Kyung; Kim, Ki Ho; Jung, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Yeoung; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong

    1996-07-01

    This project focuses on the development of a heavy-duty telerobotic system (HDTS) and a light-duty mobile robotic system (LDMRS) for use in nuclear power plants. HDTS has been developed for performing tasks such as the installation and removal of nozzle dam inside of water chamber of steam generator. HDTS that is remotely controlled could eliminate or significantly reduce human exposure to hazardous nuclear environment. HDTS has four major subsystems : a 6 degree of freedom master-slave manipulator, a guiding device, a monitoring device and a remote control center. Functional connections of each subsystems has resulted in HDTS that exhibits a high level of dexterity and a broad range of capabilities. LDMRS has been developed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. LDMRS equipped with four-omnidirectional planetary wheels is capable of ascending and descending stairs by employing a automatic stair climbing algorithm. A force-reflective algorithm developed enables LDMRS to be navigated flat surface with zero turning radius without collision by giving an operator a sense of force. The significance of developments is in providing both HDTS and LDMRS that can be operated from remote locations to perform tasks such as the maintenance of nozzle dam and the video surveillance of the nuclear facilities efficiently and without endangering human workers. This report describes the mechanical design, features, control system, and capabilities of both HDTS and LDMRS. (author). 59 refs., 38 tabs., 132 figs.

  8. A metamorphic controller for plant control system design

    Directory of Open Access Journals (Sweden)

    Tomasz Klopot

    2016-07-01

    Full Text Available One of the major problems in the design of industrial control systems is the selection and parameterization of the control algorithm. In practice, the most common solution is the PI (proportional-integral controller, which is simple to implement, but is not always the best control strategy. The use of more advanced controllers may result in a better efficiency of the control system. However, the implementation of advanced control algorithms is more time-consuming and requires specialized knowledge from control engineers. To overcome these problems and to support control engineers at the controller design stage, the paper describes a tool, i.e., a metamorphic controller with extended functionality, for selection and implementation of the most suitable control algorithm. In comparison to existing solutions, the main advantage of the metamorphic controller is its possibility of changing the control algorithm. In turn, the candidate algorithms can be tested through simulations and the total time needed to perform all simulations can be less than a few minutes, which is less than or comparable to the design time in the concurrent design approach. Moreover, the use of well-known tuning procedures, makes the system easy to understand and operate even by inexperienced control engineers. The application was implemented in the real industrial programmable logic controller (PLC and tested with linear and nonlinear virtual plants. The obtained simulation results confirm that the change of the control algorithm allows the control objectives to be achieved at lower costs and in less time.

  9. Badger Army Ammunition Plant groundwater data management system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.P. [Olin Corp., Baraboo, WI (United States). Badger Army Ammunition Plant

    1994-12-31

    At the Badger Army Ammunition Plant (Badger), there are currently over 200 wells that are monitored on a quarterly basis. Badger has had three active production periods since its construction in 1942. During these periods, various nitrocellulose based propellants were produced including single base artillery propellants were produced including single base artillery propellant, double base rocket propellant and BALL POWDER{reg_sign} propellant. Intermediate materials used in the manufacture of these propellants were also produced, including nitroglycerine, and sulfuric and nitric acids. To meet the challenge of managing the data in-house, a groundwater data management system (GDMS) was developed. Although such systems are commercially available, they were not able to provide the specific capabilities necessary for data management and reporting at Badger. The GDMS not only provides the routine database capabilities of data sorts and queries, but has provided an automated data reporting system as well. The reporting function alone has significantly reduced the time and efforts that would normally be associated with this task. Since the GDMS was developed at Badger, the program can be continually adapted to site specific needs. Future planned modifications include automated reconciliation, improved transfer of data to graphics software, and statistical analysis and interpretation of the data.

