WorldWideScience

Sample records for plant species radiations

  1. Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace

    International Nuclear Information System (INIS)

    Karimullina, Elina; Antonova, Elena; Pozolotina, Vera

    2013-01-01

    The East-Ural Radioactive Trace (EURT) is a result of the Mayak Production Association accident that occurred in 1957 in Russia. Radiological assessment improves the interpretation of biological effects of exposure to ionizing radiation. Therefore a modeling approach was used to estimate dose rates on Leonurus quinquelobatus, Silene latifolia, Stellaria graminea and Bromus inermis. Soil-to-organism transfer parameter values are delivered from empirical data of 90 Sr and 137 Cs soil and vegetative plant mass activity concentrations. External and internal whole-body dose rates were calculated using deterministic (The ERICA Tool-Tier 2 and R and D 128/SP1a) and probabilistic (The ERICA Tool-Tier 3) methods. The total dose rate for herbs was under 100 μGy h −1 at the most polluted site. The total absorbed dose rates increased 43–110 times (Tier 3) for different herbaceous plant species along the pollution gradient. Based on these data, it can be concluded that herbaceous plant populations currently exist under low-level chronic exposure at the EURT area. -- Highlights: • A modeling approach (The ERICA Tool-Tier 2, Tier 3 and R and D 128/SP1a) was used to estimate dose rates for herbs growing in the wild at the East-Ural Radioactive Trace. • The highest levels of anthropogenic radiation exposure were determined for herbs at Impact EURT sites. • Total absorbed dose rates increased 43–110 times (Tier 3) for different herbaceous plant species along the pollution gradient. • Total dose rate per plant organism for herbs is under 100 μGy h −1 at the most polluted site. Currently herbaceous plant populations exist under low-level chronic exposure at the EURT area

  2. The effect of solar UV radiation of four plant species occurring in a coastal grassland vegetation in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Tosserams, M.; Rozema, J. [Vrije Univ., Dept. of Ecology and Ecotoxicology, Amsterdam (Netherlands); Pais, A. de Sa [Univ. de Tras-os-Montes e Alto Douro, Vila Real (Portugal)

    1996-09-01

    During the summer of 1992, growth and some physiological parameters of four native plant species occurring in a coastal grassland in The Netherlands, were studied after reduction of solar UV irradiance using different cut-off filters. Biomass production, morphology and photosynthesis of all species tested were unaffected by the different treatments. Litter production of Plantago lanceolata was increased in the absence of the total UV waveband, indicating a possible role for this waveband in plant senescence. Depletion of the total UV waveband from sunlight resulted in alterations in biomass allocation in Calamagrostis epigeios and Urtica dioica while no changes were observed in P. lanceolatata and Verbascum thapsus. In C. epigeios and increase in the specific leaf area was observed, whereas in U. dioica root weight per total plant weight was decreased resulting in an increase in the shoot/root ratio. Both photosynthetic and UV-absorbing pigment concentrations were altered by the different filter applications. When compared to control plants receiving full sunlight, depletion of UV-B resulted in a significant increase in chlorophyll concentration in U. dioica leaves, this however did not affect photosynthetic rate. The presence of UV-B radiation enhanced the UV-absorbance of leaf extract of all species except P. lanceolata. Optical characteristics of the leaves were also changed. Both the quantity (P. lanceolata and U. dioica) and the quality (all species) of radiation transmitted by the leaves was affected by the different treatments. (au) 44 refs.

  3. A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation

    International Nuclear Information System (INIS)

    Morgan, D.C.; Smith, H.

    1979-01-01

    A survey of the responsiveness of plant species, typical of open and shade habitats, to simulated natural shade-light quality (i.e. white light plus supplementary far-red) has demonstrated a systematic relationship between habitat and certain developmental responses. Supplementary far-red light has a much greater effect on stem extension rate, petiole length, and leaf dry weight:stem dry weight ratio of the open habitat, shade-intolerant species. Far-red effects on leaf chlorophyll content show no such systematic grading. These results are discussed in relation to habitat adaptation. In most cases, the relationship between developmental response and the estimated phytochrome photoequilibrium, which is established by the radiation treatment, is linear. This is taken as an indication of phytochrome involvement in shade perception. (orig.) [de

  4. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  5. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of {gamma}-ray. (author)

  6. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of γ-ray. (author)

  7. Radiation mutagenesis of subtropic plants

    International Nuclear Information System (INIS)

    Kerkadze, I.G.

    1987-01-01

    Possibilities of expansion of subtropic plant changeability and development of new gene bank for future selection-genetic studies are detected. New trends of radiation mutagenesis of subtropic plants are formulated as results of studies during many years. A lot of mutants is subjected to sufficient tests, and concrete results are obtained with the help of these tests for definite species. Summing genetic and selection estimations of the results, it is possible to make the conclusion that mutant selection represents one of the powerful methods of preparation of productive and qualitative species of subtropic plants, which are successfully introduced into practice

  8. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of γ-ray

  9. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of {gamma}-ray.

  10. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: Implication of reactive oxygen species as common signals

    International Nuclear Information System (INIS)

    Babu, T.S.; Akhtar, T.A.; Lampi, M.A.; Tripuranthakam, S.; Dixon, D.G.; Greenberg, B.M.

    2003-01-01

    Metals and ultraviolet (UV) radiation are two environmental stressors that can cause damage to plants. These two types of stressors often impact simultaneously on plants and both are known to promote reactive oxygen species (ROS) production. However, little information is available on the potential parallel stress responses elicited by metals and UV radiation. Using the aquatic plant Lemna gibba, we found that copper and simulated solar radiation (SSR, a light source containing photosynthetically active radiation (PAR) and UV radiation) induced similar responses in the plants. Both copper and SSR caused ROS formation. The ROS levels were higher when copper was combined with SSR than when applied with PAR. Higher concentrations of copper plus PAR caused toxicity as monitored by diminished growth and chlorophyll content. This toxicity was more pronounced when copper was combined with SSR. Because the generation of ROS was also higher when copper was combined with SSR, we attributed this enhanced toxicity to elevated levels of ROS. In comparison to PAR-grown plants, SSR treated plants exhibited elevated levels of superoxide dismutase (SOD) and glutathione reductase (GR). These enzyme levels were further elevated under both PAR and SSR when copper was added at concentrations that generated ROS. Interestingly, copper treatment in the absence of SSR (i.e. copper plus PAR) induced synthesis of the same flavonoids as those observed in SSR without copper. Finally, addition of either dimethyl thiourea or GSH (two common ROS scavengers) lowered in vivo ROS production, alleviated toxicity and diminished induction of GR as well as accumulation of UV absorbing compounds. Thus, the potential of ROS being a common signal for acclimation to stress by both copper and UV can be considered. (author)

  11. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Lee, Young Keun; Lee, Sang Jae and others; Park, Youn Il; Kwon, Soon Tae

    2003-05-01

    This research was performed to investigate the effects of low dose gamma radiation on germination, early growth and yield in a wide range of vegetable crops. The stimulating effects of gamma radiation was evaluated through investigating germination rate, early growth and physiological activities such as enzyme activities, hormones and photosynthetic responses etc. Induction of increased shikonin production in the plants by low dose gamma radiation was challenged to open up the possibility of applying radiation hormesis to the industrial mass production system of the natural materials useful to humans. Effects of natural radiation emitted from solid ceramics was compared on the plants with those of low dose gamma radiation. Finally, activation of aged seeds by low dose gamma radiation, probably facilitating their commercial circulation in the agriculture, was challenged in association with an industrial seed company. Moreover, the shift in resistance of the crops to environmental stresses including UV and low temperature was addressed as well as DNA damage, repair and protein expression after gamma irradiation

  12. Role of cadmium and ultraviolet-B radiation in plants. Influence on photosynthesis and element content in two species of Brassicaceae

    Energy Technology Data Exchange (ETDEWEB)

    Larsson Joensson, Helene

    2001-02-01

    Plants are exposed to many different stress factors during their lifetime. often more than one factor at a time. which highlights the importance of research regarding interaction among stress factors. Cadmium and ultraviolet-B radiation (MB, 280-315 mm) are two potential stress factors in the environment, which have gained increased interest due to atmospheric pollution. In this work the interaction between Cd and UV-B radiation was investigated in two species of Brassicaceae; Brassica napus and Arabidopsis thaliana, the latter including the wild type and phytochelatin-deficient cad1-3. In both species photosynthetic parameters and element content were studied after the plants were exposed to Cd and supplemental UV-B radiation for 14 days. A separate Cd uptake study was carried out on Arabidopsis thaliana to investigate the effect of different Cd pretreatments on Cd uptake. The experiments showed that Cd was the dominant factor, but in Brassica napus, Cd+UV-B showed some interaction effects on energy dissipation and chlorophyll ratios. Generally, Cd decreased the chlorophyll content and influenced photosynthesis by altering oxygen evolution, non-photochemical quenching and the quantum yield. Cadmium had large effects on the content of essential elements, particularly in roots, that may be due to competition during uptake. The Cd uptake study showed that the wild type contained much higher amounts of Cd than the phytochelatin-deficient cad1-3, although Cd uptake is expected to be independent of phytochelatin content. Phytochelatins chelate and transport Cd to the vacuole, thus removing Cd from the cytosol. This compartmentation may disrupt a possible feedback mechanism in the cytosol.

