WorldWideScience

Sample records for plant species selection

  1. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  2. Behavioral Response of Nothanguina phyllobia to Selected Plant Species.

    Science.gov (United States)

    Robinson, A F; Orr, C C; Abernathy, J R

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics.

  3. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  4. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  5. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    Science.gov (United States)

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  6. Biochemical characterization of selected plant species from Brazilian Savannas

    Directory of Open Access Journals (Sweden)

    Samantha Salomão Caramori

    2004-06-01

    Full Text Available The aim of this work was to analyze and quantify the presence of antinutritional compounds such as lectins and trypsin-like inhibitors, polyphenols and tannins, and enzymatic activity of peroxidases and proteases in the seeds of Annona crassiflora Mart. (araticum, Hymenaea courbaril L. var. courbaril (jatobá, Plathymenia reticulata Benth. (vinhático, Zanthoxylum rhoifolium Lam. (maminha de porca, Apeiba tibourbou Aubl. (pau jangada, Salacia crassiflora Mart G. Don. (bacupari, and Sclerolobium paniculatum Vog. (carvoeiro. The results suggested that these plants could be used as new source of food.O Cerrado é constituído por inúmeras espécies vegetais com potencial econômico, as quais são utilizadas para os mais variados fins, como medicinal e nutricional. O objetivo deste trabalho foi analisar e quantificar a presença de atividade enzimática de peroxidases e proteases e fatores antinutricionais, como lectinas e inibidores de proteases, além de polifenóis e taninos em algumas espécies nativas do Cerrado. O material vegetal utilizado foram sementes de Annona crassiflora Mart. (araticum, Hymenaea courbaril L. var. courbaril (jatobá, Plathymenia reticulata Benth. (vinhático, Zanthoxylum rhoifolium Lam. (maminha de porca, Apeiba tibourbou Aubl. (pau jangada, Salacia crassiflora (Mart. G. Don. (bacupari e Sclerolobium paniculatum Vog. (carvoeiro, coletadas na cidade de Goiânia e municípios de Jataí e Caldas Novas, estado de Goiás. O uso potencial destas plantas e suas enzimas na indústria de alimentos, poderia resultar em aplicações ao aparecimento de novos produtos a partir das matérias-primas tradicionais, além do uso de novas fontes de alimentos.

  7. Olfactory cues from different plant species in host selection by female pea moths.

    Science.gov (United States)

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-01

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.

  8. [Selective enrichment of Pseudomonas spp. in the rhizoplane of different plant species].

    Science.gov (United States)

    Marrero, Mariana A; Agaras, Betina; Wall, Luis G; Valverde, Claudio

    2015-01-01

    In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil.

  9. Ethnomedicinal values of some selected plant species in Fed-eral College of Wildlife Management

    Institute of Scientific and Technical Information of China (English)

    Osunsina IOO; Ogunjinmi AA; Ajani MO

    2009-01-01

    Objective:The objective of this study was to identify the ethno-medicinal values of some selected plant species in Federal College of Wildlife Management,New Bussa,Niger state,Nigeria.Methods:Three methods of da-ta collection were employed:(1)reconnansance survey of the College Estate was carried out to identify some selected medicinal plants found within the area;(2)field observations alongside personal recognition of some of these plant species were carried out and (3)interview was also carried out in three villages around the Col-lege Estate to determine the plants being utilized by the villagers.The villages were Kere,Labararu and Pop-poi.The various uses of the identified plants and their parts used for the said purposes were recorded.One hundred people were interviewed altogether in these villages.Recorded information gathered on the medicinal uses of plants includes the type of plants,the part used to cure sickness,preparation of concoction,and the type of sickness cured.The data gathered were presented and analyzed using tables.Results:The results re-vealed that the identified plant species were being used in curing various diseases such as dysentery,fever, stomach pains,cough,malaria,yellow fever,diarrhea,gonorrhea,pile,body pains and other diseases.Con-clusion:The study concluded that since the vast numbers of species in the study area possess medicinal values, there is need to conserve and protect the vegetation of the area from unsustainable exploitations which are the common features of vegetation in the surrounding land uses.

  10. Selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl to cultivated species

    Directory of Open Access Journals (Sweden)

    Núbia Maria Correia

    2012-06-01

    Full Text Available The aerial spraying of plant ripeners on sugar cane (Saccharum officinarum L. crops causes often the contamination of neighboring areas, which subsidizes formal complaints from the neighbors. These contaminations are due to spraying taking place during inadequate environmental conditions or from technical mistakes during the application. One of the most important causes of this contamination is the susceptibility of the species being cultivated surrounding sugar cane. In order to evaluate the effects of sugar cane plant ripeners trinexapac-ethyl and sulfometuron-methyl on peanuts, cotton, potato, coffee, citrus, beans, sunflower, cassava, rubber, soybean, and grapes, eleven experiments - one for each species - were carried out from May 2009 to Jan. 2010. The field experiment was set according to a completely random design with five treatments and four replications. Just before or during flowering, a single treatment of trinexapac-ethyl at 100 or 200 g ha-1 and sulfometuron-methyl at 7.5 or 15 g ha-1 was applied to plants. A control treatment (plants not treated for each species was part of each experiment. Trinexapac, at the doses of 100 and 200 g ha-1, showed selectivity to peanuts, cotton, potato, coffee, citrus, sunflower, cassava, rubber, soybean, and grape. At the lowest dose (100 g ha-1, it was selective for bean. Sulfometuron, at the dose of 7.5 g ha-1, was selective for peanuts and, at the two studied doses (7.5 and 15 g ha-1, it was selective for coffee, citrus, cassava, and rubber.

  11. Evaluation Of Tolerance And Sensitivity Of Selected Plant Species With Special Reference To Gasoline Exhaust Pollution

    Directory of Open Access Journals (Sweden)

    Abhinav Garg

    2015-02-01

    Full Text Available Abstract Emissions from motor vehicle exhausts have been shown to have deleterious effects on the physiology of plant species. Our present study focuses on evaluating the tolerance and sensitivity of selected plant species viz. Dracaena deremensis good absorber of VOCs and Dianthus caryophyllus susceptible to ethylene and formaldehyde VOCs at selected sites which are differentiated on the basis of high gasoline exhaust emission source Site I and less gasoline exhaust emission source Site II amp III. For this Air Pollution Tolerance Index APTI and selected physiological parameters were taken into account i.e. total chlorophyll ascorbic acid pH relative water content total protein and Nitrate reductase NR. The results showed that D. deremensis have high chlorophyll content ascorbic acid content protein content with high NR activity as compared to D. caryophyllus at all the selected sites. As per Air Pollution Tolerance Index APTI D. deremensis has value of 60.60 55.25 amp 55.93 at Site I II amp III respectively which comes under tolerant range and D . caryophyllus has value of 14.82 15.41 amp 15.93 at Site I II amp III respectively which comes under sensitive range. Thus study ends up with the conclusion that D. deremensis was found to be more tolerant than D. caryophyllus at all sites and thus D. deremensis can be used as a tool in mitigation of gasoline exhaust pollution and D. caryophyllus can be used as an bioindicator for indicating gasoline exhaust pollution.

  12. Selecting Proper Plant Species for Mine Reclamation Using Fuzzy AHP Approach (Case Study: Chadormaloo Iron Mine of Iran)

    National Research Council Canada - National Science Library

    Arash Ebrahimabadi

    2016-01-01

    This paper describes an effective approach to select suitable plant species for reclamation of mined lands in Chadormaloo iron mine which is located in central part of Iran, near the city of Bafgh in Yazd province. After...

  13. Ethanol Metabolism in Calluses of Several Selected Plant Species on Two Typical Plant-Growth-Regulator Balanced Media

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For investigation on the characteristics of ethanol metabolism in tissues of different plant species,calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to ca-tabolize ethanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabo-lize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cul-tured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physi-ological characteristic of the respective plant species.

  14. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Xu, Jingtao; Zhang, Jian; Liang, Shuang; Hao, Jingcheng; Ngo, Huu Hao; Guo, Wenshan; Xu, Xiaoli; Wang, Qian; Wang, Jingmin

    2016-03-15

    Plants can bioaccumulate triclosan and bond with microbes and sediments in constructed wetlands (CWs) as well. However, little is known regarding the species-specific removal mechanism of CWs components and the selection of suitable wetland plant species for triclosan disposal. In this work, the use of bioaccumulation factors (BAFs) and biota to sediment accumulation factors (BSAFs) for choosing the best triclosan removal plant species was studied in laboratory-scale CWs. By the end of the experiment, over 80% of triclosan was removed and a specie-effect distribution was revealed in CWs with emergent, submerged and floating plants. By mass balance calculation, negative correlation between triclosan concentration in plants and degradation process was observed. The significant correlations between Log BSAFs values and triclosan concentration in plants or degradation contribution made it possible and reasonable in wetland plants selection. Introductions on plant species were provided considering the target removal process or regulation method. This work provided new information on plant species selection in CWs for triclosan removal or its emergency remediation by using bioaccumulative factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Heavy metal uptake by selected marsh plant species grown in hydroponic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Sturgis, T.C.; Landin, M.C.

    1975-01-01

    Eight marsh plant species (Cyperus esculentus, Scirpus validus, Spartina patens, Scirpus robustus, Triglochin maritima, Distichlis spicata, Spartina alterniflora, and Spartina foliosa) were grown under greenhouse conditions in chemically controlled nutrient solutions. Heavy metals (zinc, cadmium, nickel, chromium, and lead) were added to the nutrient solutions at levels of 0, 0.5, and 1.0 mg/l. Plant parts (leaves, rhizomes, tubers, and roots) were harvested separately for each species and analyzed for heavy metal content. The concentration and plant uptake of heavy metals in each plant species will be discussed.

  16. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  17. Use of tetrazolium (TTC, Germ's and greenhouse plant emergences methods for testing seed vigour of selected ornamental plant species

    Directory of Open Access Journals (Sweden)

    Roman Hołubowicz

    2013-12-01

    Full Text Available In the years 1996-1997 the experiments were carried out on methods to investigate seed vigour of tassel flower (Amaranthus caudatus L., sand pink (Dianthus chinensis L., babies' breath (Gypsophila elegans M.B., sweet pea (Lathyrus odorathus L., African marigold (Tagetes erecta L. and zinnia (Zinnia elegans Jasq.. The main goals of this research were to specify conditions for accelerated ageing (AA of the seeds of a few selected ornamental plant species and to choose the most appropriate methods for their seed vigour evaluation in the laboratory and greenhouse conditions. All used in the experiments seeds came from the commercial seed lots from Polish seed company. Evaluation was carried out on the seed samples with high and low vigour. The latter ones were received through subjecting the seed samples to AA, i.e. by placing them in 100% relative humidity (RH at 44°C, except African marigold-at 42°C, in the darkness and keeping them for 144, 88, 100, 48, 72 and 72 hours, respectively. The tested seed vigour estimated methods included the Germ's method, the 2,3,5-triphenyl tetrazoilum chloride (TTC method and the test of plant emergences in the greenhouse. The high vigour seeds samples were used as a check. The Germ's method was found to be useful to evaluate sand pink, babies' breath and African marigold seed vigour, whereas the TTC method was found to be suitable for vigour evaluation of sand pink, babies' breath and zinnia. At present stage of our knowledge about seed vigour, the plant emergences in the greenhouse method was found to be the best for evaluation of seed vigour of tassel flower, sand pink, babies' breath, sweet pea and zinnia. It is reasonable to combine a few methods of seed vigour evaluation for ornamental plant species.

  18. A volatolomic approach for studying plant variability: the case of selected Helichrysum species (Asteraceae).

    Science.gov (United States)

    Giuliani, Claudia; Lazzaro, Lorenzo; Calamassi, Roberto; Calamai, Luca; Romoli, Riccardo; Fico, Gelsomina; Foggi, Bruno; Mariotti Lippi, Marta

    2016-10-01

    The species of Helichrysum sect. Stoechadina (Asteraceae) are well-known for their secondary metabolite content and the characteristic aromatic bouquets. In the wild, populations exhibit a wide phenotypic plasticity which makes critical the circumscription of species and infraspecific ranks. Previous investigations on Helichrysum italicum complex focused on a possible phytochemical typification based on hydrodistilled essential oils. Aims of this paper are three-fold: (i) characterizing the volatile profiles of different populations, testing (ii) how these profiles vary across populations and (iii) how the phytochemical diversity may contribute in solving taxonomic problems. Nine selected Helichrysum populations, included within the H. italicum complex, Helichrysum litoreum and Helichrysum stoechas, were investigated. H. stoechas was chosen as outgroup for validating the method. After collection in the wild, plants were cultivated in standard growing conditions for over one year. Annual leafy shoots were screened in the post-blooming period for the emissions of volatile organic compounds (VOCs) by means of headspace solid phase microextraction coupled with gas-chromatography and mass spectrometry (HS-SPME-GC/MS). The VOC composition analysis revealed the production of overall 386 different compounds, with terpenes being the most represented compound class. Statistical data processing allowed the identification of the indicator compounds that differentiate the single populations, revealing the influence of the geographical provenance area in determining the volatile profiles. These results suggested the potential use of VOCs as valuable diacritical characters in discriminating the Helichrysum populations. In addition, the cross-validation analysis hinted the potentiality of this volatolomic study in the discrimination of the Helichrysum species and subspecies, highlighting a general congruence with the current taxonomic treatment of the genus. The consistency

  19. Selecting Proper Plant Species for Mine Reclamation Using Fuzzy AHP Approach (Case Study: Chadormaloo Iron Mine of Iran)

    Science.gov (United States)

    Ebrahimabadi, Arash

    2016-12-01

    This paper describes an effective approach to select suitable plant species for reclamation of mined lands in Chadormaloo iron mine which is located in central part of Iran, near the city of Bafgh in Yazd province. After mine's total reserves are excavated, the mine requires to be permanently closed and reclaimed. Mine reclamation and post-mining land-use are the main issues in the phase of mine closure. In general, among various scenarios for mine reclamation process, i.e. planting, agriculture, forestry, residency, tourist attraction, etc., planting is the oldest and commonly-used technology for the reclamation of lands damaged by mining activities. Planting and vegetation play a major role in restoring productivity, ecosystem stability and biological diversity to degraded areas, therefore the main goal of this research work is to choose proper and suitable plants compatible with the conditions of Chadormaloo mined area, providing consistent conditions for future use. To ensure the sustainability of the reclaimed landscape, the most suitable plant species adapted to the mine conditions are selected. Plant species selection is a Multi Criteria Decision Making (MCDM) problem. In this paper, a fuzzy MCDM technique, namely Fuzzy Analytic Hierarchy Process (FAHP) is developed to assist chadormaloo iron mine managers and designers in the process of plant type selection for reclamation of the mine under fuzzy environment where the vagueness and uncertainty are taken into account with linguistic variables parameterized by triangular fuzzy numbers. The results achieved from using FAHP approach demonstrate that the most proper plant species are ranked as Artemisia sieberi, Salsola yazdiana, Halophytes types, and Zygophyllum, respectively for reclamation of Chadormaloo iron mine.

  20. Quality control and TLC profile data on selected plant species commonly found in the Brazilian market

    Directory of Open Access Journals (Sweden)

    Renato Braz

    2012-10-01

    Full Text Available The use of thin-layer chromatography (TLC is a commonplace practice and can be of significant help to different laboratories with quality control, especially those that work with plant extracts and phytotherapeutics. This study evaluated ten species of plants (Schinus terebinthifolius; Arctium lappa; Trichilia catigua; Camellia sinensis; Mikania glomerata; Croton echioides; Achyrocline satureioides; Heteropterys aphrodisiaca; Plantago major; Arctostaphylos uva-ursi that are commonly sold by compounding pharmacies, using TLC with reference substances and pharmacopoeic physical and chemical tests (loss on drying, level of extractives, and total ash content. The results showed that the ten species showed losses on drying consonant with the literature. The level of extractives for two species and total ash for five species were also consonant with the literature, and those of the other species were established in this study. The semipurified extracts of the ten species were assayed by TLC, and the analysis with the use of reference substances proved to be effective, in addition to being practical, simple, versatile, and economically viable.

  1. Response of citrus and other selected plant species to simulated HCL - acid rain

    Science.gov (United States)

    Knott, W. M.; Heagle, A. S.

    1980-01-01

    Mature valencia orange trees were sprayed with hydrochloric acid solutions (pH 7.8, 2.0, 1.0, and 0.5) in the field at the full bloom stage and at one month after fruit set. Potted valencia orange and dwarf citrus trees, four species of plants native to Merritt Island, and four agronomic species were exposed to various pH levels of simulated acid rain under controlled conditions. The acid rain was generated from dilutions of hydrochloric acid solutions or by passing water through an exhaust generated by burning solid rocket fuel. The plants were injured severely at pH levels below 1.0, but showed only slight injury at pH levels of 2.0 and above. Threshold injury levels were between 2.0 and 3.0 pH. The sensitivity of the different plant species to acid solutions was similar. Foliar injury symptoms were representative of acid rain including necrosis of young tissue, isolated necrotic spots or patches, and leaf abscission. Mature valencia orange trees sprayed with concentrations of 1.0 pH and 0.5 pH in the field had reduced fruit yields for two harvests after the treatment. All experimental trees were back to full productivity by the third harvest after treatment.

  2. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific

    Directory of Open Access Journals (Sweden)

    Catarina eCúcio

    2016-03-01

    Full Text Available Seagrasses are marine flowering plants growing in soft-body sediments of intertidal and shallow sub-tidal zones. They play an important role in coastal ecosystems by stabilizing sediments, providing food and shelter for animals, and recycling nutrients. Like other plants, seagrasses live intimately with both beneficial and unfavourable microorganisms. Although much is known about the microbiomes of terrestrial plants, little is known about the microbiomes of seagrasses. Here we present the results of a detailed study on the rhizosphere microbiome of seagrass species across the North-eastern Atlantic Ocean: Zostera marina, Zostera noltii and Cymodocea nodosa. High-resolution amplicon sequencing of 16S rRNA genes showed that the rhizobiomes were significantly different from the bacterial communities of surrounding bulk sediment and seawater. Although we found no significant differences between the rhizobiomes of different seagrass species within the same region, those of seagrasses in different geographical locations differed strongly. These results strongly suggest that the seagrass rhizobiomes are shaped by plant metabolism, but not coevolved with their host. The core rhizobiome of seagrasses includes mostly bacteria involved in the sulfur cycle, thereby highlighting the importance of sulfur-related processes in seagrass ecosystems.

  3. Assessing and ranking the flammability of some ornamental plant species to select firewise plants for landscaping in WUI (SE France).

    Science.gov (United States)

    Ganteaume, A.; Jappiot, M.; Lampin, C.

    2012-04-01

    The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus laurocerasus and Pyracantha coccinea) to the least flammable (Pittosporum tobira and Nerium oleander); the other species displaying two groups of intermediate flammabilities (Phyllostachys sp.- Photinia fraseri and Cupressus sempervirens ). The species with highly flammable characteristics should not be used in hedges planted in WUIs in South-Eastern France.

  4. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  5. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  6. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    Science.gov (United States)

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii.

  7. A STUDY OF ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACTS OF VARIOUS PLANT LEAVES AGAINST SELECTED MICROBIAL SPECIES

    Directory of Open Access Journals (Sweden)

    K.Valarmathy,

    2010-09-01

    Full Text Available To evaluate the antimicrobial activities of extract of leaves were examined against four common bacterial isolates. The ethanolic extracts of various leaves such as Moringa oleifera (Murungai , Musa paradisiaca (Banana, Azardiratica indica (Neem, Cynodon dactylon(Grass, Alternanthera sessilis (Ponnangkani, Anisochilus carnosus (Karpooravalli, investigated individually for antimicrobial activity by disc diffusion method .These were investigated against selected species of Escherichia coli, Bacillus subtilis, Vibrio cholerae, Klebsiella pneumoniae to find the inhibitory activities of the microbes. The ethanolic extract of Azardiratica indica showed considerably high activity against Escherichia coli than other extracts. These results were compared with standard antibiotic Penicillin. But the extract showed higher activity than the given standard antibiotic.

  8. [Selection of winter plant species for wetlands constructed as sewage treatment systems and evaluation of their wastewater purification potentials].

    Science.gov (United States)

    Chen, Yong-hua; Wu, Xiao-fu; Chen, Ming-li; Jiang, Li-juan; Li, Ke-lin; Lei, Dian; Wang, Hai-bin

    2010-08-01

    In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.

  9. Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes.

    Science.gov (United States)

    Inácio, João; Ludwig, Wolfgang; Spencer-Martins, Isabel; Fonseca, Alvaro

    2010-01-01

    A previous culture-dependent survey of phylloplane yeasts from selected Mediterranean plants showed that a few species were present in high densities in almost all leaf samples, regardless of the plant type, location or sampling season. However, a few species appeared to be restricted to Cistus albidus leaves, namely Cryptococcus cistialbidi. Here, we describe a culture-independent FISH assay to detect and quantify whole yeast cells in leaf washings. After optimization, the technique was used to check the apparent association between C. albidus leaves and C. cistialbidi and the abundance and ubiquity of other basidiomycetous yeast species such as Erythrobasidium hasegawianum and Sporobolomyces spp. in leaf samples from this and other neighboring plants (Acer monspessulanum and Quercus faginea). No yeast cells were detected in Pistacia lentiscus leaf samples. We were also able to demonstrate that three phylloplane yeasts (C. cistialbidi, E. hasegawianum and Sporobolomyces spp.) appeared to be log-normally distributed among individual C. albidus leaves. The log-normal distribution has important implications for the quantification of phylloplane yeasts based on the washing and plating of bulk leaf samples, which will tend to overestimate the size of the respective populations and become an error source in yeast surveys or related biocontrol studies.

  10. Susceptibility pattern of Malassezia species to selected plant extracts and antifungal agents

    Directory of Open Access Journals (Sweden)

    G Sibi

    2014-01-01

    Full Text Available Objective: Malassezia is associated with dandruff, seborrhoeic dermatitis, pityriasis versicolor folliculitis and atopic eczema. This study determined the susceptibility pattern of Malassezia furfur, M. globosa, M. obtusa, M. restricta, M. slooffiae and M. sympodialis isolated from patients diagnosed with dandruff against plant extracts and antifungal agents. Materials and Methods: Twenty aqueous plant extracts and five azole drugs were tested against the isolates by well diffusion and broth dilution method. Results: Among the plant extracts, Phyllanthus emblica (fruits, Hibiscus rosa sinensis (flowers and Acacia concinna (pods have demonstrated significant antidandruff activity. Minimum inhibitory concentration values revealed that ketoconazole as the most effective drug followed by itraconazole. Conclusion: M. furfur and M. globosa were found as the most susceptible organisms against the aqueous extracts of Phyllanthus emblica (fruits, Hibiscus rosa sinensis (flowers, Acacia concinna (pods and azole drugs.

  11. Selective waterfowl herbivory affects species dominance in a submerged plant community

    NARCIS (Netherlands)

    Santamaria, L.

    2002-01-01

    I used a field experiment to test the hypothesis that waterfowl affect not only the abundance, but also the composition of submerged plant communities. A simple community was chosen for this purpose, composed of two taxa with contrasting distributions along a depth (shore-centre) gradient. I compare

  12. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation.

    Science.gov (United States)

    Boukhris, Asma; Laffont-Schwob, Isabelle; Mezghani, Imed; El Kadri, Lefi; Prudent, Pascale; Pricop, Anca; Tatoni, Thierry; Chaieb, Mohamed

    2015-01-01

    High fluoride pollution has been detected in the surrounding soils of the coastal superphosphate industries in the Gulf of Gabes (Southeast of Tunisia). A study was conducted in vicinity of factories analysing plant functional traits combined with plant fluoride accumulation and soil metal concentrations aiming to screen more efficiently native plant species tolerant to this pollution. Aerial parts of 18 plant species out of the 10 most abundant species per site were harvested on two polluted sites of Gabes and Skhira at the vicinity of the factories and on the less polluted site of Smara. Native plant species accumulated fluoride following the gradient of soil pollution. Fluoride contents of plant aerial parts ranged from 37 mg kg(-1) to 360 mg kg(-1) and five plant species were only found in the most polluted site. However these latter had low biomass and soil cover. Crossing biological traits and fluoride contents, a selection grid for potentially restorative plant species enabled the selection of three native perennials i.e. Rhanterium suaveolens, Atractylis serratuloides and, Erodium glaucophyllum as potential candidates for an in-situ phytoremediation program on arid fluoride-polluted sites. This approach may be used in other fluoride-polluted Mediterranean environments.

  13. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    Science.gov (United States)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  14. Antifungal effects of different plant extracts and their major components of selected aloe species.

    Science.gov (United States)

    Ali, M I; Shalaby, N M; Elgamal, M H; Mousa, A S

    1999-08-01

    Different extracts of both fresh and dry leaves of Aloe eru A. Berger, A. vera L. Webb & Berth and A. arborescens Mill. were screened for their antifungal activity against Aspergillus niger, Cladosporium herbarum and Fusarium moniliforme. The toxicity of the isolated pure components were evaluated on the tested fungi. A comparative chromatographic study was performed to differentiate between natural components existing in various fractions and extracts of Aloe species and specific spray reagents were used for the detection of anthraquinones in the isolated components.

  15. Effectiveness of Selected Native Plants as Competitors with Non-indigenous and Invasive Knapweed and Thistle Species

    Science.gov (United States)

    2011-09-01

    and phenology of the two grass species. In controlled greenhouse settings and field plantings, this work examined the growth, seed production, and...Maternal grass individuals were collected to examine the influence of the invasions on population genetics and phenology of the two species. In...12 2.2 Testing genetic variation of invaded and non-invaded Sporobolus airoides

  16. Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species.

    Science.gov (United States)

    Verma, Sandeep Kumar; Das, Ashok Kumar; Cingoz, Gunce Sahin; Uslu, Emel; Gurel, Ekrem

    2016-06-01

    Callus induction, somatic embryogenesis and plant regeneration were initiated in selected five species of Turkish crocus using three diffrent explants (leaf, stem and corm) cultured on four different media (MS, GB5, LS and CHE). The highest frequencies of callus induction (100%) and shoot regeneration (70%, with 7.2 shoots/callus) were found in the crocus species Crocus oliveri ssp. Oliveri, using the MS medium containing 5% (w/v) sucrose supplemented with (4 mg/L NAA + 4 mg/L TDZ) and (2 mg/L IAA + 2 mg/L TDZ + 2 mg/L BAP). When the embryogenic calli were transferred into the four nutrient media containing (2 mg/L IAA + 2 mg/L TDZ) and 100 mg/L ABA, these further developed into cotyledonary embryos. Maximum number of somatic embryos (2.9 embryos per leaf explant, with a frequency 46.6%) was obtained in C. oliveri ssp. Oliveri. During subculture using the half strength media, cotyledonary embryos gradually developed into plantlets.

  17. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    Science.gov (United States)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  18. Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate

    Directory of Open Access Journals (Sweden)

    Parvin Most

    2015-01-01

    Full Text Available Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys2–11-Gly (PCs. Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS, which directly or indirectly influence metabolic processes. Reduced glutathione (GSH attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str, also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  19. Populations of selected microbial and fungal species growing on the surface of rape seeds following treatment with desiccants or plant growth regulators.

    Science.gov (United States)

    Frac, Magdalena; Jezierska-Tys, Stefania; Tys, Jerzy

    2010-01-01

    The aim of this study was to determine the effects of desiccants and plant growth regulators on selected microbial species affecting rape seeds, with special emphasis on the growth of fungi and identification of the genus and species composition. The experimental material in the study was seeds of winter rape cv. Californium that were collected from the field during combine harvest. The chemical agents applied, both desiccants and growth regulators, generally decreased the populations of bacteria occurring on the surface of rape seeds. The responses of fungi depended upon the type of agent applied and were manifested as either stimulation or inhibition of the growth of the fungal species. The fungi isolated from the surface of rape seeds were characteristic of those found in the field environment (Cladosporium and Penicillium) and typical for those present on the surface of rape seeds (Alternaria).

  20. Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    Science.gov (United States)

    Carstens, Keri; Cayabyab, Bonifacio; De Schrijver, Adinda; Gadaleta, Patricia G; Hellmich, Richard L; Romeis, Jörg; Storer, Nicholas; Valicente, Fernando H; Wach, Michael

    2014-01-01

    Most regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait. In many cases, impacts to NTOs are assessed using surrogate species, and it is critical that the data derived from surrogates accurately predict any adverse impacts likely to be observed from the use of the crop in the agricultural context. The key is to select surrogate species that best represent the valued NTOs in the location where the crop is going to be introduced, but this selection process poses numerous challenges for the developers of GE crops who will perform the tests, as well as for the ecologists and regulators who will interpret the test results. These issues were the subject of a conference "Surrogate Species Selection for Assessing Potential Adverse Environmental Impacts of Genetically Engineered Plants on Non-Target Organisms" convened by the Center for Environmental Risk Assessment, ILSI Research Foundation. This report summarizes the proceedings of the conference, including the presentations, discussions and the points of consensus agreed to by the participants.

  1. Plant-herbivore synchrony and selection on plant flowering phenology.

    Science.gov (United States)

    Fogelström, Elsa; Olofsson, Martin; Posledovich, Diana; Wiklund, Christer; Dahlgren, Johan P; Ehrlén, Johan

    2017-03-01

    Temporal variation in natural selection has profound effects on the evolutionary trajectories of populations. One potential source of variation in selection is that differences in thermal reaction norms and temperature influence the relative phenology of interacting species. We manipulated the phenology of the butterfly herbivore Anthocharis cardamines relative to genetically identical populations of its host plant, Cardamine pratensis, and examined the effects on butterfly preferences and selection acting on the host plant. We found that butterflies preferred plants at an intermediate flowering stage, regardless of the timing of butterfly flight relative to flowering onset of the population. Consequently, the probability that plant genotypes differing in timing of flowering should experience a butterfly attack depended strongly on relative phenology. These results suggest that differences in spring temperature influence the direction of herbivore-mediated selection on flowering phenology, and that climatic conditions can influence natural selection also when phenotypic preferences remain constant.

  2. Botanical species being used for manufacturing plant food supplements (PFS) and related products in the EU member states and selected third countries.

    Science.gov (United States)

    Franz, Chlodwig; Chizzola, Remigius; Novak, Johannes; Sponza, Silvia

    2011-12-01

    A great wealth of plants and plant derived preparations are used in the intention to supplement the basic nutrition in order to sustain and promote health. They may be used directly or consumed as manufactured plant food supplements (PFS) in dosed form. The use of these plants may already have a long tradition as fruit, vegetable or (folk) medicinal plants. Due to globalisation, more and more plants originating from all over the world are now offered and marketed in European countries, including species from China, South Africa and the American continent. For reasons of security, EU wide lists of plants accepted or prohibited to be used in food supplements are in elaboration. A crucial point is the correct identification of the plant material. The identity can be assessed by morphological, chemical and DNA specific methods. The active substances usable in PFS are secondary plant products that are often characteristic for certain plant groups (taxa), species or plant parts. They comprise not only polyphenols, essential oils, carotenoids and phytosterols, but also glucosinolates or saponins. The quality of the plant material used for PFS depends on a variety of factors, including the natural phytochemical, intraspecific variation with the occurrence of chemotypes, the ontogenetic variation, the considered plant parts and environmental influences during plant growth. In the production of the raw materials for PFS international standards (good agricultural practice, fair trade) should be applied.

  3. Evaluation of selected wetland plants for removal of chromium from ...

    African Journals Online (AJOL)

    user

    Wastewater from leather processing industries is very complex and leads to water pollution if discharged ... phytoremediation efficiency of selected wetland plant species in subsurface flow (SSF) constructed ... plants and aquatic organisms.

  4. Egyptian plant species as new ozone indicators.

    Science.gov (United States)

    Madkour, Samia A; Laurence, J A

    2002-01-01

    The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).

  5. An Investigation of the Levels and Distribution of Selected Heavy Metals in Sediments and Plant Species within the Vicinity of Ex-Iron Mine in Bukit Besi

    Directory of Open Access Journals (Sweden)

    Ahmad A. Kutty

    2016-01-01

    Full Text Available An assessment of the abandoned mine impacts on the concentrations and distribution of heavy metals in surface sediments and plant species within the vicinity of an ex-iron mine in Malaysia was conducted. The sequential extraction method was used to extract anthropogenic metals in sediments. The results showed that metals in EFLE, AR, and OO fractions were higher than ambient concentrations which indicate that heavy metals have been loaded from ex-iron mining area into the surrounding aquatic environments. The metal accumulation in the four dominant plant species grown naturally within the vicinity of Bukit Besi ex-iron mining was investigated. Exceptional elevated concentrations of metal were found in plants and surface sediments. Several established criteria were applied to determine the hyperaccumulator plants. The results revealed that Melastoma malabathricum and Pityrogramma calomelanos are classified as Fe and Al hyperaccumulators, while Scirpus triqueter, Melastoma malabathricum, and Pityrogramma calomelanos were undoubtedly hyperaccumulator for Cd.

  6. Egyptian plant species as new ozone indicators

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, S.A.; Laurence, J.A

    2002-12-01

    Of more than 30 species of plants from Egypt screened for sensitivity to ozone, four were found to be suitable for use as bioindicators. - The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O{sub 3}). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O{sub 3} levels in urban and rural sites. Four plant species were found to be more sensitive to O{sub 3} than the universally used O{sub 3}-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O{sub 3} injury symptoms faster and at lower O{sub 3} concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O{sub 3} response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g{sub s}) and net photosynthetic CO{sub 2} assimilation (P{sub net}). Pigment degradation was found to be unreliable in predicting species sensitivity to O{sub 3}. Evidence supporting stomatal conductance involvement in O{sub 3} tolerance was found only in tolerant species. A good correlation was found between g{sub s}, restriction of O{sub 3} and CO{sub 2} influx into the mesophyll tissues, and P{sub net}. Changes in P{sub net} seemed to depend largely on fluctuations in g{sub s}.

  7. Selecting Landscape Plants: Flowering Trees

    OpenAIRE

    Relf, Diane; Appleton, Bonnie Lee, 1948-2012

    2009-01-01

    This publication helps the reader to select wisely among the many species and varieties of flowering trees available. The following are considerations that should be taken into account when choosing flowering trees for the home landscape: selections factors, environmental responses, availability and adaptability, and flowering tree descriptions.