  10. Comparison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ling; CHEN Ming-hui; LI Liang-jun; XU Bo

    2008-01-01

    There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system.This paper discussed the use of GPS,but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS).One method is based on the Kalman filter (KF),and the other is based on the robust filter.Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF,given substantial process noise or unknown noise statistics.So the robust filter is an effective and useful method for initial alignment of SINS.This research should make the use of SINS more popular,and is also a step for further research.

  11. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system.

    Science.gov (United States)

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-10-11

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

  12. A 4D-Ensemble-Variational System for Data Assimilation and Ensemble Initialization

    Science.gov (United States)

    Bowler, Neill; Clayton, Adam; Jardak, Mohamed; Lee, Eunjoo; Jermey, Peter; Lorenc, Andrew; Piccolo, Chiara; Pring, Stephen; Wlasak, Marek; Barker, Dale; Inverarity, Gordon; Swinbank, Richard

    2016-04-01

    The Met Office has been developing a four-dimensional ensemble variational (4DEnVar) data assimilation system over the past four years. The 4DEnVar system is intended both as data assimilation system in its own right and also an improved means of initializing the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The global MOGREPS ensemble has been initialized by running an ensemble of 4DEnVars (En-4DEnVar). The scalability and maintainability of ensemble data assimilation methods make them increasingly attractive, and 4DEnVar may be adopted in the context of the Met Office's LFRic project to redevelop the technical infrastructure to enable its Unified Model (MetUM) to be run efficiently on massively parallel supercomputers. This presentation will report on the results of the 4DEnVar development project, including experiments that have been run using ensemble sizes of up to 200 members.

  13. Plant functional type mapping for earth system models

    Directory of Open Access Journals (Sweden)

    B. Poulter

    2011-11-01

    Full Text Available The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM rely on the concept of plant functional types (PFT to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20% uncertainty in the sensitivity of GPP (transpiration to precipitation. The availability of PFT datasets that are consistent

  14. Hanford Tanks Initiative alternate retrieval system demonstrations - final report of testing performed by Grey Pilgrim LLC

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-24

    A waste retrieval system has been defined to provide a safe and cost-effective solution to the Hanford Tanks Initiative. This system consists of the EMMA robotic manipulator (by GreyPilgrim LLC) and the lightweight Scarifier (by Waterjet Technology, Inc.) powered by a 36-kpsi Jet-Edge diesel powered high pressure pumping system. For demonstration and testing purposes, an air conveyance system was utilized to remove the waste from the simulated tank floor. The EMMA long reach manipulator utilized for this demonstration was 33 feet long. It consisted of 4 hydraulically controlled stages of varying lengths and coupling configurations. T

  15. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing

    NARCIS (Netherlands)

    Candogan Yossef, N.; Winsemius, H.C.; Weerts, A.; Van Beek, R.; Bierkens, M.F.P.

    2013-01-01

    We investigate the relative contributions of initial conditions (ICs) and meteorological forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCRaster Global Water Balance. Potential improvement in forecasting skill through be

  16. A new multifunctional initiator system for the living cationic polymerization of vinyl ethers

    NARCIS (Netherlands)

    Zhang, Xiaochun; Goethals, Eric J.; Loontjens, Ton; Derks, Frank

    2000-01-01

    Combination of hexa(chloromethyl)melamine (HCMM) and zinc chloride was found to be a multifunctional initiator system for the living cationic polymerization of isobutyl vinyl ether. HCMM was synthesized by reaction of hexa(methoxymethyl)melamine and boron trichloride. Characterization of the polymer

  17. How non-zero initial conditions affect the minimality of linear discrete-time systems

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Koning, de W.L.

    2008-01-01

    From the state-space approach to linear systems, promoted by Kalman, we learned that minimality is equivalent with reachability together with observability. Our past research on optimal reduced-order LQG controller synthesis revealed that if the initial conditions are non-zero, minimality is no long

  18. Virginia Star Quality Initiative: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    Science.gov (United States)

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Virginia's Star Quality Initiative prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators…

  19. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing

    NARCIS (Netherlands)

    Candogan Yossef, N.; Winsemius, H.C.; Weerts, A.; Van Beek, R.; Bierkens, M.F.P.