  13. The nature of plant species.

    Science.gov (United States)

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  14. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  15. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  16. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  17. Paleogene radiation of a plant pathogenic mushroom.

    Directory of Open Access Journals (Sweden)

    Martin P A Coetzee

    Full Text Available The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species.The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP, Maximum Likelihood (ML and Bayesian Inference (BI. A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach.Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana.The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

  18. Radiation hormesis in higher plants

    International Nuclear Information System (INIS)

    Kim, Jae Sung

    1996-03-01

    The most remarkable aspect in the hormesis law is that low dose of harmful agents can produce effect that are diametrically opposite to the effect found with high doses of the same agent. Minute quantities of a harmful agent bring about very small change in the organism and control mechanisms appear to subjugate normal processes to place the organism in a state of alert and repair. The stimulated organism is more responsive to changes in environmental factors than it did before being alerted. Routine functions, including repair and defense, have priority for available energy and material. The alerted organism utilizes nutrients more efficiently, grows faster, shows improved defense reactions, matures faster, reproduces more effectively, has less disease, and lives longer. Accelerated germination, sprouting, growth, development, blooming and ripening, and increased crop yield and resistance to disease are found in plants. Another concept supported by the data is that low doses of ionizing radiation provide increased resistance to subsequent high doses of radiation. The hormesis varies with subject plant, variety, state of seed, environmental and cultural conditions, physiologic function measured, dose rate and total exposure. The results of hormesis are less consistently found, probably due to the great number of uncontrolled variables in the experiments. The general dosage for radiation hormesis in about 100 (10 to 1,000) times ambient or 100 (10 to 1,000) times less than a definitely harmful dose, but these must be modified to the occasion. Although little is known about most mechanisms of hormesis reaction, overcompensation of repair mechanism is offered as on mechanism. Radiation hormesis can provide more efficient use of resources, maximum production of foods, and increased health by the use of ionizing radiation as a useful tool in our technologic society. Efficient utilization of nature's resources demands support to explore the practical application of

  19. Radiation hormesis in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-03-01

    The most remarkable aspect in the hormesis law is that low dose of harmful agents can produce effect that are diametrically opposite to the effect found with high doses of the same agent. Minute quantities of a harmful agent bring about very small change in the organism and control mechanisms appear to subjugate normal processes to place the organism in a state of alert and repair. The stimulated organism is more responsive to changes in environmental factors than it did before being alerted. Routine functions, including repair and defense, have priority for available energy and material. The alerted organism utilizes nutrients more efficiently, grows faster, shows improved defense reactions, matures faster, reproduces more effectively, has less disease, and lives longer. Accelerated germination, sprouting, growth, development, blooming and ripening, and increased crop yield and resistance to disease are found in plants. Another concept supported by the data is that low doses of ionizing radiation provide increased resistance to subsequent high doses of radiation. The hormesis varies with subject plant, variety, state of seed, environmental and cultural conditions, physiologic function measured, dose rate and total exposure. The results of hormesis are less consistently found, probably due to the great number of uncontrolled variables in the experiments. The general dosage for radiation hormesis in about 100 times ambient or 100 times less than a definitely harmful dose, but these must be modified to the occasion. Although little is known about most mechanisms of hormesis reaction, overcompensation of repair mechanism is offered as on mechanism. Radiation hormesis can provide more efficient use of resources, maximum production of foods, and increased health by the use of ionizing radiation as a useful tool in our technologic society. Efficient utilization of nature`s resources demands support to explore the practical application of radiation hormesis.

  20. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  1. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  2. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  3. Plant Breeding by Using Radiation Mutation

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2007-06-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits

  4. Plant Breeding by Using Radiation Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo (and others)

    2007-06-15

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits.

  5. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  6. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  7. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  8. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  9. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  10. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  11. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  12. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  13. Radiocaesium accumulation by different plant species

    International Nuclear Information System (INIS)

    Filiptsova, G.G.

    2000-01-01

    Using the model object influence of mineral nutritions level on radiocaesium accumulation by different plant species has been studied. It was shown the wheat roots accumulation the minimal value on radiocaesium on normal potassium level, the rye roots accumulation maximal level radiocaesium. (authors)

  14. Inventory of the Invasive Alien Plant Species in Indonesia

    OpenAIRE

    TJITROSOEDIRDJO, SRI SUDARMIYATI

    2005-01-01

    An inventory of the alien plant species in Indonesia based on the existing references and herbarium specimens concluded that 1936 alien plant species are found in Indonesia which belong to 187 families. Field studies should be done to get the complete figures of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be identified, followed by studies on the assessment of losses, biology, management and their possible utilizat...

  15. Effects of increased solar ultraviolet radiation on terrestrial plants

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G.

    1995-01-01

    Physiological and developmental processes of plants are affected by UV-B radiation, even by the amount of UV-B in present-day sunlight. Plants also have several mechanisms to ameliorate or repair these effects and may acclimate to a certain extent to increased levels of UV-B. Nevertheless, plant growth can be directly affected by UV-B radiation. Response to UV-B also varies considerably among species and also cultivars of the same species. In agriculture, this may necessitate using more UV-B-tolerant cultivars and breeding new ones. In forests and grasslands, this will likely result in changes in species composition; therefore there are implications for the biodiversity in different ecosystems. Indirect changes caused by UV-B-such as changes in plant form, biomass allocation to parts of the plant, timing of developmental phases and secondary metabolism-may be equally, or sometimes more important than damaging effects of UV-B. These changes can have important implications for plant competitive balance, herbivory, plant pathogens, and biogeochemical cycles. These ecosystem-level effects can be anticipated, but not easily predicted or evaluated. Research at the ecosystem level for solar UV-B is barely beginning. Other factors, including those involved in climate change such as increasing CO2, also interact with UV-B. Such reactions are not easily predicted, but are of obvious importance in both agriculture and in nonagricultural ecosystems

  16. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  17. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  18. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  19. Importance of plants in radiation protection

    International Nuclear Information System (INIS)

    Rawat, Shalini

    2015-01-01

    Radioactive substances from nuclear programme structures are one of the major toxicant causing serious health hazards. These manmade radiations include X-ray machines radioactive fall-outs, nuclear reactor waste, TV, computers etc. Effect of radiation may be somatic and genetic. Most genetic effects are brought by manmade radiations. Plants on one hand using the electromagnetic radiation from sun for one of the most important vital activity of earth called Photosynthesis and on the other hand protecting us from harmful radiations. There are however, many natural compounds with radio-protective activity. Such compounds include sulfhydryl-containing compounds and anti-oxidant nutrients such as vitamins C and E, beta-carotene, N-acetylcysteine and selenium, along with a range of phytochemicals found in plants such as Ginkgo biloba, Vitis vinifera (Grape), Ocimum sanctum (Tulsi or holy basil). Some plants have capacity to absorb harmful radiation of computers like Aloe, Cactus, etc. Such study can be helpful in minimizing radiation pollution. Present review paper emphasizing Botanical, Ecological and Economic aspects of some plants. (author)

  20. Protective role of plants against harmful radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Shreesh Kumar; Kumar, Pawan; Singh, Abhishek; Kumar, Vikas; Bharti, Navaldey [Department of Applied Plant Science-Horticulture, Babasaheb Bhimrao Ambedkar University, Lucknow (India)

    2012-07-01

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by

  1. Protective role of plants against harmful radiation

    International Nuclear Information System (INIS)

    Gautam, Shreesh Kumar; Kumar, Pawan; Singh, Abhishek; Kumar, Vikas; Bharti, Navaldey

    2012-01-01

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by

  2. Clonal growth and plant species abundance.

    Science.gov (United States)

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  3. Risks of increased UV-B radiation: higher plants

    International Nuclear Information System (INIS)

    Rau, W.; Hofmann, H.