  8. Allelopathic effects of the invasive Prosopis juliflora (Sw. DC. on selected native plant species in Middle Awash, Southern Afar Rift of Ethiopia

    Directory of Open Access Journals (Sweden)

    Samuel Getachew

    2012-12-01

    Full Text Available The allelopathic effects of the invasive Prosopis juliflora (Sw. DC. was studied on seed germination and seedling growth of Acacia nilotica(L. Willd. ex Del., Acacia tortilis (Forssk. Hayne, Cenchrus ciliaris L. and Enteropogon rupestris (J.A. Schmidt A. Chev. Vegetation sampling in different habitat types in the area was made to identify the target plant species. Comparison of canopy characteristics among P. juliflora, A. nilotica and A. tortilis was also made to observe differences if any in canopy closure. P. juliflora was recorded in all habitat types in highest density and observed affecting the plant diversity there in. Its growth characteristics and dense thicket formation restrict light to the ground flora and hence diminishes plant diversity. Leaf, bark and root aqueous extract of P. juliflora at 0, 0.5, 0.8, 1, 2 and 6% wereprepared and their effect studied on germination percentage and seedling growth of the study plant species. Germination of A. nilotica and A. tortilis was not affected by all aqueous extracts of different organ parts of P. juliflora while leaf and root extracts at higher concentrations inhibited germination of C. ciliaris and E. rupestris. Shoot and root growth of the study species were inhibited by leaf and root at higher concentrations. Seed germination of all species except A. nilotica was inhibited by soil amended with decaying plant parts and under canopy soil. The effect is species specific and annuals (grasses and herbs were affected more than perennials. Leaf seems to contain greater number/amount of inhibitors than does root and bark. Bark seems to contain the least. Heavy accumulation of toxic substances at under canopy soil of P. juliflora may be one of the reasons for its invasiveness and low plant diversity.

  9. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  10. Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods*

    OpenAIRE

    McCusker, Sarah; Buff, Preston R.; Yu, Zengshou; Fascetti,Andrea J.

    2014-01-01

    In response to global economic duress and heightened consumer awareness of nutrition and health, sustainable and natural ingredients are in demand. Identification of alternative sources of nitrogen and amino acids, including taurine, may help meet dietary requirements while fostering sustainability and natural feeding approaches. Twenty plants, eighteen marine algae and five insect species were analysed. All samples were freeze-dried, hydrolysed and filtered prior to amino acid analysis. Samp...

  11. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  12. Plant species in the kilimanjaro agroforestry system

    Energy Technology Data Exchange (ETDEWEB)

    O' kting' ati, A.; Maghembe, J.A.; Fernandes, E.C.M.; Weaver, G.H.

    1984-01-01

    An inventory of plant species was conducted on 30 farms, farm boundaries and homesteads in 6 villages in Hai District on the slopes of Mt. Kilimanjaro, Tanzania. Of 111 plant species identified, 53 were tree species, 29 food crop species, 21 non-woody plants of economic value and 8 weed species. Information on uses was obtained through interviews with farmers. Useful plants (most with 2 or more uses) were carefully chosen and closely intercropped on the same unit of land. Of the tree species, 90% were used for fuelwood, 30% for medicines, 25% for poles, 24% for shade, 23% for timber and 10% for fodder. These, and food, were the most important plant uses.

  13. Selective and cost effective protocol to separate bioactive triterpene acids from plant matrices using alkalinized ethanol: Application to leaves of Myrtaceae species

    Directory of Open Access Journals (Sweden)

    Adélia M. Belem Lima

    2015-01-01

    Full Text Available Background: Triterpenes as betulinic (BA, oleanolic (OA and ursolic acids (UA have increasingly gained therapeutic relevance due to their wide scope of pharmacological activities. To fit large scale demands, exploitable sources of these compounds have to be found and simple, cost effective methods to extract them developed. Leaf material represents the best plant sustainable raw material. To obtain triterpene acid rich extracts from leaves of Eugenia, Psidium and Syzygium species (Myrtaceae by directly treating the dry plant material with alkalinized hydrated ethanol. This procedure was adapted from earlier methods to effect depolymerization of the leaf cutin. Materials and Methods: Extracts were prepared by shaking the milled dry leaves in freshly prepared 2% NaOH in 95% EtOH solution (1:4 w/v at room temperature for 6 h. Working up the product in acidic aqueous medium led to clear precipitates in which BA, OA and UA were quantified by gas chromatography. Results: Pigment free and low polyphenol content extracts (1.2–2.8% containing 6–50% of total triterpene acids were obtained for the six species assayed. UA (7–20% predominated in most extracts, but BA preponderated in Eugenia florida (39%. Carried out in parallel, n hexane defatted leaves led to up to 9% enhancement of total acids in the extracts. The hydroalcoholate treatment of Myrtaceae species dry leaves proved to be a cost effective and environmentally friendly method to obtain triterpene acids, providing them be resistant to alkaline medium. These combined techniques might be applicable to other plant species and tissues.

  14. Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods.

    Science.gov (United States)

    McCusker, Sarah; Buff, Preston R; Yu, Zengshou; Fascetti, Andrea J

    2014-01-01

    In response to global economic duress and heightened consumer awareness of nutrition and health, sustainable and natural ingredients are in demand. Identification of alternative sources of nitrogen and amino acids, including taurine, may help meet dietary requirements while fostering sustainability and natural feeding approaches. Twenty plants, eighteen marine algae and five insect species were analysed. All samples were freeze-dried, hydrolysed and filtered prior to amino acid analysis. Samples for amino acids were analysed in duplicate and averaged. Nitrogen was analysed and crude protein (CP) determined by calculation. With the exception of taurine concentration in soldier fly larvae, all insects exceeded both the National Research Council's canine and feline minimal requirements (MR) for growth of all essential amino acids (EAA) and CP. Although some plants and marine algal species exceeded the canine and feline MR for growth for EAA and CP, only very low concentrations of taurine were found in plants. Taurine concentration in insects was variable but high, with the greatest concentration found in ants (6·42 mg/g DM) and adult flesh flies (3·33 mg/g DM). Taurine was also high in some macroalgae, especially the red algal species: Mazaella spp. (4·11 mg/g DM), Porphyra spp. (1·22 mg/g DM) and Chondracanthus spp. (6·28 mg/g DM). Preliminary results suggest that insects and some marine algal species may be practical alternatives to traditional protein and supplemental taurine sources in pet foods. Safety, bioavailability, palatability and source variability of alternative items as food ingredients should be investigated prior to incorporation into canine and feline diets.

  15. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  16. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  17. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  18. Selection for niche differentiation in plant communities increases biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  19. Selection of hybrids and edible citrus species with a high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents.

    Science.gov (United States)

    Marín, F R; Del Río, J A

    2001-07-01

    The purpose of this study is to identify species, hybrids, and cultivars of edible Citrus species with high contents of diosmin as a functional compound and also to identify the developmental progress of the fruit in which it reaches maximum levels; these findings would be useful for extraction purposes and for the modulating effect of plant growth regulators on diosmin content to increase the level of this flavone. The results obtained reveal that the highest contents of diosmin are present in immature fruits of certain varieties of citron (Buda's finger) and lemon (Meyer), whereas the contents in the edible parts of the fruits are irrelevant from a pharmacological point of view. Similarly, it is shown that it is possible to increase the content of this flavone using hormonal treatments (6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) during the early stages of fruit growth.

  20. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    Science.gov (United States)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  1. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  2. Thromboelastography in Selected Avian Species.

    Science.gov (United States)

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders.

  3. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism.

    Science.gov (United States)

    Inui, Y; Itioka, T; Murase, K; Yamaoka, R; Itino, T

    2001-10-01

    The partnership in the Crematogaster-Macaranga ant-plant interaction is highly species-specific. Because a mutualistic relationship on a Macaranga plant starts with colonization by a foundress queen of a partner Crematogaster species, we hypothesized that the foundress queens select their partner plant species by chemical recognition. We tested this hypothesis with four sympatric Macaranga species and their Crematogaster plant-ant species. We demonstrated that foundress Crematogaster queens can recognize their partner Macaranga species by contact with the surface of the seedlings, that they can recognize compounds from the stem surface of seedlings of their partner plant species, and that the gas chromatographic profiles are characteristic of the plant species. These findings support the hypothesis that foundress queens of the Crematogaster plant-ant species select their partner Macaranga species by recognizing nonvolatile chemical characteristics of the stem surfaces of seedlings.

  4. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    . Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest...

  5. Accumulation of heavy metals in selected medicinal plants.

    Science.gov (United States)

    Sarma, Hemen; Deka, Suresh; Deka, Hemen; Saikia, Rashmi Rekha

    2011-01-01

    In this review, we evaluate the reports published between 1993 and 2011 that address the heavy metal accumulation in 88 medicinal plant species. We compare the safe limits for heavy metals set by governmental agencies vs. the levels at which such metals actually exist in selected medicinal plants. We also evaluate the uses and effectiveness of medicinal plants in health care, and assess the hazards of medicinal plant uses, in view of the growing worldwide use of medicinal plants. From our extensive review of the literature, we discovered that a maximum permissible level (MPL) of Pb is exceeded in 21 plant medicine species, Cd in 44 species, and Hg in 10 species. Vetiveria zizanioides a potential candidate species for the treatment of cardiovascular diseases absorb a wide range of heavy metals from metal-contaminated soils. We believe that this species is the single most impressive example of a potentially hazardous medicinal plant. Based on our review, we endorse the hypothesis that heavy metal accumulation by medicinal plants is mainly caused by extraction of soluble metals from contaminated soil, sediments and air. One continuing problem in protecting consumers of plant-based medicines is that permissible levels of all heavy metals in herbal medicine have not yet been standardized by regulating governmental entities. Moreover, there are few limit tests that exist for heavy metal content of medicinal plants, or permissible limits for essential dietary minerals, in most medicinal plants. The dearth of such limits hamstrings development of medicinal plant research and delays the release of either new or improved versions of medicinal plants or their components. In the present review, we emphasize that medicinal plants are often subjected to heavy metal contamination and that the levels at which these heavy metals sometimes occur exceeds permissible levels for some species. Therefore, collecting medicinal plants from areas that are, or may be, contaminated should be

  6. New mite species associated with certain plant species from Guam

    Directory of Open Access Journals (Sweden)

    Gadi V.P. Reddy

    2011-04-01

    Full Text Available Several new mite species have been reported from certain plants from Guam. Most remarkably, the spider mite, Tetranychus marianae (Prostigmata: Tetranychidae and the predatory mite Phytoseius horridus (Mesostigmata: Phytoseiidae (Solanum melongena have been found on eggplant. The noneconomically important species of Brevipalpus californicus(Banks Prostigmata: Tenuipalpidae,Eupodes sp. (Acarina: Eupodidae and predator Cunaxa sp. (Prostigmata: Cunaxidae have been reported on guava (Psidium guajava L.. Also, the non-economically important species Brevipalpus californicus Prostigmata: Tenuipalpidae, Lepidoglyphus destructor (Astigmata: Glycyphagidae and a predator Amblyseius obtusus, species group Amblyseius near lentiginosus (Mesostigmata: Phytoseiidae, have been recorded on cycad (Cycas micronesica.

  7. Plant species differences in particulate matter accumulation on leaf surfaces.

    Science.gov (United States)

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  8. Phytochemical analysis of selected medicinal plants | Hussain ...

    African Journals Online (AJOL)

    Phytochemical analysis of selected medicinal plants. ... African Journal of Biotechnology ... Abstract. Four medicinal plants including Ranunculus arvensis, Equisetum ravens, Carathamus lanatus and Fagonia critica were used for the study.

  9. Cholinesterase, tyrosinase inhibitory and antioxidant potential of randomly selected Umbelliferous plant species and chromatographic profile of Heracleum platytaenium Boiss. and Angelica sylvestris L. var. sylvestris

    Directory of Open Access Journals (Sweden)

    Orhan Ilkay Edrogan

    2016-01-01

    Full Text Available Neurobiological activity of the methanol extracts of thirteen Umbelliferae (Apiaceae plants was tested against acetylcholinesterase (AChE, butyrylcholinesterase (BChE, and tyrosinase (TYR using high-throughput screening technique. Although the extracts displayed none to low profile of inhibition against enzymes, the highest cholinesterase inhibition was observed with Heracleum platytaenium (32.52 ± 3.27 % for AChE and 46.16 ± 1.42 % for BChE at 100 μg mL-1. Since neurodegeneration is linked to oxidative damage, antioxidant potential of the extracts was searched through radical scavenging, metal-chelating capacity, and reducing power experiments and exerted modest levels of activity varying according to the method. The extracts had a better ability to scavenge nitric oxide radical (19.47 ± 2.09 % to 54.91 ± 1.98 %. Since these species are known to be rich in coumarins, our quantitative high-performance liquid chroatography (HPLC analysis indicated presence of xanthotoxin, angelicin, isopimpinellin, bergapten, and pimpinellin in Heracleum platytaenium and angelicin and imperatorin in Angelica sylvestris var. sylvestris.

  10. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    Science.gov (United States)

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved.

  11. Evidence for electrotropism in some plant species.

    Science.gov (United States)

    Gorgolewski, S; Rozej, B

    2001-01-01

    The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  12. Comparing Patterns of Natural Selection Across Species Using Selective Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric J.; Shapiro, B. Jesse; Alm, Eric J.

    2007-12-18

    Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 gamma-proteobacterial species. We describe the pattern of fast or slow evolution across species as the 'selective signature' of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell.

  13. Comparing Patterns of Natural Selection across Species Using Selective Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Jesse; Alm, Eric J.

    2007-12-01

    Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 c-proteobacterial species. We describe the pattern of fast or slow evolution across species as the"selective signature" of a gene. Selective signatures represent aprofile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example,glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell.

  14. Preferential uptake of soil nitrogen forms by grassland plant species.

    Science.gov (United States)

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  15. Antituberculosis potential of some ethnobotanically selected Malaysian plants.

    Science.gov (United States)

    Mohamad, Suriyati; Zin, Nabihah Mohd; Wahab, Habibah A; Ibrahim, Pazilah; Sulaiman, Shaida Fariza; Zahariluddin, Anis Safirah Mohd; Noor, Siti Suraiya Md

    2011-02-16

    Many local plants are used in Malaysian traditional medicine to treat respiratory diseases including symptoms of tuberculosis. The aim of the study was to screen 78 plant extracts from 70 Malaysian plant species used in traditional medicine to treat respiratory diseases including symptoms of tuberculosis for activity against Mycobacterium tuberculosis H37Rv using a colorimetric microplate-based assay. Plant extracts were prepared by maceration in methanol (80%) and antituberculosis screening was carried out using Tetrazolium bromide microplate assay (TEMA) method to determine the minimum inhibitory concentration (MIC). Thirty-eight plant extracts from 36 plant species exhibited antituberculosis activity with MICs in the range of 1600-400 μg/ml. The leaf extract of Angiopteris evecta exhibited the highest activity with MIC of 400 μg/ml. Five other extracts, namely, Costus speciosus (stem and flower), Piper sarmentosum (whole plant), Pluchea indica (leaf), Pluchea indica (flower), and Tabernaemontana coronaria (leaf) exhibited antituberculosis activity, each with MIC of 800 μg/ml. To the best of our knowledge, this is the first report of in vitro high throughput screening of Malaysian medicinal plants for antituberculosis activity. Antituberculosis activity of extracts of some plants justifies, to a certain extent their ethnomedicinal uses as remedies for symptoms of tuberculosis. These results also support the general view that, selecting the plants based on ethnobotanical criteria would enhance the probability of finding species with antituberculosis activity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Compound leaf development in model plant species.

    Science.gov (United States)

    Bar, Maya; Ori, Naomi

    2015-02-01

    Plant leaves develop in accordance with a common basic program, which is flexibly adjusted to the species, developmental stage and environment. Two key stages of leaf development are morphogenesis and differentiation. In the case of compound leaves, the morphogenesis stage is prolonged as compared to simple leaves, allowing for the initiation of leaflets. Here, we review recent advances in the understanding of how plant hormones and transcriptional regulators modulate compound leaf development, yielding a substantial diversity of leaf forms, focusing on four model compound leaf organisms: cardamine (Cardamine hirsuta), tomato (Solanum lycopersicum), medicago (Medicago truncatula) and pea (Pisum sativum).

  17. Antimycobacterial agents from selected Mexican medicinal plants.

    Science.gov (United States)

    Rivero-Cruz, Isabel; Acevedo, Laura; Guerrero, José A; Martínez, Sergio; Bye, Robert; Pereda-Miranda, Rogelio; Franzblau, Scott; Timmermann, Barbara N; Mata, Rachel

    2005-09-01

    As part of the ICBG program Bioactive Agents from Dryland Biodiversity of Latin America, the present investigation was undertaken to explore the possible antimycobacterial potential of compounds derived from selected Mexican medicinal plants. Bioassay-guided fractionation of the crude extracts of Rumex hymenosepalus (Polygonaceae), Larrea divaricata (Zygophyllaceae), Phoradendron robinsonii (Loranthaceae) and Amphipteryngium adstringens (Julianiaceae) led to the isolation of several antimycobacterial compounds. Four stilbenoids, two flavan-3-ols and three anthraquinones were isolated from R. hymenosepalus. Two flavonols and nordihydroguaiaretic acid were obtained from L. divaricata. Sakuranetin was the antimycobacterial agent isolated from P. robinsonii. Two known triterpenoids and the novel natural product 3-dodecyl-1,8-dihydroxy-2-naphthoic acid were obtained from A. adstringens. In general, the isolates were identified by spectral means. The antimycobacterial activity of the secondary compounds isolated from the analysed species, as well as that of nine pure compounds previously isolated in our laboratories, was investigated; the MIC values ranged from 16 to 128 microg mL-1. Among the tested compounds, the glycolipids, sesquiterpenoids and triterpenoids showed the best antimycobacterial activity. The antimycobacterial property of the glycolipids is reported for the first time. Although the tested compounds showed moderate antimycobacterial activity, their presence in the analysed species provides the rationale for their traditional use in the treatment of tuberculosis.

  18. Early selection of elite plants in Asparagus

    Directory of Open Access Journals (Sweden)

    COINTRY ENRIQUE LUIS

    2000-01-01

    Full Text Available In order to establish an efficient selection criterion the variability in three asparagus populations was evaluated defining the most important yield components and analysing its evolution along three growing seasons. The yield components, coefficient of variation (CV and the proportion of plants contributing to 80% of the total yield were estimated. The elite plants were selected by mean of total yield and clusters techniques. Multiple regression showed that spear number (SN and spear weight (SW were the most important yield components. In every population, total yield (TY and SN showed the highest values of CV, independently of sex. 69% of the plants contributed to the 80% of the total yield in the first year while in the second and third year the contribution was 57%. At the end of the third year, 17 plants were selected by the average of the total yield and 43 by clusters. It is suggested to select for SW in the first year, reducing in 68% the experimental material. In the second year, the selection for SN would reduce to 5% the plants to evaluate for total yield in the third year. In this way the selected plants are the same but the number of plants to evaluate is dramatically reduced along the years, therefore facilitating the breeders work.

  19. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  20. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  1. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  2. The influence of soil from the side space of the street on germination capacity and some morphological characters of seedling s of selected plants species

    Directory of Open Access Journals (Sweden)

    Edward Pałys

    2013-12-01

    Full Text Available Germination capacity, length of roots and seedlings and air-dry matter of plants of soybean, cucumber, buskwheat, winter wheat and white mustard were estimated in four soil material: bare soil and grass-covered soil from a side-space ofroads with heavy traffic. soil from a farming field and washed, calcinated sand (pure sand. Highest germination capacity of investigated plants was found on pure sand. Seedlings germinated on soil from the grassy side space of the street had longer aboveground parts in comparison with those germinating on other soil material. Significantly smaller length of abovegro und parts of seedlings were found on the object with washed and calcinated sand. On the pure sand, plant seedlings formed higher air-dry matter in comparison with the soil from a farming field. Independently of soil material, soybean and winter wheat seedlings formed the longest roots, aboveground parts and highest content of air-dry matter. On the soil from the grassy side space of the street roots of seedlings were significantly longer than roots of seedlings germinated on soil from a farming field. Greater content of some heavy metals in soil from side space ofthe street had no influence on germination capacity and investigated morphological characters of tested pIants.

  3. In vitro modulation of oxidative burstvia release of reactive oxygen species from immune cells by extracts of selected tropical medicinal herbs and food plants

    Institute of Scientific and Technical Information of China (English)

    Fawzi Mahomoodally; Ahmed Mesaik; M Iqbal Choudhary; Anwar H Subratty; Ameenah Gurib-Fakim

    2012-01-01

    Objective:To evaluatein vitro immunomodulating properties and potential cytotoxicity of six tropical medicinal herbs and food plants namelyAntidesma madagascariense(Euphorbiaceae) (AM),Erythroxylum macrocarpum (Erythroxylaceae) (EM),Faujasiopsis flexuosa(Asteraceae) (FF),Pittosporum senacia (Pittosporaceae) (PS),Momordica charantia (Cucurbitaceae)(MC)and Ocimum tenuiflorum(Lamiaceae) (OT).Methods:Initially, the crude water and methanol extracts were probed for their capacity to trigger immune cells’NADPH oxidase andMPO-dependent activities as measured by lucigenin- and luminol-amplified chemiluminescence, respectively; as compared to receptor-dependent (serum opsonised zymosan-OPZ) or receptor-independent phorbol myristerate acetate(PMA).Results:Preliminary screening on whole human blood oxidative burst activity showed significant and concentration-dependent immunomodulating properties of three plantsAM, FF and OT. Further investigations of the fractions on isolated human polymorphonuclear cells (PMNs) and mice monocytes using two different pathways for activation of phagocytic oxidative burst showed that ethyl acetate fraction was the most potent extract. None of the active samples had cell-death effects on humanPMNs, under the assay conditions as determined by the trypan-blue exclusion assay. Since PMA andOPZ NADPH oxidase complex is activatedvia different transduction pathways, these results suggest thatAM, FF andOTdoes not affect a specific transductional pathway, but rather directly inhibit a final common biochemical target such as theNADPH oxidase enzyme and/or scavengesROS.Conclusions: Our findings suggest that some of these plants extracts/fractions were able to modulate significantly immune response of phagocytes and monocytes at different steps, emphasizing their potential as a source of new natural alternative immunomodulatory agents.

  4. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.

  5. 贵州省喀斯特山区植被恢复的物种选择现状分析%Plant Species Selection in Vegetation Restoration for Mountainous Karst Area in Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    田秀玲; 吕娜; 朱飞鸽; 倪健

    2012-01-01

    Restoration of rocky-desertified karst ability of environments, vegetation is a basic but economy and society in often most difficult part, ecosystems is a hot issue in maintaining the sustain-southwestern China. And the restoration of degraded in which the selection of plant species is undoubtedlya key step. Based on data from internet searching, literature review and field surveys, current status of plant species selection for ecological restoration of rocky-desertified karst vegetation was investigatedin Guizhou province. Restoration effectiveness of selected plants was preliminarily evaluated, in order to provide valuable suggestions for developing a comprehensive restoration project for rocky desertifica-tion environment of the southwestern karst region. Results showed that 87 plant species were used in vegetation restoration in 328 sites of 78 counties and cities of the province. There were 26 plants of ec-ological forest (mainly pine, fir, cypress, Chinese toona, poplar and clammy hopseedbush), 47 plants of economic forest including 26 Chinese medicines (such as Taizi ginseng and gaxtraodia), 21economic forest trees (tea, oil tea, pear, peach, plum, chestnut) and 14 pastoral species (white shamrock, ryegrass and alfalfa). These species were planted in assemble or scattered in differentcomprehensive treatment areas of karst rocky desertification: Area A (western Guizhou plateau and mountain), Area B (middle Guizhou hill plain and mountain), Area C (eastern Guizhou lowland and hills) and Area D (non rocky desertification in southeastern and southern Guizhou). Concerning restoration effectiveness, the integration of cash crops (such as tea and oil tea), medicinal plants, flowers cultivation, and pastoral husbandry into a restoration project has showed good prospects. Eco- nomic and fruit forests such as honeysuckle, chestnut, pear and peach growing in their optimal habi- tats also benefited local environment and economy

  6. Initial Survey Instructions for Invasive Plant Species Mapping and Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for Invasive Plant Species Mapping, 1.01a, and Invasive Plant Species Monitoring, 1.01b, at Fish Springs National Wildlife Refuge. These...

  7. Candidate Species Selection: Cultural and Photosynthetic Aspects

    Science.gov (United States)

    Mitchell, C. A.

    1982-01-01

    Cultural information is provided for a data base that will be used to select candidate crop species for a controlled ecological life support system (CELSS). Lists of food crops which will satisfy most nutritional requirements of humans and also fit within the scope of cultural restrictions that logically would apply to a closed, regenerating system were generated. Cultural and environmental conditions that will allow the most rapid production of edible biomass from candidate species in the shortest possible time are identified. Cultivars which are most productive in terms of edible biomass production by (CE) conditions, and which respond to the ever-closed approach to optimization realized by each shortened production cycle are selected. The experimental approach with lettuce was to grow the crop hydroponically in a growth chamber and to manipulate such variables as light level and duration, day/night temperature, and nutrient form and level in the solution culture.

  8. Pollinators visit related plant species across 29 plant-pollinator networks.

    Science.gov (United States)

    Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø

    2014-06-01

    Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant-pollinator networks of varying sizes, with "clade specialization" increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization.

  9. The nature of selection during plant domestication.

    Science.gov (United States)

    Purugganan, Michael D; Fuller, Dorian Q

    2009-02-12

    Plant domestication is an outstanding example of plant-animal co-evolution and is a far richer model for studying evolution than is generally appreciated. There have been numerous studies to identify genes associated with domestication, and archaeological work has provided a clear understanding of the dynamics of human cultivation practices during the Neolithic period. Together, these have provided a better understanding of the selective pressures that accompany crop domestication, and they demonstrate that a synthesis from the twin vantage points of genetics and archaeology can expand our understanding of the nature of evolutionary selection that accompanies domestication.

  10. A Study on Plant Selection for Green Building Design

    Directory of Open Access Journals (Sweden)

    Izudinshah Abd. Wahab

    2013-02-01

    Full Text Available Previous researches show that incorporating natural elements in design has proven a significant result in balancing building indoor environment. Using plant as part of the design has been widely accepted to contribute good thermal impact as shown in bioclimatic design, green roofing system and living wall elements. As there are so many species of plants for selection, this research was carried out to analyze types of indoor plants that have the potential to contribute thermal comfort to their surrounding. Based on the fact that plant leaves are the part where transpiration and guttation take place, plants are categorized into seven types based on their leaves architecture. They were then tested on their impact on surrounding temperature and humidity. Result shows that Linear, Lanceolate and Oblong shaped leaves categories are good in lowering the relative humidity while the categories that are good in lowering the temperature are Linear, Lanceolate, Cordate and Oblong shaped leaves categories. The study was carried out through series of relative humidity and air temperature monitoring of several room casings that consist with the plants. Both relative humidity and air temperature of the rooms with plants were recorded lower compared with the one without plant. Different categories of plants do give good result in relative humidity and air temperature. Thus, with a good combination of plant installation inside or onto building, it may contribute towards providing a good thermal comfort to the occupants.

  11. New pasture plants intensify invasive species risk.

    Science.gov (United States)

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  12. Cytotoxic effects of selective species of Caryophyllaceae in Iran

    Directory of Open Access Journals (Sweden)

    F. Naghibi

    2014-04-01

    Full Text Available Cancer is a major cause of death worldwide and causes serious problems in human life. It is developed by uncontrolled growth of a cell or a group of cells. There are many difficulties in treatment of cancer and many researchers are involved in investigating for effective drugs to treat the disease. Caryophyllaceae is a large family of about 86 genera and 2200 herbaceous or subshrub species. The family is known for its ornamental plants and saponin compounds. In the present study, the potential cytotoxic activity of 17 selected species from Caryophyllaceae has been investigated against MCF-7, HepG-2, A-549, HT-29 and MDBK cells using MTT assay. Five species exhibited cytotoxic effects with IC50 values < 100 μg/mL. Silene ampullata and Acanthophyllum bracteatum extracts were toxic only against MCF-7 cell line suggesting them as suitable candidates for more investigations of breast cancer studies.

  13. The Language of Reactive Oxygen Species Signaling in Plants

    OpenAIRE

    2012-01-01

    Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear ...

  14. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  15. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  16. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  17. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; Boer, de W.; Putten, van der W.H.

    2012-01-01

    Soil organisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soil organisms may promote plant species of characteristic habitats, and suppress plant species of disturbed habitats. We cl

  18. Mineral contents from some fabaceous plant species of Rajasthan desert

    Directory of Open Access Journals (Sweden)

    B.B.S.Kapoor

    2013-12-01

    Full Text Available Evaluation of mineral contents from three selected plant species of Fabaceae family growing in arid region of Rajasthan Desert was carried out. The roots, shoots and fruits of Clitoria ternatea, Sesbania bispinosa and Tephrosia purpurea collected from two different areas Chhatargarh area (Bikaner district and Ratangarh area (Churu district were analysed for mineral contents. The maximum Calcium (3.86%, Phosphorus (0.48%, Potassium (0.92% and Sodium (1.08% contents were found in roots and shoots of Grewia tenax collected from study area.

  19. New pasture plants intensify invasive species risk

    Science.gov (United States)

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  20. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  1. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  2. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  3. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  4. Chemical composition of selected Saudi medicinal plants

    Directory of Open Access Journals (Sweden)

    Ihsanullah Daur

    2015-05-01

    Full Text Available Medicinal plants are important in traditional medicine and modern pharmaceutical drugs; therefore, the interest in the analysis of their chemical composition is increasing. In this study, selected medicinal plants including Achillea fragrantissima (Forssk Sch., Amaranthus viridis L., Asteriscus graveolens (Forssk. Less., Chenopodium album L., and Conyza bonariensis (L. Cronquist were collected from the rangeland of western regions (Bahra and Hada areas of Saudi Arabia to study their chemical composition. Eight minerals (Mg, Ca, Cr, Mn, Fe, Co, Cu, and Zn, total phenolic contents, antioxidant activity, and free-radical scavenging ability were examined in order to evaluate the medicinal potential of these plants. All the plants were found to be rich sources of minerals and antioxidants, although there were significant differences (p < 0.05 in their chemical composition, which may provide a rationale for generating custom extracts from specific plants depending on the application. The findings of this study will thus facilitate herbalists in their efforts to incorporate these plants into various formulations based on their chemical composition.

  5. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  6. Plant species diversity in a changing agricultural landscape: the ...

    African Journals Online (AJOL)

    Key words: Coffee plantation, plant species diversity, agroecosystem, vascular plants. Introduction. One of the ... Tbe livestock reared include cattle, goats, sheep, pigs and poultry. ... Assessment of trees, shrubs and grasses. Transects 500 m ...

  7. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  8. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad ShoaibAmjad; MuhammadArshad

    2014-01-01

    To document ethnobotanical informations of useful woody plant species in the region of Kotli, Azad Kashmir. Methods: An ethnobotanical survey was conducted in Kotli. Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment. Results: The present study documented the etnobotanical uses of 33 woody plant species. Most of the species have been used for dual purpose. Only 5 species are used for one purpose. Study revealed all species have medicinal value, among which 21 were used as fuel wood species, 16 as fodder species, 4 as timber wood species, 12 as edible fruit species, 6 as fence or hedge plant, 7 as ornamental species and 12 species had other uses. Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  9. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  10. Adaptive radiation of gall-inducing insects within a single host-plant species.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2007-04-01

    Speciation of plant-feeding insects is typically associated with host-plant shifts, with subsequent divergent selection and adaptation to the ecological conditions associated with the new plant. However, a few insect groups have apparently undergone speciation while remaining on the same host-plant species, and such radiations may provide novel insights into the causes of adaptive radiation. We used mitochondrial and nuclear DNA to infer a phylogeny for 14 species of gall-inducing Asphondylia flies (Diptera: Cecidomyiidae) found on Larrea tridentata (creosote bush), which have been considered to be monophyletic based on morphological evidence. Our phylogenetic analyses provide strong support for extensive within-host plant speciation in this group, and it demonstrates that diversification has involved numerous shifts between different plant organs (leaves, buds, flowers, and stems) of the same host-plant species. Within-plant speciation of Asphondylia is thus apparently facilitated by the opportunity to partition the plant ecologically. One clade exhibits temporal isolation among species, which may have facilitated divergence via allochronic shifts. Using a novel method based on Bayesian reconstruction, we show that the rate of change in an ecomorphological trait, ovipositor length, was significantly higher along branches with inferred shifts between host-plant organs than along branches without such shifts. This finding suggests that Larrea gall midges exhibit close morphological adaptation to specific host-plant parts, which may mediate ecological transitions via disruptive selection.

  11. The nutritive value of some selected Tanzanian plant food sources.

    Science.gov (United States)

    Mnembuka, B V; Eggum, B O

    1993-07-01

    The chemical composition of different varieties of field beans (Vicia faba L.), cowpeas (Vigna unguiculata), groundnuts (Voandzeia subterranea), and sorghum (Sorghum vulgare) were determined. Nutrients analysed in these materials included amino acids, starch, sugar, fibre, minerals and antinutritional factors. All the materials were further tested in balance trials with rats; true protein digestibility (TD), biological value (BV), net protein utilization (NPU) and digestible energy (DE) were evaluated. Based on the chemical analyses as well as on the biological data, the nutritive value of plant materials between species as well as between varieties within species differed considerably. Therefore, more quality evaluation studies along with plant breeding programmes are needed to select the most promising varieties from the nutritional point of view.

  12. Binucleation to breed new plant species adaptable to their environments.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation.

  13. Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors.