    2013-01-01

    We investigate the relative contributions of initial conditions (ICs) and meteorological forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCRaster Global Water Balance. Potential improvement in forecasting skill through be

  20. On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems

    Institute of Scientific and Technical Information of China (English)

    王保祥; 郭柏灵

    2001-01-01

    We study the initial value problem of the Davey-Stewartson systems for the elliptic-elliptic and hyperbolic-elliptic cases. The local and global existence and uniqueness of solutions in Hs is shown. Also, we prove that the scattering operator carries a band in Hs into Hs.

  1. Prescribing Transient and Asymptotic Behaviour of LTI Systems with Stochastic Initial Conditions

    NARCIS (Netherlands)

    Dresscher, Martijn; Jayawardhana, Bayu

    2017-01-01

    This paper considers two different control problems for deterministic systems with stochastic initial conditions where, in addition to the usual asymptotic behavior requirement, we are interested in the transient behavior of the state distribution evolution. For the first one, we study control desig

  2. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing

    NARCIS (Netherlands)

    Candogan Yossef, N.; Winsemius, H.C.; Weerts, A.; Van Beek, R.; Bierkens, M.F.P.

    2013-01-01

    We investigate the relative contributions of initial conditions (ICs) and meteorological forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCRaster Global Water Balance. Potential improvement in forecasting skill through

  3. A Method for Choosing an Initial Time Eigenstate in Classical and Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mónica Noemí Jiménez-García

    2013-06-01

    Full Text Available A subject of interest in classical and quantum mechanics is the development of the appropriate treatment of the time variable. In this paper we introduce a method of choosing the initial time eigensurface and how this method can be used to generate time-energy coordinates and, consequently, time-energy representations for classical and quantum systems.

  4. Initial experimental results of a machine learning-based temperature control system for an RF gun

    CERN Document Server

    Edelen, A L; Milton, S V; Chase, B E; Crawford, D J; Eddy, N; Edstrom, D; Harms, E R; Ruan, J; Santucci, J K; Stabile, P

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.

  5. Discretizing LTI Descriptor (Regular Differential Input Systems with Consistent Initial Conditions

    Directory of Open Access Journals (Sweden)

    Athanasios D. Karageorgos

    2010-01-01

    Full Text Available A technique for discretizing efficiently the solution of a Linear descriptor (regular differential input system with consistent initial conditions, and Time-Invariant coefficients (LTI is introduced and fully discussed. Additionally, an upper bound for the error ‖x¯(kT−x¯k‖ that derives from the procedure of discretization is also provided. Practically speaking, we are interested in such kind of systems, since they are inherent in many physical, economical and engineering phenomena.

  6. Positive solutions of some parabolic system with cross-diffusion and nonlocal initial conditions

    CERN Document Server

    Walker, Christoph

    2010-01-01

    The paper is concerned with a system consisting of two coupled nonlinear parabolic equations with a cross-diffusion term, where the solutions at positive times define the initial states. The equations arise as steady state equations of an age-structured predator-prey system with spatial dispersion. Based on unilateral global bifurcation methods for Fredholm operators and on maximal regularity for parabolic equations, global bifurcation of positive solutions is derived.

  7. DUMAND II: String 1 deployment, initial operation, results and system retrieval

    Science.gov (United States)

    Grieder, P. K. F.; Dumand Collaboration

    1995-06-01

    We summarize the deployment of the first string of 24 optical detector modules with its data and command processing and transmission system, the junction box with its precision sonar and video systems, and the laying of the 36 km twelve-fiber electro-optical cable to shore. Results from the initial operation are discussed as well as the successful retrieval of string 1 for servicing.