    1994-01-01

    The question pursued within the Bavarian climate research programme (BayFORKLIM) in the present context was as follows: Does the fact that UV-B radiation increases with growing site elevation mean that the low sensitivity of predominantly alpine plants compared with that of lowland plants is attributable to their different genetic constitution, possibly as a result of selective pressure and/or de alpine species have a greater capacity to develop protective mechanisms? Pairs and triplets of species belonging to the same genus but occuring at different site elevations were grown from seeds in a greenhouse that is, without UV-B. In order to determine their capacity to adapt to UV-B radiation, some of the plants were additionally exposed to UV-B for 5-6 weeks prior to sensitivity testing. Sensitivity was tested by exposing the plants to additional UV-B of different intensities in test chambers. Visible damage, ranging from light bronzing or yellowing to withering, served as an assessment criterion. Levels of UV-B absorbing substances (phenylpropane species, usually flavonoids) were also measured in these plants. The results obtained permit the following conclusions: The greater UV-B resistance of alpine species compared with that of lowland species of the same genus is not attributable to their genetic constitution but rather to their superior adaptability. Superior resistance is in part due to a greater accumulation of UV-B absorbing substances. Distinct differences in sensitivity between different genera could lead to population shifts within ecosystems as a result of increased UV-B radiation. (orig./KW) [de

  4. Radiation-induced mutations and plant breeding

    International Nuclear Information System (INIS)

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far

  5. Isotopes and radiation in plant pathology

    International Nuclear Information System (INIS)

    1966-01-01

    Although ionizing radiations were first applied to phytopathological problems 50 years ago, it is only in recent years that this work has come into its own. Plant diseases are often complex since they may involve interactions between the host, the vector and its pathogen. These pathogens range from viral bodies, through unicellular organisms, to well-organized living entities such as nematodes. Each member of these interactions is amenable to investigation by radiobiological techniques. The collection of papers forming this Report is based on papers originally presented at an IAEA panel by experts on the application of radiation and radioisotopes in plant pathology. Refs, figs and tabs

  6. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  7. Mutation induction in plants by ionizing radiation

    International Nuclear Information System (INIS)

    1985-01-01

    This training film deals with the use of x-rays, gamma rays and fast neutrons for mutation induction in plants. Specific features of different types of ionizing radiation and of biological materials are outlined and methods demonstrated which control modifying factors and warrant an efficient physical mutagenesis. The first step of mutation breeding aims at an enhanced level of genetic variation which forms the basis for mutant selection and use in plant breeding

  8. EDGAR, a new plant radiation monitoring system

    International Nuclear Information System (INIS)

    Vuong, Q.M.; Da Costa Vieira, D.

    2004-01-01

    The EDGAR system is a new radiation monitoring system for nuclear power plant, reprocessing plant and nuclear research reactor for radioactive contamination, gamma and neutron field monitoring. Developed by French Atomic Energy Agency, this system provides not only complete functions of standard RMS, also allows spectroscopy level detection of alpha and beta particles based on a patented collimator unit. A complete computerized approach has been taken allowing full installation control in a single PC based display and communication unit. (author)

  9. Plant species invasions along the latitudinal gradient in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David Barnett; Curtis Flather; John Kartesz; Bruce Peterjohn

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the...

  10. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  11. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  12. Radiation protection by medicinal plants

    International Nuclear Information System (INIS)

    Jagetia, Ganesh Chandra

    2002-01-01

    The development of effective non-toxic radioprotective agents is of considerable interest in the improvement of radiotherapy of cancer and protection against unplanned exposures. The synthetic drugs developed in post-world war II have had serious constrains in clinical applicable due to their toxicity at the optimal protective dose. Search for non-toxic protectors from natural sources have indicated that some of the commonly used medicinal plants and the poly herbal formulation could prove to be valuable sources of clinically useful radioprotectors as their ratio of effective dose to toxic dose is very high

  13. New pasture plants intensify invasive species risk.

    Science.gov (United States)

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  14. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  15. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    African Journals Online (AJOL)

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  16. The mycobiota of herbal drug plants in Oman and possible decontamination by gamma radiation

    Directory of Open Access Journals (Sweden)

    A.E. Elshafie

    2003-08-01

    Full Text Available The mycobiota of seven herbal plant species were surveyed: Nigella sativa, Zataria multiflora, Trigonella foenum-graecum, Rhazya stricta (seeds and leaves, Haplophyllum tuberculatum, Aristolochia bracteolata and Teucrium muscatense. A total of 24 species of fungi were isolated from the plants (seeds, leaves, flowers and/or stems. No significant differences were found between the mycobiota of the herbal plant species or between the six samples of each plant. Aspergillus niger and Penicillium sp. were the most common species, followed by A. flavus and Rhizopus spp. A. flavus was found in all herbal plants except R. stricta (leaves and Z. multiflora. Aflatoxins were extracted from a number of herbal plants. Some strains of A. flavus isolated from the plants were aflatoxigenic. Gamma radiation at 905.4 Gy showed an average percent inhibition of fungi on some herbal plants between 88.6 and 99.1%. Complete inhibition was obtained at 1836 Gy.

  17. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  18. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  19. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  20. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  1. Radiation induced mutations for plant selection

    International Nuclear Information System (INIS)

    Brunner, H.

    1994-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation can be used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. More than 1700 mutant cultivars of crop plants with significantly improved attributes such as increased yield, improved quality, disease and stress resistance, have been released worldwide in the last thirty years. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has contributed to these achievements through the promotion of research and development in mutation breeding techniques using nuclear and related biotechnological methods and the provision of in plant breeding is then transferred to Member States of the IAEA and the FAO through training in mutation breeding methods and the provision of technical advice. Moreover, radiation treatment services are provided to foster applications of nuclear techniques in crop improvement programmes of member states and more specifically to render direct support to plant breeders by efficient generation of mutations. Plant materials are standardized prior to radiation exposure to warrant reproducibility of the induced effects within practical limits and a radiosensitivity test is implemented to affirm useful doses for applied objectives of a request. This review deals with irradiation methods applied at the IAEA laboratories for the efficient induction of mutations in seeds, vegetative propagules and tissue and cell cultures and the establishment of genetically variable populations upon which selection of desired traits can be based. 3 tabs., 18 refs. (author)

  2. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  3. Invasive Plant Species in the National Parks of Vietnam

    OpenAIRE

    Bernard Dell; Pham Quang Thu; Dang Thanh Tan

    2012-01-01

    The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from ...

  4. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  5. A Decision Support System for Plant Optimization in Urban Areas with Diversified Solar Radiation

    Directory of Open Access Journals (Sweden)

    Heyi Wei

    2017-02-01

    Full Text Available Sunshine is an important factor which limits the choice of urban plant species, especially in environments with high-density buildings. In practice, plant selection and configuration is a key step of landscape architecture, which has relied on an experience-based qualitative approach. However, the rationality and efficiency of this need to be improved. To maintain the diversity of plant species and to ensure their ecological adaptability (solar radiation in the context of sustainable development, we developed the Urban Plants Decision Support System (UP-DSS for assisting plant selection in urban areas with diversified solar radiation. Our methodology mainly consists of the solar radiation model and calibration, the urban plant database, and information retrieval model. The structure of UP-DSS is also presented at the end of the methodology section, which is based on the platform of Geographic Information Systems (GIS and Microsoft Excel. An application of UP-DSS is demonstrated in a residential area of Wuhan, China. The results show that UP-DSS can provide a very scientific and stable tool for the adaptive planning of shade-tolerant plants and photoperiod-sensitive plants, meanwhile, it also provides a specific plant species and the appropriate types of plant community for user decision-making according to different sunshine radiation conditions and the designer’s preferences.