    Science.gov (United States)

    Isidorov, Valery A; Bakier, Sławomir; Pirożnikow, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2016-06-01

    Honey bees harvest resins from various plant species and use them in the hive as propolis. While there have been a number of studies concerning the chemical composition of this antimicrobial product, little is known about selective behavior and bee preference when different potential plant sources of resin are available. The main objective of this paper was to investigate some aspects of behavioral patterns of honeybees in the context of resin acquisition. Samples of propolis originating from temperate zones of Europe and the supposed botanical precursors of the product were analyzed. Taxonomical markers of bud resins of two white birch species, aspen, black poplar, horse-chestnut, black alder, and Scots pine were determined through GC-MS analysis. All these trees have been reported as sources of propolis, but comparisons of the chemical composition of their bud resins with the compositions of propolis samples from seven European countries have demonstrated the presence of taxonomical markers only from black poplar, aspen, and one species of birch. This suggests selective behavior during the collection of bud resins by honeybees. To examine the causes of such selectivity, the antimicrobial properties of bud resins were determined. Horse-chestnut resins had lower antimicrobial activity than the other resins which did not differ significantly.

  14. 沿海围垦河道生态建设树种筛选及种植辅助措施初步研究%Selection of Tree Species for Canal in Coastal Reclaimed Area and Planting Measures

    Institute of Scientific and Technical Information of China (English)

    岳春雷; 韩玉玲; 李贺鹏; 陈友吾

    2012-01-01

    为筛选出适用于浙江沿海围垦河道种植的树种和提出提高苗木成活率的辅助技术措施,在椒江区九条河建立了试验区,开展植物种植试验研究.结果表明,侧柏(Biota orientalis)、海桐(Pittosporum tobira)、石榴(Punica granatum)、美国红梣(Fraxinus pennsylvanica)和女贞(Ligustrum lucidum)适宜种植在新围垦河道的岸顶,侧柏、珊瑚树(Vibumum odoratissinum)、蜡杨梅(Myrica cerifera)、海桐、桑(Morus alba)和女贞适宜于种植围垦河道常水位以上至坡顶区域;苗木种植穴底部放入10cm厚的砻糠隔盐层能有效提高苗木的成活率.%Test was conducted in Jiutiao Canal in Jiaojiang District, Zhejiang province, in order to select tree species for canals in reclaimed coastal area and to increase survival rate of plantings. The result indicated that Biota orientalis, Pittosporum tobira. Punica granatum, Fraxinus pennsylva-nica and Ligustrum lucidum were suitable for the top of the banks, B. orientalis Viburnum odoratissimum, Myrica cerifera, P. tobira, Morus alba and L lucidum were suitable from constant level to the top of the banks. A layer consisted of 10 cm rice chaff in the bottom of the tree could effectively enhance survival rate of tree.

  15. Features and distribution patterns of Chinese endemic seed plant species

    Institute of Scientific and Technical Information of China (English)

    Ji-Hong HUANG; Jian-Hua CHEN; Jun-Sheng YING; Ke-Ping MA

    2011-01-01

    We compiled and identified a list of Chinese. endemic seed plant species based on a large number of published References and expert reviews. The characters of these seed plant species and their distribution patterns were described at length. China is rich in endemic seed plants, with a total of 14 939 species (accounting for 52.1%of its total seed plant species) belonging to 1584 genera and 191 families. Temperate families and genera have a significantly higher proportion of endemism than cosmopolitan and tropical ones. The most primitive and derived groups have significantly higher endemism than the other groups. The endemism of tree, shrub, and liana or vine is higher than that of total species; in contrast, the endemism of herb is lower than that of total species. Geographically,these Chinese endemic plants are mainly distributed in Yunnan and Sichuan provinces, southwest China. Species richness and proportion of these endemic plants decrease with increased latitude and have a unimodal response to altitude. The peak value of proportion of endemism is at higher altitudes than that of total species and endemic species richness. The proportions of endemic shrub, liana or vine, and herb increase with altitude and have a clear unimodal curve. In contrast, the proportion of tree increases with altitude, with a sudden increase at~4000 m and has a completely different model. To date, our study provides the most comprehensive list of Chinese endemic seed plant species and their basic composition and distribution features.

  16. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation.

    Science.gov (United States)

    Vieira, Denise R P; Amaral, Flavia MaM; Maciel, Márcia C G; Nascimento, Flávia R F; Libério, Silvana A; Rodrigues, Vandílson P

    2014-09-29

    Ethnopharmacological surveys show that several plant species are used empirically by the population, in oral diseases. However, it is necessary to check the properties of these plant species. To evaluate in vitro antimicrobial activity against Streptococcus mutans from plant species selected in a previous ethnopharmacology study. An ethnopharmacological survey was conducted with users of a dental clinic school services, located in Sao Luis, Maranhão, Brazil, aiming to identify plant species used in oral diseases treatment. From the ethnopharmacological survey, species were selected for in vitro antimicrobial activity evaluation against Streptococcus mutans, by agar diffusion method and determination of Minimum Inhibitory Concentration (MIC). Two hundred and seventy one people participated in the research: 55.7% reported the use of plants for medicinal purposes, 29.5% of which have knowledge and/or use plants for some type of oral disease. Thirty four species belonging to 24 (twenty four) botanical families were reported, being Aloe vera L., Anacardium occidentale L., Schinus terebinthifolius Raddi, Chenopodium ambrosioides L. and Punica granatum L. the most cited. The most commonly reported indications were healing after tooth extraction, followed by toothache, inflammation and bleeding gums., The determination of Minimum Inhibitory Concentration (MIC) demonstrated that Punica granatum L., Psidium guajava L. and Schinus terebinthifolius Raddi showed similar activity to 0.12% chlorhexidine, used as positive control. That result is important to follow up the study of these species in the search for new anticariogenic agents originated by plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Establishment, survival, and growth of selected browse species in a ponderosa pine forest

    Science.gov (United States)

    Dietz, D.R.; Uresk, D.W.; Messner, H.E.; McEwen, L.C.

    1980-01-01

    Information is presented on establishment, survival, and growth of seven selected browse species in a ponderosa pine forest over a 10-year period. Methods of establishment included hand seeding and planting bare-root and containerized stock. Success of different methods differed with shrub species.

  18. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  19. Plant growth regulation of Bt-cotton through Bacillus species

    OpenAIRE

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2013-01-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, wit...

  20. SPECIES, TEPEES, SCOTTIES, AND JOCKEYS: SELECTED BY CONSEQUENCES

    OpenAIRE

    Edward A. Wasserman

    2012-01-01

    “Ideas are like species: they must evolve.” This claim forms the conceptual core of an engaging book by Jonnie Hughes (2011), On the Origin of Tepees. Hughes asks: If evolution by natural selection explains the origin of the human species, then does selection by consequences also explain the origin of what we humans make and do? This question prompts consideration of three important analogies: between natural selection and artificial selection, between the law of natural selection and the law...

  1. Desiccation tolerance of dormant buds from selected Prunus species

    Science.gov (United States)

    Dormant buds of woody plant species present a convenient material for backing-up of germplasm in liquid nitrogen. Routinely, this type of material is used in long-term preservation of only a few species (e.g. apple and sour cherry). Cryopreservation procedures of dormant buds are species dependent, ...

  2. Native Plant Species Suitable for Ecological Restoration

    Science.gov (United States)

    2011-05-10

    Center The Dalles Research Facility Dallesport, WA Eau Galle Laboratory Spring Valley, WI Lewisville Aquatic Ecosystems Research Facility Lew isville, TX...of Agriculture . PLANTS data base. http://plants.usda.gov/  U.S. Department of Agriculture , Forest Service. Fire Effects Information System. http

  3. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  4. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    Science.gov (United States)

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  5. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  6. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  7. Phytophthora Species, New Threats to the Plant Health in Korea

    OpenAIRE

    Ik-Hwa Hyun; Woobong Choi

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries ...

  8. Plant breeding with marker-assisted selection in Brazil

    Directory of Open Access Journals (Sweden)

    Ney Sussumu Sakiyama

    2014-03-01

    Full Text Available Over the past three decades, molecular marker studies reached extraordinary advances, especially for sequencing and bioinformatics techniques. Marker-assisted selection became part of the breeding program routines of important seed companies, in order to accelerate and optimize the cultivar developing processes. Private seed companies increasingly use marker-assisted selection, especially for the species of great importance to the seed market, e.g. corn, soybean, cotton, and sunflower. In the Brazilian public institutions few breeding programs use it efficiently. The possible reasons are: lack of know-how, lack of appropriate laboratories, few validated markers, high cost, and lack of urgency in obtaining cultivars. In this article we analyze the use and the constraints of marker-assisted selection in plant breeding programs of Brazilian public institutes

  9. Status of vascular plant species on Hainan Island

    Directory of Open Access Journals (Sweden)

    Yukai Chen

    2016-08-01

    Full Text Available Maintaining plant diversity on tropical islands is a priority for biodiversity conservation. Hainan Island, located in the northern tropics, is the second largest island in China with high plant diversity. Several updated plant lists of local flora have been published after decades of field investigations. In this paper, we investigated the plant diversity on Hainan Island by conducting extensive field surveys and a literature review. Results indicated that, as of December 2015, there were 6,036 vascular plants recorded on Hainan Island with voucher specimens or practical materials. Among these species, 1,220 species were revised as synonymously, 4,579 species were wild (including 483 endemic and 512 rare and endangered species, 163 were naturalized species (including 57 invasive species and 1,294 species were cultivated species. Since the publication of Flora Hainanica in 1964–1977, a large proportion of newly recorded species were mainly wild or introduced species, and accounted for 35.9% and 75.9% of their corresponding totals, respectively.

  10. Positive darwinian selection at the imprinted MEDEA locus in plants.

    Science.gov (United States)

    Spillane, Charles; Schmid, Karl J; Laoueillé-Duprat, Sylvia; Pien, Stéphane; Escobar-Restrepo, Juan-Miguel; Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Wolfe, Kenneth H; Grossniklaus, Ueli

    2007-07-19

    In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele's activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection. Here we show that the imprinted plant gene MEDEA (MEA), which is essential for seed development, originated during a whole-genome duplication 35 to 85 million years ago. After duplication, MEA underwent positive darwinian selection consistent with neo-functionalization and the parental conflict theory. MEA continues to evolve rapidly in the out-crossing species Arabidopsis lyrata but not in the self-fertilizing species Arabidopsis thaliana, where parental conflicts are reduced. The paralogue of MEA, SWINGER (SWN; also called EZA1), is not imprinted and evolved under strong purifying selection because it probably retained the ancestral function of the common precursor gene. The evolution of MEA suggests a late origin of genomic imprinting within the Brassicaceae, whereas imprinting is thought to have originated early within the mammalian lineage.

  11. Determination of arsenic species in water, soils and plants

    Energy Technology Data Exchange (ETDEWEB)

    Mattusch, J.; Wennrich, R. [UFZ - Center for Environmental Research Leipzig / Halle, Department of Analytical Chemistry, Leipzig (Germany); Schmidt, A.C.; Reisser, W. [University of Leipzig, Institute of Botany, Leipzig (Germany)

    2000-01-01

    Ion chromatographic separation coupled with ICP-MS was used to determine arsenic species in plant and soil extracts. A scheme for growth, harvesting, sample pre-treatment and analysis was developed for the arsenic species to enable determination. Preliminary results obtained with ten herb plants grown on arsenic-contaminated soil compared to non-contaminated soil show a heterogeneous pattern of accumulation rate, metabolization and detoxification mechanisms in monocots and dicots. Arsenite appears to be the major component in plants with good growth. Organic arsenic species were even detected at very low concentrations (< 150 {mu}g kg{sup -1} (dry mass)). (orig.)

  12. Identification of selection signatures in livestock species

    National Research Council Canada - National Science Library

    Gouveia, João José de Simoni; Silva, Marcos Vinicius Gualberto Barbosa da; Paiva, Samuel Rezende; Oliveira, Sônia Maria Pinheiro de

    2014-01-01

    .... Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics...

  13. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  14. Identifying plant species using MIR and TIR (2 - 14 μm) emissivity spectra

    Science.gov (United States)

    Ullah, S.; Schlerf, M.; Skidmore, A. K.; Hecker, C.

    2012-04-01

    Tittle: Identifying plant species using MIR and TIR (2 - 14 µm) emissivity spectra Identification plant species using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid to thermal infrared (MIR-TIR; 2 µm - 14 µm) shows significant differences. The laboratory emissivity spectra of thirteen common broad leaved species, comprising 3024 spectral bands in the MIR and TIR, were analyzed. For each wavelength the differences between the species were tested for significance using the one way analysis of variance (ANOVA) with the post-hoc Tukey HSD test. The emissivity spectra of the analysed species were found to be statistically different at various wavebands. Subsequently, six spectral bands were selected (based on the histogram of separable pairs of species for each waveband) to quantify the separability between each species pair based on the Jefferies Matusita (JM) distance. Out of 78 combinations, 76 pairs had a significantly different JM distance. Using the selected six wavebands for multiple plant species, overall classification accuracy of 92 % was achieved. This means that careful selection of hyperspectral bands in the MIR and TIR (2.5 µm - 14 µm) results in reliable species discrimination. Keywords: Spectral emissivity, J-M distance, ANOVA, Tukey HSD, spectral separability, Kirchhoff law

  15. Plant species persistence and turnover on small Bahamian islands.

    Science.gov (United States)

    Morrison, Lloyd W

    2003-06-01

    I conducted surveys of the plant species occupying 136 small islands in the Exuma Cays and 58 small islands near Andros, Bahamas. Most species occurred on relatively few islands, and most islands contained relatively few species. Identities of the most common species differed between the two archipelagos. Comparisons with earlier surveys revealed species extinctions and immigrations. Turnover was relatively low on both a per island and a per species basis on both archipelagos, although significant spatial variation in turnover rates between archipelagos was found. Most islands experienced no turnover; islands on which turnover did occur were larger and had higher species richness. Likewise, most species did not turnover, although much variation existed in turnover rates among those that did. Experimental introductions of two species to very small islands naturally devoid of vegetation revealed that these islands could support plant life. One species survived on eight of ten islands for >9 years, including the effects of a moderate (class 2) hurricane. This hurricane caused substantial damage and loss of plant biomass, but resulted in no species extinctions on 30 small islands. Data for the small islands in this region, now spanning almost a decade, reveal that most populations are persistent over periods of years to decades, rarely going extinct or immigrating. Even moderate hurricanes seem to have little impact on species compositions.

  16. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  17. Plant size, sexual selection, and the evolution of protandry in dioecious plants.

    Science.gov (United States)

    Forrest, Jessica R K

    2014-09-01

    It is frequently observed that males of dioecious plant species flower earlier in the season than females, although the generality of this pattern has not been quantified. One hypothesis for earlier male flowering is that females require more time for resource acquisition before reproduction; another is that selection for access to unfertilized ovules favors early-flowering males. Here I show that protandry is indeed the usual pattern in dioecious plants--males typically initiate flowering before females--and I propose a new hypothesis to explain this pattern. In many natural plant populations, individuals that begin flowering early are larger and--in the case of females or hermaphrodites--therefore more fecund. When this population-level seasonal decline in size is included in simulations of flowering time evolution in a dioecious plant, males evolve earlier flowering onset than females. Correlations between size (or condition) and reproductive phenology are widespread and likely contribute to the prevalence of protandry in both plants and animals, but their importance seems to have been overlooked by botanists. I suggest that sexual selection (specifically, male-male competition for access to high-quality ovules) may play a more important role in the evolution of flowering phenology than has previously been recognized.

  18. Allelopathic Effects of Invasive Woody Plant Species in Hungary

    Directory of Open Access Journals (Sweden)

    CSISZÁR, Ágnes

    2009-01-01

    Full Text Available Allelopathy may play an important role in the invasion success of adventive plant species.The aim of this study was to determine the allelopathic potential of invasive woody plant species occurringin Hungary. Juglone index of fourteen invasive woody plant species in Hungary was determined by themethod of Szabó (1997, comparing the effects of juglone and substance extracted of plant species withunknown allelopathic potential on the germination rate, shoot length and rooth length of white mustard(Sinapis alba L. used as receiver species. Results have proven a more or less expressed allelopathicpotential in case of all species. The juglone index at higher concentration extracts (5 g dry plant materialextracted with 100 ml distilled water of almost every studied species approaches to 1 or is above 1, thismeans the effect of the extracts is similar to juglone or surpasses it. In terms of juglone index, theallelopathic potential of false indigo (Amorpha fruticosa L., tree-of-heaven (Ailanthus altissima (Mill.Swingle and hackberry (Celtis occidentalis L. were the highest. Besides these species the treatment withthe extracts of black walnut (Juglans nigra L., black cherry (Prunus serotina Ehrh. and green ash(Fraxinus pennsylvanica MARSH. var. subintegerrima (Vahl Fern. reduced extremely significantly thegermination rate, shoot and root length, compared to the control.

  19. Gender-specific selection on codon usage in plant genomes

    Directory of Open Access Journals (Sweden)

    Krochko Joan E

    2007-06-01

    Full Text Available Abstract Background Currently, there is little data available regarding the role of gender-specific gene expression on synonymous codon usage (translational selection in most organisms, and particularly plants. Using gender-specific EST libraries (with > 4000 ESTs from Zea mays and Triticum aestivum, we assessed whether gender-specific gene expression per se and gender-specific gene expression level are associated with selection on codon usage. Results We found clear evidence of a greater bias in codon usage for genes expressed in female than in male organs and gametes, based on the variation in GC content at third codon positions and the frequency of species-preferred codons. This finding holds true for both highly and for lowly expressed genes. In addition, we found that highly expressed genes have greater codon bias than lowly expressed genes for both female- and male-specific genes. Moreover, in both species, genes with female-specific expression show a greater usage of species-specific preferred codons for each of the 18 amino acids having synonymous codons. A supplemental analysis of Brassica napus suggests that bias in codon usage could also be higher in genes expressed in male gametophytic tissues than in heterogeneous (flower tissues. Conclusion This study reports gender-specific bias in codon usage in plants. The findings reported here, based on the analysis of 1 497 876 codons, are not caused either by differences in the biological functions of the genes or by differences in protein lengths, nor are they likely attributable to mutational bias. The data are best explained by gender-specific translational selection. Plausible explanations for these findings and the relevance to these and other organisms are discussed.

  20. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  1. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  2. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  3. An invasive plant alters pollinator-mediated phenotypic selection on a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-01-01

    • Recent studies suggest that invasive plants compete reproductively with native plants by reducing the quantity or quality of pollinator visits. Although these studies have revealed ecological consequences of pollinator-mediated competition between invasive and native plants, the evolutionary outcomes of these interactions remain largely unexplored.• We studied the ecological and evolutionary impact of pollinator-mediated competition with an invasive jewelweed, Impatiens glandulifera, on a co-occurring native congener, I. capensis. Using a pollinator choice experiment, a hand pollination experiment, and a selection analysis, we addressed the following questions: (1) Do native pollinators show preference for the invasive or native jewelweed, and do they move between the two species? (2) Does invasive jewelweed pollen inhibit seed production in the native plant? (3) Does the invasive jewelweed alter phenotypic selection on the native plant's floral traits?• The pollinator choice experiment showed that pollinators strongly preferred the invasive jewelweed. The hand pollination experiment demonstrated that invasive pollen inhibited seed production in the native plant. The selection analysis showed that the presence of the invasive jewelweed altered phenotypic selection on corolla height in the native plant.• Invasive plants have the potential to alter phenotypic selection on floral traits in native plant populations. If native plants can evolve in response to this altered selection pressure, the evolution of floral traits may play an important role in permitting long-term coexistence of native and invasive plants. © 2015 Botanical Society of America, Inc.

  4. Bacteria associated with highly drought resistant Pistacia terebinthus: the key to reduce drought stress in other plant species?

    OpenAIRE

    Van de Weyer, Inge

    2013-01-01

    Plant-associated bacteria can not only stimulate plant growth, but also play an important role in the adaptation of their host plant to stress-inducing environmental conditions such as extreme drought. In this project, the effect of inoculation with selected endophytic bacteria isolated from the highly drought resistant tree Pistacia terebinthus on the drought resistance of four different plant species was evaluated. The results show that drought had a strong negative impact on all plant spec...

  5. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.

    Science.gov (United States)

    Jambhulkar, Hemlata P; Juwarkar, Asha A

    2009-05-01

    A field experiment was conducted on a 10-hectare area on fly ash dump at Khaperkheda Thermal Power Plant, Nagpur, India, where different ecologically and economically important plant species were planted using bioremediation technology. The technology involves the use of organic amendment and selection of suitable plant species along with site-specific nitrogen-fixing strains of biofertilizers. The study was conducted to find out the metal accumulation potential of different plant species. The total heavy metal contents in fly ash were determined and their relative abundance was found in the order of Fe>Mn>Zn>Cu>Ni>Cr>Pb>Cd. Fly ash samples had acidic pH, low electrical conductivity, low level of organic carbon and trace amounts of N and P. Plantation of divergent species was done on fly ash dump using the bioremediation technique. After 3 years of plantation, luxuriant growth of these species was found covering almost the entire fly ash dump. The results of the metal analysis of these species indicated that iron accumulated to the greatest extent in vegetation followed by Mn, Ni, Zn, Cu, Cr and Pb. Cassia siamea was found to accumulate all metals at higher concentrations compared to other species. The experimental study revealed that C. siamea could be used as a hyper-accumulator plant for bioremediation of fly ash dump.

  6. an assessment of seed propagation of oilferous plant species with

    African Journals Online (AJOL)

    nb

    pedata grew luxuriously in all soil types while Jatropha curcas performed poorly ... recalcitrant and probably needed special attention and shortest storage time .... assess the effect of growth media on seed ..... Figure 4: Plant height of 4 plant species grown in 4 different soils 180 days .... utilize more light prior to leaf canopy.

  7. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  8. Nest site selection and induced response in a dominant arboreal ant species.

    Science.gov (United States)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme; Gibernau, Marc

    2008-09-01

    It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.

  9. Nest site selection and induced response in a dominant arboreal ant species

    Science.gov (United States)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme; Gibernau, Marc

    2008-09-01

    It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.

  10. Binucleation to breed new plant species adaptable to their environments

    OpenAIRE

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial at...

  11. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  12. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  13. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  14. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  15. Biomarkers in aquatic plants: selection and utility.

    Science.gov (United States)

    Brain, Richard A; Cedergreen, Nina

    2009-01-01

    is thereby well suited for repeated measures of effect and recovery (Abbaspoor and Streibig 2005; Abbaspoor et al. 2006; Cedergreen et al. 2004). Bi-phasic responses (over time and with dose) are probably major sources of variation in sensitivity for many biomarkers. Metabolic enzymes, stress proteins, ROS and their corresponding scavenging enzymes increase in a time-frame and at doses in which plant cell damage is still repairable. However, when toxicity progresses to the point of cell damage, the concentration/activity of the biomarker either stabilizes or decreases. Examples of this response pattern are given in Lei et al. (2006); Pflugmacher et al. (2000b); Teisseire et al. (1998); and Teisseire and Guy (2000). Gene expression is also a time-dependent phenomenon varying several fold within a few hour. Therefore, bi-phasic response patterns make timing and dose-range, within which the biomarkers can be used as measures of both exposure and effect, extremely important. As a result, most biomarkers are best suited for situations in which the time and dose dependence of the biomarker, in the investigated species, are established. Notwithstanding the previously mentioned limitations, all assessed biomarkers provide valuable information on the physiological effects of specific stressors, and are valuable tools in the search for understanding xenobiotic modes of action. However, the future use of aquatic plant biomarkers will probably be confined to laboratory studies designed to assess toxicant modes of action, until further knowledge is gained regarding the time, dose and growth-factor dependence of biomarkers, in different species. No single biomarker is viable in gaining a comprehensive understanding of xenobiotic stress. Only through the concomitant measurement of a suite of appropriate biomarkers will our diagnostic capacity be enhanced and the field of ecotoxicology, as it relates to aquatic plants, advanced.

  16. Contaminant Removal of Domestic Wastewater by Constructed Wetlands: Effects of Plant Species

    Institute of Scientific and Technical Information of China (English)

    Qiong Yang; Zhang-He Chen; Jian-Gang Zhao; Bin-He Gu

    2007-01-01

    A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, length×width×depth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands.Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communls Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.

  17. Site selection for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Paul C.; Dubinsky, Melissa; Tastan, Erdem Onur, E-mail: paul.rizzo@rizzoassoc.com, E-mail: melissa.dubinsky@rizzoassoc.com, E-mail: onur.tastan@rizzoassoc.com [RIZZO Associates Inc., Pittsburgh, PA (United States); Miano, Sandra C., E-mail: scm27@psu.edu [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), RJ (Brazil); Pennsylvania State University, Department of Mechanical and Nuclear Engineering, State College, PA (United States)

    2015-07-01

    The current methodology for selecting the most advantageous site(s) for nuclear power plant (NPP) development is based on the latest evolution of protocols originally established in the 1990's by the Electric Power Research Institute (EPRI) and others for programs in the USA, and more recently by the International Atomic Energy Agency (IAEA), among others. The methodology includes protocols that account for lessons learned from both the Gen III projects and the catastrophic event at Fukushima, Japan. In general, the approach requires consideration of Exclusionary or 'fatal flaw' Criteria first, based on safety as well as significant impact to the environment or human health. Sites must meet all of these Exclusionary Criteria to be considered for NPP development. Next, the remaining sites are evaluated for Avoidance Criteria that affect primarily ease of construction and operations, which allow a ranking of sites best suited for NPP development. Finally, Suitability Criteria are applied to the potential sites to better differentiate between closely ranked sites. Generally, final selection of a Preferred and an Alternate Site will require balancing of factors, expert judgment, and client input, as sites being compared will differ in their scores associated with different Avoidance Criteria and Suitability Criteria. RIZZO Associates (RIZZO) offers in this paper a modification to this methodology for selecting the site for NPP development, which accords to the categories of Exclusionary, Avoidance and Suitability Criteria strict definitions which can be considered as Absolute Factors, Critical Factors, and Economic Factors for a more focused approach to site selection. Absolute Factors include all of the safety-related Exclusionary Criteria. Critical Factors are those that are difficult to overcome unless extraordinary mitigation measures are implemented; they have a significant impact on the ability of the project to be successful and may cause the

  18. Lignans from the plant species Achillea lingulata

    Directory of Open Access Journals (Sweden)

    SLOBODAN MILOSAVLJEVIC

    2003-05-01

    Full Text Available Five lignans with a 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane skeleton, epieudesmin, kobusin, pinoresinol, fargesin and sesartemin, were isolated from the aerial parts and roots of Achillea lingulata. Their structures were identified by comparison of their 1H-NMR and MS data to those in the literature. Fargesin and pinoresinol have not been isolated previously from any species of the genus Achillea.

  19. Herbivores can select for mixed defensive strategies in plants.

    Science.gov (United States)

    Carmona, Diego; Fornoni, Juan

    2013-01-01

    Resistance and tolerance are the most important defense mechanisms against herbivores. Initial theoretical studies considered both mechanisms functionally redundant, but more recent empirical studies suggest that these mechanisms may complement each other, favoring the presence of mixed defense patterns. However, the expectation of redundancy between tolerance and resistance remains unsupported. In this study, we tested this assumption following an ecological genetics field experiment in which the presence/absence of two herbivores (Lema daturaphila and Epitrix parvula) of Datura stramonium were manipulated. In each of three treatments, genotypic selection analyses were performed and selection patterns compared. Our results indicated that selection on resistance and tolerance was significantly different between the two folivores. Tolerance and resistance are not redundant defense strategies in D. stramonium but instead functioned as complementary defenses against both beetle species, favoring the evolution of a mixed defense strategy. Although each herbivore was selected for different defense strategies, the observed average tolerance and resistance were closer to the adaptive peak predicted against E. parvula and both beetles together. In our experimental population, natural selection imposed by herbivores can favor the evolution of mixed defense strategies in plants, accounting for the presence of intermediate levels of tolerance and resistance.

  20. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.

  1. Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants.

    Science.gov (United States)

    González-Coloma, Azucena; Reina, Matías; Sáenz, Claudia; Lacret, Rodney; Ruiz-Mesia, Lastenia; Arán, Vicente J; Sanz, Jesús; Martínez-Díaz, Rafael A

    2012-04-01

    Extracts (34) from eight plant species of the Peruvian Amazonia currently used in traditional Peruvian medicine, mostly as antileishmanial remedies and also as painkiller, antiseptic, antipyretic, anti-inflamatory, antiflu, astringent, diuretic, antipoison, anticancerous, antiparasitic, insecticidal, or healing agents, have been tested for their antileishmanial, antitrypanosomal, and cytotoxic activity. Plant species were selected based on interviews conducted with residents of rural areas. The different plant parts were dried, powdered, and extracted by maceration with different solvents (hexane, chloroform, and 70% ethanol-water). These extracts were tested on promastigote forms of Leishmania infantum strain PB75, epimastigote forms of Trypanosoma cruzi strain Y, and the mammalian CHO cell line. Parasite viability and nonspecific cytotoxicity were analyzed by a modified MTT colorimetric assay method. The isolation and identification of pure compounds from selected extracts were performed by column chromatography, gas chromatography mass spectrometry (GC-MS; mixtures), spectroscopic techniques [MS, infrared (IR), ultraviolet (UV)], and mono and two-dimensional (1)H and (13)C nuclear magnetic resonance (NMR; COSY, HSQC, NOESY) experiments. Chondodendron tomentosum bark and Cedrela odorata were the most active extracts against Leishmania, while C. odorata and Aristoloquia pilosa were the most active against Trypanosoma, followed by Tabebuia serratifolia, Tradescantia zebrina, and Zamia ulei. Six compounds and two mixtures were isolated from Z. ulei [cycasin (1)], T. serratifolia {mixtures 1-2, and naphthoquinones 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (2) and 2-(1-hydroxyethyl)-4H,9H-naphtho[2,3-b]furan-4,9-dione (3)}, and C. tomentosum [chondrocurine (4); (S,S')-12-O-methyl(+)-curine (5); and cycleanine (6)]. Four compounds and the two mixtures exhibited significant activity.

  2. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    Science.gov (United States)

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  3. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  4. Predicting species' maximum dispersal distances from simple plant traits.

    Science.gov (United States)

    Tamme, Riin; Götzenberger, Lars; Zobel, Martin; Bullock, James M; Hooftman, Danny A P; Kaasik, Ants; Pärtel, Meelis

    2014-02-01

    Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.

  5. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  6. Biodiversity of Asterina species on Neotropical host plants: new species and records from Panama.

    Science.gov (United States)

    Hofmann, T A; Piepenbring, M

    2011-01-01

    Two new species of the genus Asterina are described from living leaves collected in provinces Chiriquí and Bocas del Toro in western Panama. Asterina alloplecti on Alloplectus ichtyoderma (Gesneriaceae) differs from other Asterina on Gesneriaceae by its stalked appressoria and host relationship. Asterina compsoneurae on Compsoneura sprucei (Myristicaceae) can be distinguished from other members of Asterina on Myristicaceae by its larger ascomata, larger, prominently spinose ascospores and host relationship. New records for Panama are Asterina corallopoda from a new host plant species (Solanum trizygum, Solanaceae), A. diplopoda, A. ekmanii from a new host plant species (Gonzalagunia rudis, Rubiaceae), A. siphocampyli from a new host plant genus and species (Burmeistera vulgaris, Campanulaceae) and A. styracina from a new host-plant species (Styrax argenteus, Styracaceae). This study increases the number of species of Asterina known for Panama from 12 to 19 and the number of Asterinaceae from 14 to 21. Asterina corallopoda, A. diplopoda, A. ekmanii, A. siphocampyli and A. styracina are illustrated for the first time. A phylogeny inferred from the analysis of LSU rDNA sequences of species of Asterina is presented. The diversity and host-plant patterns of known Neotropical species of Asterina are discussed.

  7. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  8. Swimming behavior of selected species of Archaea.

    Science.gov (United States)

    Herzog, Bastian; Wirth, Reinhard

    2012-03-01

    The swimming behavior of Bacteria has been studied extensively, at least for some species like Escherichia coli. In contrast, almost no data have been published for Archaea on this topic. In a systematic study we asked how the archaeal model organisms Halobacterium salinarum, Methanococcus voltae, Methanococcus maripaludis, Methanocaldococcus jannaschii, Methanocaldococcus villosus, Pyrococcus furiosus, and Sulfolobus acidocaldarius swim and which swimming behavior they exhibit. The two Euryarchaeota M. jannaschii and M. villosus were found to be, by far, the fastest organisms reported up to now, if speed is measured in bodies per second (bps). Their swimming speeds, at close to 400 and 500 bps, are much higher than the speed of the bacterium E. coli or of a very fast animal, like the cheetah, each with a speed of ca. 20 bps. In addition, we observed that two different swimming modes are used by some Archaea. They either swim very rapidly, in a more or less straight line, or they exhibit a slower kind of zigzag swimming behavior if cells are in close proximity to the surface of the glass capillary used for observation. We argue that such a "relocate-and-seek" behavior enables the organisms to stay in their natural habitat.

  9. Metalaxyl toxicity, uptake, and distribution in several ornamental plant species.

    Science.gov (United States)

    Wilson, P C; Whitwell, T; Klaine, S J

    2001-01-01

    Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.

  10. Potential vegetation markers – analytical pyrolysis of modern plant species representative of Neolithic SE Spain

    NARCIS (Netherlands)

    Schellekens, J.; Barbera, G.G.; Buurman, P.

    2013-01-01

    A selection of plant species that may have been relevant for the Neolithic in the SW Mediterranean have been characterised with pyrolysis gas chromatography mass spectrometry (pyrolysis–GC/MS) in search for molecular vegetation markers. Roots and aerial parts were analysed separately for the

  11. Potential vegetation markers – analytical pyrolysis of modern plant species representative of Neolithic SE Spain

    NARCIS (Netherlands)

    Schellekens, J.; Barbera, G.G.; Buurman, P.

    2013-01-01

    A selection of plant species that may have been relevant for the Neolithic in the SW Mediterranean have been characterised with pyrolysis gas chromatography mass spectrometry (pyrolysis–GC/MS) in search for molecular vegetation markers. Roots and aerial parts were analysed separately for the followi

  12. Potential vegetation markers – analytical pyrolysis of modern plant species representative of Neolithic SE Spain

    NARCIS (Netherlands)

    Schellekens, J.; Barbera, G.G.; Buurman, P.