  8. Electric power plant technology. Generators, transformers, auxiliary installations, protective systems. Lecture notes. 5. rev. ed.; Elektrische Kraftwerkstechnik. Generatoren, Transformatoren, Eigenbedarfsanlagen, Schutzeinrichtungen. Vorlesungsskript

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ulrich

    2009-07-01

    The lecture series on electric power plant engineering was initiated in 1969 by Prof. Helmut Schaefer, founder of the then department of power economy and power plant engineering. The lecture series was continuously updated in its contents and didactic approach, e.g. by integrating innovative power generation concepts like micro cogeneration plants and fuel cell systems. The focus is on the fundamentals and function of generators, main transformers, auxiliary installations and protective systems in power plant. Apart from the electrotechnical aspects, also aspects of mechanical engineering are gone into. Also discussed are energy conversion concepts fo renewable power generation plants like wind turbines and PV systems. This is the 5th, completely revised edition. It addresses primarily attendants of the lectures but may also serve as a textbook and reference manual for interested experts.

  9. Seismic fragility analysis of seismically isolated nuclear power plants piping system

    Energy Technology Data Exchange (ETDEWEB)

    Salimi Firoozabad, Ehsan, E-mail: e.salimi@pusan.ac.kr [Department of Civil and Environmental Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Jeon, Bub-Gyu, E-mail: bkjeon79@pusan.ac.kr [KOCED Seismic Simulation Test Center, Pusan National University, Yangsan Campus Mulgeum, Yangsan, Kyungsangnam (Korea, Republic of); Choi, Hyoung-Suk, E-mail: engineer@pusan.ac.kr [KOCED Seismic Simulation Test Center, Pusan National University, Yangsan Campus Mulgeum, Yangsan, Kyungsangnam (Korea, Republic of); Kim, Nam-Sik, E-mail: nskim@pusan.ac.kr [Department of Civil and Environmental Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-01

    Highlights: • The critical points of a seismically isolated NPP piping system are identified. • The simulation results are validated through a monotonic and cyclic test of the critical points. • The conditional mean spectrum method is used to scale the selected records. • The fragility curves of the NPP piping system are estimated. • Computation of the fragility parameters is addressed. - Abstract: Nuclear power plants are high risk facilities due to the possibility of sudden seismic events, because any possible failure could initiate catastrophic radioactive contamination. The seismic fragility analysis of NPPs and related equipments (such as piping systems) is a proven method to determine their performance against any possible earthquake. In this study the Brookhaven National laboratory benchmark model of a piping system was considered for the fragility analysis. A tensile test was conducted to define the material properties. An initial seismic analysis of the piping system is performed to indicate the critical sections of the piping system. Numerical analysis was validated through a monotonic and cyclic loading experiment of two identified critical points of the piping system. The tests were conducted at the Korea Construction Engineering Development (KOCED) Seismic Simulation Test Center, Pusan National University, Korea. Fragility curves were expressed for critical points of the system as a function of the spectral acceleration of the records and the maximum relative displacement. The standard deviation of the response and capacity were calculated using mathematical formulas, assuming that those follow a log-normal distribution. We determined that the fragility curve of a pipe elbow must be derived for both the opening and closing mode, regarding the difference between the capacities of the elbow on those modes. The high confidence of low probability of failure for the considered fragility functions in a straight section in any direction is

  10. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  11. Serial DC systems applied to small-scale hydroelectric power plants; Sistemas serie em corrente continua aplicados as pequenas centrais hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Manuel L.B.; Rosa, Paulo C. [Escola Federal de Engenharia de Itajuba, MG (Brazil); Martinez, Carlos B. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Hidraulica e Recursos Hidricos

    1996-12-31

    The utilization of the remaining potential in brazilian South and Southeast regions, specially those close to the biggest demand areas, have been conditioned by the high costs of the initialization of the socio and environmental impacts. As a consequence, the viability of the traditional energy production systems (hydraulic power plants) need a revaluation of its costs, especially in what concerns the generation plants and their auxiliary systems. This paper discusses several considerations concerning of serial DC small-scale hydroelectric power plants, giving especial attention to the technical conditions and control aspects which must be observed during the planning and the project phases 9 refs., 4 figs.