  6. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  7. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  8. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  9. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  10. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  11. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  12. Plant breeding by using radiation mutation - Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang Ryol; Kwak, Sang Soo; Kwon, Seok Yoon [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    - tSOD1, cytosolic CuZnSOD cDNA was cloned from tobacco cDNA library by PCR. To develop the under-producing the transgenic plants, the vectors were constructed using by antisense and co-supressing technology. The transgenic tobacco plants were confirmed that over 60% of kanamycin-resistant plants were introduced the foreign gene by PCR and transformed one copy through Southern blot analysis. - In an attempt to identify marker genes for gamma irradiation of plants, expression patterns of diverse genes upon gamma irradiation of young tobacco plants were investigated. With the knowledge of distinctive expression patterns of diverse genes, irradiation-indicating marker plants could be developed by engineering and monitoring multiple radiation-responsive genes. Additionally, a gamma irradiation-responsive NtTMK1 receptor-like kinase gene was molecular biologically characterized. -Uranium reductase gene (Cytochrome C3) and radiation resistance gene (recA) have been cloned from Desulfovibrio and Deinococcus radiodurans. -Two plant transformation vectors (pCYC3 and pDrecA) have been constructed. - Tobacco transgenic plants of have been obtained. 52 refs., 5 figs. (Author)

  13. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  14. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  15. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...

  16. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  17. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  18. Absorption of UV-B to blue light radiation by leaf cuticles of selected crop plants

    International Nuclear Information System (INIS)

    Baur, P.; Stulle, K.; Schönherr, J.; Uhlig, B.

    1998-01-01

    Plants have protective pigments absorbing destructive shortwave radiation. These pigments have been found in the epidermis and mesophyll of leaves. We studied the absorption characteristics of the leaf cuticle, the outermost part of the epidermis that is directly exposed to radiation. Adaxial leaf cuticles of apple, pear, sour cherry, strawberry, cauliflower, sugarbeet, and 13 other plant species were tested. The UV-B absorption was highest in Citrus aurantium and Citrus maxima (<3 % transmittance) and lowest in sugarbeet and peach (>64 % transmittance). The absorption maxima are at wavelenghts below 320 nm. Significant absorption was also determined at 500 nm, which correlated with cuticle thickness of the plant species (r(2)=0.72). The absorption in the range of 250 to 350 nm is caused by pigments with a high extinction coefficient. This absorption is species dependent and the patterns were designated to three different types. The highest absorption was found in evergreen species. The extraction of cuticular waxes had little effect on absorption. The specific absorption of shortwave radiation by plant cuticles is probably caused by pigments covalently bound to cut in. It is known for some plant species that cuticles can contain the phenolics p-coumaric acid, ferulic acid, and vanillic acid. Mixtures of these phenolics had spectra similar to cuticles. For most species absorption of shortwave radiation by the cuticle alone does not give complete protection

  19. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  20. Distribution patterns of rare earth elements in various plant species

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.

    1997-01-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs

  1. Internal Dose Conversion Coefficients of Domestic Reference Animal and Plants for Dose Assessment of Non-human Species

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2009-01-01

    Traditionally, radiation protection has been focused on a radiation exposure of human beings. In the international radiation protection community, one of the recent key issues is to establish the methodology for assessing the radiological impact of an ionizing radiation on non-human species for an environmental protection. To assess the radiological impact to non-human species dose conversion coefficients are essential. This paper describes the methodology to calculate the internal dose conversion coefficient for non-human species and presents calculated internal dose conversion coefficients of 25 radionuclides for 8 domestic reference animal and plants

  2. Clonal growth and plant species abundance

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Nováková, Z.; Klimešová, Jitka

    2014-01-01

    Roč. 114, č. 2 (2014), s. 377-388 ISSN 0305-7364 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : clonal plants * frequency * plant communities of Central Europe Subject RIV: EF - Botanics Impact factor: 3.654, year: 2014

  3. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  4. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  5. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  6. Impact of ultraviolet-B radiation on growth and development of the plants - literature review

    International Nuclear Information System (INIS)

    Zuk-Golaszewska, K.

    2003-01-01

    Paper presents a review of the recent literature dealing with the UV-B radiation, its effect on physiological processes of plant growth and development, cellular changes, concentration of chemical compounds and changes in morphological plant traits. The reasons of increasing UV-B radiation level are rapidly developing civilization and decreasing of ozone layer. It was stated that the plant reaction to UV-B irradiation depends on plant species and environmental conditions. Destructive effects of UV-B radiation to plants may be - to some extent - neutralized by defence mechanisms, a form of specific plant adaptation to stress, however, under conditions of strong UV-B irradiation such mechanisms are not sufficient

  7. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  8. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  9. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  10. Larvicidal activity of six Nigerian plant species against Anopheles ...

    African Journals Online (AJOL)

    This study evaluated the larvicidal activity of extracts from six Nigerian plant species (Zanthoxylum zanthoxyloides, Piper guineense, Nicotianat abacum, Erythrophleum suaveoleus, Jatropha curcas and Petiveria alliacea) against laboratory-bred Anopheles gambiae and Aedes aegypti larvae. Zanthoxylum zanthoxyloides ...

  11. Variation of interception loss with different plant species at the ...

    African Journals Online (AJOL)

    USER

    Department of Water Resources Management and Agrometeorology, University of ... Interception studies of six plants groups were carried out at the campus of University of Agriculture, ... species, leaf area, seasonal characteristics and leaf.

  12. Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang-Ryol; Min, Sung-Ran; Jeong, Won-Joong; Kwak, Sang-Soo; Lee, Haeng-Soon; Kwon, Seok-Yoon; Pai, Hyun-Sook; Cho, Hye-Sun; In, Dong-Su; Oh, Seung-Chol; Park, Sang- Gyu; Woo, Je-Wook; Kin, Tae-Hwan; Park, Ju-Hyun; Kim, Chang-Sook [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    To develop the transgenic plants with low level of antioxidant enzyme, transgenic tobacco plants (157 plants) using 8 different plant expression vectors which have APX genes in sense or antisense orientation under the control of CaMV 35S promoter or stress-inducible SWPA2 promoter were developed. The insertion of transgene in transgenic plants was confirmed by PCR analysis. The total APX activities of transgenic plants were enhanced or reduced by introduction of APX gene in plants. To clone the radiation-responsive genes and their promoter from plants, the NeIF2Bb, one of radiation-responsive genes from tobacco plant was characterized using molecular and cell biological tools. Promoter of GST6, a radiation-responsive gene, was cloned using RT-PCR. The GST6 promoter sequence was analyzed, and known sequence motif was searched. To develop the remediation technology of radioactively contaminated soil using transgenic plants uranium reductase and radiation resistance genes have been introduced in tobacco and indian mustard plans. The uranium reductase and radiation resistance (RecA) genes were confirmed in transgenic tobacco and indian mustard plants by PCR analysis. Also, Gene expression of uranium reductase and radiation resistance were confirmed in transgenic indian mustard plants by northern blot analysis. 42 refs., 12 figs. (Author)

  13. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  14. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  15. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  16. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  17. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  18. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  19. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  20. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  1. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  2. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  3. Radiation induced sterility in a diploid and a tetraploid species of Physalis

    International Nuclear Information System (INIS)

    Gupta, S.K.; Roy, S.K.

    1986-01-01

    Biological damage sensu cytogenetical alterations was systematically scored in a diploid (P. ixocarpa), and a tetraploid (P. peruviana) species of Physalis after different doses of gamma-irradiation and evaluated on the parameters of pollen and plant sterility. There was a gradual reduction in the survival of seedlings which was realized more in P. ixocarpa than in P. peruviana. The meiotic abnormalities affected normal pollen formation, thereby contributing to pollen sterility and concomitantly to plant sterility. The sterility of pollen and plant were interconnected and related with the employed radiation doses in M 1 and M 2 generation. But their frequencies were fewer in M 2 than M 1 . The overall response of the two species to any particular dose of radiation was different, but the interesting point that emerged is that the meiotic abnormalities and pollen sterility were greater in tetraploid species, whereas plant sterility was more in the diploid. Significance of these observations have been discussed. An overall assessment was that the diploid species is more radiosensitive than the tetraploid one. (author)

  4. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    plant species of medicinal and other economic values. The investigation was ... A total of 41 and 24 representative ... INTRODUCTION. Baseline .... at 100m interval, involving a total of 15 sampling locations .... explained by factors such as climate, productivity and ... encouraging the: Maintenance of traditional tree species.