    2013-01-01

    A selection of plant species that may have been relevant for the Neolithic in the SW Mediterranean have been characterised with pyrolysis gas chromatography mass spectrometry (pyrolysis–GC/MS) in search for molecular vegetation markers. Roots and aerial parts were analysed separately for the followi

  13. Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India.

    Science.gov (United States)

    Radhapriya, P; NavaneethaGopalakrishnan, A; Malini, P; Ramachandran, A

    2012-05-01

    Being the second largest manufacturing industry in India, cement industry is one of the major contributors of suspended particulate matter (SPM). Since plants are sensitive to air pollution, introducing suitable plant species as part of the greenbelt around cement industry was the objective of the present study. Suitable plant species were selected based on the Air pollution tolerance index (APTI) calculated by analyzing ascorbic acid (AA), pH, relative water content (RWC) and total chlorophyll (TChl) of the plants occuring in the locality. Plants were selected within a 6 km radius from the industry and were graded as per their tolerance levels by analyzing the biochemical parameters. From the statistical analysis at 0.05 level of significance a difference in the APTI values among the 27 plant species was observed, but they showed homogenous results when analysed zone wise using one-way analyses of variance. Analyses of individual parameters showed variation in the different zones surrounding the cement industry, whereas the APTI value (which is a combination of the parameter viz. AA, RWC, TChl, pH) showed more or less same gradation. Significant variation in individual parameters and APTI was seen with in the species. All the plants surrounding the cement industry are indicative of high pollution exposure comparable to the results obtain for control plants. Based on the APTI value, it was observed that about 37% of the plant species were tolerant. Among them Mangifera indica, Bougainvillea species, Psidum quajava showed high APTI values. 33% of the species were highly susceptible to the adverse effects of SPM, among which Thevetia neriifolia, Saraca indica, Phyllanthus emblica and Cercocarpus ledifolius showed low APTI values. 15% each of the species were at the intermediary and moderate tolerance levels.

  14. Comparative cross-species alternative splicing in plants.

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  15. The Language of Reactive Oxygen Species Signaling in Plants

    Directory of Open Access Journals (Sweden)

    Soumen Bhattacharjee

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of specific proteins or expression of genes by changing redox balance of the cell. The network of redox signals orchestrates metabolism for regulating energy production to utilization, interfering with primary signaling agents (hormones to respond to changing environmental cues at every stage of plant development. The oxidative lipid peroxidation products and the resulting generated products thereof (associated with stress and senescence also represent “biological signals,” which do not require preceding activation of genes. Unlike ROS-induced expression of genes, these lipid peroxidation products produce nonspecific response to a large variety of environmental stresses. The present review explores the specific and nonspecific signaling language of reactive oxygen species in plant acclamatory defense processes, controlled cell death, and development. Special emphasis is given to ROS and redox-regulated gene expression and the role of redox-sensitive proteins in signal

  16. Coevolution between native and invasive plant competitors: implications for invasive species management.

    Science.gov (United States)

    Leger, Elizabeth A; Espeland, Erin K

    2010-03-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.

  17. Rare and endangered species of plants--the soviet side.

    Science.gov (United States)

    Elias, T S

    1983-01-07

    In late 1972, the Soviet Union embarked on a program to identify and document plant species that are threatened with extinction. Perhaps 2000 species in the Soviet Union are in need of monitoring or protective measures, while nearly 200 may be in immediate danger of extinction. Currently, the Soviet Union has an official, national list of endangered species, and each of the 15 republics has prepared a regional list. Once a revised national list is prepared, Soviet scientists hope that the Supreme Soviet will pass a law protecting those species. A corresponding law for endangered animals was passed in 1980.

  18. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems

    NARCIS (Netherlands)

    Maltby, L.; Blake, N.; Brock, T.C.M.; Brink, van den P.J.

    2005-01-01

    Single-species acute toxicity data and (micro)mesocosm data were collated for 16 insecticides. These data were used to investigate the importance of test-species selection in constructing species sensitivity distributions (SSDs) and the ability of estimated hazardous concentrations (HCs) to protect

  19. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  20. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  1. Rare and endangered plant species of the Chinese Altai Mountains

    Institute of Scientific and Technical Information of China (English)

    Marina; V.OLONOVA

    2010-01-01

    Altai (also named Altay in China) Mountain Country (Mountain System) is a unique natural region,located on the border between different floristic regimes of the Boreal and ancient Mediterranean sub-kingdoms,where distribution of plant species is actually limited. It is known to have sufficient endemic floral biodiversity in the Northern Asia. Many plants of Altai Mountain System need effective care and proper conservation measures for their survival and longer-term protection. Important Plant Area identified as the IUCN (the International Union for Conservation of Nature),specified criteria attract global attention for protection of floral biodiversity across the world. The records of 71 plant species from the Chinese Altai Mountains attributed to the criterion A and the dark conifer forests of Chinese Altai Mountains satisfied the criterion C,which may help qualify to fulfill the national obligation of the Convention on Biological Diversity.

  2. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae).

    Science.gov (United States)

    Starr, Julian R; Naczi, Robert F C; Chouinard, Brianna N

    2009-05-01

    We investigate the species discriminatory power of a subset of the proposed plant barcoding loci (matK, rbcL, rpoC1, rpoB, trnH-psbA) in Carex, a cosmopolitan genus that represents one of the three largest plant genera on earth (c. 2000 species). To assess the ability of barcoding loci to resolve Carex species, we focused our sampling on three of the taxonomically best-known groups in the genus, sections Deweyanae (6/8 species sampled), Griseae (18/21 species sampled), and Phyllostachyae (10/10 species sampled). Each group represents one of three major phylogenetic lineages previously identified in Carex and its tribe Cariceae, thus permitting us to evaluate the potential of DNA barcodes to broadly identify species across the tribe and to differentiate closely related sister species. Unlike some previous studies that have suggested that plant barcoding could achieve species identification rates around 90%, our results suggest that no single locus or multilocus barcode examined will resolve much greater than 60% of Carex species. In fact, no multilocus combination can significantly increase the resolution and statistical support (i.e., ≥ 70% bootstrap) for species than matK alone, even combinations involving the second most variable region, trnH-psbA. Results suggest that a matK barcode could help with species discovery as 47% of Carex taxa recently named or resolved within cryptic complexes in the past 25 years also formed unique species clusters in upgma trees. Comparisons between the nrDNA internal transcribed spacer region (ITS) and matK in sect. Phyllostachyae suggest that matK not only discriminates more species (50-60% vs. 25%), but it provides more resolved phylogenies than ITS. Given the low levels of species resolution in rpoC1 and rpoB (0-13%), and difficulties with polymerase chain reaction amplification and DNA sequencing in rbcL and trnH-psbA (alignment included), we strongly advocate that matK should be part of a universal plant barcoding system

  3. Rhizobia species: A Boon for "Plant Genetic Engineering".

    Science.gov (United States)

    Patel, Urmi; Sinha, Sarika

    2011-10-01

    Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. "Rhizobia mediated transformation technology."

  4. Selecting focal species as surrogates for imperiled species using relative sensitivities derived from occupancy analysis

    Science.gov (United States)

    Silvano, Amy; Guyer, Craig; Steury, Todd; Grand, James B.

    2017-01-01

    Most imperiled species are rare or elusive and difficult to detect, which makes gathering data to estimate their response to habitat restoration a challenge. We used a repeatable, systematic method for selecting focal species using relative sensitivities derived from occupancy analysis. Our objective was to select suites of focal species that would be useful as surrogates when predicting effects of restoration of habitat characteristics preferred by imperiled species. We developed 27 habitat profiles that represent general habitat relationships for 118 imperiled species. We identified 23 regularly encountered species that were sensitive to important aspects of those profiles. We validated our approach by examining the correlation between estimated probabilities of occupancy for species of concern and focal species selected using our method. Occupancy rates of focal species were more related to occupancy rates of imperiled species when they were sensitive to more of the parameters appearing in profiles of imperiled species. We suggest that this approach can be an effective means of predicting responses by imperiled species to proposed management actions. However, adequate monitoring will be required to determine the effectiveness of using focal species to guide management actions.

  5. Selection and breeding of plant cultivars to minimize cadmium accumulation.

    Science.gov (United States)

    Grant, C A; Clarke, J M; Duguid, S; Chaney, R L

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  6. Selection and breeding of plant cultivars to minimize cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.A. [AAFC Brandon Research Centre, Box 1000A, R.R. 3, Brandon, MB, R7A 5Y3 (Canada)], E-mail: cgrant@agr.gc.ca; Clarke, J.M. [AAFC Semiarid Prairie Agricultural Research Centre, Swift Current, SK, S9H 3X2 (Canada); Duguid, S. [AAFC Morden Research Station, Morden, MB, R6M 1Y5 (Canada); Chaney, R.L. [USDA, ARS, Animal Manure and Byproducts Laboratory, Room 013, Building 007, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705-2350 (United States)

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  7. Antibacterial activity of selected Egyptian ethnomedicinal plants

    Directory of Open Access Journals (Sweden)

    Mashait, M.

    2013-01-01

    Full Text Available Aims: Medicinal plants have recently received the attention of the antimicrobial activity of plants and their metabolites due to the challenge of growing incidences of drug-resistant pathogens. The aims of this study were to determine the antibacterial activities of plant extracts used as ethnomedicinal in Egypt. Methodology and Results: Investigations were carried out to assess the antibacterial efficiency of 11 plant extracts used as ethnopharmacological among Egyptian native people against infectious diseases. Crude methanol, ethanol,chloroform, hexane, acetone and aqueous extract of plants were tested for antibacterial activity in vitro against ten bacterial isolates using the disc diffusion method test. Discs were impregnated with 2 mg/mL of different solvent extracts. Among all the crude extracts, the methanol extract showed the highest activity than other extracts. P. harmala and S. officinalis exhibited highest antibacterial activity against gram positive and negative bacteria while the remainingplants extracts showed less activity. All the plant extracts showed no significant effect against the Bordetella bronchisepta ATCC 4617 except the extracts of M. fragrans and L. sativum. E. coli is the most sensitive microorganism tested, with the lowest MIC value (0.5 mg/mL in the presence of the plant extract of P. harmala and S. officinalis.Conclusion, significance and impact of study: Results obtained herein, may suggest that the ethnomedicinal Egyptian plants possess antimicrobial activity and therefore, they can be used in biotechnological fields as natural preservative ingredients in food and/or pharmaceutical industry.

  8. Cupriavidus plantarum sp. nov., a plant-associated species.

    Science.gov (United States)

    Estrada-de Los Santos, Paulina; Solano-Rodríguez, Roosivelt; Matsumura-Paz, Lucía Tomiko; Vásquez-Murrieta, María Soledad; Martínez-Aguilar, Lourdes

    2014-11-01

    During a survey of plant-associated bacteria in northeast Mexico, a group of 13 bacteria was isolated from agave, maize and sorghum plants rhizosphere. This group of strains was related to Cupriavidus respiraculi (99.4 %), but a polyphasic investigation based on DNA-DNA hybridization analysis, other genotypic studies and phenotypic features showed that this group of strains actually belongs to a new Cupriavidus species. Consequently, taking all the results together, the description of Cupriavidus plantarum sp. nov. is proposed.

  9. Plant selection and soil legacy enhance long-term biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard

    2016-04-01

    Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of

  10. Antibacterial activity and cytotoxicity of selected Egyptian medicinal plants.

    Science.gov (United States)

    Kuete, Victor; Wiench, Benjamin; Hegazy, Mohamed-Elamir F; Mohamed, Tarik A; Fankam, Aimé G; Shahat, Abdelaaty A; Efferth, Thomas

    2012-01-01

    Medicinal plants have been used as a source of remedies since ancient times in Egypt. The present study was designed to investigate the antibacterial activity and the cytotoxicity of the organic extracts from 16 selected medicinal plants of Egypt. The study was also extended to the isolation of the antiproliferative compound jaeschkeanadiol p-hydroxybenzoate (FH-25) from Ferula hermonis. The microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against twelve bacterial strains belonging to four species, Providencia stuartii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli, while a resazurin assay was used to assess the cytotoxicity of the extracts on the human pancreatic cancer cell line MiaPaCa-2, breast cancer cell line MCF-7, CCRF-CEM leukemia cells, and their multidrug resistant subline, CEM/ADR5000. The results of the MIC determination indicated that all the studied crude extracts were able to inhibit the growth of at least one of the tested bacterial species, the best activity being recorded with the crude extracts from F. hermonis and Vitis vinifera, whichwere active against 91.7% and 83.3% of the studied bacteria, respectively. The lowest MIC value of 128 μg/mL was recorded against P. stuartii ATCC 29916 and E. coli ATCC 10536 with the extract from V. vinifera and Commiphora molmol, respectively. In the cytotoxicity study, IC50 values below 20 μg/mL were recorded for the crude extract of F. hermonis on all four studied cancer cell lines. FH-25 also showed good cytotoxicity against MCF-7 cells (IC50: 2.47 μg/mL). Finally, the results of the present investigation provided supportive data for the possible use of the plant extracts investigated herein, mostly F. hermonis and V. vinifera in the treatment of bacterial infections and jaeschkeanadiol p-hydroxybenzoate in the control of cancer diseases. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  12. Plant antiherbivore defenses in Fabaceae species of the Chaco

    Directory of Open Access Journals (Sweden)

    T. E. Lima

    Full Text Available Abstract The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense – defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species, leaves (67%, and reproductive organs (56%. The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  13. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species.

    Science.gov (United States)

    Amir, Hamid; Lagrange, Alexandre; Hassaïne, Nadine; Cavaloc, Yvon

    2013-10-01

    In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.

  14. Species-specific spatial characteristics in reserve site selection

    NARCIS (Netherlands)

    Groeneveld, R.A.

    2010-01-01

    This paper addresses the problem of selecting reserve sites cost-effectively, taking into account the mobility and habitat area requirements of each species. Many reserve site selection problems are analyzed in mixed-integer linear programming (MILP) models due to the mathematical solvers available

  15. Metal species involved in long distance metal transport in plants

    Science.gov (United States)

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  16. Species Richness in Relation to the Presence of Crop Plants in Families of Higher Plants

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-10-01

    Full Text Available Crop species richness and percentages of cultivated plants in 75 families comprisingmore than 220000 species were analyzed. Three major groups have been made. The first group is including the “big five” families with 10000 and more species in each. The second group comprises 50 families with more than thousand and up to 10000 species and finally the third group contains families with relatively high numbers of crop species. The percentage of cultivated species is various, from 0.16 to 7.25 in group 1, 0 to 7.24 in group 2 and 2.30 to 32.5 in group 3. The results show that there is a positive correlation (r = + 0.56 between number of crop plants and species diversity of the families.

  17. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli,Azad Kashmir,Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad; Shoaib; Amjad; Muhammad; Arshad

    2014-01-01

    Objective:To document ethnobotanical informations of useful woody plant species in the region of Kotli,Azad Kashmir.Methods:An ethnobotanical survey was conducted in Kotli.Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment.Results:The present study documented the etnobotanical uses of 33 woody plant species.Most of the species have been used for dual purpose.Only 5 species are used for one purpose.Study revealed all species have medicinal value,among which 21 were used as fuel wood species,16 as fodder species,4 as timber wood species,12 as edible fruit species,6 as fence or hedge plant,7 as ornamental species and 12 species had other uses.Conclusions:Medicinal plants are still widely used for health care by locals of Kotli.Some species of woodlands seem to be vulnerable to overcollection and deforestation.As the young generation is diverted toward allelopathic medicines,ethnobotanical knowledges of important medicinal plants are restricted to the old people only.It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  18. Phenolics of selected species of Persicaria and Polygonum (Polygonaceae in Egypt

    Directory of Open Access Journals (Sweden)

    Sameh Hussein

    2017-01-01

    Full Text Available Four selected species of family Polygonaceae Juss. viz. Persicaria salicifolia (Brouss. ex Willd. Assenov, Persicaria senegalensis (Meisn. Soják, Polygonum bellardii All. and Polygonum equisetiforme Sm. were subjected to botanical, chemical and numerical studies. The botanical part deals with macro- and micromorphological characters of the whole plant. The chemical part deals with extraction and identification of 17 compounds including flavones, flavonols, flavone C-glycosides and phenolic acids. The botanical and chemical results of the four selected species were subjected to a numerical analysis.

  19. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  20. Multiple strategies for drought survival among woody plant species

    OpenAIRE

    Pivovaroff, AL; Pasquini, SC; De Guzman, ME; Alstad, KP; Stemke, JS; Santiago, LS

    2015-01-01

    © 2015 British Ecological Society Drought-induced mortality and regional dieback of woody vegetation are reported from numerous locations around the world. Yet within any one site, predicting which species are most likely to survive global change-type drought is a challenge. We studied the diversity of drought survival traits of a community of 15 woody plant species in a desert-chaparral ecotone. The vegetation was a mix of chaparral and desert shrubs, as well as endemic species that only occ...

  1. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.

    Science.gov (United States)

    Munguía-Rosas, Miguel A; Ollerton, Jeff; Parra-Tabla, Victor; De-Nova, J Arturo

    2011-05-01

    Flowering times of plants are important life-history components and it has previously been hypothesized that flowering phenologies may be currently subject to natural selection or be selectively neutral. In this study we reviewed the evidence for phenotypic selection acting on flowering phenology using ordinary and phylogenetic meta-analysis. Phenotypic selection exists when a phenotypic trait co-varies with fitness; therefore, we looked for studies reporting an association between two components of flowering phenology (flowering time or flowering synchrony) with fitness. Data sets comprising 87 and 18 plant species were then used to assess the incidence and strength of phenotypic selection on flowering time and flowering synchrony, respectively. The influence of dependence on pollinators, the duration of the reproductive event, latitude and plant longevity as moderators of selection were also explored. Our results suggest that selection favours early flowering plants, but the strength of selection is influenced by latitude, with selection being stronger in temperate environments. However, there is no consistent pattern of selection on flowering synchrony. Our study demonstrates that phenotypic selection on flowering time is consistent and relatively strong, in contrast to previous hypotheses of selective neutrality, and has implications for the evolution of temperate floras under global climate change. © 2011 Blackwell Publishing Ltd/CNRS.

  2. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  3. The effect of plant species on soil nitrogen mineralization

    NARCIS (Netherlands)

    Krift, van der A.J.; Berendse, F.

    2001-01-01

    1. To ascertain the influence of different plant species on nitrogen (N) cycling, we performed a long-term garden experiment with six grasses and five dicots with different potential growth rates, that are adapted to habitats with different nutrient supplies. We measured in situ N mineralization and

  4. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  5. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation.

    Science.gov (United States)

    Allen, Winthrop C; Hook, Paul B; Biederman, Joel A; Stein, Otto R

    2002-01-01

    Constructed wetlands are widely used for wastewater treatment, but there is little information on processes affecting their performance in cold climates, effects of plants on seasonal performance, or plant selection for cold regions. We evaluated the effects of three plant species on seasonal removal of dissolved organic matter (OM) (measured by chemical oxygen demand and dissolved organic carbon) and root zone oxidation status (measured by redox potential [Eh] and sulfate [SO4(2-)]) in subsurface-flow wetland (SSW) microcosms. A series of 20-d incubations of simulated wastewater was conducted during a 28-mo greenhouse study at temperatures from 4 to 24 degrees C. Presence and species of plants strongly affected seasonal differences in OM removal and root zone oxidation. All plants enhanced OM removal compared with unplanted controls, but plant effects and differences among species were much greater at 4 degrees C, during dormancy, than at 24 degrees C, during the growing season. Low temperatures were associated with decreased OM removal in unplanted controls and broadleaf cattail (Typha latifolia L.) microcosms and with increased removal in beaked sedge (Carex rostrata Stokes) and hardstem bulrush [Schoenoplectus acutus (Muhl. ex Bigelow) A. & D. Löve var. acutus] microcosms. Differences in OM removal corresponded to species' apparent abilities to increase root zone oxygen supply. Sedge and bulrush significantly raised Eh values and SO4(2-) concentrations, particularly at 4 degrees C. These results add to evidence that SSWs can be effective in cold climates and suggest that plant species selection may be especially important to optimizing SSW performance in cold climates.

  6. Selectivity mechanism of Anoplophora glabripennis on four different species of maples

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anoplophora glabripennis (Motsch.) is a wood-boring beetle that is native to China. For a long time, it caused great losses in the economy and ecology of northwest China. Attractants are often used to control insects. The volatiles emitted from the host plant play an important role for insects in finding their target. To explore the mechanism of selec-tivity to different host plants, the response of Anoplophora glabripennis to four different host plants was investigated, which included Acer negundo L., Acer mono Maxim., Acer truncatum Bunge. and Acer platanoides L., and the com-pounds in the profiles of volatiles were identified from these species. The olfactory responses ofAnoplophora glabripennis to the odors of different plants showed preference for certain host plants: Acer negundo, Acer mono and Acer truncatum. The attraction ofAcer negundo and Acer mono was signifi-cantly different (pAcer mono Maxim.>Acer truncatum Bunge.>Acer platanoides L.. 1-penten-3-ol, ocimene and trans-Germanylacetone were repellent to Anoplophora glabripennis. 1-penten-3-ol and trans-gerranylacetone were identified in Acer platanoides, and Ocimene was the most attractive to Anoplophora glabripennis among these species. The extent of feeding damage caused by Anoplophora glabripennis differed among four species. The sequences was Acer negundo > Acer mono > Acer truncatum > Acer platanoides. The epidermal hairs of the four host plants revealed that the extent of damage was related to the physical characteristics of the host plants.

  7. Effect of plantations on plant species diversity in the Darabkola, Mazandaran Province, North of Iran

    Directory of Open Access Journals (Sweden)

    HASSAN POURBABAEI

    2012-04-01

    Full Text Available Pourbabaei H, Asgari F, Reif A, Abedi R. 2012. Effect of plantations on plant species diversity in the Darabkola, Mazandaran Province, North of Iran. Biodiversitas 13: 72-78. In this study, the effect of plantations on plant species diversity was investigated in Darabkola, Mazandaran province, north of Iran. To conduct the study, a natural mixed forest, a broad–leaved plantation (Alnus subcordata-Acer velutinum and a coniferous plantation (Cupressus sempervirens var. horizontalis-Pinus brutia were selected. 35 sampling plots were taken in systematic random method in each area. Data analysis was carried out using Simpson, Hill's N2, Shannon-Wiener and Mc Arthur's N1 diversity indices, Smith and Wilson evenness index and species richness. Results revealed that there were 32 plant species in natural forest and 30 plant species were found in each plantation. Rosaceae and Lamiaceae were the main families in the studied areas. Diversity and evenness indices of all vegetation layers had the most values in the natural forest. Richness of woody plants had the highest value in the natural forest, while herbaceous richness was the highest in coniferous plantation. Mc Arthur's N1 had the highest value among diversity indices and followed by Hill's N2, Shannon-Wiener and Simpson indices, respectively. In addition, results showed that there were significant differences among diversity, evenness and richness indices in all vegetation layers in the three studied areas.

  8. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  9. Accumulation of K+ and Cs+ in Tropical Plant Species

    Science.gov (United States)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  10. Plant species dominance shifts across erosion edge-meadow transects in the Swiss Alps.

    Science.gov (United States)

    Huck, Corinne; Körner, Christian; Hiltbrunner, Erika

    2013-03-01

    While exerting no obvious function under "average" environmental conditions, the presence of certain plant specialists becomes crucial in the event of a complete failure of a community due to severe disturbance such as landslides. Plants capable of growing at erosion edges may act as potential edge-engineers by coping with unstable ground and stabilizing the soil with their roots. We hypothesized that life conditions at erosion edges select for a particular set of specialists or species with specific traits, the identification of which was the aim of the study. Across 17 small-scale transects (0.40 × 1.60 m) from intact meadows to landslide edges (Ursern Valley, Swiss Alps, c. 1,600 m a.s.l.), we quantified plant species abundance by the point intercept method and characterized growth conditions based on Landolt's indicator values, leaf δ(13)C, and volumetric soil moisture in the uppermost soil layers. We observed a clear change of plant species composition and relative abundance from the meadow to the edge, presumably induced by the 25 % lower soil moisture and microclimatic exposure. Species richness at the edge was two-thirds of that in the meadow, but was positively correlated with species richness of the adjacent meadow. Species with "edge-preference" had either (1) rolled or festucoid leaves like Festuca spp., Avenella flexuosa and Nardus stricta, or (2) small, scleromorphic leaves like Vaccinium vitis-idaea, Calluna vulgaris and Thymus ssp. Graminoids with rolled/festucoid leaves were found to be the most dominant edge-specialists. The grass Festuca valesiaca s.l. emerged as the most dominant plant species at the edge, having an 11-times higher cover at the edge than in the meadow. In this montane grassland, a single species contributes to the stabilization of erosion edges and may be regarded as a potential keystone species for slope stability and regeneration after landslides even its role has not so far been established.

  11. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  12. Plants Species Diversity in Hyrcanian Hardwood Forests, Northern Iran (Case Study: Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Kambiz Abrari Vajari

    2013-12-01

    Full Text Available In order to better understand and manage forest ecosystems, it is important to study the relationship between environmental factors and plants in these ecosystems. We investigated plant species diversity of three hardwood forest stands in the Hyrcanian forests, Sari, northern Iran. Our aim was to determine the effect of forest stand type on the diversity of plant species. One plot 150 × 150 m established at the center of each forest stand and in each plot, nine subplots 50 × 50 m were selected. Diversity values (Richness, diversity and evenness indices were measured in five sample areas 0.01 ha per 50 × 50 m quadrates by estimating cover percentage of each species. The results showed that Geophytes (43.33% had the highest life form spectrum among species. JACCARD'S similarity index revealed that the highest values exist between Parrotia-Carpinus and Carpinus stands. All herb layer species diversity indices varied significantly among different forest stands. Cover percentage significantly positively correlated with diversity indices in Parrotia-Carpinus stand. Diversity and richness indices of herb-layers plants were significantly negatively correlated with cover percentage in Fagus stand. Correlation analysis between all diversity measures and cover percentage in Carpinus stand wasn't significant. The result of the present study revealed that species diversity in temperate broad-leaved deciduous forest was significantly influenced by forest stand type

  13. COMPARATIVE ASSESSMENT OF TOTAL PHENOLIC CONTENT IN SELECTED MEDICINAL PLANTS.

    Science.gov (United States)

    Johnson, C E; Oladeinde, F O; Kinyua, A M; Michelin, R; Makinde, J M; Jaiyesimi, A A; Mbiti, W N; Kamau, G N; Kofi-Tsekpo, W M; Pramanik, S; Williams, A; Kennedy, A; Bronner, Y; Clarke, K; Fofonoff, P; Nemerson, D

    2008-01-01

    This study was to compare the total phenolic (TP) content in extracts from eleven plant materials collected at different geographical locations in Kenya, Nigeria, and USA. These plants have been selected because the majority of them are highly pigmented, from yellow to purple, and would therefore have economic value in industries for producing antioxidants and surfactants. Two of them were collected from the industrial and domestic waste outlets. Each analysis was achieved using the Folin-Ciocalteau technique. The order of decreasing phenolic acid content as gallic acid concentration (mg/g dry weight) was Prunus africana (55.14) > Acacia tortilis (42.11) > Khaya grandifoliola (17.54) > Curcuma longa (17.23) > Vernonia amygdalina (14.9)> Russelia equisetiformis (14.03) > Calendula officinalis (7.96) >Phragmites australis (control) (7.09) > Rauwolfia vomitoria (6.69) > Phragmites australis (industrial) (6.21) > Cnidoscolus aconitifolius (5.6). The TP contents of Spartina alterniflora species were below the detection limit.

  14. Patterns of selectivity in introductions of mammal species worldwide

    Directory of Open Access Journals (Sweden)

    Tim M. Blackburn

    2017-01-01

    Full Text Available Humans have an extremely long history of transporting and introducing mammal species outside their native geographic ranges. The characteristics of the species introduced (taxonomy, life-history, ecology, environment can all influence which traits are available (and selected for establishment, and subsequent invasive spread. Understanding the non-randomness in species introductions is therefore key to understanding invasions by alien species. Here, we test for selectivity in the identities and traits of mammal species introduced worldwide. We compiled and analysed a comprehensive database of introduced mammal species, including information on a broad range of life history, ecological, distributional and environmental variables that we predicted to differ between introduced and non-introduced mammal species. Certain mammal taxa are much more likely to have been introduced than expected, such as Artiodactyls in the families Bovidae and Cervidae. Rodents and bats were much less likely to have been introduced than expected. Introduced mammal species have significantly larger body masses, longer lifespans and larger litter sizes than a random sample of all mammal species. They also have much larger native geographic ranges than expected, originate from significantly further north, from cooler areas, and from areas with higher human population densities, than mammal species with no recorded introductions. The traits and distributions of species help determine which have been introduced, and reflect how the evolutionary history of mammals has resulted in certain species with certain traits being located in the way of human histories of movement and demands for goods and services. The large amount of unexplained variation is likely to relate to the intrinsically stochastic nature of this human-driven process.

  15. What role does plant physiology play in limiting species distribution?

    Science.gov (United States)

    De Kauwe, M. G.; Medlyn, B. E.; Beaumont, L.; Duursma, R.; Baumgartner, J.

    2015-12-01

    To predict vulnerability of tree species to changes in climate, we need to understand what processes are currently limiting their distributions. Although the limits to distribution is among the most fundamental of ecological questions, there are few studies that determine quantitatively which processes can explain observed distributions. Focusing on two contrasting Eucalypt species, a fast-growing coastal species (E. saligna) and a slower-growing inland species (E. sideroxylon), we examined to what extent plant physiological characteristics limit species distributions. The ecophysiology of both species has been extensively characterised in both controlled and field environments. We parameterised an ecosystem model (GDAY, Generic Decomposition and Yield) for both species, using the best available experimental data. We then used the model to predict the spatial distribution of productivity for these species in eastern Australia, and compared these predictions with the actual distributions. The results of this comparison allow us to identify where the distributions of these species are limited by physiological constraints on productivity, and consequently their vulnerability to changes in climate.

  16. Natural selection on plant physiological traits in an urban environment

    Science.gov (United States)

    Lambrecht, Susan C.; Mahieu, Stephanie; Cheptou, Pierre-Olivier

    2016-11-01

    Current rates of urbanization are creating new opportunities for studying urban plant ecology, but our knowledge of urban plant physiology lags behind that of other ecosystems. Moreover, higher temperatures, elevated CO2, and increased inorganic nitrogen deposition along with altered moisture regimes of urban as compared to rural areas creates a compelling analog for studying adaptations of plants to climate change. We grew plants under common conditions in a greenhouse to determine whether populations of Crepis sancta (Asteraceae) differed in phenological, morphological, and physiological traits. We also used a field experiment to test for natural selection on these traits in urban Montpellier, France. Urban plants flowered and senesced later than rural plants, and natural selection favored later phenology in the urban habitat. Natural selection also favored larger plants with more leaves, and increased photosynthesis and leaf nitrogen concentration. Ours is the first study to document selection on plant functional traits in an urban habitat and, as such, advances our understanding of urban plant ecology and possible adaptations to climate change.

  17. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  18. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  19. Temporal introduction patterns of invasive alien plant species to Australia

    Directory of Open Access Journals (Sweden)

    Brad Murray

    2012-05-01

    Full Text Available We examined temporal introduction patterns of 132 invasive alien plant species (IAPS to Australia since European colonisation in 1770. Introductions of IAPS were high during 1810–1820 (10 species, 1840–1880 (51 species, 38 of these between 1840 and 1860 and 1930–1940 (9 species. Conspicuously few introductions occurred during 10-year periods directly preceding each introduction peak. Peaks during early European settlement (1810–1820 and human range expansion across the continent (1840-1860 both coincided with considerable growth in Australia’s human population. We suggest that population growth during these times increased the likelihood of introduced plant species becoming invasive as a result of increased colonization and propagule pressure. Deliberate introductions of IAPS (104 species far outnumbered accidental introductions (28 species and were particularly prominent during early settlement. Cosmopolitan IAPS (25 species and those native solely to South America (53 species, Africa (27 species and Asia (19 species have been introduced deliberately and accidentally to Australia across a broad period of time. A small number of IAPS, native solely to Europe (5 species and North America (2 species, were all introduced to Australia prior to 1880. These contrasting findings for native range suggest some role for habitat matching, with similar environmental conditions in Australia potentially driving the proliferation of IAPS native to southern-hemisphere regions. Shrub, tree and vine species dominated IAPS introduced prior to 1840, with no grasses or forbs introduced during early colonisation. Since 1840, all five growth forms have been introduced deliberately and accidentally in relatively large numbers across a broad period of time. In particular, a large number of grass and forb IAPS were deliberately introduced between 1840 and 1860, most likely a direct result of the introduction of legislation promoting intensive agriculture across

  20. Selection of mercury accumulator plants for gold mine tailing contaminated soils

    Directory of Open Access Journals (Sweden)

    N Muddarisna

    2015-04-01

    Full Text Available Phytoremediation, which is more efficient with less side effects than conventional physical and chemical methods, is increasing in popularity as a remediation system. This paper provides a brief overview of developments in research and application of phytoremediation of soil contaminated with gold mine tailings containing mercury. Lindernia crustacea L., Digitaria radicosa Presl. Miq., Zingiber purpurium L, Paspalum conjugatum Berg., Cyperus kyllingia Endl., and Caladium bicolor Vent., that were selected for this study were planted in the planting media consisting of soil (70% and tailings (30% for 9 weeks. The results showed that after 9 weeks of planting, Paspalum conjugatum had growth rate, biomass production, Hg accumulation, and ratio of shoot Hg : root Hg higher than those of other plant species tested, both in the media consisted of amalgamation and cyanidation tailings. It can thus be concluded that Paspalum conjugatum is potential plant species for remediating mercury-contaminated soil.