  12. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  13. Initial system-bath state via the maximum-entropy principle

    Science.gov (United States)

    Dai, Jibo; Len, Yink Loong; Ng, Hui Khoon

    2016-11-01

    The initial state of a system-bath composite is needed as the input for prediction from any quantum evolution equation to describe subsequent system-only reduced dynamics or the noise on the system from joint evolution of the system and the bath. The conventional wisdom is to write down an uncorrelated state as if the system and the bath were prepared in the absence of each other; yet, such a factorized state cannot be the exact description in the presence of system-bath interactions. Here, we show how to go beyond the simplistic factorized-state prescription using ideas from quantum tomography: We employ the maximum-entropy principle to deduce an initial system-bath state consistent with the available information. For the generic case of weak interactions, we obtain an explicit formula for the correction to the factorized state. Such a state turns out to have little correlation between the system and the bath, which we can quantify using our formula. This has implications, in particular, on the subject of subsequent non-completely positive dynamics of the system. Deviation from predictions based on such an almost uncorrelated state is indicative of accidental control of hidden degrees of freedom in the bath.

  14. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    Energy Technology Data Exchange (ETDEWEB)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  15. Modeling and control for closed environment plant production systems

    Science.gov (United States)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  16. Diapause initiation and incidence in the millet stem borer, Coniesta ignefusalis (Lepidoptera: Pyralidae): the role of the host plant.

    Science.gov (United States)

    Tanzubil, P B; Mensah, G W; McCaffery, A R

    2000-08-01

    The role of the host plant in the development of larval diapause in the millet stem borer, Coniesta ignefusalis (Hampson) was investigated in northern Ghana in 1996 and 1997. Surveys conducted in farmers' fields in the Guinea and Sudan savannah revealed that of all the upland cereals grown, the insect survived the dry season only in stalks and stubble of pearl millet, Pennisetum glaucum and late sorghum, Sorghum bicolor. This observation was confirmed by results from field trials conducted at the Manga Research Station. In these studies, C. ignefusalis larvae entered diapause only in late millet and late sorghum, with a higher incidence in the former. The insect neither attacked nor entered diapause in maize planted during the same period as the other crops. Results from controlled experiments showed that diapause incidence in the preferred host, millet, was higher in older than in younger plants, suggesting that host plant maturation is a key factor influencing the development of larval diapause in C. ignefusalis.

  17. Multiple System Atrophy Manifested by Bilateral Vocal Cord Palsy as an Initial Sign

    Directory of Open Access Journals (Sweden)

    Yuri Seo

    2015-05-01

    Full Text Available A 71-year-old male initially presented with vocal cord palsy and underwent tracheostomy. After thorough examination, urogenital dysfunction, orthostatic hypotension, and Parkinsonism were found, which led to the diagnosis of multiple system atrophy (MSA. After the tracheostomy, bi-level positive airway pressure ventilation was required during the night due to nocturnal hypoxemia. Nighttime hypoxemia is related to central sleep apnea, which is one of the manifestations of MSA. This is the first case of MSA manifested by bilateral vocal cord palsy as an initial sign in Korea. This case supports the notion that MSA should be taken into consideration when vocal cord paralysis is observed.

  18. INITIAL LAYER PHENOMENA FOR A CLASS OF SINGULAR PERTURBED NONLINEAR SYSTEM WITH SLOW VARIABLES

    Institute of Scientific and Technical Information of China (English)

    黄蔚章; 陈育森

    2004-01-01

    The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of initial layer with different "thickness", the Norder approximate expansion of perturbed solution concerning small parameter is obtained,and the "multiple layer" phenomena of perturbed solutions are revealed. Using the fixed point theorem, the existence of perturbed solution is proved, and the uniformly valid asymptotic expansion of the solutions is given as well.