  5. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained an...

  6. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  7. When Are Native Species Inappropriate for Conservation Plantings

    Science.gov (United States)

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  8. Sterilization plants equipped with the isotopic gamma radiation sources

    International Nuclear Information System (INIS)

    Mehta, K.; Chmielewski, A.G.

    2007-01-01

    Presentation describes different isotopic gamma radiation sources applicable for sterilization of food and medical materials. Certain gamma pallet irradiators, mini gamma irradiators and different scale gamma tote irradiators are presented. It is concluded, that about two hundreds plants with gamma radiation sources operates in different countries. However, industrially developed countries must construct much more plants than operates now

  9. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  10. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  11. Radiation hormesis in plant - Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwon, Seok Yoon; Shin, Seung Yung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    In the tobacco transgenic plants simultaneously expressing SOD and APX in chloroplast, the specific activities of SOD and APX (CA, AM, C/A, A/C) were much higher than in the transgenic plants expressing SOD (CuZnSOD, MnSOD) or APX alone, respectively. Plant growth was severely inhibited showing a well correlation with the dose of gamma-irradiation. In 70 Gy-irradiation, C/A plants showed a slight resistance to gamma radiation. The stAPX gene in tobacco was not as strongly affected by gamma irradiation. After irradiation, the stAPX transcript level decreased at 2 h, then slightly increased at 6 h and the level was maintained until 48 h. Catalase transcripts level decreased at the early time point but at the late time points the level slightly increased. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by two-dimensional gel electrophoresis. In the gamma-irradiated cells, a few polypeptides of were newly synthesized, increased, and decreased by comparing total proteins from gamma-irradiated and non-irradiated tobacco suspension cells. With the isolation and analysis of these polypeptides, irradiation-induced proteins could be developed. 35 refs., 5 figs. (Author)

  12. Guideline on radiation protection requirements for ionizing radiation shielding in nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The guideline which entered into force on 1 May 1988 stipulates the radiation protection requirements for shielding against ionizing radiation to be met in the design, construction, commissioning, operation, and decommissioning of nuclear power plants

  13. Distribution and content of ellagitannins in Finnish plant species.

    Science.gov (United States)

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  15. Radiation-related impacts for nuclear plant physical modifications

    International Nuclear Information System (INIS)

    Sciacca, F.; Knudson, R.; Simion, G.; Baca, G.; Behling, H.; Behling, K.; Britz, W.; Cohen, S.

    1989-10-01

    The radiation fields in nuclear power plants present significant obstacles to accomplishing repairs and modifications to many systems and components in these plants. The NRC's generic cost estimating methodology attempts to account for radiation-related impacts by assigning values to the radiation labor productivity factor. This radiation labor productivity factor is then used as a multiplier on the greenfield or new nuclear plant construction labor to adjust for the actual operating plant conditions. The value assigned to the productivity factor is based on the work-site radiation levels. The relationship among ALARA practices, work-place radiation levels, and radiation-related cost impacts previously had not been adequately characterized or verified. The assumptions made concerning the use and application of radiation-reduction measures such as system decontamination and/or the use of temporary shielding can significantly impact estimates of both labor requirements and radiation exposure associated with a particular activity. Overall guidance was needed for analysts as to typical ALARA practices at nuclear power plants and the effects of these practices in reducing work-site dose rates and overall labor requirements. This effort was undertaken to better characterize the physical modification cost and radiological exposure impacts related to the radiation environment of the work place. More specifically, this work sought to define and clarify the quantitative relationships between or among: radiation levels and ALARA practices, such as the use of temporary shielding, decontamination efforts, or the use of robots and remote tools; radiation levels and labor productivity factors; radiation levels, in-field labor hours, and worker radiation exposure; radiation levels and health physics services costs; and radiation levels, labor hours, and anti-contamination clothing and equipment. 48 refs., 4 figs., 4 tabs

  16. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  17. Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Fox, F.M.; Caldwell, M.M.; Utah State Univ., Logan

    1978-01-01

    Changes in plant growth and competitive balance between pairs of competing species were documented as a result of supplementary ultraviolet-B radiation (principally in the 290-315 nm waveband) under field conditions. This component of the terrestrial solar spectrum would be intensified if the atmospheric ozone layer were reduced. A method for calculating and statistically analyzing relative crowding coefficients was developed and used to evaluate the competitive status of the species pairs sown in a modified replacement series. The effect of the supplementary UV-B irradiance was generally detrimental to plant growth, and was reflected in decreased leaf area, biomass, height and density as well as changes competitive balance for various species. For some species, interspecific competition apparently accentuated the effect of the UV-B radiation, while more intense intraspecific competition may have had the same effect for other species. A few species when grown in a situation of more severe mutual interspecific competition exhibited enhanced growth under the UV-B radiation treatment. This, however, was usually associated with a detrimental effect of the radiation, on its competitor and thus was likely the result of its improved competitive circumstance rather than a benefical physiological effect of the radiation. (orig.) [de

  18. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  19. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  20. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  1. Radiation scanning aids tower diagnosis at Arun LNG plant

    International Nuclear Information System (INIS)

    Naklie, M.M.; Pless, L.; Gurning, T.P.; Hyasak, M.

    1990-01-01

    Radiation scanning has been used effectively to troubleshoot the treating towers of the Arun LNG plant in Sumatra, Indonesia. The plant is one of the world's largest such facilities. The analysis was part of an investigation aimed at increasing the capacity of the treater section of the plant. Radiation scanning is a tool which, in addition to tower differential pressure and product purity, can aid in diagnosing tower performance

  2. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  3. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  4. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  5. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  6. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  7. The influence of seed treatment with gamma radiation on plant yield

    DEFF Research Database (Denmark)

    Mølle, K.G.

    1965-01-01

    The effect of seed irradiation with γ-rays on the yield of plants has been examined for the following species: Spring barley, spring and winter wheat, winter rye, maize, fodder pea, white mustard, fodder beet, and radish. Cobalt-60 was used as the source of radiation, with doses varying from 10...

  8. Plant growth promoter effect of radiation degraded Kappa-carrageenan on mungbean (Vigna radiate [L.] R. Wilczek) and peanut (Arachis Hypogaea L.) plants

    International Nuclear Information System (INIS)

    Abad, L.V.; Magsino, G.; Aurigue, F.B.; Montefalcon, D.V.; Lopez, G.E.P.; Dela Cruz, R.M.M.

    2015-01-01

    Kappa Carrageenan are hydrophilic polymers that comprise the main structural polysaccharides of numerous species of seaweed Eucheuma. They are composed of D-galactose units linked alternately with α(1,3) D-galactose-4-sulfated and β(1-4)-3,6-anhydro-D-galactose. Earlier studies indicate that irradiated κ-carrageenan enchances the growth of some plants such as rice bokchoi, and mustard. This study aims to determine the effects of radiation modified κ-carrageenan solution on mungbean and peanut plants and to identify its effective molecular weight range as plants growth promoter. Oligomers from radiation modified κ-carrageenan solution on mungbean and peanut plants. Results on plants sprayed with PGP revealed improvement of the agronomic traits of mungbean and peanut plants. Best PGP effects were manisfested in oligo-carrageenan sprayed plants treated with inoculants + fertilizer with an increase in yield of 200% and 154% for mungbean and peanuts, respectively. Likewise, spraying with oligo-carrageenan alone increased yield by 127% and 140%. Recent studies conducted on the effect of radiation modified κ-carrageenan on rice plants indicated an average of 30% increase in yield of rice in three (3) multi-location sites (Laguna, Nueva Ecija and Bulacan). Plants indicated resistance against Tungro virus. It also showed improved stem strength, enhancing its lodging resistance. The radiation modified κ-carrageenan solution which had an Mw of 6.9 kDa was fractionated into different molecular weight cut-offs of 5 kDa, 3 kDa and 1 kDa. Analysis by gel permeation chromatography of these samples indicated Mw of 5.2 kDa, 4.0 kDa, and 3.8 kDa, respectively. Treatment of pechay by foliar spraying of these solution indicated that plant growth promoter effect increased in the order of 1kDa > 3kDa > 5kDa. (author)

  9. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  10. [The study of transpiration influence on plant infrared radiation character].