  1. What to Eat: Evidence for Selective Autophagy in Plants

    Institute of Scientific and Technical Information of China (English)

    Brice E.Floyd; Stephanie C.Morriss; Gustavo C.Maclntosh; Diane C.Bassham

    2012-01-01

    Autophagy is a macromolecular degradation pathway by which cells recycle their contents as a developmental process,house-keeping mechanism,and response to environmental stress.In plants,autophagy involves the sequestration of cargo to be degraded,transport to the cell vacuole in a double-membrane bound autophagosome,and subsequent degradation by lytic enzymes.Autophagy has generally been considered to be a non-selective mechanism of degradation.However,studies in yeast and animals have found numerous examples of selective autophagy,with cargo including proteins,protein aggregates,and organelles.Recent work has also provided evidence for several types of selective autophagy in plants.The degradation of protein aggregates was the first selective autophagy described in plants,and,more recently,a hybrid protein of the mammalian selective autophagy adaptors p62 and NBR1,which interacts with the autophagy machinery and may function in autophagy of protein aggregates,was described in plants.Other intracellular components have been suggested to be selectively targeted by autophagy in plants,but the current evidence is limited.Here,we discuss recent findings regarding the selective targeting of cell components by autophagy in plants.

  2. Feed Plants Selection and Nesting Site of Cuscus (Phalanger sp. in Nature Reserve of Gunung Mutis, East Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    ISMAIL

    2005-01-01

    Full Text Available Research on feed plants selection and nesting site of cuscus (Phalanger sp. was conducted in Nature Reserve of Gunung Mutis, West Timor, East Nusa Tenggara. The study was done in the montane rain forest with the altitude of 1530-2010 m a.s.l. The results showed seven species of plants was selected by cuscus as their nesting site and 41 species of plants as their feed resources. Parts of the plants being consumed were young leaves, flower, and fruit. Their habitat was damaged caused by exploitation of the forest. Meanwhile, hunting pressure by local people to provide their meat supply threatens the existence of cuscuses.

  3. Methylated arsenic species in plants originate from soil microorganisms.

    Science.gov (United States)

    Lomax, Charlotte; Liu, Wen-Ju; Wu, Liyou; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; McGrath, Steve P; Meharg, Andrew A; Miller, Anthony J; Zhao, Fang-Jie

    2012-02-01

    • Inorganic arsenic (iAs) is a ubiquitous human carcinogen, and rice (Oryza sativa) is the main contributor to iAs in the diet. Methylated pentavalent As species are less toxic and are routinely found in plants; however, it is currently unknown whether plants are able to methylate As. • Rice, tomato (Solanum lycopersicum) and red clover (Trifolium pratense) were exposed to iAs, monomethylarsonic acid (MMA(V)), or dimethylarsinic acid (DMA(V)), under axenic conditions. Rice seedlings were also grown in two soils under nonsterile flooded conditions, and rice plants exposed to arsenite or DMA(V) were grown to maturity in nonsterile hydroponic culture. Arsenic speciation in samples was determined by HPLC-ICP-MS. • Methylated arsenicals were not found in the three plant species exposed to iAs under axenic conditions. Axenically grown rice was able to take up MMA(V) or DMA(V), and reduce MMA(V) to MMA(III) but not convert it to DMA(V). Methylated As was detected in the shoots of soil-grown rice, and in rice grain from nonsterile hydroponic culture. GeoChip analysis of microbial genes in a Bangladeshi paddy soil showed the presence of the microbial As methyltransferase gene arsM. • Our results suggest that plants are unable to methylate iAs, and instead take up methylated As produced by microorganisms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Cytotoxic Activity of Selected Nigerian Plants

    OpenAIRE

    Sowemimo, A; Venter, M.; Baatjies, L; Koekemoer, T

    2009-01-01

    Cancer is one of the most prominent human diseases which has stimulated scientific and commercial interest in the discovery of new anticancer agents from natural sources. The current study investigates the cytotoxic activity of ethanolic extracts of sixteen Nigerian plants used locally for the treatment of cancer using the MTT assay on the HeLa cell line. Sapium ellipticum leaves showed activity comparable to the reference compound Cisplatin and greater cytotoxic activity than Combretum panic...

  5. A review of selection-based tests of abiotic surrogates for species representation.

    Science.gov (United States)

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. © 2015 Society for Conservation Biology.

  6. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  7. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  8. Relationship between nutritional composition of plant species and infestation levels of thrips.

    Science.gov (United States)

    Brown, Alison S Scott; Simmonds, Monique S J; Blaney, Walter M

    2002-12-01

    Levels of soluble protein and carbohydrate (raffinose, sucrose, glucose, and fructose) in leaves from a selection of plant species were measured to determine if a relationship existed between these nutrients and infestation by Frankliniella occidentalis and Heliothrips haemorrhoidalis. Most species of host plant examined contained a higher proportion of protein than carbohydrates, and overall, leaves from species of plants that supported populations of thrips had greater levels of protein than leaves from nonhost species. New leaves and flowers that supported F. occidentalis contained high levels of carbohydrate and protein. The quantity of protein in leaves at the top of the tree, Peumus boldus, was greater than in leaves from lower levels, and the amount of feeding damage accrued by H. haemorrhoidalis was greater on the upper foliage than lower foliage. Oviposition by H. haenmorrhoidalis was positively correlated to levels of protein in host plants but not to levels of carbohydrates. Overall, levels of soluble protein in plants influenced their susceptibility to thrips more than levels of carbohydrates.

  9. Determination of Leaf Dust Accumulation on Certain Plant Species Grown Alongside National Highway- 22, India

    Directory of Open Access Journals (Sweden)

    Navjot Singh Kaler

    2016-04-01

    Full Text Available Vehicular traffic is one of the major contributors to accumulate dust on plants grown alongside roads. Plants intercept tons of dust, absorb noise and serve as acoustic screens on busy highways. Vegetation contributes in reducing dust concentration in environment by acting as a sink for air pollutants. Taking this into account, the present study was conducted on National highway- 22 from Parwanoo to Solan, falling in Solan district of Himachal Pradesh, India. Specifically, four plant species namely Grewia optiva Drummond ex Burret, Toona ciliata M. Roem, Melia azedarach L. and Woodfordia floribunda (L. Kurz of uniform size, age, spread and common in occurrence on both sides of the highway were selected for the study. Dust accumulation on leaves of selected plants was estimated during three main seasons (Rainy, Winter and Summer of the year. Samples were collected from two horizontal distances (0-5 m and 5-10 m from both sides of the road. Results showed that dust accumulation on the leaves ranged from 0.0083 g m-2 in T. ciliata to 0.0597 g m-2 in G. optiva and followed the descending order G. optiva > W. floribunda > M. azedarach > T. ciliata. Season wisethe examined plant species followed the descending order winter > summer > rainy season. Plants grown at a distance of 0-5 m accumulated higher dust on their leaves as compared to 5-10 m distance from the road. Due to surface characteristics of twigs, bark and foliage of the plants particulate matters are captured by them and remain there for extended time period. From the results of this study, it could be inferred that the air quality in urban/ arid areas can be improved by planting firstly the species G. optiva and W. floribunda along road sides of similar highways to national highway-22.

  10. The cobblers stick to their lasts : pollinators prefer native over alien plant species in a multi-species experiment

    OpenAIRE

    Chrobock, Thomas; Winiger, Pius; Fischer, Markus; van Kleunen, Mark

    2013-01-01

    The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whethe...

  11. Toxicity and mutagenic activity of some selected Nigerian plants.

    Science.gov (United States)

    Sowemimo, A A; Fakoya, F A; Awopetu, I; Omobuwajo, O R; Adesanya, S A

    2007-09-25

    The toxicity and mutagenic potential of most African plants implicated in the management of cancer have not been investigated. The ethanolic extracts of selected Nigerian plants were subsequently studied using the brine shrimp lethality tests, inhibition of telomerase activity and induction of chromosomal aberrations in vivo in rat lymphocytes. Morinda lucida root bark, Nymphaea lotus whole plant and Garcinia kola root were active in the three test systems. Bryophyllum calycinum whole plant, Annona senegalensis root, Hymenocardia acida stem bark, Erythrophleum suaveolens leaves and Spondiathus preussii stem bark were toxic to brine shrimps and caused chromosomal damage in rat lymphocytes. Ficus exasperata leaves, Chrysophyllum albidum root bark and Hibiscus sabdariffa leaves were non-toxic to all the three test systems. Chenopodium ambrosioides whole plant was non-toxic to brine shrimps and rat lymphocyte chromosomes but showed inhibition in the conventional telomerase assay indicating a possible selectivity for human chromosomes. The result justified the use of the first eight plants and Chenopodium ambrosioides in the management of cancer in south west Nigeria although they appear to be non-selective and their mode of action may be different from plant to plant. All these plants except Chenopodium ambrosioides are also mutagenic and cytotoxic.

  12. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta; Zak, Marcelo R; Bartoloni, Norberto

    2009-01-01

    In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions.

  13. Selection methodology with scoring system: application to Mexican plants producing podophyllotoxin related lignans.

    Science.gov (United States)

    Lautié, E; Quintero, R; Fliniaux, M-A; Villarreal, M-L

    2008-12-08

    As most anticancer drugs are derived from natural sources, the screening of local medicinal flora should be considered a primary step in the search for new sources for antineoplastic agents. In Mexico, more than 6000 medicinal plant species are used for the treatment of various diseases, including cancer. A multifactorial plant selection method, employing various criteria was designed and applied in order to select alternative sources of podophyllotoxin lignan analogues. For each criterion (chemotaxonomy, traditional medical uses and published scientific data), an arbitrary score system was ascribed to the species and the sum of these enabled us to compare potential candidates. The resulting selected plants were tested for cytotoxic activity and the compounds responsible for this activity were evaluated by liquid chromatography-mass spectroscopy (LC-MS). Around 50 species from the Mexican flora were initially considered. From these, six species were selected by referring to the results from the scoring system and these were then collected. Three extracts were evaluated as being highly cytotoxic against three different cancer cell lines. Finally, podophyllotoxin-like lignans could be identified by observing the fragmentation pattern on mass spectra, obtained from the LC-MS in two species: Linum scabrellum and Hyptis suaveolens.

  14. Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?

    Science.gov (United States)

    Bell, Colin; Carrillo, Yolima; Boot, Claudia M; Rocca, Jennifer D; Pendall, Elise; Wallenstein, Matthew D

    2014-01-01

    As a consequence of the tight linkages among soils, plants and microbes inhabiting the rhizosphere, we hypothesized that soil nutrient and microbial stoichiometry would differ among plant species and be correlated within plant rhizospheres. We assessed plant tissue carbon (C) : nitrogen (N) : phosphorus (P) ratios for eight species representing four different plant functional groups in a semiarid grassland during near-peak biomass. Using intact plant species-specific rhizospheres, we examined soil C : N : P, microbial biomass C : N, and soil enzyme C : N : P nutrient acquisition activities. We found that few of the plant species' rhizospheres demonstrated distinct stoichiometric properties from other plant species and unvegetated soil. Plant tissue nutrient ratios and components of below-ground rhizosphere stoichiometry predominantly differed between the C4 plant species Buchloe dactyloides and the legume Astragalus laxmannii. The rhizospheres under the C4 grass B. dactyloides exhibited relatively higher microbial C and lower soil N, indicative of distinct soil organic matter (SOM) decomposition and nutrient mineralization activities. Assessing the ecological stoichiometry among plant species' rhizospheres is a high-resolution tool useful for linking plant community composition to below-ground soil microbial and nutrient characteristics. By identifying how rhizospheres differ among plant species, we can better assess how plant-microbial interactions associated with ecosystem-level processes may be influenced by plant community shifts.

  15. Antioxidant Activities and Polyphenolic Contents of Three Selected Micromeria Species from Croatia

    Directory of Open Access Journals (Sweden)

    Maja Bival Štefan

    2011-02-01

    Full Text Available Antioxidant activities of three selected Micromeria species growing in Croatia (M. croatica, M. juliana and M. thymifolia were evaluated using five different antioxidant assays, in comparison with plant polyphenolic constituents and reference antioxidants. All studied ethanolic extracts exhibited considerable activity to scavenge DPPH and hydroxyl free radicals, reducing power, iron chelating ability and total antioxidant capacity in the order: M. croatica > M. juliana > M. thymifolia. Total polyphenol (9.69–13.66%, phenolic acid (5.26–6.84%, flavonoid (0.01–0.09% and tannin (3.07–6.48% contents in dried plant samples were determined spectrophotometrically. A strong positive correlation between antioxidant activities and contents of phenolic acids and tannins was found, indicating their responsibility for effectiveness of tested plants. Our findings established Micromeria species as a rich source of antioxidant polyphenols, especially the endemic M. croatica.

  16. Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive solanum plants.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling-through this, DNA barcoding will greatly benefit the current fields of its application.

  17. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Feiz Haddad

    2017-04-01

    Full Text Available Objective(s: In an attempt to discover new natural active extracts against malaria parasites, the present study evaluated the antiplasmodial properties of selected plants based on Iranian traditional medicine. Materials and Methods: Ten plant species found in Iran were selected and collected based on the available literature about the Iranian traditional medicine. The methanolic extracts of these plants were investigated for in vitro antimalarial properties against chloroquine-sensitive (3D7 and multi-drug resistant (K1 strains of Plasmodium falciparum. Their in vivo activity against Plasmodium berghei infection in mice was also determined. Cytotoxicity tests were carried out using the Raji cells line using the MTT assay. The extracts were phytochemically screened for their active constituents. Results: According to the IC50 and selectivity index (SI values, of the 10 selected plant species, Citrullus colocynthis, Physalis alkekengi, and Solanum nigrum displayed potent in vitro antimalarial activity against both 3D7 and K1 strains with no toxicity (IC50= 2.01-18.67 µg/ml and SI=3.55 to 19.25.  Comparisons between treated and untreated control mice showed that the mentioned plant species reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively.  The existence of antiplasmodial compounds was detected in these plant extracts. Conclusion: This was the first study to highlight the in vitro and in vivo antiplasmodial effects of             C. colocynthis, P. alkekengi, and S. nigrum in Iran. Future studies can use these findings to design further biological tests to identify the active constituents of the mentioned plant species and clarify their mechanism of action.

  18. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine.

    Science.gov (United States)

    Haddad, Mohammad Hossein Feiz; Mahbodfar, Hamidreza; Zamani, Zahra; Ramazani, Ali

    2017-04-01

    In an attempt to discover new natural active extracts against malaria parasites, the present study evaluated the antiplasmodial properties of selected plants based on Iranian traditional medicine. Ten plant species found in Iran were selected and collected based on the available literature about the Iranian traditional medicine. The methanolic extracts of these plants were investigated for in vitro antimalarial properties against chloroquine-sensitive (3D7) and multi-drug resistant (K1) strains of Plasmodium falciparum. Their in vivo activity against Plasmodium berghei infection in mice was also determined. Cytotoxicity tests were carried out using the Raji cells line using the MTT assay. The extracts were phytochemically screened for their active constituents. According to the IC50 and selectivity index (SI) values, of the 10 selected plant species, Citrullus colocynthis, Physalis alkekengi, and Solanum nigrum displayed potent in vitro antimalarial activity against both 3D7 and K1 strains with no toxicity (IC50= 2.01-18.67 µg/ml and SI=3.55 to 19.25). Comparisons between treated and untreated control mice showed that the mentioned plant species reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively. The existence of antiplasmodial compounds was detected in these plant extracts. This was the first study to highlight the in vitro and in vivo antiplasmodial effects of C. colocynthis, P. alkekengi, and S. nigrum in Iran. Future studies can use these findings to design further biological tests to identify the active constituents of the mentioned plant species and clarify their mechanism of action.

  19. Hybrid Viability and Fertility in Co-occuring Plant Species

    Science.gov (United States)

    Hernandez, E.; Garcia, C.; Yost, J.

    2012-12-01

    Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.

  20. Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance.

    Science.gov (United States)

    Gianoli, Ernesto; Saldaña, Alfredo

    2013-09-01

    Several studies across species have linked leaf functional traits with shade tolerance. Because evolution by natural selection occurs within populations, in order to explain those interspecific patterns it is crucial to examine variation of traits associated with shade tolerance and plant fitness at an intraspecific scale. In a southern temperate rainforest, two climbing plant species coexist but differ in shade tolerance. Whereas Luzuriaga radicans is most abundant in the shaded understory, L. polyphylla typically occurs in intermediate light environments. We carried out an intraspecific approach to test the hypothesis of differential selection patterns in relation to shade tolerance in these congeneric species. The probability of showing reproductive structures increased with specific leaf area (SLA) in L. polyphylla, and decreased with dark respiration in L. radicans. When reproductive output of fertile individuals was the fitness variable, we detected positive directional selection on SLA in L. polyphylla, and negative directional selection on dark respiration and positive directional selection on leaf size in L. radicans. Total light radiation differed between the microsites where the Luzuriaga species were sampled in the old-growth forest understory. Accordingly, L. radicans had a lower minimum light requirement and showed fertile individuals in darker microsites. L. radicans showed lower dark respiration, higher chlorophyll content, and greater leaf size and SLA than L. polyphylla. Results suggest that in more shade-tolerant species, established in the darker microsites, selection would favor functional traits minimizing carbon losses, while in less shade-tolerant species, plants displaying leaf traits enhancing light capture would be selected.

  1. Selected Secondary Plant Metabolites for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2015-01-01

    Full Text Available Secondary plant metabolites reveal numerous biological activities making them attractive as resource for drug development of human diseases. As the majority of cancer drugs clinically established during the past half century is derived from nature, cancer researchers worldwide try to identify novel natural products as lead compounds for cancer therapy. Natural products are considered as promising cancer therapeutics, either as single agents or in combination protocols, to enhance the antitumor activity of additional therapeutic modalities. Most natural compounds exert pleotrophic effects and modulate various signal transduction pathways. A better understanding of the complex mechanisms of action of natural products is expected to open new perspectives in coming years for their use alone or in combination therapies in oncology. Two major strategies to identify novel drug candidates from nature are the bioactivity-guided fractionation of medicinal plant extracts to isolate cytotoxic chemicals and the identification of small molecules inhibiting specific targets in cancer cells. In the present review, we report on our own efforts to unravel the molecular modes of action of phytochemicals in cancer cells and focus on resveratrol, betulinic acid, artesunate, dicentrine and camptothecin derivatives.

  2. Microbiome selection could spur next-generation plant breeding strategies

    Directory of Open Access Journals (Sweden)

    Murali Gopal

    2016-12-01

    Full Text Available Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbours in different plant tissues i.e the ‘plant microbiome’, form the holobiome which is now considered as unit of selection: ‘the holobiont’. The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding.

  3. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  4. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to preven

  5. Substrate use and selection in sympatric intertidal hermit crab species

    Directory of Open Access Journals (Sweden)

    A. TURRA

    Full Text Available Coexisting hermit crabs may competitively interact for shells and microhabitats, mainly when shell availability is habitat-related. Three species of Clibanarius (C. antillensis, C. sclopetarius, and C. vittatus coexist in the intertidal region of Pernambuco Islet, Araçá Region, São Sebastião Channel, southeastern Brazil. This study evaluated crab preferences for four substrate types used by these species in nature (rocky shore, pebbles, sand, and mud in allopatric (single species and sympatric (three species treatments in simulations of high tide and low tide. The substrate preference of the three hermit crabs did not vary between low and high tide situations. At low tide the crabs either moved into holes in the highly complex rocky substrate or buried themselves in mud. Substrate selection may explain the patterns of substrate use in nature only for C. vittatus. Clibanarius antillensis and C. sclopetarius showed closer similarities in the pattern of substrate selection in the sympatric treatment with the substrate use in nature than in allopatric treatment, indicating a positive influence (dependence of the presence of one species on the presence of another. Use of sub-optimal substrates, mainly by C. antillensis, may be caused by other factors such as its low desiccation tolerances. If competition for space takes place among these species, it would be more intense between C. sclopetarius and C. vittatus given their higher overlap in substrate preference than between them and C. antillensis.

  6. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l).

  7. Gymnosporangium Species – An Important Issue of Plant Protection

    Directory of Open Access Journals (Sweden)

    Lāce Baiba

    2017-06-01

    Full Text Available Rusts (Fungi, Basidiomycota, Pucciniomycotina, Pucciniomycetes, Pucciniales are one of the most important causal agents of diseases and they are infecting many plants including cereals and field crops, vegetables, trees and many ornamentals. They have been studied for a long time and have economic importance among the plant diseases caused by agents of different species of fungi. In Europe, thirteen rust genera have been reported, of which the genus Gymnosporangium is the second largest after genus Phragmidium. The most significant fruit tree rust pathogen is the genus Gymnosporangium. The literature review shows quite limited scientific information about this genus and its species. Studies have mainly focused on some stages of the pathogen development cycle, which are significant for the spread of diseases - uredo and teleito stages. Special attention of the review was paid to European pear rust (caused by G. sabinae (Dicks. G. Winter, the distribution of which has increased during the last ten years, especially in organic pear orchards. Currently there is a limited number of scientific publications about European pear rust, and they are mainly based only on observations in vitro without trials in the field, despite the fact that it has become one of the most devastating diseases. Therefore, the presented review analyses the rust exploration history, diversity and distribution of species, life cycle, development biology and plant protection issues.

  8. Floristic characteristics of alien invasive seed plant species in China

    Directory of Open Access Journals (Sweden)

    CONGYAN WANG

    Full Text Available ABSTRACT This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  9. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  10. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...... monocultures and all possible species combinations. Response variables included aboveground and belowground biomass, shoot density, space occupation and porewater nutrients. To determine whether selection and/or complementarity controlled productivity, additive partitioning and Di were calculated. Richness...... effects were species-specific and only increased the biomass production of P. perfoliatus and tuber production of P. filiformis, while species composition generally had a stronger effect on biomass production. Additive partitioning indicated a positive complementarity effect for the aboveground biomass...

  11. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer (Odocoileus virginianus) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km(2), and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m(2) quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs (Eurybia divaricata, Maianthemum racemosum, Polygonatum pubescens and Trillium recurvatum) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  12. Psychoactive plant species – actual list of plants prohibited in Poland

    Directory of Open Access Journals (Sweden)

    Simonienko, Katarzyna

    2013-06-01

    Full Text Available According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520. the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where – among primeval cultures – are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  13. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  14. UNMANNED AERIAL VEHICLES FOR ALIEN PLANT SPECIES DETECTION AND MONITORING

    Directory of Open Access Journals (Sweden)

    P. Dvořák

    2015-08-01

    Full Text Available Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms by using purposely designed unmanned aircraft (UAV. We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid. Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded. The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  15. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Li Mo

    Full Text Available Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer, also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health.

  16. Plant inter-species effects on rhizosphere priming effect and nitrogen acquisition by plants

    Science.gov (United States)

    Sun, Yue; Xu, Xingliang; Yang, Baijie; Kuzyakov, Yakov

    2015-04-01

    Rhizosphere interactions play a central role linking roots-soil system and regulate various aspects of nutrient cycling. Rhizodeposition inputs are known to change soil organic matter (SOM) decomposition via rhizosphere priming effects (RPEs) through enhancing soil biological activity and altering microbial community structure. The magnitude of RPEs varies widely among plant-species and root biomass possibly due to different quality and quantity of rhizodeposits. However, it is virtually unknown whether the RPEs are influenced by plant inter-species interactions and how these processes affect N mineralization and available N for plants. Monocultures of maize (M) and soybean (S), and mixed cultures of maize/maize (MM), soybean/soybean (SS), maize/soybean (MS) were grown over a 45-day greenhouse experiment. We labeled them with plant litter that was enriched in13C and 15N. The 15N distributions in plants and microbial biomass were measured at 14, 35, and 45days after labeling. The RPEs were positive under all plants, ranging from 11.7% to 138.3% and gradually decreased with plant growth. The RPE in the SS was significantly higher than these in others treatments at 14 days, while at 45 days it was higher in the MS than these from their monocultures, suggesting that the RPE was enhanced by the inter-species effects of maize and soybean. The litter decomposition ratio and 15N recovery of plants and microorganism increased with the root growth across all plants. The 15N recovery of plants in the MS (14.2%) was higher than these in the MM (12.3%) and SS(9.7%) at 45 days. Similarly, the 15N recovery of microorganism in the corresponding treatments was 6.7%, 2.2%, and 6.8%, respectively. The MS showed higher soil organic N mineralization amount than that from all soybean and maize monocultures at 45 days. We conclude that plant inter-species interactions may have significant effect on rhizosphere priming and modify the plant N uptake from litter resource and SOM.

  17. Selective Foraging by Pogonomyrmex salinus (Hymenoptera: Formicidae) in Semiarid Grassland: Implications for a Rare Plant.

    Science.gov (United States)

    Schmasow, Matthew S; Robertson, Ian C

    2016-08-01

    Selective foraging by granivores can have important consequences for the structure and composition of plant communities, and potentially severe consequences for rare plant species. To understand how granivore foraging behavior affects common and rare plant species, diet selection should be viewed relative to the availability of alternative seed options, and with consideration of the individual attributes of those seeds (e.g., morphology, nutrient content). We examined the foraging decisions of Owyhee harvester ants, Pogonomyrmex salinus (Olsen), in semiarid grassland dominated by two species of grass, Poa secunda and Bromus tectorum, and two species of mustard, Sisymbrium altissimum and Lepidium papilliferum The latter is a rare plant endemic to southwestern Idaho, and its seeds are readily consumed by P. salinus We examined the diets of P. salinus colonies in June and July over three years and compared these values to the weekly availability of seeds on the ground in a 3-12 -m radius around individual ant colonies. Small-seeded species (P. secunda, S. altissimum, and L. papilliferum) were usually overrepresented in the diet of ants relative to their availability, whereas the large seeds of B. tectorum were largely avoided despite being abundant and nutritious. The reduced travel time associated with carrying small seeds may overshadow differences in nutritional content among seed types, except in times when small seeds are in short supply. Lepidium papilliferum appears particularly vulnerable to seed predation, likely in part because it grows in dense patches that are easily exploited by foragers.

  18. Imaging techniques for elements and element species in plant science.

    Science.gov (United States)

    Wu, Bei; Becker, J Sabine

    2012-05-01

    Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.

  19. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  20. Exploring the relationship between species discrimination and plant functional types with hyperspectral remote sensing

    Science.gov (United States)

    Roth, K. L.; Roberts, D. A.; Dennison, P. E.; Alonzo, M.

    2012-12-01

    to discrimination across all functions. Although CDA is useful for reducing data dimensionality, a drawback is the derived canonical variables are not easily interpretable. Thus, we employed a stepwise feature selection to determine optimal wavelength and index/feature subsets. We related the selected wavelengths and indices/features to known physical mechanisms between plant function and optical reflectance (e.g., red wavelengths and chlorophyll). Though CDA and feature selection explain the majority of variation across all species, they may overlook subtle differences among pairs of similar species. Hierarchical cluster analysis was used to explore these subtle differences and examine potential optical functional types. We ran several analyses based on the CDA and feature selection outputs, setting species as initial clusters. The resulting dendrograms illustrate patterns of functional similarity and contrast among species within and across ecosystems. Our results support planning for future hyperspectral missions (e.g., HyspIRI & EnMAP) which seek to map vegetation patterns and processes on continental to global scales. Future work will examine the impact of spatial scale and seasonality on species discrimination and functional type analysis.

  1. Determining habitat quality for species that demonstrate dynamic habitat selection

    Science.gov (United States)

    Beerens, James; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  2. Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species

    Indian Academy of Sciences (India)

    Valentino Ruggieri; Angelina Nunziata; Amalia Barone

    2014-12-01

    In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variablity in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of non-synonymous to synonymous substitution rates $(K_{a}/K_{s})$ highlighted 14 and six amino acids with $K_{a}/K_{s} \\gt 1$ in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition. The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues.

  3. Phytotoxicity of hexachlorocyclohexane: Effect on germination and early growth of different plant species.

    Science.gov (United States)

    Calvelo Pereira, R; Monterroso, C; Macías, F

    2010-04-01

    The aim of the present study was to select candidate plant species for phytoremediation of soils contaminated with hexachlorocyclohexane (HCH). For this purpose, an experiment was carried out under controlled conditions of germination and growth, with nine plant species of economic and/or agricultural interest, in a soil contaminated with a heterogeneous mixture (at eight different levels of contamination) of the main HCH isomers (alpha-, beta-, gamma- and delta-HCH). The results revealed differences in the plant responses to the control soil and the soils containing HCH. Germination was not as strongly affected as other parameters such as the rate of germination and seedling vigour. In general, all of the species displayed signs of stress in response to the presence of HCH, although to different degrees. Some of the species used in the experiment (Hordeum vulgare L., Brassica sp., Phaseoulus vulgaris L.) were capable of mitigating the negative effects of HCH, and displayed a certain degree of resistance, as their biomass production was not greatly affected by the contaminant. These (tolerant) plants therefore appear to be ideal for phytoremediation purposes.

  4. Alkaloid concentration of the invasive plant species Ulex europaeus in relation to geographic origin and herbivory

    Science.gov (United States)

    Hornoy, Benjamin; Atlan, Anne; Tarayre, Michèle; Dugravot, Sébastien; Wink, Michael

    2012-11-01

    In the study of plant defense evolution, invasive plant species can be very insightful because they are often introduced without their enemies, and traits linked to defense can be released from selective pressures and evolve. Further, studying plant defense evolution in invasive species is important for biological control and use of these species. In this study, we investigated the evolution of the defensive chemicals quinolizidine alkaloids (QAs) in the invasive species gorse, Ulex europaeus. Using a common garden experiment, our goals were to characterize the role of QAs relative to specialist enemies of gorse and to investigate if QA concentration evolved in invaded regions, where gorse was introduced without these enemies. Our results showed that pod infestation rate by the seed predator Exapion ulicis and infestation by the rust pathogen Uromyces genistae-tinctoriae were negatively correlated to concentration of the QA lupanine. Quinolizidine alkaloid concentration was very variable between individuals, both within and among populations, but it was not different between native and invaded regions, suggesting that no evolution of decreased resistance occurred after gorse lost its enemies. Our study also suggests that QA concentrations are traits integrated into seed predation avoidance strategies of gorse, with plants that mass-fruit in spring but do not escape pod infestation in time being richer in QAs.

  5. [Selection of Suitable Microalgal Species for Sorption of Uranium in Radioactive Wastewater Treatment].

    Science.gov (United States)

    Li, Xin; Hu, Hong-ying; Yu, Jun-yi; Zhao, Wen-yu

    2016-05-15

    The amount of radioactive wastewater discharge was increasing year by year, with the quick development of nuclear industry. Therefore, the proper treatment and disposal of radioactive wastewater are essentially important for environmental safety and human health. Microalgal biosorption of nuclide has drawn much attention in the area of radioactive wastewater treatment recently, and the selection of a proper microalgal species for uranium biosorption is the basis for the research and application of this technology. The selection principle was set up from the view of practical application, and 11 species of microalgae were prepared for the selection work. Scenedesmus sp. LX1 has the highest biosorption capacity of 40.7 mg · g⁻¹ for uranium; and its biomass production in mBG11 medium (simulating the nitrogen and phosphorus limits in the first-class A discharge standard of pollutants for municipal wastewater treatment plant) was 0.32 g · L⁻¹, which was relatively high among the 11 microalgal species; when grown into stable phase it also showed a good precipitation capability with the precipitation ratio of 45.3%. Above all, in our selection range of the 11 microalgal species, Scenedesmus sp. LX1 could be considered as the suitable species for uranium biosorption in radioactive wastewater treatment.

  6. Heavy Metals Accumulation of Some Plant Species Grown on Mining Area at Mahad AD`Dahab, Saudi Arabia

    Science.gov (United States)

    Al-Farraj, A. S.; Al-Wabel, M. I.

    Samples from different plants species, which grown around Mahad AD`Dahab Mine, have been selected to study their ability to accumulate these heavy metals. These plant species were: Pergularia tomentosa, Calotropis procera, Acacia tortilis, Ochradenus baccatus, Salsola sp., Rhiza strica, Convolvalus sp., Euculeptus sp., Family graminaea and Prosopis juliflora. Moreover, some of soil samples under each plant were collected. Plants and soils samples were analyzed for their contents of As, Cd, Cu, Pb and Zn. Two way ANOVA analysis without interaction was performed to examine the effect of plant species and heavy metals concentration in soil on their accumulation by plants. Although significant differences were not found at 0.01 levels among the plant species, it was found that Pergularia tomentosa was the highest to accumulate heavy metals. Considering the mean of accumulating heavy metals, plant species accumulated heavy metals by this order: Pergularia tomentosa, Euculeptus sp. Convolvalus sp. Family graminaea, Rhiza strica, Acacia tortilis, Prosopis juliflora, Salsola sp. Calotropis procera, Ochradenus baccatus. According to the mean of BAF's, heavy metals concentration of Cd was found to be significantly different than Cu, Pb and Zn. From above, these plants should be described as not-excluder and can be explored further for phytoremediation of metal polluted soils. On other hand, the practice of providing foliage and pods as fodder for live stock should be avoided in Mahad AD`Dahab area.

  7. Plant Species Discrimination in a Tropical Wetland Using In Situ Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Kurt Prospere

    2014-09-01

    Full Text Available We investigated the use of full-range (400–2,500 nm hyperspectral data obtained by sampling foliar reflectances to discriminate 46 plant species in a tropical wetland in Jamaica. A total of 47 spectral variables, including derivative spectra, spectral vegetation indices, spectral position variables, normalized spectra and spectral absorption features, were used for classifying the 46 species. The Mann–Whitney U-test, paired one-way ANOVA, principal component analysis (PCA, random forest (RF and a wrapper approach with a support vector machine were used as feature selection methods. Linear discriminant analysis (LDA, an artificial neural network (ANN and a generalized linear model fitted with elastic net penalties (GLMnet were then used for species separation. For comparison, the RF classifier (denoted as RFa was also used to separate the species by using all reflectance spectra and spectral indices, respectively, without applying any feature selection. The RFa classifier was able to achieve 91.8% and 84.8% accuracy with importance-ranked spectral indices and reflectance spectra, respectively. The GLMnet classifier produced the lowest overall accuracies for feature-selected reflectance spectra data (52–77% when compared with the LDA and ANN methods. However, when feature-selected spectral indices were used, the GLMnet produced overall accuracies ranging from 79 to 88%, which were the highest among the three classifiers that used feature-selected data. A total of 12 species recorded a 100% producer accuracy, but with spectral indices, and an additional 8 species had perfect producer accuracies, regardless of the input features. The results of this study suggest that the GLMnet classifier can be used, particularly on feature-selected spectral indices, to discern vegetation in wetlands. However, it might be more efficient to use RFa without feature-selected variables, especially for spectral indices.