  19. Influence of DC Supply Systems on Unplanned Reactor Trips in Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    李君利; 童节娟; 茆定远

    2001-01-01

    Operational experience has shown that some components in nuclearpower plants are so important that their failures, which would be a single failure, may cause the entire plant to shutdown. Such shutdowns have often occurred in the past in commercial nuclear power plants. Nuclear power plant authorities try to avoid such unplanned plant shutdowns because of the large economic loss. Unfortunately, it is difficult to identify all the important components from the numerous components in each complex nuclear power plant system. FMEA and FTA methods, which are often applied to probabilistic risk assessments, are used in this paper to identify the key components that may cause unplanned reactor trips. As an example, the 48 V DC power supply system in a typical Chinese nuclear power plant, which is a major cause of many unplanned reactor trips, was analyzed to show how to identify these key components and the causes for nuclear power plant trips.

  20. Computer vision system for on-line sorting of pot plants using artificial Neural Network Classifier

    NARCIS (Netherlands)

    Timmermans, A.J.M.

    1996-01-01

    A flexible grading system for pot plants is described. The system consists of a colour camera, an image processing system and specially developed software. It can be applied to several types of pot plants because of its implementation of learning techniques. Experiments are described for classificat

  1. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    SU BaiLi; LI ShaoYuan; ZHU QuanMin

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly char-acterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlin-ear systems with input constraints and un-measurable states. The main idea is to design a mixed con-troller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system's stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

  2. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2007-01-01

    This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.

  3. Well-posedness for compressible MHD systems with highly oscillating initial data

    Science.gov (United States)

    Jia, Junxiong; Peng, Jigen; Gao, Jinghuai

    2016-08-01

    In this paper, a unique local solution for compressible magnetohydrodynamics systems has been constructed in the critical Besov space framework by converting the system in Euler coordinates to a system in Lagrange coordinates. Our results improve the range of the Lebesgue exponent in the Besov space from [2, N) to [2, 2N), where N denotes the space dimension. Then, we give a lower bound for the maximal existence time, which is important for our construction of global solutions. Based on the lower bound, we use the effective viscous flux and Hoff's energy method to obtain the unique global solution, which allows the initial velocity field and the magnetic field to have large energies and allows the initial density to exhibit large oscillations on a set of small measure.

  4. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    Science.gov (United States)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  5. Operation of Shared Systems via a Common Control System in a Multi-Modular Plant

    Directory of Open Access Journals (Sweden)

    Jia Qianqian

    2014-01-01

    Full Text Available Integral type reactors may need to be grouped to produce as much energy as a utility demands due to the small electrical output of an individual reactor. Sharing of systems among modules at a nuclear plant site is economically beneficial. Operation of systems shared between modules in a multi-modular plant is an issue never met in current NPPs, which may impact human performance. A design of operation of the shared systems via a common control system is presented as a technical approach to solve the problem. Modules and shared systems are controlled in independent network domains, respectively. Different from current NPPs, a limitation of operation authorities corresponding to certain modules and shared systems is defined to minimize the operation confusion between modules by one operator and to minimize the operation confusion of shared systems by different operators. Different characteristics of the shared system are analyzed, and different operation and control strategies are presented. An example is given as an application of the operation strategies. The operation design of the multi-modular system is in the preliminary stage, and, as an concept design, more verification and validation is needed in further works.