    Science.gov (United States)

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  11. Biological monitoring of radiation using indicator plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author)

  12. Biological monitoring of radiation using indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author).

  13. Adaptive radiation of island plants: Evidence from Aeonium (Crassulaceae) of the Canary Islands

    DEFF Research Database (Denmark)

    Jorgensen, T.H.; Olesen, J.M.

    2001-01-01

    evidence that such traits have been acquired through convergent evolution on islands comes from molecular phylogenies; however, direct evidence of their selective value rarely is obtained. The importance of hybridization in the evolution of island plants is also considered as part of a more general......The presence of diverse and species-rich plant lineages on oceanic islands is most often associated with adaptive radiation. Here we discuss the possible adaptive significance of some of the most prominent traits in island plants, including woodiness, monocarpy and sexual dimorphisms. Indirect...... discussion of the mechanisms governing radiations on islands. Most examples are from the Hawaiian and Canarian floras, and in particular from studies on the morphological, ecological and molecular diversification of the genus Aeonium, the largest plant radiation of the Canarian Islands....

  14. Effects of gamma radiation on vegetative and reproductive phenology of herbaceous species of northern deciduous forests

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Vegetative and reproductive phenology of 38 herbaceous species of northern deciduous forests and forest roads were observed for 5 years, before (1970 and 1971), during (1972), and after (1973 and 1974) gamma irradiation. During the preirradiation years the occurrence of key vegetative and reproductive phenophases was very uniform throughout the area. This uniformity was upset by irradiation. In 1972 signs of senescence appeared earlier in most plants of the high-radiation zone (greater than or equal to 300 r/day) than in those outside that zone. In 1973 initiation of growth and completion of leaf growth of most plants was delayed by several weeks in the high-radiation zone. In both years the length of growing season was significantly shortened; this was also reflected in reduced biomass production. Vegetative development of surviving plants normalized in 1974. In 1972 flowering of forest herbs (which as a group flower early in the spring) was not affected by radiation, but that of summer-flowering logging-road herbs was delayed because the critical radiation doses were reached at that time. In 1973 all five flowering phenophases of the logging-road herbs were delayed about 3 weeks in the high-radiation zone. Normalization of reproductive phenophases became evident in 1974

  15. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    Science.gov (United States)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  16. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norhafiz Talib

    2012-01-01

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  17. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  18. Provision of operational radiation protection services at nuclear power plants

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on establishing and maintaining a radiation protection programme for a nuclear power plant that is consistent with the optimization process recommended in the Basic Safety Standards. This publication is written with a view to providing guidance to every person associated with the radiation protection programme for a nuclear power plant and develops the theme that radiation protection requires the commitment of all plant staff, including higher levels of executive management. 12 refs, 2 figs

  19. Invasive vascular plant species of limnocrenic karst springs in Poland

    Science.gov (United States)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  20. Plant antiherbivore defenses in Fabaceae species of the Chaco.

    Science.gov (United States)

    Lima, T E; Sartori, A L B; Rodrigues, M L M

    2017-01-01

    The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  1. Radiation Protection of Environment under the Light of the New Concept of Radiation Protection of Non-Human Species

    International Nuclear Information System (INIS)

    Hansruedi Voelkle

    2006-01-01

    The purpose of this presentation is to discuss the question of whether radiation protection should be extended to plants and animals. Until now the recommendations of ICRP have been focused exclusively on the protection of man from ionizing radiation. It was assumed that, if man is protected, the quality of the living environment is not impaired. In recent years adequate principles, recommendations and laws have become necessary in order to protect the environment from man made toxins. These recommendations aimed to conserve plants and animals, to maintain the diversity of species, the health and status of natural habitats and the natural resources of our planet, to warrant natural evolution and selection processes in order to transmit a healthy world to future generations. Reflections have been made as to whether particular protection of fauna and flora from ionizing radiation should be included. This article presents some considerations from the point of view of operational radiation protection and some comments to the work already done by ICRP committee 5. The final purpose is to invite the audience to make its own reflections and to communicate any criticisms, comments or suggestions to committee 5 of ICRP. (author)

  2. Radiation Protection of Environment under the Light of the New Concept of Radiation Protection of Non-Human Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansruedi Voelkle [Swiss Federal Office of Public Health, Environmental Radioactivity Section, c/o Physics Department, University of Fribourg Chemin du Musee 3, 1700 Fribourg (Switzerland)

    2006-07-01

    The purpose of this presentation is to discuss the question of whether radiation protection should be extended to plants and animals. Until now the recommendations of ICRP have been focused exclusively on the protection of man from ionizing radiation. It was assumed that, if man is protected, the quality of the living environment is not impaired. In recent years adequate principles, recommendations and laws have become necessary in order to protect the environment from man made toxins. These recommendations aimed to conserve plants and animals, to maintain the diversity of species, the health and status of natural habitats and the natural resources of our planet, to warrant natural evolution and selection processes in order to transmit a healthy world to future generations. Reflections have been made as to whether particular protection of fauna and flora from ionizing radiation should be included. This article presents some considerations from the point of view of operational radiation protection and some comments to the work already done by ICRP committee 5. The final purpose is to invite the audience to make its own reflections and to communicate any criticisms, comments or suggestions to committee 5 of ICRP. (author)

  3. Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants.

    Science.gov (United States)

    Halgamuge, Malka N

    2017-01-01

    The aim of this article was to explore the hypothesis that non-thermal, weak, radiofrequency electromagnetic fields (RF-EMF) have an effect on living plants. In this study, we performed an analysis of the data extracted from the 45 peer-reviewed scientific publications (1996-2016) describing 169 experimental observations to detect the physiological and morphological changes in plants due to the non-thermal RF-EMF effects from mobile phone radiation. Twenty-nine different species of plants were considered in this work. Our analysis demonstrates that the data from a substantial amount of the studies on RF-EMFs from mobile phones show physiological and/or morphological effects (89.9%, p radiofrequency radiation influence on plants. Hence, this study provides new evidence supporting our hypothesis. Nonetheless, this endorses the need for more experiments to observe the effects of RF-EMFs, especially for the longer exposure durations, using the whole organisms. The above observation agrees with our earlier study, in that it supported that it is not a well-grounded method to characterize biological effects without considering the exposure duration. Nevertheless, none of these findings can be directly associated with human; however, on the other hand, this cannot be excluded, as it can impact the human welfare and health, either directly or indirectly, due to their complexity and varied effects (calcium metabolism, stress proteins, etc.). This study should be useful as a reference for researchers conducting epidemiological studies and the long-term experiments, using whole organisms, to observe the effects of RF-EMFs.

  4. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  5. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  6. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  7. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  8. Widespread plant species: natives versus aliens in our changing world

    Czech Academy of Sciences Publication Activity Database

    Stohlgren, T. J.; Pyšek, Petr; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D. M.; Wilson, J. R. U.; Murray, B. R.; Phillips, M. L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1931-1944 ISSN 1387-3547 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species distribution * Old and New World Subject RIV: EF - Botanics Impact factor: 2.896, year: 2011

  9. The importance of education in managing invasive plant species

    Science.gov (United States)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  10. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  11. Ecotaxonmic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    The survey of the flora composition of an ecosystem is important in several environmental baseline studies. An ecotaxonomic assessment was carried out in Ase-Ndoni proposed Rivgas Refinery project site in other to find out the plant species of medicinal and other economic values. The investigation was carried out to ...

  12. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  13. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  14. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  15. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  16. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  17. Is natural background or radiation from nuclear power plants leukemogenic?

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab

  18. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  19. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  20. Physiological responses of plants to ionizing radiation

    International Nuclear Information System (INIS)

    Gaur, B.K.

    1985-01-01

    Based on the parallelism between the effects of radiation and 2, 4-dinitrophenol on oxygen uptake, oxidative phosphorylation, mitochondrial swelling and contraction and ATPase activity, it is inferred that radiation acts as an uncoupling agent, probably through stimulated hydrolysis of the non-phosphorylated high energy intermediate I-X

  1. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  2. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Berge, ten W.F.; Jansen, B.P.