  8. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  9. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Science.gov (United States)

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies

  10. An energetic analysis of host plant selection by the large milkweed bug, Oncopeltus fasciatus.

    Science.gov (United States)

    Chaplin, Stephen J

    1980-01-01

    The large milkweed bug, Oncopeltus fasciatus, is a specialized seed feeder that has been observed completing nymphal development in the field on only a small proportion of its potential host species within the genus Asclepias. In central Missouri only two of the six milkweed species studied, A. syriaca and A. verticillata, commonly supported nymphal O. fasciatus growth in the field. The seed of all six species, however, was equally suitable food for bugs reared in the laboratory. In laboratory preference tests, adult bugs chose to feed on the largest seeds, A. hirtella, but such a preference could not explain the observed field feeding patterns.One explanation to account for the observed host plant selection is based upon an energetic analysis. Only A. syriaca provided enough seed biomass for a clutch of O. fasciatus nymphs to develop on a single plant, and only A. verticillata grew in high enough density that a clutch could find sufficient food within the limited range of nymphal movement. These results illustrate a corollary of the resource concentration hypothesis: within a plant group whose members share similar secondary plant chemistries, the only species that will be viable hosts for a specialized herbivore are those that provide the minimal resource density necessary for the completion of nymphal development.In central Missouri, O. fasciatus has specialized on a critical resource density, not traits of individual Asclepias species. The appearance of host selection within the potential host plant spectrum is the result of a characteristic growth form, seed output, and dispersion pattern for each milkweed species that makes some species much more likely than others to produce sufficient seed resources.

  11. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... August 12, 2013 Part II Department of Commerce National Oceanic and Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife and... Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife...

  12. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  13. Identification of invasive and expansive plant species based on airborne hyperspectral and ALS data

    Science.gov (United States)

    Szporak-Wasilewska, Sylwia; Kuc, Gabriela; Jóźwiak, Jacek; Demarchi, Luca; Chormański, Jarosław; Marcinkowska-Ochtyra, Adriana; Ochtyra, Adrian; Jarocińska, Anna; Sabat, Anita; Zagajewski, Bogdan; Tokarska-Guzik, Barbara; Bzdęga, Katarzyna; Pasierbiński, Andrzej; Fojcik, Barbara; Jędrzejczyk-Korycińska, Monika; Kopeć, Dominik; Wylazłowska, Justyna; Woziwoda, Beata; Michalska-Hejduk, Dorota; Halladin-Dąbrowska, Anna

    2017-04-01

    The aim of Natura 2000 network is to ensure the long term survival of most valuable and threatened species and habitats in Europe. The encroachment of invasive alien and expansive native plant species is among the most essential threat that can cause significant damage to protected habitats and their biodiversity. The phenomenon requires comprehensive and efficient repeatable solutions that can be applied to various areas in order to assess the impact on habitats. The aim of this study is to investigate of the issue of invasive and expansive plant species as they affect protected areas at a larger scale of Natura 2000 network in Poland. In order to determine the scale of the problem we have been developing methods of identification of invasive and expansive species and then detecting their occurrence and mapping their distribution in selected protected areas within Natura 2000 network using airborne hyperspectral and airborne laser scanning data. The aerial platform used consists of hyperspectral HySpex scanner (451 bands in VNIR and SWIR), Airborne Laser Scanner (FWF) Riegl Lite Mapper and RGB camera. It allowed to obtain simultaneous 1 meter resolution hyperspectral image, 0.1 m resolution orthophotomaps and point cloud data acquired with 7 points/m2. Airborne images were acquired three times per year during growing season to account for plant seasonal change (in May/June, July/August and September/October 2016). The hyperspectral images were radiometrically, geometrically and atmospherically corrected. Atmospheric correction was performed and validated using ASD FieldSpec 4 measurements. ALS point cloud data were used to generate several different topographic, vegetation and intensity products with 1 m spatial resolution. Acquired data (both hyperspectral and ALS) were used to test different classification methods including Mixture Tuned Matched Filtering (MTMF), Spectral Angle Mapper (SAM), Random Forest (RF), Support Vector Machines (SVM), among others

  14. Preferential nectar robbing of flowers with long corollas: experimental studies of two hummingbird species visiting three plant species.

    Science.gov (United States)

    Lara, Carlos; Ornelas, Juan

    2001-07-01

    Long flower tubes have been traditionally viewed as the result of coevolution between plants and specialized, legitimate, long billed-pollinators. However, nectar robbers may have played a role in selection acting on corolla length. This study evaluated whether hummingbirds are more likely to rob flowers with longer corollas from which they cannot efficiently extract nectar with legitimate visits. We compared two hummingbird species with similar bill lengths (Lampornis amethystinus and Colibri thalassinus) visiting floral arrays of artificial flowers with exaggerated corolla lengths, and also evaluated how the birds extract nectar rewards from medium to long corollas of three hummingbird-pollinated plants (Salvia mexicana, S. iodantha and Ipomoea hederifolia). The consequences of foraging for plant fitness were evaluated in terms of seed production per flower. Variation in seed production after legitimate visits of hummingbird-pollinated plants was mostly explained by differences in pollinator effectiveness. Seed production did not increase with the number of legitimate visits to a flower, except in I. hederifolia. We found that birds were more likely to rob both artificial and natural flowers with long corolla tubes. Nectar robbing was not observed on short-corolla flowers of Salvia spp., but robbing negatively affected seed production of long-tubed flowers of I. hederifolia. Significant differences between hummingbird species in the use of this behavior were observed, but males and females behaved alike. We suggest that short-billed hummingbirds with enlarged bill serrations (the edge of both tomia finely toothed) may have an advantage in illegitimately feeding at long-corolla flowers. This raises the possibility of counter-selection on increasing corolla length by nectar robbers.

  15. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes.

    Science.gov (United States)

    Domínguez, A; Fagoaga, C; Navarro, L; Moreno, P; Peña, L

    2002-06-01

    Insertion of foreign DNA into plant genomes frequently results in the recovery of transgenic plants with silenced transgenes. To investigate to what extent regeneration under selective conditions limits the recovery of transgenic plants showing gene silencing in woody species, Mexican lime [ Citrus aurantifolia (Christm.) Swing.] plants were transformed with the p25 coat protein gene of Citrus tristeza virus (CTV) with or without selection for nptII and uidA. Strikingly, more than 30% of the transgenic limes regenerated under non-selective conditions had silenced transgenes, and in all cases silencing affected all the three transgenes incorporated. These results indicate that the frequency of transgene silencing may be greatly underestimated when the rate of silencing is estimated from the number of regenerants obtained under selective conditions. To our knowledge, this is the first report in which the frequency of gene silencing after transformation has been quantified. When the integration pattern of T-DNA was analyzed in silenced and non-silenced lines, it was observed that inverted repeats as well as direct repeats and even single integrations were able to trigger gene silencing. Gene silencing has often been associated with the insertion of DNA sequences as inverted repeats. Interestingly, here, direct repeats and single-copy insertions were found in both silenced and non-silenced lines, suggesting that the presence of inverted-repeat T-DNAs and the subsequent formation of dsRNAs triggering gene silencing cannot account for all silencing events.

  16. Tissue specific metal characterization of selected fish species in Pakistan.

    Science.gov (United States)

    Ahmed, Mukhtiar; Ahmad, Taufiq; Liaquat, Muhammad; Abbasi, Kashif Sarfraz; Farid, Ibrahim Bayoumi Abdel; Jahangir, Muhammad

    2016-04-01

    Concentration of various metals, i.e., zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and silver (Ag), was evaluated in five indigenous fish species (namely, silver carp, common carp, mahseer, thela fish, and rainbow trout), by using atomic absorption spectrophotometer. It is proved from this study that, overall, mahseer and rainbow trout had high amount of zinc, whereas thela fish and silver carp had high concentration of copper, chromium, silver, nickel, and lead, while common carp had highest amount of iron contents. Furthermore, a tissue-specific discrimination among various fish species was observed, where higher metal concentrations were noticed in fish liver, with decreasing concentration in other organs like skin, gills, and finally the least contents in fish muscle. Multivariate data analysis showed not only a variation in heavy metals among the tissues but also discrimination among the selected fish species.

  17. Short communication: occurrence of Arcobacter species in industrial dairy plants.

    Science.gov (United States)

    Serraino, A; Giacometti, F

    2014-01-01

    The present study investigated the presence of Arcobacter spp. in industrial dairy plants. Between February and September 2013, pasteurized milk used for cheesemaking, processing and cleaning water, cheese, and environmental samples from different plant sites, including surfaces in contact or not in contact with food, were sampled. A total of 126 samples were analyzed by the cultural method and isolates were identified by multiplex PCR. Arcobacter spp. were isolated from 22 of 75 environmental samples (29.3%): of them, 22.7% were surfaces in contact with food and 38.7% surfaces not in contact with food. A total of 135 Arcobacter spp. isolates were obtained; of these, 129 and 6 were identified as Arcobacter butzleri and Arcobacter cryaerophilus, respectively. All food processing water and pasteurized milk samples were negative for Arcobacter species. We were not able to determine the primary source of contamination, but the isolation of both A. butzleri and A. cryaerophilus in surfaces in contact with food before and during manufacturing suggests that Arcobacter spp. are not or are only partially affected by routine sanitizing procedures in the industrial dairy plants studied. The efficacy of sanitizing procedures should be evaluated and further studies are needed to determine whether certain Arcobacter strains persist for long periods of time in industrial dairy plants and whether they can survive in different types of cheese in cases of postprocessing contamination.

  18. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  19. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  20. Plant-driven selection of microbes in the rhizosphere and plant-microbe feedbacks

    Directory of Open Access Journals (Sweden)

    Adil ESSARIOUI

    2017-09-01

    Full Text Available Plant impacts on soil microbial communities and plant-microbe feedbacks have become the focus of much research. Recent advances in plant-microbe interactions investigations show that plants are able to shape their rhizosphere microbiome through diverse mechanisms. In this review, we gather findings from across multiple studies on the role of plants in altering the structure and functions of microbes in the rhizosphere. In addition, we discuss the roles of diverse phytochemicals in mediating these effects. Finally, we highlight that selective enrichment of specific microorganisms in the rhizosphere has either negative feedbacks, with pathogen accumulation in the rhizosphere; or, perhaps most importantly, positive feedbacks as a result of the recruitment of a beneficial microflora. Insights into the mechanisms that underpin plant selection of microbial communities with positive feedbacks will provide new opportunities to increase crop production.

  1. In vitro antioxidant potential of selected aphrodisiac medicinal plants.

    Science.gov (United States)

    Riaz, M; Shahid, M; Jamil, A; Saqib, M

    2017-01-01

    The present study aimed to evaluate the antioxidant activity of six selected aphrodisiac medicinal plants. Useful parts of the selected medicinal plants were collected and extracted in methanolic solvent. The antioxidant activity of selected plant extract was determined through different antioxidant assays, namely DPPH radical scavenging assay and ferric reducing antioxidant assay. Moreover, antioxidant compounds, like total phenolics and total flavonoids contents, were also determined. Results showed that Mucuna pruriens seed extract displayed high contents of phenolic compounds with total phenolic content of 683.15±4.28 mg GAE/g dry plant material while the least phenolic content was observed in Asparagus racemosus (195.5±3.02 mg GAE/g dry plant material). Highest total flavonoids content was found in Anacyclus pyrethrum roots (156.58±4.01 μg CE/g) and the least content was found in Asparagus racemosus roots. Among the studied plant extracts, the highest radical scavenging activity was shown by Mucuna pruriens seed extract (82.05±0.55%) and the least percent scavenging activity was observed in Tribulus terrestris extract (36.40±2.01%). Vitamin C was used as positive control for antioxidant assays showing 93.54±0.9% radical scavenging activity. The plant extract also exhibited a strong reducing potential against free radicals. Therefore, the present study concluded that all the studied medicinal plants possess varying concentrations of secondary active metabolites responsible for the antioxidant properties of the tested plant extracts.

  2. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  3. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers...

  4. Increased plant carbon translocation linked to overyielding in grassland species mixtures

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bardgett, R.D.

    2012-01-01

    Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and det

  5. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  6. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  7. Selection of materials for pressure vessels and chemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Huppertz, P.H.; Retter, A. (Linde A.G., Hoellriegelskreuth (Germany, F.R.). Werksgruppe Tieftemperatur und Verfahrenstechnik)

    1980-04-01

    The selection of materials for pressure vessels and chemical plants depends on a number of factors such as operating, operating temperature, operating medium, regulations in force in the country of the plant user concerned and manufacturing possibilities. The essay clearly explains how the above specified factors individually influence the selection of materials. The article also deals with the ranges of application of certain material groups such as unalloyed and low-alloy steels, fine-grained steels, austenitic chromium-nickel steels, unalloyed ferritic chromium steels and other materials. The article closes with remarks on the operational safety of pressure vessels.

  8. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.

    1999-12-17

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species.

  9. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    Science.gov (United States)

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  10. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Silva

    2013-01-01

    Full Text Available The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL. Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities.

  11. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Selected Life History Information of Animal Species on Lake Conway, Florida.

    Science.gov (United States)

    1982-08-01

    and brackish waters, as well as land-locked lakes and ponds. Lives in quiet water habitats and avoids streams that lack large, perma- nent pools 6...threat- ened or endangered lists c. Not recreational or commercial d. Unknown management potential e. Not sensitive f. Largely vegetarian in diet h. i...or endangered lists c. Not recreational or commercial d. Unknown management potential e. Not sensitive B12 Fish Scientific Species No. Name Hanagement

  12. [Impacts of human disturbance on the species composition of higher plants in the wetlands around Dianchi Lake, Yunnan Province of Southwest China].

    Science.gov (United States)

    Xiang, Xi-Xi; Wu, Zhao-Lu; Luo, Kang; Ding, Hong-Bo; Zhang, Hai-Yan

    2013-09-01

    Introducing higher plants to build semi-natural wetland ecosystem is one of the key approaches to restore the wetlands and lakes that suffered from serious pollution and destruction. Based on the investigation data from 128 quadrats at 26 sampling sites in the wetlands around Dianchi Lake in December 2011-October 2012, and in combining with the references published in the 1960s, this paper discussed the impacts of human activities on the species composition of higher plants in the wetlands around the Lake. In 2012, there were 299 species of 88 families in the wetlands, of which, 181 species were native species, and 118 species were alien ones (including 32 invasive species). Of the 42 species of hydrophytes in the total species, 13 species were alien ones (including 2 invasive species). In comparing with the species data recorded in the 1960s, 232 plants were newly recorded and 43 species disappeared in 2012. Aquatic plants changed obviously. The decreased species were 2 submerged plants, 2 floating plants, and 5 floating leaved plants, and the increased species were 8 emergent plants. Fourteen community types were identified by cluster analysis, of which, the main communities were those dominated by alien species including Pistia stratiotes and Alternanthera philoxeroides. As compared with the data in the 1960s, the plant communities dominated by native species such as Ottelia acuminate and Vallisneria natans were not found presently. Therefore, in the practice of introducing higher plants to restore the degraded wetlands and lakes, it would be necessary to scientifically and appropriately select and blend plant species to avoid the wetland degradation by human activities.

  13. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly.

    Science.gov (United States)

    Rolhauser, Andrés G; Pucheta, Eduardo

    2017-03-01

    How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results

  14. Designing a transcriptome next-generation sequencing project for a nonmodel plant species.

    Science.gov (United States)

    Strickler, Susan R; Bombarely, Aureliano; Mueller, Lukas A

    2012-02-01

    The application of next-generation sequencing (NGS) to transcriptomics, commonly called RNA-seq, allows the nearly complete characterization of transcriptomic events occurring in a specific tissue. It has proven particularly useful in nonmodel species, which often lack the resources available for sequenced organisms. Mainly, RNA-seq does not require a reference genome to gain useful transcriptomic information. In this review, the application of RNA-seq to nonmodel plant species will be addressed. Important experimental considerations from presequencing issues to postsequencing analysis, including sample and platform selection, and useful bioinformatics tools for assembly and data analysis, are covered. Methods of assembling RNA-seq data and analyses commonly performed with RNA-seq data, including single nucleotide polymorphism detection and analysis of differential expression, are explored. In addition, studies that have used RNA-seq to elucidate nonmodel plant transcriptomics are highlighted.

  15. Herbivores, the Functional Diversity of Plants Species, and the Cycling of Nutrients in Ecosystems

    Science.gov (United States)

    Pastor; Cohen

    1997-06-01

    Numerous investigators have suggested that herbivores almost always increase rates of nutrient and energy flow through terrestrial ecosystems by returning to the soil fecal material and urine with faster turnover rate than shed plant litter. These previous theories and models always treat the producer compartment as a homogenous pool. Essentially, they assume that consumers feed through a pureed cream of vegetable soup. However, many field observations and experiments have shown that consumers feed selectively (i.e., in a cafeteria) and that consumer choice is made on the same chemical basis that determines decomposition rates. Plants that are preferred food sources often have higher nutrient content, higher growth rates, and faster decomposition rates. As consumption reduces dominance of these species in favor of unpreferred species with slower decomposition, rates of nutrient cycling and energy flow should therefore decline. We analyze a model in which the consumer is given a choice among producers that vary in nutrient uptake rates, rates of nutrient return to decomposers, and consumer preference, and which is parameterized for plants and consumers characteristic of boreal regions. In this model, in an open, well-mixed system with one consumer and two such producers, the nutrient/energy flow will not exceed that of a system without the consumer. If the consumer has a choice between two such producers, it must choose one plant over the other at a greater ratio than that between the two plants in uptake and decay rates. In contrast, in a closed system the consumer must be less selective to coexist with the two plants. The system behavior is determined by the level of nutrient return through the consumer and the differences between the plants in nutrient uptake rates and consumer preference. Species richness affects properties of this model system to the extent that species are functionally distinct (i.e., have different rate constants) in a multivariate space of

  16. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system.

  17. Plant species used in giardiasis treatment: ethnopharmacology and in vitro evaluation of anti-Giardia activity

    Directory of Open Access Journals (Sweden)

    Vanessa do A. Neiva

    2014-04-01

    Full Text Available The aim of this study was to compile the traditional knowledge about plants used for the treatment of giardiasis, and also to carry out experimental research to evaluate the anti-Giardia activity of five species.To reach this objective, 398 interviews were performed using a previously prepared questionnaire, followed by an in vitro evaluation of giardicidal potential of hydroalcoholic leaf extracts of Anacardium occidentale L., Chenopodium ambrosioides L., Passiflora edulis Sims, Psidium guajava L., and Stachytarpheta cayennensis(Rich. Vahl. Among the interviewed people, 55.53% reported the use of plants to treat diarrhea, the most severe symptom of giardiasis. The results indicated 36 species used by this population for these problems. The use of leaves (72.50% of a single plant (64.25% collected from backyards and gardens (44.34% and prepared by decoction were predominant. The majority of the interviewees (85.52% attributed their cure to the use of plants. In the experimental tests, all extracts inhibited the growth of Giardia lambliatrophozoites in different intensities: A. occidentale and P. guajava extracts elicited a moderate activity (250 ≤ IC50 ≤ 500 μg/ml, C. ambrosioides and S. cayennensis extracts evoked a high activity (100 ≤ IC50 ≤ 250 μg/ml, and P. edulis extract showed very high activity (IC50≤ 100 μg/ml. This study shows that an ethnopharmacological approach is useful in the selection of plant materials with potential giardicidal activity.

  18. Plants of the Cerrado naturally selected by grazing sheep may have potential for inhibiting development of Haemonchus contortus larva.

    Science.gov (United States)

    Morais-Costa, Franciellen; Soares, Ana Cláudia Maia; Bastos, Gabriela Almeida; Nunes, Yule Roberta Ferreira; Geraseev, Luciana Castro; Braga, Fernão Castro; Dos Santos Lima, Walter; Duarte, Eduardo Robson

    2015-10-01

    Plant species naturally selected by sheep grazing in the Cerrado region of Brazil were assessed in vitro for activity against Haemonchus contortus. One year of observations showed the plant families in the region exhibiting greatest richness to be Fabaceae, Rubiaceae, Malpighiaceae, Bignoniaceae, Myrtaceae, and Annonaceae. Nine species commonly selected by grazing sheep showed variation in the selectivity index with respect to the dry and rainy seasons. Coproculture was conducted in five replicates of 11 treatments: ivermectin, distilled water, or dehydrated leaves of nine selected plant species administered at 333.3 mg g(-1) fecal culture. The dried powder of Piptadenia viridiflora and Ximenia americana leaves significantly reduced the number of infective larvae compared to the distilled water control. These species showed efficacy of over 85 % despite low concentrations of proanthocyanidin. High-performance liquid chromatography analyses of extracts of these plants showed major peaks of UV spectra characteristic of flavonoids. Those naturally selected plant species with high antihelminthic efficacy show promise for use in diet as an alternative control of H. contortus in sheep.

  19. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    Science.gov (United States)

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71).

  20. Seed dispersal and germination traits of 70 plant species inhabiting the Gurbantunggut Desert in northwest China.

    Science.gov (United States)

    Liu, Huiliang; Zhang, Daoyuan; Yang, Xuejun; Huang, Zhenying; Duan, Shimin; Wang, Xiyong

    2014-01-01

    Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude) of seed mass were smaller and narrower than those in other floras (5-8 orders of magnitude), which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory), and anemochorous species were most abundant. Seed mass (F = 3.50, P = 0.01), seed size (F = 8.31, P seed shape (F = 2.62, P = 0.04) differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight) (P = 0.15), seed size (P = 0.38), or seed shape (variance) (P = 0.95) and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F = 3.64, P = 0.01) and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces.

  1. Seed Dispersal and Germination Traits of 70 Plant Species Inhabiting the Gurbantunggut Desert in Northwest China

    Directory of Open Access Journals (Sweden)

    Huiliang Liu

    2014-01-01

    Full Text Available Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude of seed mass were smaller and narrower than those in other floras (5–8 orders of magnitude, which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory, and anemochorous species were most abundant. Seed mass (F=3.50, P=0.01, seed size (F=8.31, P<0.01, and seed shape (F=2.62, P=0.04 differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight (P=0.15, seed size (P=0.38, or seed shape (variance (P=0.95 and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F=3.64, P=0.01 and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces.

  2. Stem photosynthesis and hydraulics are coordinated in desert plant species.

    Science.gov (United States)

    Ávila-Lovera, Eleinis; Zerpa, Antonio J; Santiago, Louis S

    2017-08-21

    Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  4. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  5. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  6. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  7. Historic land use influences contemporary establishment of invasive plant species.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  8. Development of orodispersible films with selected Indonesian medicinal plant extracts

    NARCIS (Netherlands)

    Visser, Johanna; Eugresya, Gabriella; Hinrichs, Wouter; Tjandrawinata, Raymond; Avanti, Christina; Frijlink, H.W.; Woerdenbag, Herman

    2016-01-01

    This study focused on the incorporation into orodispersible films (ODFs) of the dried extracts of five selected Indonesian medicinal plants: Lagerstroemia speciosa (L.) Pers. (LS), Phyllanthus niruri L. (PN), Cinnamomum burmanii Blume (CB), Zingiber officinale Roscoe (ZO) and Phaleria macrocarpa (Sc

  9. The incidence and selection of multiple mating in plants

    Science.gov (United States)

    Pannell, John R.; Labouche, Anne-Marie

    2013-01-01

    Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so. PMID:23339242

  10. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  11. Development of Solar Drying Model for Selected Cambodian Fish Species

    OpenAIRE

    Anna Hubackova; Iva Kucerova; Rithy Chrun; Petra Chaloupkova; Jan Banout

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...

  12. Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.

    Science.gov (United States)

    Campanella, M Victoria; Bertiller, Mónica B

    2013-07-01

    Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.

  13. Protection of renal function by four selected plant extracts during Plasmodium berghei infection

    OpenAIRE

    Adewale Adetutu; Olubukola Sinbad Olorunnisola; Kazeem Iyanda

    2015-01-01

    Background: Weakening of renal function from reactive oxygen species generated during malaria infection is one of the prominent causes of death in prevalent regions. The potential toxicity of free radical generated by malaria parasites are counteracted by a large number of cytoprotective phytochemicals. Therefore, this study examined the influence of extracts of five selected antimalarial plants (Azadirachta indica, Parquetina nigrescens, Citrus paradisi, and Khaya senigalensis) on reduction ...

  14. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  15. A systematic search for positive selection in higher plants (Embryophytes

    Directory of Open Access Journals (Sweden)

    Roth Christian

    2006-06-01

    Full Text Available Abstract Background Previously, a database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported. Of the gene family trees, 138 Embryophyte branches showed Ka/Ks>>1 and are candidates for functional adaptation. The database and these examples have now been studied in further detail to better understand the molecular basis for plant genome evolution. Results Neutral modeling showed an excess of positive and/or negative selection in the database over a neutral expectation centered on the mean Ka/Ks ratio. Out of 673 families with assigned structures, 490 have at least one branch with Ka/Ks >>1 in a region of the protein, enabling a picture of selective pressures delineated by protein structure. Most gene families allowed reconstruction back to the last common ancestor of flowering plants (Magnoliophytes without saturation of 4- fold degenerate codon position. Positive selection occurred in a wide variety of gene families with different functions, including in the self incompatibility locus, in defense against pathogens, in embryogenesis, in cold acclimation, and in electrontransport. Structurally, selective pressures were similar between alpha-helices and beta- sheets, but were less negative and more variant on the surface and away from the hydrophobic core. Conclusion Positive selection was detected statistically significantly in a small and nonrandom minority of gene families in a systematic analysis of embryophyte gene families. More sensitive methods increased the level of positive selection that was detected and presented a structural basis for the role of positive selection in plant genomes.

  16. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  17. Forage Species Suitability Mapping for China Using Topographic, Climatic and Soils Spatial Data and Quantitative Plant Tolerances

    Institute of Scientific and Technical Information of China (English)

    David B Hannaway; LI Xiang-lin; Christopher Daly; CAO Wei-xing; LUO Wei-hong; WEI Yu-rong; ZHANG Wei-li; XU Ai-guo; LU Chang-ai; SHI Xue-zheng

    2005-01-01

    Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true for countries like China with a diversity of climates and soils and intended uses. Currently, proper species selection is difficult due to the absence of computer-based selection tools. Climate and soil GIS layers, matched with a matrix of plant characteristics through rules describing species tolerances would greatly improve the selection process. Better matching will reduce environmental hazards and economic risks associated with sub-optimal plant selection and performance. GIS-based climate and soil maps have been developed for China. A matrix of quantitative species tolerances has been developed for example forage species and used in combination with an internet map server that allows customized map creation. A web-based decision support system has been developed to provide current information and links to original data sources, supplementary materials, and selection strategies.

  18. How important is long-distance seed dispersal for the regional survival of plant species?

    OpenAIRE

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species' dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed di...

  19. Nutritional and toxic factors in selected wild edible plants.

    Science.gov (United States)

    Guil, J L; Rodríguez-García, I; Torija, E

    1997-01-01

    Nutritional (ascorbic acid, dehydroascorbic acid and carotenes); antinutritional and toxic components (oxalic acid, nitrate and erucic acid) were determined in sixteen popular species of wild edible plants which are collected for human consumption in southeast Spain. Ascorbic + dehydroascorbic acids contents were very high in several species, especially in Chenopodium album L. (155 mg/100 g). Carotenoid content ranged from 4.2 mg/100 g (Stellaria media Villars) to 15.4 mg/100 g (Amaranthus viridis L.). A range of values was found for oxalic acid from absence to 1100 mg/100 g of plant material. Nitrate contents ranged from 47 mg/100 g (Salicornia europaea L.) to 597 mg/100 g (Amaranthus viridis L.). Low amounts of erucic acid were found in the Cruciferae family (Sisymbrium irio L. 1.73%; Cardaria draba L. 1.23%) and Plantago major L. 3.45%.

  20. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness.

    Science.gov (United States)

    Fraser, Lauchlan H; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin; Askarizadeh, Diana; Bartha, Sandor; Beierkuhnlein, Carl; Bennett, Jonathan A; Bittel, Alex; Boldgiv, Bazartseren; Boldrini, Ilsi I; Bork, Edward; Brown, Leslie; Cabido, Marcelo; Cahill, James; Carlyle, Cameron N; Campetella, Giandiego; Chelli, Stefano; Cohen, Ofer; Csergo, Anna-Maria; Díaz, Sandra; Enrico, Lucas; Ensing, David; Fidelis, Alessandra; Fridley, Jason D; Foster, Bryan; Garris, Heath; Goheen, Jacob R; Henry, Hugh A L; Hohn, Maria; Jouri, Mohammad Hassan; Klironomos, John; Koorem, Kadri; Lawrence-Lodge, Rachael; Long, Ruijun; Manning, Pete; Mitchell, Randall; Moora, Mari; Müller, Sandra C; Nabinger, Carlos; Naseri, Kamal; Overbeck, Gerhard E; Palmer, Todd M; Parsons, Sheena; Pesek, Mari; Pillar, Valério D; Pringle, Robert M; Roccaforte, Kathy; Schmidt, Amanda; Shang, Zhanhuan; Stahlmann, Reinhold; Stotz, Gisela C; Sugiyama, Shu-ichi; Szentes, Szilárd; Thompson, Don; Tungalag, Radnaakhand; Undrakhbold, Sainbileg; van Rooyen, Margaretha; Wellstein, Camilla; Wilson, J Bastow; Zupo, Talita

    2015-07-17

    The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

  1. Effects of vehicle exhaust emissions on urban wild plant species.

    Science.gov (United States)

    Bell, J N B; Honour, S L; Power, S A

    2011-01-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  3. Ecophysiological studies of Mediterranean plant species at the Castelporziano estate

    Science.gov (United States)

    Manes, Fausto; Seufert, Günther; Vitale, Marcello

    The aim of this work was to characterize the eco-physiological performance of the main plant species of the Castelporziano site by single leaf investigations. We measured the leaf gas exchange of Quercus ilex L., Pinus pinea L., Pistacia lentiscus L. and Asphodelus microcarpus L. for several days. Additionally, the xylem water potential of Quercus ilex, Pinus pinea and Pistacia lentiscus was recorded in order to obtain more physiological background information for the discussion of the trace gas emissions. This study indicates significantly different physiological responses to the different environmental conditions. In particular, summer conditions (high values of light, air temperature and low xylem water potentials) caused the depression of photosynthesis in Quercus ilex and Pinus pinea but did not affect photosynthesis of Pistacia lentiscus and Asphodelus microcarpus. This should be taken into account when discussing VOC emission rates and fluxes.

  4. Effective selection of transgenic papaya plants with the PMI/Man selection system.

    Science.gov (United States)

    Zhu, Yun J; Agbayani, Ricelle; McCafferty, Heather; Albert, Henrik H; Moore, Paul H

    2005-09-01

    The selectable marker gene phospho-mannose isomerase (pmi), which encodes the enzyme phospho-mannose isomerase (PMI) to enable selection of transformed cell lines on media containing mannose (Man), was evaluated for genetic transformation of papaya (Carica papaya L.). We found that papaya embryogenic calli have little or no PMI activity and cannot utilize Man as a carbon source; however, when calli were transformed with a pmi gene, the PMI activity was greatly increased and they could utilize Man as efficiently as sucrose. Plants regenerated from selected callus lines also exhibited PMI activity but at a lower specific activity level. Our transformation efficiency with Man selection was higher than that reported using antibiotic selection or with a visual marker. For papaya, the PMI/Man selection system for producing transgenic plants is a highly efficient addition to previously published methods for selection and may facilitate the stacking of multiple transgenes of interest. Additionally, since the PMI/Man selection system does not involve antibiotic or herbicide resistance genes, its use might reduce environmental concerns about the potential flow of those genes into related plant populations.

  5. Plant-pollinator interactions and floral convergence in two species of Heliconia from the Caribbean Islands.

    Science.gov (United States)

    Martén-Rodríguez, Silvana; Kress, W John; Temeles, Ethan J; Meléndez-Ackerman, Elvia

    2011-12-01

    Variation in interspecific interactions across geographic space is a potential driver of diversification and local adaptation. This study quantitatively examined variation in floral phenotypes and pollinator service of Heliconia bihai and H. caribaea across three Antillean islands. The prediction was that floral characters would correspond to the major pollinators of these species on each island. Analysis of floral phenotypes revealed convergence among species and populations of Heliconia from the Greater Antilles. All populations of H. caribaea were similar, characterized by long nectar chambers and short corolla tubes. In contrast, H. bihai populations were strongly divergent: on Dominica, H. bihai had flowers with short nectar chambers and long corollas, whereas on Hispaniola, H. bihai flowers resembled those of H. caribaea with longer nectar chambers and shorter corolla tubes. Morphological variation in floral traits corresponded with geographic differences or similarities in the major pollinators on each island. The Hispaniolan mango, Anthracothorax dominicus, is the principal pollinator of both H. bihai and H. caribaea on Hispaniola; thus, the similarity of floral phenotypes between Heliconia species suggests parallel selective regimes imposed by the principal pollinator. Likewise, divergence between H. bihai populations from Dominica and Hispaniola corresponded with differences in the pollinators visiting this species on the two islands. The study highlights the putative importance of pollinator-mediated selection as driving floral convergence and the evolution of locally-adapted plant variants across a geographic mosaic of pollinator species.

  6. Bromeliad selection by two salamander species in a harsh environment.

    Directory of Open Access Journals (Sweden)

    Gustavo Ruano-Fajardo

    Full Text Available Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height, as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment.

  7. Anticancer activities of selected species of North American lichen extracts.

    Science.gov (United States)

    Shrestha, Gajendra; El-Naggar, Atif M; St Clair, Larry L; O'Neill, Kim L

    2015-01-01

    Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

  8. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    Science.gov (United States)

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  9. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  10. Development of solar drying model for selected Cambodian fish species.

    Science.gov (United States)

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6 °C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg · h(-1). Based on coefficient of determination (R(2)), chi-square (χ(2)) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  11. Factors affecting unintentional harvesting selectivity in a monomorphic species.