  6. Compact Multipurpose Mobile Laser Scanning SystemInitial Tests and Results

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2013-01-01

    Full Text Available We describe a prototype compact mobile laser scanning system that may be operated from a backpack or unmanned aerial vehicle. The system is small, self-contained, relatively inexpensive, and easy to deploy. A description of system components is presented, along with the initial calibration of the multi-sensor platform. The first field tests of the system, both in backpack mode and mounted on a helium balloon for real-world applications are presented. For both field tests, the acquired kinematic LiDAR data are compared with highly accurate static terrestrial laser scanning point clouds. These initial results show that the vertical accuracy of the point cloud for the prototype system is approximately 4 cm (1σ in balloon mode, and 3 cm (1σ in backpack mode while horizontal accuracy was approximately 17 cm (1σ for the balloon tests. Results from selected study areas on the Sacramento River Delta and San Andreas Fault in California demonstrate system performance, deployment agility and flexibility, and potential for operational production of high density and highly accurate point cloud data. Cost and production rate trade-offs place this system in the niche between existing airborne and tripod mounted LiDAR systems.

  7. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  8. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    Science.gov (United States)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  9. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  10. Development of Information Processing and the Network System for the Control and Management of Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hee; Park, Doo Young; Woo, Joo Hee [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kwon, Wook Hyun; Park, Jeong Woo; Moon, Hong Joo; Moon, Sang Yong [Seoul National University, Seoul (Korea, Republic of)

    1996-12-31

    It is needed to supervise, control and manage the inter operation of the system that is connected together to achieve good operation and high performance of the power plant. Moreover, the interconnection of the power plant is indispensable and they must be managed together. At present the control management systems that are on operation at power plants are composed of various systems from different companies, and the power plants have their own structure, we have much difficulty in managing communication of the systems. So, this study suggests the standard specification of the communication network for power plants. We have developed the network hardware, the 7 layers UCA, the network application software, the gateway between 3 layers UCA and the 7 layers UCA. Finally, we have developed the interface to Infi`90 which is one of the most popularly used system for power plant control, so that PC can be used for the operation of Infi`90. (author). 82 refs., figs.

  11. A concept of a component based system to determine pot-plant shelf-life

    DEFF Research Database (Denmark)

    Körner, Oliver; Skou, Anne-Marie Thonning; Aaslyng, Jesper Peter Mazanti;

    2006-01-01

    to calculate the expected keeping quality, or it will be able to apply the system as decision support during plant cultivation. In the latter case, the model-based system can be implemented in a greenhouse climate computer. The concept contains information on climate control strategies, controlled stress......, the keeping quality of a plant after removal from the greenhouse could be estimated. A concept of a system that describes a model based knowledge system aiming at determination of the last selling date for pot plants is presented. The core of the conceptual system is a tool that can either be used......Plant keeping quality during shelf life is next to genetic attributes also determined by plant treatment. This is attributed to inner plant quality parameters. We expect that a model including information gathered during crop cultivation could be used to predict the inner crop quality. From that...

  12. Does the autonomic nervous system contribute to the initiation and progression of prostate cancer?

    Science.gov (United States)

    Ventura, Sabatino; Evans, Bronwyn A

    2013-11-01

    In the July 12 issue of Science magazine, researchers from the Albert Einstein College of Medicine, the Mount Sinai School of Medicine, the Durham VA Medical Centre and Duke University published an elegant study demonstrating that the sympathetic nervous system, acting through β2 and β3-adrenoceptors in the prostate, plays an important role in the initiation of prostate cancer, while the parasympathetic nervous system plays a role in the dissemination of tumour metastases via M1 muscarinic receptors. These findings are significant because they indicate that receptors associated with the autonomic nervous system may be viable targets for prostate cancer therapy.

  13. Mobility Impact in Initializing Ring-Based P2P Systems over MANETs

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2008-10-01

    Full Text Available With the encouragement from success of P2P systems in real world application, recently we have seen active research on synergy of P2P systems and mobile ad hoc networks. The paper proposes a solution for mobility disturbance problem in initialization of ring-based P2P systems over ad hoc networks. It is a decentralized ring construction protocol in presence of mobility. A Mobile Ring Ad-hoc Networks (MRAN protocol is presented. MRAN is an extension of RAN [1] under the mobile condition. Simulation result shows MRAN works well with mobility. Upper bound of maximum speed of moving nodes is investigated in simulation.