    2003-01-01

    Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation

  3. Distributing radiation management system of nuclear power plants

    International Nuclear Information System (INIS)

    Mihoya, Eiichi; Akashi, Michio

    1999-01-01

    The importance of radiation management for nuclear facilities including nuclear power plants has increased as the general public understanding has progressed, and necessary information for management must be processed exactly and quickly. In nuclear power plants, radiation management is performed by each individual operation, and collected information is managed by the system of each operation. The distributing radiation management system has been developed aiming to use a general-purpose LAN and make quick and efficient use of information managed by individual operations. This paper describes the system configuration and functions. (author)

  4. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  5. Ionizing radiation from Chernobyl affects development of wild carrot plants

    Science.gov (United States)

    Boratyński, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Møller, Anders P.; Pajares, Antonio Jesús Muñoz; Piwczyński, Marcin; Tukalenko, Eugene

    2016-12-01

    Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses.

  6. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  7. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  8. Plant's adaptive response under UV-B-radiation influence

    International Nuclear Information System (INIS)

    Danil'chenko, O.A.; Grodzinskij, D.M.

    2002-01-01

    Reduction of ozone layer, owing to anthropogenic contamination of an atmosphere results in increase of intensity of UV-radiation and shift of its spectrum in the short-wave side that causes strengthening of various biological effects of irradiation. Consequences of these processes may include increase of injuring of plants and decrease of productivity of agricultural crops to increased UV levels. The important significance in the plant's adaptation to different unfavorable factors has the plant's radioadaptive answer. It has been shown that radioadaptation of plants occurred not only after irradiation with g-radiation in low doses but after UV-rays action . Reaction of radioadaptation it seems to be nonspecific phenomenon in relation to type radiations

  9. Stimulatory effects of low ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Kurisu, Y.; Murata, I.; Takahashi, A. [Department of Nuclear Engineering, Osaka Univ., Suita, Osaka (Japan); Masui, H.; Iida, T. [Department of Electronic, Information Systems and Energy Engineering, Osaka Univ., Suita, Osaka (Japan); Yamamoto, T. [Radioisotope Research Center, Osaka Univ., Suita, Osaka (Japan)

    2000-05-01

    Recently, the study for radiation hormesis was strongly carried out for animals and plants; subharmful dose of radiation may stimulate any organism. The concept of radiation hormesis effect consists of 1) biopositive effects of low dose radiation; influence caused by low dose radiation is totally different from one caused by high dose radiation, low dose radiation produces physiological useful effects against high dose radiation, and 2) radio-adaptive response; radiation also acts the organism as stress. Irradiated with small dose radiation previously, it raises its own defense response against the stress (radiation), resulting in the phenomenon that radiation influence decreases in appearance. In this paper we have investigated the phenomenon of radiation hormesis effects for plants through irradiation experiments with neutrons and gamma-rays to find out the mechanism. In the present experiment, dry seeds of Raphanus sativus were irradiated with D-T neutrons (10 {mu}Gy {approx} 100 kGy), D-D neutrons (1 mGy {approx} 100 mGy), thermal and fast neutrons (irradiation in a nuclear reactor: 100 {mu}Gy {approx} 10 Gy), 60Co gamma-rays (10 {mu}Gy {approx} 10 Gy). To confirm existence of the radiation hormesis effects, germination percentage, length of hypocotyl, length of root and total weight of seed leaf were measured at 7th day after starting cultivation. We estimated relative effectiveness as the hormesis effect, that is the ratio of mean values of measured subjects for the irradiated and control groups. For Raphanus sativus, the hormesis effect on seed leaf growth has been observed in the seed group irradiated by D-T neutrons and D-D neutrons. The observed hormesis effect is from 5 to 25 percents. (author)

  10. INAA of microelements in plant species from the Danube floodplain

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A; Salagean, M; Scarlat, A [Department of Applie Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Magurele-Bucharest (Romania); Iordache, V [Department of Ecology, University of Bucharest, Bucharest (Romania)

    1999-07-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  11. INAA of microelements in plant species from the Danube floodplain

    International Nuclear Information System (INIS)

    Pantelica, A.; Salagean, M.; Scarlat, A.; Iordache, V.

    1999-01-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  12. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    of the index was 3.2±0.3, as compared to the reference site and former radium production plant areas, which had 3.9±0.4 and 4.0±0.4, respectively. The species diversity of the studied sites can be affected by both anthropogenic and natural factors. Natural factors impacting on ecotype diversity can include elevation, soil humus concentration nitrate nitrogen, phosphates and potassium and also oil products. Anthropogenic factors include the irradiation dose, soil concentration of heavy metals, several mineral salts used in radium production (calcium and barium chlorides and sulphates) and fluorides present in uranium wastes. There was evidence of a decrease in the diversity of vascular plants with weighted absorbed dose increase. However increased concentrations of Ba, F and heavy metals in the soils of sites having the highest dose for herbal species may confound results, or even enhance any radiation impact. Additional studies of seed germination suggest that decrease in herb species reproductive capacity could be the reason for their elimination from the communities. (authors)

  13. CE of phytosiderophores and related metal species in plants.

    Science.gov (United States)

    Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther

    2007-10-01

    Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.

  14. Approach to non-human species radiation dose assessment in the republic of Korea

    International Nuclear Information System (INIS)

    Keum, D. K.; Jun, I.; Lim, K. M.; Choi, Y. H.

    2011-01-01

    This paper describes the approach to non-human species radiation dose assessment in Korea. As the tentative reference organisms, one plant and seven animals were selected based on the new International Commission on Radiological Protection recommendation issued in 2007, and the size of the selected organisms was determined from the corresponding Korean endemic species. A set of 25 radionuclides was considered as a potential source term of causing radiological damage to organisms. External and internal dose conversion coefficients for the selected organisms and radionuclides were calculated by the uniform isotropic model or Monte Carlo simulation. Concentration ratios of some endemic species are being measured in laboratory experiments, in parallel with the review of existing data. (authors)

  15. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  16. New evidence for electrotropism in some plant species

    Science.gov (United States)

    Gorgolewski, S.; Rozej, B.

    The ever-present global Atmospheric Electrical F ield (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity to electrotropic effect in different electric field intensities and directions. It was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions in plant tissues. We use a "reference field" (130 V/m) and stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed field polarity. In conclusion electrotropic pl nts deprived of the electrical field do not develop asa expected, as can be seen in BIOSPHERE 2. It was a sad example of what happens when one forgets to provide the plants with this vital natural environmental factor. Electrical fields of different intensity and direction are cheap and easy to generate. More plants were investigated in order to verify their response to electrical fields. Effect of several kV/m horizontal fields, was compared with the vertical 130 V/m field (ued as a reference) and it was shown that electrotropic sensitivity can be found easily. Surprisingly even the nonelectrotropic plants, whose initial growth rate does not depend on the field strength, when they develop leaves begin to lean towards the positive electrode, and become elect rotropic. Ground based fitotron experiments enable us to select cheaply plants which shall be suitable

  17. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    Human industrial activities have left behind a legacy of ecosystems strongly impacted by a wide range of contaminants, including radionuclides. Phyto-toxic effects of acute impact are well known, but the consequences of long-term chronic exposure to low pollutant concentrations is neither well understood nor adequately included in risk assessments. To understand effects of real-world contaminant exposure properly we must pay attention to what is actually going on in the field. However, for many wildlife groups and endpoints, there are no, or very few, studies that link accumulation, chronic exposure and biological effects in natural settings. To fill the gaps, results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hair-grass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate effects of long-term chronic exposure to radionuclides are discussed. Because each impacted site developed in its own way due to a unique history of events, the experience from one case study is rarely directly applicable to another situation. In spite of high heterogeneity in response, we have detected several general patterns. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic alterations and genetic diversity. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage were accompanied by decrease in reproductive ability. In less contaminated sites, because of the scarcity of data available, it is impossible to establish exactly the relationship between cytogenetic effects and reproductive ability. Radioactive contamination of the plants

  18. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  19. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  20. Hydroperiod regime controls the organization of plant species in wetlands

    OpenAIRE

    Foti, R.; del Jesus, M.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of ...