    Science.gov (United States)

    Bunnefeld, Nils; Baines, David; Newborn, David; Milner-Gulland, E J

    2009-03-01

    1. Changes in the abundance of populations have always perplexed ecologists but long-term studies are revealing new insights into population dynamic processes. Long-term data are often derived from harvest records although many wild populations face high harvesting pressures leading to overharvesting and extinction. Additionally, harvest records used to describe population processes such as fluctuations in abundance and reproductive success often assume a random off-take. 2. Selective harvesting based on phenotypic characteristics occurs in many species (e.g. trophy hunting, fisheries) and has important implications for population dynamics, conservation and management. 3. In species with no marked morphological differences between the age and sex classes, such as the red grouse Lagopus lagopus scoticus during the shooting season, hunters cannot consciously select for a specific sex or age class during the shooting process but harvest records could still give a biased reflection of the population structure because of differences in behaviour between age and sex classes. 4. This study compared age and sex ratios in the bag with those in the population before shooting for red grouse at different points in the shooting season and different densities, which has rarely been tested before. 5. More young than old grouse were shot at large bag sizes and vice versa for small bag sizes than would be expected from the population composition before shooting. The susceptibility of old males to shooting compared to females increased with bag size and was high at the first time the area was shot but decreased with the number of times an area was harvested. 6. These findings stress that the assumption made in many studies that harvest records reflect the age and sex ratio of the population and therefore reflect productivity can be misleading. 7. In this paper, as in the literature, it is also shown that number of grouse shot reflects grouse density and therefore that hunting

  12. Response of xylem-feeding leafhopper to host plant species and plant quality.

    Science.gov (United States)

    Rossi, A M; Brodbeck, B V; Strong, D R

    1996-04-01

    Carneocephala floridana, an oligophagous leafhopper that inhabits the salt marshes along the coasts of Florida, utilizesBorrichia frutescens andSalicornia virginica (both herbs) as primary summer hosts, but uses two grasses,Distichlis spicata andSpartina alterniflora, during the winter. We tested whether the seasonal patterns of abundance and apparent host-switching byCarneocephala are related to plant quality. In laboratory experiments, nymphs ofCarneocephala reared on nonfertilized control plants of the two herbs produced adults that were similar in size to field-collected insects. OnlyCarneocephala raised at the lowest densities onSpartina andDistichlis from the highest fertilizer treatments produced adults similar in body mass to those reared on nonfertilizedBorrichia andSalicornia. ForDistichlis, superior quality (high foliar nitrogen) plants were able to mitigate the negative effect of nymphal crowding on adult body mass. However, laboratory fertilization regimes produced an extremely high foliar nitrogen content in the two herbs and the organic acid concentration in the xylem fluid ofBorrichia, the only host species suitable for xylem fluid extraction, increased 2.5- to 3-fold. Total amino acid concentration in the xylem fluid of fertilizedBorrichia decreased compared to nonfertilized plants.Carneocephala demonstrated reduced feeding efficiencies on high nitrogenBorrichia. Our results suggest thatCarneocephala prefers, and performs better on, plants with high nitrogen content up to a threshold, beyond which high nitrogen levels result in reduced leafhopper feeding rates and assimilation efficiencies.

  13. Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities

    Directory of Open Access Journals (Sweden)

    Sarah Lee

    2015-11-01

    Full Text Available Chemotaxonomic metabolite profiling of 62 indigenous Korean plant species was performed by ultrahigh performance liquid chromatography (UHPLC-linear trap quadrupole-ion trap (LTQ-IT mass spectrometry/mass spectrometry (MS/MS combined with multivariate statistical analysis. In partial least squares discriminant analysis (PLS-DA, the 62 species clustered depending on their phylogenetic family, in particular, Aceraceae, Betulaceae, and Fagaceae were distinguished from Rosaceae, Fabaceae, and Asteraceae. Quinic acid, gallic acid, quercetin, quercetin derivatives, kaempferol, and kaempferol derivatives were identified as family-specific metabolites, and were found in relatively high concentrations in Aceraceae, Betulaceae, and Fagaceae. Fagaceae and Asteraceae were selected based on results of PLS-DA and bioactivities to determine the correlation between metabolic differences among plant families and bioactivities. Quinic acid, quercetin, kaempferol, quercetin derivatives, and kaempferol derivatives were found in higher concentrations in Fagaceae than in Asteraceae, and were positively correlated with antioxidant and tyrosinase inhibition activities. These results suggest that metabolite profiling was a useful tool for finding the different metabolic states of each plant family and understanding the correlation between metabolites and bioactivities in accordance with plant family.

  14. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  15. Phytotoxicity of soluble graphitic nanofibers to model plant species.

    Science.gov (United States)

    Gorka, Danielle E; Jeger, Jonathan Litvak; Zhang, Hongbo; Ma, Yanwen; Colman, Benjamin P; Bernhardt, Emily S; Liu, Jie

    2016-12-01

    Carbon nanomaterials are considered promising for applications in energy storage, catalysis, and electronics. This has motivated study of their potential environmental toxicity. Recently, a novel nanomaterial consisting of graphene oxide wrapped around a carbon nanotube (CNT) core was synthesized. The resulting soluble graphitic nanofibers were found to have superior catalytic properties, which could result in their use in fuel cells. Before this material undergoes widespread use, its environmental toxicity must be determined because of its aqueous solubility. The authors used the plant species Lolium multiflorum, Solanum lycopersicum, and Lactuca sativa to study the toxicity of the soluble graphitic nanofibers, as well as multiwalled carbon nanotubes (MWCNTs) and graphene oxide, all synthesized in-house. Soluble graphitic nanofiber-exposed plant roots and shoots showed decreased growth, with roots showing more toxicity than shoots. Decreased pH of nanomaterial solutions corresponded to insignificantly decreased root growth, suggesting that another mechanism of toxicity must exist. Agglomeration and adsorption of soluble graphitic nanofibers onto the roots likely caused the remaining toxicity because a gray layer could be seen around the surface of the root. Multiwalled carbon nanotubes showed little toxicity over the concentration range tested, whereas graphene oxide showed a unique pattern of high toxicity at both the lowest and highest concentrations tested. Overall, soluble graphitic nanofibers showed moderate toxicity between that of the more toxic graphene oxide and the relatively nontoxic MWCNTs. Environ Toxicol Chem 2016;35:2941-2947. © 2016 SETAC.

  16. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    Directory of Open Access Journals (Sweden)

    Xoaquín Moreira

    Full Text Available Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves. We found that both forms of plant diversity had positive effects on stem (but not leaf defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer

  17. In vitro antibacterial activity of three medicinal plants-Boswellia (Luban) species

    Institute of Scientific and Technical Information of China (English)

    Hasson SS; Al-Balushi MS; Sallam TA; Idris MA; Habbal O; Al-Jabri AA

    2011-01-01

    Objective:To study in vitro antibacterial and antifungal activity of hot water and methanolic extracts of the three medicinal plants-Boswellia (Luban) species. Methods:Three selected plants were collected from different localities of Soqotra (Republic of Yemen), Dohfar (Sultanate of Oman) and Republic of Somalia. The plants were dried and extracted with two different solvents (methanol and hot water) to yield six crude extracts. The obtained extracts were tested for their antibacterial activity against eleven different bacterial strains and two fungi using the standard well-diffusion and micro-dilution methods. The following microorganisms were used:methicillin-resistant Staphylococcus aureus (ATCC 6538), muti-drug resistant Pseudomonas aeruginosa (ATCC 27853), enterohemorrhagic Escherichia coli (0157 EHEC), Salmonella typhi, Proteus vulgaris, Klebsiella pneumoniae, Bacillus subtilus (ATCC 6059, reference strain), Streptococcus pneumoniae, Klebsella pneumonia, MRSA, Corynebacterium, Corynebacterium diphtheriae and two fungus:Candida maltosa and Candida albicans. Results: The different extracts possessed different inhibitory activity against different types of bacterial species. The patterns of inhibition varied with the plant extract, the solvent used for extraction and the organisms tested. The antimicrobial activity exhibited by the methanolic extracts of Boswellia sacra from the Suqotra and Dhofar regions was greater than that of Boswellia frereana collected from Somalia. The methanolic extract of the oleo-gum-resin showed higher efficacy to inhibit all the tested bacterial strains than the methanolic extract of frankincense-resin. The Boswellia frereana collected from Somalia showed lower activity compared with the two other Boswellia species. The plant extracts showed bacteriostatic activity at lower concentrations and bactericidal activity at higher concentrations. Neither water nor methanolic extracts showed any activity against the fungi Candida maltosa and

  18. Soil fertility increases with plant species diversity in a long-term biodiversity experiment.

    Science.gov (United States)

    Dybzinski, Ray; Fargione, Joseph E; Zak, Donald R; Fornara, Dario; Tilman, David

    2008-11-01

    Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.

  19. Species area relationships in mediterranean-climate plant communities

    Science.gov (United States)

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  20. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...... of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant...

  1. 78 FR 64637 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

    Science.gov (United States)

    2013-10-29

    ... danger of extinction throughout all their ranges as the result of ongoing threats that include the... and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15 Species on...-AY09 Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

  2. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.

    Science.gov (United States)

    Kim, Kee Dae

    2014-11-01

    This study aims to investigate effects of diesel and kerosene on seed germination and seedling growth among coastal wetland plants to select species that can be used for the restoration and revegetation of oil-polluted habitats. Tests on 51 species were performed in Petri dishes containing 0 %, 6 %, 12 %, and 18 % diesel, 20 %, 40 %, and 60 % kerosene; each treatment combination was replicated five times with 20 seeds in each Petri dish. All dishes were held in a growth chamber with 20°C day of 12 h/15°C night of 12 h in 80 % humidity for 20 days for calculating the germination percentage, seedling weight, and seedling vitality. The germination percentage of Rumex stenophyllus decreased significantly in diesel and kerosene treatments. The weights of seedlings treated with diesel and kerosene either increased or decreased in comparison with controls depending on the species. Vitality percentage values were high for seedlings of Chenopodium ficifolium. Thus, herbaceous plant responses to oil treatments are species-specific.

  3. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  4. Towards a working list of all known plant species

    National Research Council Canada - National Science Library

    E. N. Lughadha

    2004-01-01

    .... The adoption of the Global Strategy for Plant Conservation has reinforced the urgent need for a global plant checklist to support, facilitate and monitor the conservation and sustainable use of plant...

  5. Spectrophotometric validation of assay method for selected medicinal plant extracts

    OpenAIRE

    Matthew Arhewoh; Augustine O. Okhamafe

    2014-01-01

    Objective: To develop UV spectrophotometric assay validation methods for some selected medicinal plant extracts.Methods: Dried, powdered leaves of Annona muricata (AM) and Andrographis paniculata (AP) as well as seeds of Garcinia kola (GK) and Hunteria umbellata (HU) were separately subjected to maceration using distilled water. Different concentrations of the extracts were scanned spectrophotometrically to obtain wavelengths of maximum absorbance. The different extracts were then subjected t...

  6. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    J. M. QUEIROZ

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  7. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  8. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  9. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-01-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  10. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil

    NARCIS (Netherlands)

    Cong, Wen-Feng; van Ruijven, Jasper; van der Werf, Wopke; De Deyn, Gerlinde B.; Mommer, Liesje; Berendse, Frank; Hoffland, Ellis

    2015-01-01

    Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic m

  11. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  12. Microbiological air quality in an urban solid waste selection plant

    Directory of Open Access Journals (Sweden)

    Angela Del Cimmuto

    2010-03-01

    Full Text Available

    Background: Exposure to bioaerosols may pose health risks to workers operating in the processing of Urban Solid Waste (USW. The aim of this study is to evaluate microbiological air quality within an USW selection facility.

    Methods: Nine sampling points in an USW selection plant situated in central-southern Italy were selected. One outdoor sampling point provided the background data. Sampling was performed on a yearly basis (2005 – 2009 upon request by the management of the selection plant. Total Mesophilic Counts (TMC, as well as fungal and Gram-negative concentrations were determined.

    Results: The highest viable fungal particles concentrations (medians were found in waste delivery areas (about 20000 CFU/m3, while the lowest were found in the control rooms (485 – 967 CFU/m3. TMC (median was highest (6116 CFU/m3 at the delivery pit, followed by the machine shop (3147 CFU/m3, where no waste processing takes place. Medians of Gram-negative bacteria are below the suggested Occupational Exposure Limit of 1000 CFU/m3, although this limit was exceeded at several single time-points in the waste delivery areas, and also in a personnel resting room. The lowest Gram-negative contamination was found in the control rooms (medians <1 CFU/m3.

    Conclusions: Some areas within a USW selection plant act as internal sources of contamination towards those areas where partially processed waste, or no waste at all, is present. Well-designed air flows, or carefullythought positioning of areas that are not directly involved in waste processing are necessary and effective in obtaining

  13. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna

    Directory of Open Access Journals (Sweden)

    Danilo Muniz Silva

    2013-09-01

    Full Text Available Differences in plant species richness and composition are associated with soil properties and disturbances such as fire, which can therefore be key determinants of species occurrence in savanna plant communities. We measured species richness, using nine plant functional traits and abundance to calculate three functional diversity indices. We then used model selection analyses to select the best model for predicting functional diversity and richness based on soil variables at sites with three different fire frequencies. We also calculated the community-weighted mean of each trait and used ordination to examine how traits changed across fire frequencies. We found higher species richness and functional dispersion at sites that were more fertile and where fire was frequent, and the opposite at such sites where fire was infrequent. However, soil properties influenced functional evenness and divergence only where fire was infrequent, with higher values where soils were poorer. Fire can change functional traits directly by hindering development of plants and indirectly by altering competition. Different fire frequencies lead to different plant-soil relationships, which can affect the functioning of tropical savanna communities. Functional diversity components and functional identity of the communities are both affected by fire frequency and soil conditions.

  14. Flexural behaviour of selected plants under static load

    Directory of Open Access Journals (Sweden)

    F. J. Sutili

    2010-02-01

    Full Text Available One of the principal purposes of soil bioengineering is the application of vegetation layers from a civil engineering point of view. Living plants are used to reinforce slopes and to control erosion. For a standardised implementation, it is essential to quantify the effectiveness and to assess technical parameters for such bioengineering systems. The objective of this study is to investigate the flexibility of stems and branches of different riparian species of the area of Southern Brazil suitable for soil bioengineering (Phyllanthus sellowianus Müll. Arg., Sebastiania schottiana (Müll. Arg. Müll. Arg., Salix humboldtiana Willd., and Salix×rubens Schrank. Fifty specimens (green stem samples were collected in the surroundings of Santa Maria, state of Rio Grande do Sul, Brazil, and subjected to static bending tests. Their overall deformation behaviour (elastic and plastic is of crucial importance for bioengineering systems. Thus, additional to the state of the art of material parameters, a new parameter is introduced: the "angle of flexibility". This parameter describes the elastic and plastic deformation behaviour of a plant under load in a more engineering practival experience. The results show that the species of Phyllanthus sellowianus is the most flexible species, followed by Sebastiania schottiana, Salix humboldtiana and Salix×rubens.

  15. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities.

    Science.gov (United States)

    Ewel, John J

    2006-04-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting

  16. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran.

    Science.gov (United States)

    Sangian, Hadi; Faramarzi, Hossein; Yazdinezhad, Alireza; Mousavi, Seyed Javad; Zamani, Zahra; Noubarani, Maryam; Ramazani, Ali

    2013-11-01

    The effectiveness of antimalarial drugs is declining at an ever accelerating rate, with consequent increase in malaria-related morbidity and mortality. The newest antiplasmodial drug from plants is needed to overcome this problem. The aim of this study was to assess antimalarial activity of the ethanolic extracts of 10 different medicinal plants from eight families against Plasmodium falciparum chloroquine-sensitive 3D7 strain. The selection of the hereby studied plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro and in vivo antimalarial and brine shrimp toxicity activities. Of 10 plant species tested, four plants: Althea officinalis L. (Malvaceae), Myrtus communis Linn (Myrtaceae), Plantago major (Plantaginaceae), and Glycyrrhiza glabra L. (Papilionaceae) displayed promising antimalarial activity in vitro (50% inhibitory concentration values of 62.77, 42.18, 40.00, and 13.56 μg/mL, respectively) with no toxicity against brine shrimp larvae. The crude extracts of three active plants, G. glabra, M. communis, and A. officinalis, also significantly reduced parasitemia in vivo in female Swiss albino mice at a dose of 400 mg/kg compared to no treatment. Antiplasmodial activities of extracts of A. officinalis and M. communis are reported for the first time.

  17. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    Science.gov (United States)

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  18. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  19. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Antifungal Activities of Extracts from Selected Lebanese Wild Plants against Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Y. Abou-Jawdah

    2004-12-01

    Full Text Available Extracts of nine plant species growing wild in Lebanon were tested for their efficacy against seven plant pathogenic fungi: Botrytis cinerea, Alternaria solani, Penicillium sp., Cladosporium sp., Fusarium oxysporum f. sp. melonis, Rhizoctonia solani and Sphaerotheca cucurbitae. Extracts of three of the plants, Origanum syriacum, Micromeria nervosa and Plumbago maritima, showed the highest levels of in vitro activity against spore germination and mycelial growth of the fungi tested. Inula viscosa showed high activity against spore germination but only moderate activity against mycelial growth. The other five plant species tested Calamintha origanifolia, Micromeria juliana, Ruta sp., Sideritis pullulans and Urginea maritima showed only moderate to low activity against these fungi. Preventive sprays with extracts of O. syriacum, M. nervosa, P. maritima and I. viscosa, applied at concentrations ranging between 4 and 8% to squash and cucumber seedlings, gave efficient protection against gray mold caused by B. cinerea and powdery mildew caused by S. cucurbitae. However, these extracts did not control green mold of citrus fruits caused by Penicillium sp. Thin layer chromatography revealed three inhibitory bands in extracts of O. syriacum, two in I. viscosa and only one in each of the other plants tested: M. nervosa, P. maritima, C. origanifolia and Ruta sp.

  1. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  2. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  3. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution.

    Science.gov (United States)

    Prajapati, Santosh Kumar; Tripathi, B D

    2008-01-01

    To assess the dust interception efficiency of some selected tree species and impact of dust deposition on chlorophyll and ascorbic acid content of leaves the present study was undertaken. The plant species selected for the study were Ficus religiosa, Ficus benghalensis, Mangifera indica, Dalbergia sissoo, Psidium guajava, and Dendrocalamus strictus. It was found that all species have maximum dust deposition in the winter season followed by summer and rainy seasons. Chlorophyll content decreased and ascorbic acid content increased with the increase of dust deposition. There was significant negative and positive correlation between dust deposition and chlorophyll and ascorbic acid content, respectively. Maximum dust interception was done by Dalbergia sisso and least by Dendrocalamus strictus. Thus plants can be used to intercept dust particles which are of potential health hazards to humans.

  4. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  5. Characterization of midrib vascular bundles of selected medicinal species in Rubiaceae

    Science.gov (United States)

    Nurul-Syahirah, M.; Noraini, T.; Latiff, A.

    2016-11-01

    An anatomical study was carried out on mature leaves of five selected medicinal species of Rubiaceae from Peninsular Malaysia. The chosen medicinal species were Aidia densiflora, Aidia racemosa, Chasallia chartacea, Hedyotis auricularia and Ixora grandifolia. The objective of this study is to determine the taxonomic value of midrib anatomical characteristics. Leaves samples were collected from Taman Paku Pakis, Universiti Kebangsaan Malaysia, Bangi, Selangor and Kledang Saiong Forest Reserve, Perak, Malaysia. Leaves samples then were fixed in spirit and acetic acid (3:1), the midrib parts then were sectioned using sliding microtome, cleared using Clorox, stained in Safranin and Alcian blue, mounted in Euparal and were observed under light microscope. Findings in this study have shown all species have collateral bundles. The midrib vascular bundles characteristics that can be used as tool to differentiate between species or genus are vascular bundles system (opened or closed), shape and arrangement of main vascular bundles, presence of both additional and medullary vascular bundles, position of additional vascular bundles, shape of medullary vascular bundles, presence of sclerenchyma cells ensheathed the vascular bundles. As a conclusion, midrib anatomical characteristics can be used to identify and discriminate medicinal plants species studied in the Rubiaceae.

  6. Early Growth Assessment of Selected Exotic and Indigenous Tree Species in Nigeria

    Directory of Open Access Journals (Sweden)

    Alfred Ossai Onefeli

    2014-06-01

    Full Text Available Background and Purpose: Nigeria is greatly endowed with numerous tree species of which majority of them are native while few are exotic. Report shows that high percentage of man-made forests in the country is dominated with exotic species. This culminated from the assumption that exotic trees are fast growing. However, this study investigated the growth of indigenous trees in tandem with that of exotic species with a purpose to clarify the assumption about the growth and conservation of indigenous species in natural forests. Materials and Methods: The study was conducted at the nursery unit of the Department of Forest Resources Management, University of Ibadan, Nigeria. Five (5 different one year old tree species seedlings were used for the study. Two of the species (Tectona grandis and Gmelina arborea are exotic while the other three species (Khaya senegalensis, Khaya grandifolia and Afzelia africana are native to Nigeria. They were planted on the field in a completely random design and then replicated eight times. Data were collected every month on their height growth, collar diameter and leaf number. Data obtained were subsequently analyzed with ANOVA. Results and Conclusions: Results show that K. grandifolia (45.39 cm grew significantly better (p<0.05 in height than G. arborea (38.11 cm and T. grandis (22.36 cm, while A. africana (40.03 cm closely followed K. grandifolia. Based on the results, the selected indigenous species displayed promising potentials for conservation purpose. Hence, further research in this aspect is encouraged to confirm the findings.

  7. Advances in seed conservation of wild plant species: a review of recent research

    National Research Council Canada - National Science Library

    Hay, Fiona R; Probert, Robin J

    2013-01-01

    .... Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management...

  8. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose.

  9. Performance of dryland and wetland plant species on extensive green roofs

    Science.gov (United States)

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further

  10. Ethnoveterinary medicinal plants: Preparation and application methods by traditional healers in selected districts of southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebremedhin Romha Eshetu

    2015-05-01

    Full Text Available Aim: The aim was to document the ethnoveterinary medicinal plants, their preparation, and application methods used by traditional healers in treating different animal diseases, in four districts with different culture and languages in southern Ethiopia. Materials and Methods: Information of ethnoveterinary medicinal plants was obtained through in-depth direct interview with the local healers and field observations. A descriptive statistics was used to analyze the reported ethnoveterinary medicinal plants and associated indigenous knowledge. The informant consensus factor (ICF was calculated for each category of diseases to identify the agreements of the informants on the reported cures. Preference ranking was used to assess the degree of effectiveness of certain medicinal plants against most prevalent animal diseases in the area. Results: The healers had a very high intention to keep their traditional knowledge secrete and none of them was ready to transfer their knowledge either freely or on incentive bases to other people; they need to convey their knowledge only to their selected scions after getting very old. A total of 49 plant species used to treat 26 animal ailments were botanically classified and distributed into 34 families. The most commonly used plant parts for remedy preparations were leaves (38.8%, followed by whole roots (20.4%. Calpurnia aurea (Ait. Benth was the most preferred effective treatment against external parasite and skin problem, which is the most prevalent disease with the highest ICF (0.68. Conclusion: The study suggests that the community of the study districts depend largely on ethnoveterinary medicinal plants for the treatment of different animal ailments though the healers have a very high intention to keep their traditional knowledge secrete. Commonly reported plant species need to be tested for their antimicrobial activities in vitro and validated their active ingredients in order to recommend effective

  11. An exotic invasive plant selects for increased competitive tolerance, but not competitive suppression, in a native grass.

    Science.gov (United States)

    Fletcher, Rebecca A; Callaway, Ragan M; Atwater, Daniel Z

    2016-06-01

    Exotic invasive plants can exert strong selective pressure for increased competitive ability in native plants. There are two fundamental components of competitive ability: suppression and tolerance, and the current paradigm that these components have equal influences on a species' overall competitive ability has been recently questioned. If these components do not have equal influences on overall ability, then selection on competitive tolerance and suppression may be disproportionate. We used naturally invaded communities to study the effects of selection caused by an invasive forb, Centaurea stoebe, on a native grass, Pseudoroegneria spicata. P. spicata plants were harvested from within dense C. stoebe patches and from nearby uninvaded areas, divided clonally into replicates, then transplanted into a common garden where they grew alone or competed with C. stoebe. We found that P. spicata plants collected from within C. stoebe patches were significantly more tolerant of competition with C. stoebe than P. spicata plants collected from uninvaded areas, but plants from inside invaded patches were not superior at suppressing C. stoebe. These results are consistent with the hypothesis that strong competitors may select for tolerance to competition more than for the ability to suppress neighbors. This has important implications for how native plant communities may respond to invasion over time, and how invasive and native species may ultimately coexist.

  12. An improved grazed class method to estimate species selection and dry matter intake by cows at pasture

    Directory of Open Access Journals (Sweden)

    Bruno Martin

    2011-01-01

    Full Text Available Research has recently focused on pasture species intake by ruminants due to their influence on animal product quality. A field-applicable method which investigates species intake and selection, was tested on two dairy cow grazing systems: continuous grazing on a highly-biodiverse pasture (C and rotational grazing on a moderately-diverse sward (R. In addition to the grazed class method, which evaluates the percentage of grazed dry matter (DM per species according to the residual height of the plant grazed, further measurements were introduced to quantify DM consumption and selection index per species. Six and four representative species were studied in the C and R systems respectively. We found an exponential regression between the presence of a species and its contribution to the cattle’s daily intake (P<0.01. On the C plot, Festuca nigrescens showed the highest intake (6.2 kg DM/cow d, even if avoided. On the R plot, Taraxacum officinale was intensively consumed (6.1 kg DM/cow d, even cows do not express positive selection for the species, while Poaceae were avoided. Giving details on species consumption, the improved grazed class method may prove especially useful in non-experimental conditions in biodiverse sward to address grazing management to the consumption of species able to give specific characteristics to dairy products.

  13. Estimating suitable environments for invasive plant species across large landscapes: a remote sensing strategy using Landsat 7 ETM+

    Science.gov (United States)

    Young, Kendal E.; Abbott, Laurie B.; Caldwell, Colleen A.; Schrader, T. Scott

    2013-01-01

    The key to reducing ecological and economic damage caused by invasive plant species is to locate and eradicate new invasions before they threaten native biodiversity and ecological processes. We used Landsat Enhanced Thematic Mapper Plus imagery to estimate suitable environments for four invasive plants in Big Bend National Park, southwest Texas, using a presence-only modeling approach. Giant reed (Arundo donax), Lehmann lovegrass (Eragrostis lehmanniana), horehound (Marrubium vulgare) and buffelgrass (Pennisteum ciliare) were selected for remote sensing spatial analyses. Multiple dates/seasons of imagery were used to account for habitat conditions within the study area and to capture phenological differences among targeted species and the surrounding landscape. Individual species models had high (0.91 to 0.99) discriminative ability to differentiate invasive plant suitable environments from random background locations. Average test area under the receiver operating characteristic curve (AUC) ranged from 0.91 to 0.99, indicating that plant predictive models exhibited high discriminative ability to differentiate suitable environments for invasive plant species from random locations. Omission rates ranged from <1.0 to 18%. We demonstrated that useful models estimating suitable environments for invasive plants may be created with <50 occurrence locations and that reliable modeling using presence-only datasets can be powerful tools for land managers.

  14. Polycyclic aromatic hydrocarbons in the leaves of twelve plant species along an urbanization gradient in Shanghai, China.

    Science.gov (United States)

    Liang, Jing; Fang, Hailan; Zhang, Taolin; Wang, Xingxiang

    2017-04-01

    Plants, particularly their leaves, play an important role in filtering both gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs). However, many studies have focused on the accumulation and adsorption functions of plant leaves, possibly underestimating the effects that plants have on air quality. Therefore, eight tree species from different locations in Shanghai were selected to assess PAH filtering (via adsorption and capture) using washed and unwashed plant leaves. The differences in the total PAH contents in the washed leaves were constant for the different species across the different sampling sites. The PAH levels decreased in the following order: industrial areas > traffic areas > urban areas > background area. The PAH compositions in the different plant leaves were dominated by fluorene (Fle), phenanthrene (Phe), anthracene (Ant), chrysene (Chr), fluoranthene (Flu), and pyrene (Pyr); notably, Phe accounted for 49.4-76.7% of the total PAHs. By comparing the PAH contents in the washed leaves with the PAH contents in the unwashed leaves, Pittosporum tobira (P. tobira), Ginkgo biloba (G. biloba), and Platanus acerifolia (P. acerifolia) were found to be efficient species for adsorbing PAHs, while Osmanthus fragrans (O. fragrans), Magnolia grandiflora (M. grandiflora), and Prunus cerasifera Ehrh. (P. cerasifera Ehrh.) were efficient species for capturing PAHs. The efficiencies of the plant leaves for the removal of PAHs from air occurred in the order of low molecular weight > medium molecular weight > high molecular weight PAHs.

  15. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today.

    Science.gov (United States)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an "abstract" without references, compiled by Charles Darwin from a much longer manuscript entitled "Natural Selection." Here, I summarize the five theories that can be extracted from Darwin's monograph, explain the true meaning of the phrase "struggle for life" (i.e., competition and cooperation), and outline Darwin's original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that "selection only eliminates but is not creative" is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this "Weismann-Schmalhausen principle" with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria

  16. Studies on Total Polyphenols Content and Antioxidant Activity of Methanolic Extracts from Selected Salvia Species

    Directory of Open Access Journals (Sweden)

    Ana Viorica Pop Cuceu

    2015-05-01

    Full Text Available Salvia is one of the largest genera in the family of Labiatae, comprising about 900 species distributed widely throughout the world. Many species of Salvia are commonly used as herbal tea and for food flavoring, as well as in cosmetics, perfumery and in the pharmaceutical industry. The present study compares the antioxidant properties of four methanolic extracts, obtained by two extraction methods, from Salvia elegans, Salvia officinalis Purpurascens, Salvia officinalis Tricolor and Salvia lavandulifolia. The amount of total phenolics was quantified using the Folin-Ciocalteu method, while the antioxidant activity of selected herbs was determined with 1,1-diphenyl-2-picrylhydrazyl (DPPH reagent. The total amount of phenolics was between 1122.50 and 3672.16 mg GAE/100g dry plant for the first methanolic extract, while for the second extract was between 767.66 and 2725.04mg GAE/100g dry plant. A positive linear correlation was observed between total phenolics content and antioxidant activity of the extracts. The results suggested that the extracts of Salvia species, notably Salvia officinalis Tricolor with the highest antioxidant activity, can be used as natural antioxidants in the food industry.

  17. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  18. Screening and antibacterial efficacy of selected Indian medicinal plants

    Institute of Scientific and Technical Information of China (English)

    Suresh Mickymaray; Mohammad Saleh Al Aboody; Pradipta Kumar Rath; Panneerselvam Annamalai; Thajuddin Nooruddin

    2016-01-01

    Objective: To evaluate the antibacterial efficacy of five Indian medicinal plants such as Acalypha indica L.(A. indica), Aerva lanata(L.) Juss. ex Schult.(A. lanata), Clerodendrum inerme(L.) Gaertn., Pergularia daemia(Forsk.) Chiov. and Solanum surattense Burm. f. against opportunistic bacterial pathogens isolated from HIV infected patients for the potential phytoconstituents in plant extracts.Methods: The opportunistic bacterial pathogens such as Escherichia coli(E. coli),Pseudomonas aeruginosa, Salmonella typhi and Serratia marcescens from Gramnegative group and Staphylococcus aureus from Gram-positive group were isolated from HIV infected patients. The antibacterial efficacy of ethanolic extracts of selected medicinal plants was carried out by disc diffusion method. The potential phytoconstituents of medicinal plant extracts were identified by gas chromatography and mass spectrometry(GC–MS) analysis.Results: Among the five medicinal plants tested, A. indica and A. lanata showed the significant antibacterial activity. A. indica showed potential activity against Staphylococcus aureus and E. coli. A. lanata significantly exhibited antibacterial activity against E. coli, Salmonella typhi and Pseudomonas aeruginosa. A total of 19 phytoconstituents were identified in the ethanolic extract of A. indica and A. lanata by GC–MS analysis respectively.Conclusions: The results of the present investigation revealed that A. indica and A. lanata, possessed significant antibacterial activity when compared with the other plant extracts tested. The presence of 3-O-methyl-D-glucose by GC–MS analysis in both A. indica and A. lanata extracts has not been reported elsewhere in the literature and the findings in this study could be the first one to report.

  19. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves.

    Science.gov (United States)

    Wang, Chunjing; Liu, Chengzhu; Wan, Jizhong; Zhang, Zhixiang

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves.

  20. Assessment of Antioxidant Capacity and Cytotoxicity of Selected Malaysian Plants

    Directory of Open Access Journals (Sweden)

    Lai Teng Ling

    2010-03-01

    Full Text Available Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 μg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.

  1. Assessment of antioxidant capacity and cytotoxicity of selected Malaysian plants.

    Science.gov (United States)

    Ling, Lai Teng; Radhakrishnan, Ammu Kutty; Subramaniam, Thavamanithevi; Cheng, Hwee Ming; Palanisamy, Uma D

    2010-03-25

    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.

  2. Together but different: co-occurring dune plant species differ in their water- and nitrogen-use strategies.

    Science.gov (United States)

    Bermúdez, Raimundo; Retuerto, Rubén

    2014-03-01

    Stress factors may severely constrain the range of plant physiological responses in harsh environments. Convergence of traits is expected in coastal dunes because of environmental filtering imposed by severe abiotic factors. However, the wide range of morphological and phenological traits exhibited by coexisting dune species suggests considerable variation in functional traits. We hypothesized that the constraints imposed by structural traits ought to translate into physiological differences. Five dominant species with different morphological traits, but coexisting in a homogeneous dune area in Northwest Spain, were selected for study. Soil characteristics and leaf functional traits were measured in April, June and November 2008. Integrated water-use efficiency (assessed by C isotope discrimination) and N acquisition and use strategies (estimated by N isotope composition) varied significantly among species and the differences changed over time. Species differences in specific leaf area, relative water content, leaf N and C:N ratio, also varied over time. The species differed in stomatal density but not in soil characteristics, with the exception of pH. Species differences in functional traits related to the use of resources suggest species niche segregation. Species-specific temporal effects on the use of these resources support temporal niche differentiation. Somewhat in contrast to the findings of previous studies on harsh environments, this study revealed a considerable level of functional diversity and complexity, suggesting that dune plant species have evolved species-specific strategies to survive by partitioning growth-limiting resources.