  14. Open system quantum dynamics with correlated initial states, not completely positive maps and non-Markovianity

    CERN Document Server

    Devi, A R Usha; Sudha,

    2010-01-01

    Dynamical A and B maps have been employed extensively by Sudarshan and co-workers to investigate open system evolution of quantum systems. A canonical structure of the A-map is introduced here. It is shown that this canonical A-map enables us to investigate if the dynamics is completely positive (CP) or non-completely positive (NCP) in an elegant way and hence, it subsumes the basic results on open system dynamics. Identifying memory effects in open system evolution is gaining increasing importance recently and here, a criterion of non-Markovianity, based on the relative entropy of the dynamical state is proposed. The relative entropy difference of the dynamical system serves as a complementary characterization - though not related directly - to the fidelity difference criterion proposed recently. Three typical examples of open system evolution of a qubit, prepared initially in a correlated state with another qubit (environment), and evolving jointly under a specific unitary dynamics - which corresponds to a ...

  15. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes....... In 2005, FI and PRD2 were investigated, where FI plants received 100% of evaporative demands, while PRD2 plants received 70% water of FI at each irrigation event after tuber initiation. In 2006, besides FI and PRD2 treatments, DI and PRDI receiving 70% water of FI during the whole season were also studied....... Crop N uptake and residual NH (4)-N and NO3-N to a depth of 0-50 cm, at 10 cm intervals were analyzed. For both years, the PRD2 treatment resulted in 30% water saving and maintained yield as compared with the FI treatment, while when investigated in 2006 only, DI and PRDI treatments resulted...

  16. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities...... in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...

  17. DYE-SENSITIZED PHOTOPOLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COUMARIN DYE/IODONIUM SALT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Yong-yuan Yang

    1999-01-01

    The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.

  18. Coupling auto trophic in vitro plant cultivation system to scanning electron microscope to study plant-fungal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, N. de; Decock, C.; Declereck, S.; Providencia, I. E. de la

    2010-07-01

    The interactions of plants with pathogens and beneficial micro-organisms have been seldom compared on the same host and under strict controlled auto trophic in vitro culture conditions. Here, the life cycle of two plant beneficial (Glomus sp. MUCL 41833 and Trichoderma harzianum) and one plant pathogen (Rhizoctonia solani) fungi were described on potato (Solanum tuberosum) plantlets under auto trophic in vitro culture conditions using video camera imaging and the scanning electron microscope (SEM). (i) The colony developmental pattern of the extraradical mycelium within the substrate, (ii) the reproduction structures and (iii) the three-dimensional spatial arrangements of the fungal hyphae within the potato root cells were successfully visualized, monitored and described. The combination of the autotrophic in vitro culture system and SEM represent a powerful tool for improving our knowledge on the dynamics of plant-fungal interactions. (Author) 41 refs.

  19. Improvement of Initiating Events Analsis in Low-Power and Shutdown PSA for Korea Standard Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Jee; Jang, Seung Chul; Lim, Ho Gon

    2005-04-15

    In this study, we have improved the methodology of the initiating event identification for the KSNP LPSD PSA to complement the deficiency obtained from Review of KSNP LPSD PSA Mode based on ANS LPSD PSA Standard. To improve the quality of initiating event analysis, we integrated three systematic approachs for this purpose such as Master Logic Diagram, the empirical approach using domestic and international operating experience and the engineering approach. And we have identified 22 initiation events finally. We could got a basis and satisfied a structured, systematic process for initiating event identification demanded in ANS LPSD PSA Standard. But the sufficient completeness of initiating event analysis for LPSD PSA, the domestic low power and shutdown operating experience for overhaul and un-planed outages analysis is also needed.

  20. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly characterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlinear systems with input constraints and un-measurable states. The main idea is to design a mixed controller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.