  3. Carbon Sequestration in Tropical and Subtropical Plant Species in Collaborative and Community Forests of Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar Mandal

    2016-01-01

    Full Text Available Different plant species have different capacity of carbon sequestration but it is not assessed yet in Nepal. Therefore, this study was done to assess the species-wise carbon sequestration in two periods in forests. Three collaborative and three community forests were selected for the study. The selected forests were surveyed using GPS and mapped and stratified into tree, pole, and regeneration. Specifically 32, 33, and 31 samples were collected from Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibash collaborative forests, respectively, while 30, 25, and 22 samples were collected from Chureparwati, Buddha, and Chyandanda community forests correspondingly. The sample plots were of 25 m × 20 m for tree strata. The diameter and height of plants were measured and samples were collected for three consecutive years. The estimated carbon stock of Shorea robusta was the highest 35.93 t ha−1 in 2011 which was slightly decreased to 34.43 t ha−1 in 2012 and reached 32.02 t ha−1 in 2013 in Banke-Maraha collaborative forest but it was the least 7.97, 8.92, and 10.29 t ha−1 in 2011, 2012, and 2013, respectively, in Chyandanda community forest. The highest carbon sequestration was recorded about 5.02 t ha−1 of Shorea robusta in Chyandanda community forest in between t2013 and t2012.

  4. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  5. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation. Udgivelsesdato: 2002...

  6. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  7. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Maharaj Rajendra

    2012-09-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol (1:1, methanol and purified water of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo, an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.

  8. Application of Delphi method in site selection of desalination plants

    Directory of Open Access Journals (Sweden)

    M. Sepehr

    2017-12-01

    Full Text Available Given the reduced freshwater supplies across the world, seawater desalination is one of the appropriate methods available for producing freshwater. Selecting an optimal location is crucial in the installation of these plants owing to the environmental problems they cause. The present study was conducted to identify optimal locations for installing desalination Plants in the coastal areas of southern Iran (Hormozgan Province with application of Delphi method. To implement this technique and identify, screen and prioritize effective criteria and sub-criteria, ten experts were surveyed through questionnaires and eight criteria and 18 sub-criteria were identified. All these sub-criteria were evaluated and classified in ArcGIS into five classes as input layers. The maps were then integrated based on the modulation importance coefficient and the identified priorities using a linear Delphi model and the final map was reclassified into five categories. Environmentally sensitive areas and seawater quality were respectively the criterion and sub-criterion that received the highest importance. After combining the layers and obtaining the final map, 63 locations were identified for installing desalination plants in the coastal areas on the Persian Gulf and Oman Sea in Hormozgan Province.  At the end, 27 locations were high important and had optimal environmental conditions for establishing desalination plants. Of the 27 locations, six were located in the coastal area of the Oman Sea, one in the coastal area of the Strait of Hormuz and 20 others in the coastal area of the Persian Gulf.

  9. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide.

    Science.gov (United States)

    Bellemain, Eva; Zedrosser, Andreas; Manel, Stéphanie; Waits, Lisette P; Taberlet, Pierre; Swenson, Jon E

    2006-02-07

    Because of differential investment in gametes between sexes, females tend to be the more selective sex. Based on this concept, we investigate mate selection in a large carnivore: the brown bear (Ursus arctos). We hypothesize that, in this species with sexually selected infanticide (SSI), females may be faced with a dilemma: either select a high-quality partner based on phenotypic criteria, as suggested by theories of mate choice, or rather mate with future potentially infanticidal males as a counter-strategy to SSI. We evaluated which male characteristics were important in paternity assignment. Among males available in the vicinity of the females, the largest, most heterozygous and less inbred and also the geographically closest males were more often the fathers of the female's next litter. We suggest that female brown bears may select the closest males as a counter-strategy to infanticide and exercise a post-copulatory cryptic choice, based on physical attributes, such as a large body size, reflecting male genetic quality. However, male-male competition either in the form of fighting before copulation or during the post-copulatory phase, in the form of sperm competition, cannot entirely be ruled out.

  10. Study of Selection of Shrub and Grass Species for Protection of Slope Plants of Unconsolidated Deposits of Hydropower Station%水电站渣场松散堆积物边坡植物措施防治灌草种选择研究

    Institute of Scientific and Technical Information of China (English)

    王智慧; 王石贵

    2014-01-01

    The selection of plant species is key to plant protection measures of the slope land , and should be considered from the aspects of ecological adaptability ,integrated functionality ,resistance and so on .Taking the slag field with open cut and hole cut in Jin'anqiao Hydropower Station for an example , this article determines the appropriate shrubs and grasses through the analysis of vegetation and adaptability of shrubs and grasses .The results of shrub and grass seeds planting germination experiment show that the highest natural germination rate among the ten kinds of selected shrub and grass seeds in the test is tall fescue ,accounting for 80 .89% ,and except Pyracantha fortuneana ,the natural germination rate of the other nine shrubs are higher than 75% .As the hole cut has too much abandon stone ,the survival rate of the shrub and grass seeds is less than 30% ,and the hole cut should be covered with soil before taking the plant measures .The gerination rates of shrub and grass seeds in the open cut and spoil overburden are higher than 60% and there are five kinds of shrub and grass seeds which preserving rates of 56d seedlings are higher than 60% ,including Festuca rubra Linn ,T rifolium repens Linn .,Lolium perenne L .,Festuca elate Keng and Trifolium repens Linn .,and also ,after 6 months of planting ,they have good growing height . Therefore ,these five kinds of shrubs and grass can meet the requirements of slope protection .%指出了植物品种选择是工程边坡植物防护措施关键,应从生态适应性、功能综合性、抗逆性等方面考虑选择。以金安桥水电站同时具有明挖和洞挖弃渣的渣场为研究对象,通过植被分析及灌草种适应性分析确定了适宜灌草种。灌草种发芽播种实验结果表明:选择的10种参试灌草种自然发芽率最高的为高羊茅80.89%,除火棘外其余9种灌草种自然发芽率均大于75%;洞挖弃渣块石过多,灌草种保存率均低于30%

  11. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    Science.gov (United States)

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  12. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    Science.gov (United States)

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  13. Selection and Assessment of Plant Growth-Promoting Rhizobacteria for Biological Control of Multiple Plant Diseases.

    Science.gov (United States)

    Liu, Ke; Newman, Molli; McInroy, John A; Hu, Chia-Hui; Kloepper, Joseph W

    2017-08-01

    A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.

  14. Fruit Plants Species along Corridor in Kopendukuh Village as a Resource for Rural Tourism Development

    Directory of Open Access Journals (Sweden)

    Widya Kristiyanti Putri

    2015-02-01

    Full Text Available This research aims to identify fruit plants species which is potential for tourism attraction, spatially describes fruit plants distribution and identify local people’s response for fruit plants as tourims attraction in Kopendukuh village, Banyuwangi. Survey was done along the villages corridors. The fruit plant species along corridors was identified and mapped using GPS. Furthermore, semi-structural interview was used to gain informations of local people response about fruit plants as tourism attraction. There were about 18 species and 162 individuals were found along corridor of Kopendukuh village. Fruit plants always found in local home gardens along rural corridor. Local peoples argue that fruit planst s important for numerous purposes. Local people support tourism development in rural area which based on the fruit plants richness (i.e. agrotourism. Keywords: fruit plants, mapping, corridor, rural tourism.

  15. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  16. Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

    Directory of Open Access Journals (Sweden)

    Christin Zachow

    2013-11-01

    Full Text Available Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

  17. The dominance of introduced plant species in the diets of migratory Galapagos tortoises increases with elevation on a human-occupied island

    Science.gov (United States)

    Blake, Stephen; Guézou, Anne; Deem, Sharon L.; Yackulic, Charles B.; Cabrera, Fredy

    2015-01-01

    The distribution of resources and food selection are fundamental to the ecology, life history, physiology, population dynamics, and conservation of animals. Introduced plants are changing foraging dynamics of herbivores in many ecosystems often with unknown consequences. Galapagos tortoises, like many herbivores, undertake migrations along elevation gradients driven by variability in vegetation productivity which take them into upland areas dominated by introduced plants. We sought to characterize diet composition of two species of Galapagos tortoises, focussing on how the role of introduced forage species changes over space and the implications for tortoise conservation. We quantified the distribution of tortoises with elevation using GPS telemetry. Along the elevation gradient, we quantified the abundance of introduced and native plant species, estimated diet composition by recording foods consumed by tortoises, and assessed tortoise physical condition from body weights and blood parameter values. Tortoises ranged between 0 and 429 m in elevation over which they consumed at least 64 plant species from 26 families, 44 percent of which were introduced species. Cover of introduced species and the proportion of introduced species in tortoise diets increased with elevation. Introduced species were positively selected for by tortoises at all elevations. Tortoise physical condition was either consistent or increased with elevation at the least biologically productive season on Galapagos. Santa Cruz tortoises are generalist herbivores that have adapted their feeding behavior to consume many introduced plant species that has likely made a positive contribution to tortoise nutrition. Some transformed habitats that contain an abundance of introduced forage species are compatible with tortoise conservation.

  18. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  19. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  20. Rock climbing alters plant species composition, cover, and richness in Mediterranean limestone cliffs.

    Science.gov (United States)

    Lorite, Juan; Serrano, Fabio; Lorenzo, Adrián; Cañadas, Eva M; Ballesteros, Miguel; Peñas, Julio

    2017-01-01

    Rock climbing is among the outdoor activities that have undergone the highest growth since the second half of the 20th century. As a result, cliff habitats, historically one of the least disturbed by human colonization worldwide, are facing more intense human pressure than ever before. However, there is little data on the impact of this activity in plant-communities, and such information is indispensable for adequate manager decision-making. The goal of this study was to determine the impact of rock climbing on plant communities in terms of cover, richness, and composition in relation to climbing intensity on typical Mediterranean limestone cliffs. Three rock-climbing sites were selected in the Baetic range (SE Spain), corresponding to qualitative categories of climbing frequentation: i)"low" (low frequentation with intermittent climbing), ii)"medium" (high frequentation without overcrowding), and iii) "high" (high frequentation with overcrowding). Within each site, we selected climbing routes and adjacent areas free of climbing, then we carried out a photoplot-based sampling by rappelling. We analysed the images to calculate: richness, species cover, and total cover. This study shows that rock climbing negatively affected the cliff plant community at all three study sites. A significant decrease in plant cover, species richness and a shift in the community composition were recorded for climbed areas, the cover being the variable most sensitive to rock climbing. Impact observed proved to be related to the frequentation level. Low-frequentation sites, with usually more specialized climbers, underwent relatively mild damages, whereas at high frequentation sites the impact was severe and the conservation of the species, especially rare ones, became jeopardized. Our study is the first one available to investigate climbing impact on plant communities in Mediterranean areas, but more research on the impact of rock climbing is needed to assess the regulation of this

  1. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  2. Antibacterial activity of some selected medicinal plants of Pakistan

    Directory of Open Access Journals (Sweden)

    Chaudhary Fayyaz M

    2011-06-01

    Full Text Available Abstract Background Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds. Methods The crude extracts and fractions of six medicinal important plants (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, Pistacia integerrima, Aesculus indica, and Toona ciliata were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method. Results The crude extract of P. integerrima and A. indica were active against all tested bacterial strains (12-23 mm zone of inhibition. Other four plant's crude extracts (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, and Toona ciliata were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of A. indica and P. integerrima crude extract showed maximum activity (19.66 and 16 mm, respectively against B. subtilis, while the chloroform fractions of T. ciliata and D. salicifolia presented good antibacterial activities (13-17 mm zone of inhibition against all the bacterial cultures tested. Conclusion The methanol fraction of Pistacia integerrima, chloroform fractions of Debregeasia salicifolia &Toona ciliata and aqueous fraction of Aesculus indica are suitable candidates for the development of novel antibacterial compounds.

  3. Body temperatures of selected amphibian and reptile species.

    Science.gov (United States)

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  4. Keeping the golden mean: plant stiffness and anatomy as proximal factors driving endophytic oviposition site selection in a dragonfly.

    Science.gov (United States)

    Matushkina, Natalia; Lambret, Philippe; Gorb, Stanislav

    2016-12-01

    Oviposition site selection is a crucial component of habitat selection in dragonflies. The presence of appropriate oviposition plants at breeding waters is considered to be one of the key habitat determinants for species laying eggs endophytically. Thus, Lestes macrostigma, a species which is regarded as threatened in Europe because of its highly disjunct distribution, typically prefers to lay eggs in the sea club rush Bolboschoenus maritimus. However, little is known about how the anatomical and mechanical properties of plant tissues determine the choice of L. macrostigma females. We examined green shoots of six plant species used by L. macrostigma for oviposition, either in the field (actual oviposition plants) or under experimental conditions (potential oviposition plants), to analyse anatomical and mechanical properties of shoots in a framework of known preferences regarding plant substrates for oviposition. As expected, the anatomy of shoots differed between representatives of two plant families, Cyperaceae and Juncaceae, most essentially in the distribution of supporting bundles and the presence of large aeriferous cavities that may affect egg placing within a shoot. The force necessary to puncture the tested plant samples ranged from 360 to 3298 mN, and their local stiffness ranged from 777 to 3363N/m. We show that the shoots of B. maritimus, the plant most preferred by L. macrostigma, have intermediate characteristics regarding both the stiffness and specific anatomical characteristics. The bending stiffness of the ovipositor in L. macrostigma was estimated as 1414N/m, one of the highest values recorded for zygopteran dragonflies so far. The ecological and behavioural implications of plant choice mechanisms in L. macrostigma are discussed in the context of the disjunct distribution of this species.

  5. Desert tortoises (Gopherus agassizii) are selective herbivores that track the flowering phenology of their preferred food plants.

    Science.gov (United States)

    Jennings, W Bryan; Berry, Kristin H

    2015-01-01

    Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants--including several frequently eaten species--were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter

  6. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes.

    Science.gov (United States)

    Kuhn, Emilien; Lenoir, Jonathan; Piedallu, Christian; Gégout, Jean-Claude

    2016-06-01

    Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950-2000 and 2061-2080 periods) at the European scale and (ii) under contemporary climate change (between 1914-1987 and 1997-2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation-plot database covering the entire French territory over 100 years (1914-2013) and found an average decrease in frequency (-0.01 ± 0.004) in lowland areas for the 97 submountainous species - corresponding to a loss of 6% of their historical frequency - along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate-induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes.

  7. INHIBITION OF HSV-1 MULTIPLICATION BY FIVE SPECIES OF MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Maliheh Farahani

    2013-08-01

    Full Text Available Medicinal plants have been traditionally used for different kinds of ailments including infectious diseases. As viral resistance to available chemical drugs causes problems in the treatment of herpes simplex virus type 1 infection, there is an evolving need for new antiherpes drugs. Therefore in the present study 5 species of medicinal plants with ethno-medical background were screened for antiherpes effect against HSV-1in Hep-2(Human epithelial type 2 cells. Different parts of the plants were collected and aqueous extract of them were prepared. These extracts were screened for their cytotoxicity against Hep-2 cell line by cytopathic effect (CPE assay at concentrations 50-1000 μg/ml. Antiherpes properties of the extracts were determined by cytopathic effect inhibition assay. Four plants extract; Thymus kotschyanus, Echinacea purpurea, Camellia sinensis and Echium amoenum L exhibited significant antiherpes effect against HSV-1 at nontoxic concentrations to the cell lines used. The extracts of Thymus kotschyanus and Camellia sinensis showed highest antiherpes activity against HSV-1 at most concentrations. Our findings indicated that Camellia sinensis extract has inhibit HSV-1 multiplication at concentrations 50-1000 μg/ml while this figure for Thymus kotschyanus is 100-800 μg/ml and for Echinacea purpurea and Echium amoenum L are >400 μg/ml. Four plants extract of assay exhibited significant antiherpes activity at a concentration nontoxic to the cell line used. EC50 of Camellia sinensis extract was best sample and findings showed Camellia sinensis has most selectivity indices. Further research is needed to elucidate the active constituents of these plants which may be useful in the development of new antiviral drugs.

  8. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  9. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  10. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by fi

  11. 78 FR 47582 - Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner...

    Science.gov (United States)

    2013-08-06

    ... Fish and Wildlife Service 50 CFR Part 17 RIN 1018-AY55 Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner and Smalleye Shiner AGENCY: Fish and Wildlife Service... procedures for adding species to the Federal Lists of Endangered and Threatened Wildlife and Plants....

  12. The occurrence of alien plant species in field margins in Finland

    OpenAIRE

    Jauni, Miia; Hyvönen, Terho

    2009-01-01

    The results suggest that alien plant species comprise an important part of the biodiversity of Finnish field margins and semi-natural agricultural habitats. The role of field margins as dispersal corridors for invasive alien plants is limited for certain species.

  13. Influence of plant species on population dynamics, genotypic diversity and antibiotic production by indigenous Pseudomonas spp

    NARCIS (Netherlands)

    Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M.

    2005-01-01

    The population dynamics, genotypic diversity and activity of naturally-occurring 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. was investigated for four plant species (wheat, sugar beet, potato, lily) grown in two different soils. All four plant species tested, except lily and in some

  14. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by

  15. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log-tran...

  16. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    Directory of Open Access Journals (Sweden)

    Franziska Humair

    Full Text Available Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625 to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  17. Altitudinal Pattern of Plant Species Diversity in Shennongjia Mountains, Central China

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming ZHAO; Wei-Lie CHEN; Zi-Qiang TIAN; Zong-Qiang XIE

    2005-01-01

    One hundred and sixty plots, approximately every 100 m above sea level (a.s.l.) along an altitudinal gradient from 470 to 3 080 m a.s.l, at the southern and northern watershed of Mt. Shennongjia,China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the "mid-altitude bulge" was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1 500 m a.s.l.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.l. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt.Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a

  18. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  19. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Science.gov (United States)

    Choe, Hyeyeong; Thorne, James H; Seo, Changwan

    2016-01-01

    Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the threshold and scale

  20. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  1. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  2. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Directory of Open Access Journals (Sweden)

    Krimat Soumia

    2014-06-01

    Full Text Available Objective: To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods: Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results: The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03% to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL, while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity in β-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions: The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  3. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Institute of Scientific and Technical Information of China (English)

    Krimat Soumia; Dob Tahar; Lamari Lynda; Boumeridja Saida; Chelghoum Chabane; Metidji Hafidha

    2014-01-01

    Objective:To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods:Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results:The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03%to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL), while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity inβ-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions:The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  4. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings.

    Science.gov (United States)

    Shi, Xiang; Zhang, Xiaolei; Chen, Guangcai; Chen, Yitai; Wang, Ling; Shan, Xiaoquan

    2011-01-01

    A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn. var. simplicifolia Cham, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species (Sesbania cannabina Pers) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn tailings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92-1.01), while S. cannabina had a moderate TI of 0.65-0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15-0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.

  5. Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study.

    Directory of Open Access Journals (Sweden)

    Tawde K. V

    2012-10-01

    Full Text Available Objective: To evaluate different solvent extracts of selected Indian traditional medicinal plant against Mycobacterium tuberculosis, its antioxidant potential and cytotoxicity. Methods: Acacia catechu (L. Willd (Root extract and Ailanthus excelsa Roxb., leaf extracts of Aegle marmelos Corr., Andrographis paniculata Nees. and Datura metel L. were sequentially extracted in water, ethanol, chloroform and hexane and evaluated for their anti-tuberculosis (TB activity against Mycobacterium tuberculosis using agar diffusion assay. The zone of inhibition ( at 20 and 40 mg/ ml was measured and MIC were calculated. The results were compared with Rifampicin as a standard anti TB drug. The extracts were also evaluated for DPPH and OH radical scavenging activities to understand their antioxidant potential. MTT based cytotoxicity assay was used for evaluating cytotoxicity of the selected samples against Chang liver cells. Results: The selected botanicals were sequentially extracted in water, ethanol, chloroform and hexane and tested for growth inhibition of M. tuberculosi. The hexane extract of A. catechu root and ethanol extract of A. paniculata leaf showed promising activity against M. tuberculosis while remaining extracts showed moderate anti TB activity. The samples were found to possess considerable DPPH and OH radical scavenging activities with no demonstrable cytotoxicity against Chang liver cells. Conclusions: Five traditional medicinal plants were selected for the present study. The selection of medicinal plants was based on their traditional usage for the treatment of tuberculosis, asthma and chronic respiratory diseases. Herein we report for the first time, the anti TB activity of root extracts of Acacia catechu and Ailanthus excelsa while leaf extract of Andrographis paniculata, Aegle marmelos and Datura metel. The study holds importance in the midst of multi drug resistance (MDR crisis in the TB management, since it unravels the scientific basis

  6. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis.

    Science.gov (United States)

    Douda, Jan; Doudová-Kochánková, Jana; Boublík, Karel; Drašnarová, Alena

    2012-06-01

    It has been suggested that a heterogeneous environment enhances species richness and allows for the coexistence of species. However, there is increasing evidence that environmental heterogeneity can have no effect or even a negative effect on plant species richness and plant coexistence at a local scale. We examined whether plant species richness increases with local heterogeneity in the water table depth, microtopography, pH and light availability in a swamp forest community at three local spatial scales (grain: 0.6, 1.2 and 11.4 m). We also used the variance partitioning approach to assess the relative contributions of niche-based and other spatial processes to species occurrence. We found that heterogeneity in microtopography and light availability positively correlated with species richness, in accordance with the habitat heterogeneity hypothesis. However, we recorded different heterogeneity-diversity relationships for particular functional species groups. An increase in the richness of bryophytes and woody plant species was generally related to habitat heterogeneity at all measured spatial scales, whereas a low impact on herbaceous species richness was recorded only at the 11.4 m scale. The distribution of herbaceous plants was primarily explained by other spatial processes, such as dispersal, in contrast to the occurrence of bryophytes, which was better explained by environmental factors. Our results suggest that both niche-based and other spatial processes are important determinants of the plant composition and species turnover at local spatial scales in swamp forests.

  7. Moose as a vector for non-indigenous plant species in Alaska

    Science.gov (United States)

    White sweetclover and narrowleaf hawksbeard are non-indigenous invasive plant species in Alaska that are rapidly spreading, including into areas that are otherwise free of non-indigenous plants. There has been concern that native moose could be dispersing viable seed from these plants after ingestio...

  8. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native co

  9. Rhizosphere microbial community and its response to plant species and soil history

    NARCIS (Netherlands)

    Garbeva, P.V.; van Elsas, J.D.; Van Veen, J.A.

    2008-01-01

    The plant rhizosphere is a dynamic environment in which many parameters may influence the population structure, diversity and activity of the microbial community. Two important factors determining the structure of microbial community present in the vicinity of plant roots are plant species and soil

  10. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Science.gov (United States)

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed.

  11. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts

    Science.gov (United States)

    Nguta, Joseph M.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yeboah-Manu, Dorothy; Addo, Phyllis G.A.; Otchere, Isaac; Kissi-Twum, Abena

    2016-01-01

    Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. PMID:26875647

  12. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts.

    Science.gov (United States)

    Nguta, Joseph M; Appiah-Opong, Regina; Nyarko, Alexander K; Yeboah-Manu, Dorothy; Addo, Phyllis G A; Otchere, Isaac; Kissi-Twum, Abena

    2016-04-22

    Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Phytoremediation potentials of selected tropical plants for ethidium bromide.

    Science.gov (United States)

    Uera, Raynato B; Paz-Alberto, Annie Melinda; Sigua, Gilbert C

    2007-11-01

    Research and development has its own benefits and inconveniences. One of the inconveniences is the generation of enormous quantity of diverse toxic and hazardous wastes and its eventual contamination to soil and groundwater resources. Ethidium bromide (EtBr) is one of the commonly used substances in molecular biology experiments. It is highly mutagenic and moderately toxic substance used in DNA-staining during electrophoresis. Interest in phytoremediation as a method to solve chemical contamination has been growing rapidly in recent years. The technology has been utilized to clean up soil and groundwater from heavy metals and other toxic organic compounds in many countries like the United States, Russia, and most of European countries. Phytoremediation requires somewhat limited resources and very useful in treating wide variety of environmental contaminants. This study aimed to assess the potential of selected tropical plants as phytoremediators of EtBr. This study used tomato (Solanum lycopersicum), mustard (Brassica alba), vetivergrass (Vetiveria zizanioedes), cogongrass (Imperata cylindrica), carabaograss (Paspalum conjugatum), and talahib (Saccharum spontaneum) to remove EtBr from laboratory wastes. The six tropical plants were planted in individual plastic bags containing soil and 10% EtBr-stained agarose gel. The plants were allowed to establish and grow in soil for 30 days. Ethidium bromide content of the test plants and the soil were analyzed before and after soil treatment. Ethidium bromide contents of the plants and soils were analyzed using an UV VIS spectrophotometer. Results showed a highly significant (psoils. Mustard registered the highest absorption of EtBr (1.4+/-0.12 microg kg(-1)) followed by tomato and vetivergrass with average uptake of 1.0+/-0.23 and 0.7+/-0.17 microg kg(-1) EtBr, respectively. Cogongrass, talahib, and carabaograss had the least amount of EtBr absorbed (0.2+/-0.6 microg kg(-1)). Ethidium bromide content of soil planted to

  14. Selection and characterization of tomato plants for osmotic stress tolerance derived from a gamma ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kwon Kyoo; Jung, Yu Jin [Hankyong National University, Anseong (Korea, Republic of)

    2010-09-15

    The present study has been performed to select the osmotic tolerant lines using polyethylene glycol (PEG 6000)through an in vitro and in vivo mutagensis with a gamma-ray. During the screening, we selected three mutant lines that seemed to confer elevated osmotic tolerance in high concentrations of PEG 6000. Fruits of these mutants (Os-HK101, Os-HK102 and Os-HK103) were those of the wild type. Also the chlorophyll contents were few decreased more in the three mutant lines than the WT plants. Our results suggest that the Os-HK101 is characterized as osmotic stress tolerance considering the sugar concentration and lycopine content. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected osmotic resistant lines.

  15. Beyond Arabidopsis: the circadian clock in non-model plant species.

    Science.gov (United States)

    McClung, C Robertson

    2013-05-01

    Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Plant Species Richness and Nitrogen Deposition can Alter Microbial Assimilation of New Photosynthate

    Science.gov (United States)

    Chung, H.; Zak, D.; Reich, P.

    2009-12-01

    Microbial assimilation of recent photosynthate was analyzed in a 6-year-long field experiment to determine how plant species richness impacts microbial metabolism of new photosynthate, and how this may be modified by atmospheric N deposition. Our study was conducted at the BioCON (Biodiversity, CO2, and Nitrogen) FACE (Free-Air Carbon dioxide Enrichment) experiment located at the Cedar Creek Natural History area in Minnesota, USA. In this experiment, plant species richness, atmospheric N deposition, and atmospheric CO2 concentration were manipulated in concert. The depleted δ13C of fumigation CO2 enabled us to investigate the effect of plant species richness and atmospheric N deposition on the metabolism of soil microbial communities in the elevated CO2 treatment. We determined the δ13C of bacterial, actinobacterial, and fungal phospholipid fatty acids (PLFA). In the elevated CO2 conditions of this study, the δ13C of bacterial PLFAs (i15:0, i16:0, 16:1ω7c, 16:1ω9c, 10Me16:0, and 10Me18:0) and the fungal PLFA 18:1ω9c was significantly lower in species-rich plant communities than in species-poor plant communities, indicating that microbial incorporation of new C increased with plant species richness. Despite an increase in plant production, total PLFA decreased under N deposition by 27%. Moreover, N deposition also decreased fungal relative abundance in species-rich plant communities. In our study, plant species richness directly increased microbial incorporation of new photosynthate, providing a mechanistic link between greater plant detritus production in species-rich plant communities and larger and more active soil microbial community.

  17. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  18. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    Science.gov (United States)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of

  19. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  20. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...... consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5.  Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each...

  1. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants

    Science.gov (United States)

    Li, Zhen; Van de Peer, Yves; Ingvarsson, Pär K.

    2017-01-01

    Abstract The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes. PMID:28333233

  2. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria.

    Science.gov (United States)

    Wissuwa, Janet; Salamon, Jörg-Alfred; Frank, Thomas

    2012-07-01

    Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina and Uropodina) were investigated in nine grassy arable fallows according to a factorial design with age class (2-3, 6-8, 12-15 years) and plant species (legume: Medicago sativa, herb: Taraxacum officinale, grass: Bromus sterilis) as factors. The response of Mesostigmata to habitat age and plant species was explored because this group belongs to the dominant acarine predators playing a crucial role in soil food webs and being important as biological control agents. To our knowledge, this combination of factors has never been studied before for Mesostigmata. A further rarely applied aspect of the present study is the micro-scale approach investigating the Mesostigmata assemblage of the soil associated with single plants. Four plots were randomly chosen at each fallow in May 2008. At each plot plant roots and the adjacent soil of five randomly selected plant individuals per plant species were dug out with steel cylinders for heat extraction of soil fauna and measurement of environmental parameters. In total, 83 mite taxa were identified, with 50 taxa being new to Austria. GLM analysis revealed a significant effect of plant species on mite density, with significantly more mites in B. sterilis than in T. officinale samples, and M. sativa samples being intermediate. This was in contrast to the assumption that the mite density is highest in M. sativa samples due to the propagation of plant quality effects to higher trophic levels. These results were probably caused by a higher amount of fine roots in grass samples leading to high densities of Collembola, which are preferred prey of predatory mites. Mite density did not significantly differ between the three age classes. A canonical analysis of principal coordinates (CAP) showed that the mite assemblage exhibited a weak yet significant separation between plant species, and a highly significant separation between age classes. Accordingly

  3. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  4. Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae).

    Science.gov (United States)

    Weingartner, E; Wahlberg, N; Nylin, S

    2006-03-01

    The ability of insects to utilize different host plants has been suggested to be a dynamic and transient phase. During or after this phase, species can shift to novel host plants or respecialize on ancestral ones. Expanding the range of host plants might also be a factor leading to higher levels of net speciation rates. In this paper, we have studied the possible importance of host plant range for diversification in the genus Polygonia (Nymphalidae, Nymphalini). We have compared species richness between sistergroups in order to find out if there are any differences in number of species between clades including species that utilize only the ancestral host plants ('urticalean rosids') and their sisterclades with a broader (or in some cases potentially broader) host plant repertoire. Four comparisons could be made, and although these are not all phylogenetically or statistically independent, all showed clades including butterfly species using other or additional host plants than the urticalean rosids to be more species-rich than their sisterclade restricted to the ancestral host plants. These results are consistent with the theory that expansions in host plant range are involved in the process of diversification in butterflies and other phytophagous insects, in line with the general theory that plasticity may drive speciation.

  5. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  6. Concentrations and Soil-To-Plant Transfer Factor of Selenium in Soil and Plant Species from an Arid Area

    Science.gov (United States)

    Sakizadeh, Mohamad; Mehrabi Sharafabadi, Fatemeh; Shayegan, Eshagh; Ghorbani, Hadi

    2016-10-01

    The concentration of selenium in 97 plants related to seven different species and the associated soil samples was considered in an arid area in the central part of Iran. The mean of Se in the soil samples varied from 0.17 to 0.43 mgkg-1 which is within the worldwide range. There was a highly significant correlation (r=0.688, pfruit) were higher than stem/stalk implying the facile translocation of this element in the considered plant species. The higher than one bio concentration factors (BCFs) of selenium for the chives, spindle tree and wheat is indicative of high phytoremediation potential for these plants.

  7. 77 FR 63927 - Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered...

    Science.gov (United States)

    2012-10-17

    ... and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered and Designating... 17 RIN 1018-AY09 Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island... previously listed plant species. Isodendrion pyrifolium, listed as an endangered species on March 4, 1994...

  8. Species Diversity in Northern California Salt Marshes: Functional Significance of Parasitic Plant Interactions

    OpenAIRE

    Grewell, Brenda J.

    2004-01-01

    I studied how parasitic plant interactions contribute to species coexistence in tidal wetlands of northern California. First, I address the effects of the native parasite Cuscuta salina on species interactions and plant community structure, showed that Cuscuta is restricted to nutrient poor areas with significant canopy gaps and high species diversity. I examined timing, level, and frequency of host infectivity and identified Plantago maritima as the primary host. I experimentally removed Cus...

  9. The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland.

    Science.gov (United States)

    Dostálek, Tomáš; Pánková, Hana; Münzbergová, Zuzana; Rydlová, Jana

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are expected to be one of the key drivers determining the diversity of natural plant communities, especially in nutrient-poor and dry habitats. Several previous studies have explored the importance of AMF for the composition of plant communities in various types of habitats. Surprisingly, studies of the role of AMF in nutrient-poor dry grassland communities dominated by less mycotrophic plant species are still relatively rare. We present the results of a 3-year study in which a plant community in a species-rich dry grassland was subjected to the fungicide carbendazim to suppress AMF colonization. We tested the effect of the fungicide on the following parameters: the plant species composition; the number of plant species; the cover of the rare, highly mycorrhiza-dependent species Aster amellus; the cover of the dominant, less mycorrhiza-dependent species Brachypodium pinnatum; and the cover of graminoids and perennial forbs. In addition, we examined the mycorrhizal inoculation potential of the soil. We found that the suppression of AMF with fungicide resulted in substantial changes in plant species composition and significant decrease in species richness, the cover of A. amellus and the cover of perennial forbs. In contrast the species increasing their cover after fungicide application were graminoids--the C3 grasses B. pinnatum and Bromus erectus and the sedge Carex flacca. These species appear to be less mycorrhiza dependent. Moreover, due to their clonal growth and efficient nutrient usage, they are, most likely, better competitors than perennial forbs under fungicide application. Our results thus suggest that AMF are an essential part of the soil communities supporting a high diversity of plant species in species-rich dry grasslands in nutrient-poor habitats. The AMF are especially important for the maintenance of the populations of perennial forbs, many of which are rare and endangered in the area.

  10. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between org