  1. The Phytotoxicity of Designated Pollutants on Plant Species

    Science.gov (United States)

    1984-03-01

    Only seeds collected from those flowers exposed during pollin 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION...acid exposure during pollination lowered the germination rate of mature seeds. Plant injury was chiefly a function of acid concentration, but amount...TESTS Species Name Variety Barley Hordeum vulgare L. CM67 Bean Phaseolus vulgaris L. Pinto Citrus Citrus limon (L.) Lupe Lemon Lettuce Lactuca sativa

  2. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  3. Floristic characteristics of alien invasive seed plant species in China.

    Science.gov (United States)

    Wang, Congyan; Liu, Jun; Xiao, Hongguang; Zhou, Jiawei; DU, Daolin

    2016-01-01

    This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS) in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  4. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l). Copyright © 2014. Published by Elsevier Inc.

  5. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  6. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  8. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  9. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  10. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  11. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  12. Solar Radiation Determines Site Occupancy of Coexisting Tropical and Temperate Deer Species Introduced to New Zealand Forests.

    Directory of Open Access Journals (Sweden)

    Robert B Allen

    Full Text Available Assemblages of introduced taxa provide an opportunity to understand how abiotic and biotic factors shape habitat use by coexisting species. We tested hypotheses about habitat selection by two deer species recently introduced to New Zealand's temperate rainforests. We hypothesised that, due to different thermoregulatory abilities, rusa deer (Cervus timorensis; a tropical species would prefer warmer locations in winter than red deer (Cervus elaphus scoticus; a temperate species. Since adult male rusa deer are aggressive in winter (the rut, we also hypothesised that rusa deer and red deer would not use the same winter locations. Finally, we hypothesised that in summer both species would prefer locations with fertile soils that supported more plant species preferred as food. We used a 250 × 250 m grid of 25 remote cameras to collect images in a 100-ha montane study area over two winters and summers. Plant composition, solar radiation, and soil fertility were also determined for each camera location. Multiseason occupancy models revealed that direct solar radiation was the best predictor of occupancy and detection probabilities for rusa deer in winter. Multistate, multiseason occupancy models provided strong evidence that the detection probability of adult male rusa deer was greater in winter and when other rusa deer were present at a location. Red deer mostly vacated the study area in winter. For the one season that had sufficient camera images of both species (summer 2011 to allow two-species occupancy models to be fitted, the detection probability of rusa deer also increased with solar radiation. Detection probability also varied with plant composition for both deer species. We conclude that habitat use by coexisting tropical and temperate deer species in New Zealand likely depends on the interplay between the thermoregulatory and behavioural traits of the deer and the abiotic and biotic features of the habitat.

  13. Doubling potential of fibroblasts from different species after ionising radiation

    International Nuclear Information System (INIS)

    Macieira-Coelho, A.; Diatloff, C.; Malaise, E.

    1976-01-01

    It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

  14. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  15. The effects of UV-B radiation on European heathland species

    International Nuclear Information System (INIS)

    Björn, L.O.; Callaghan, T.V.; Johnsen, I.; Lee, J.A.; Manetas, Y.; Paul, N.D.; Sonesson, M.; Wellburn, A.R.; Coop, D.; Heide-Jørgensen, H.S.; Gehrke, C.; Gwynn-Jones, D.; Johanson, U.; Kyparissis, A.; Levizou, E.; Nikolopoulos, D.; Petropoulou, Y.; Stephanou, M.

    1997-01-01

    The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO 2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated enhancement of UV-B radiation in combination with elevated CO 2 (700 ppm). Effects of the treatments on plant growth, morphology, phenology and physiology were measured. The effects observed were species specific, and included both positive and negative responses to the treatments. In general the negative responses to UV-B treatments of up to three growing seasons were small, but included reductions in shoot growth and premature leaf senescence. Positive responses included a marked increase in flowering in some species and a stimulation of some photosynthetic processes. UV-B treatment enhanced the drought tolerance of Pinus pinea and Pinus halepensis by increasing leaf cuticle thickness. In general, there were few interactions between the elevated CO 2 and enhanced UV-B treatments. There was evidence to suggest that although the negative responses to the treatments were small, damage may be increasing with time in some long-lived woody perennials. There was also evidence in the third year of treatments for effects of UV-B on insect herbivory in Vaccinium species. The experiments point to the necessity for long-term field investigations to predict the likely ecological consequences of increasing UV-B radiation. (author)

  16. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  17. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  18. Radiation sensitivity and gene expression in Enchytraeus japonensis, a species of earth worm

    International Nuclear Information System (INIS)

    Kubota, Yoshihisa

    2011-01-01

    The importance of radiological protection of the environment based on scientific principles is gaining international recognition as environment issues garner more attention. Earthworm (annelids) is a ubiquitous soil invertebrate known to play an important role in the maintenance of the soil ecosystem and thus selected as one of 12 kinds of reference animals and plants by the ICRP. In the present study, radiation sensitivity and gene expression in a recently described terrestrial oligochaete, Enchytraeus japonensis (E. japonensis) were studied. E. japonensis worms were acutely irradiated at increasing doses of gamma radiation, and the number of worms after 30 days of radiation was examined. The dose effectively inhibiting 50% of proliferation was approximately 22 Gy, which was comparable to the dose required to elicit growth inhibition in other earthworm species. In order to seek other biological endpoints for more sensitive and/or quicker assessment of radiation effects, gene expression profiling in E. japonensis was also performed, and poly (ADP-ribose) polymerase I (PARP I) was identified as a radiation-responsive gene. PARP I transcript level increased dose-dependently. (author)

  19. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  20. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  1. Radiation protection in the Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Singer, J.; Koc, J.; Hynek, J.; Trousil, J.

    1987-01-01

    The radiation monitoring by means of the central information system and of autonomous, portable and laboratory devices as well as a brief characteristic of the nuclear power plant radiation fields are described. The new personal dosimetric film and thermoluminescent badges and the method (including the block diagram) for personal dose evaluation are also introduced. Internal contamination monitoring is performed by means of a whole-body counter and excreta sample analysis. Monitoring the influence of effluents from nuclear power plants on environment in Czechoslovakia is based on significant radionuclide measurements in ventilation stacks and in the environment, also by means of the telemetric system, all in connection with mathematical models. (author)

  2. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  3. Invasive plant species: Inventory, mapping, and monitoring - A national strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  4. Toxic properties of specific radiation determinant molecules, derived from radiated species

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a

  5. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  6. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  7. Origin and radiation of the earliest vascular land plants.

    Science.gov (United States)

    Steemans, Philippe; Hérissé, Alain Le; Melvin, John; Miller, Merrell A; Paris, Florentin; Verniers, Jacques; Wellman, Charles H

    2009-04-17

    Colonization of the land by plants most likely occurred in a stepwise fashion starting in the Mid-Ordovician. The earliest flora of bryophyte-like plants appears to have been cosmopolitan and dominated the planet, relatively unchanged, for some 30 million years. It is represented by fossilized dispersed cryptospores and fragmentary plant remains. In the Early Silurian, cryptospore abundance and diversity diminished abruptly as trilete spores appeared, became abundant, and underwent rapid diversification. This change coincides approximately with the appearance of vascular plant megafossils and probably represents the origin and adaptive radiation of vascular plants. We have obtained a diverse trilete spore occurrence from the Late Ordovician that suggests that vascular plants originated and diversified earlier than previously hypothesized, in Gondwana, before migrating elsewhere and secondarily diversifying.

  8. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  9. Plant for treating workpieces with powerful radiation

    International Nuclear Information System (INIS)

    Messerschmied, H.; Martin, W.

    1983-01-01

    The plant for wetting paint using electron beams has a series of chambers along a conveyor belt for accepting painted articles. In order to achieve a continuous process and to save nitrogen to be introduced into the chambers, the chamber are formed by containers open at the top, which are closed from an irradiation station by an endless belt or by a roller bed running synchronously with the containers. (orig./HP) [de

  10. Radiation protection at La Hague plant

    International Nuclear Information System (INIS)

    Laffaille, C.

    1980-01-01

    After a rapid description of the working rules of the reprocessing facility and the fuel characteristics, we describe how the safety actions are led in the plant with respect to the occasional risks. If the limitation of the doses integrated by the workers is an objective which has been reached, we think the optimal level is not secured and that other approaches are possible, which must be used without delay [fr

  11. Growth of Radiation Processing Plant, Vashi - an overview

    International Nuclear Information System (INIS)

    Singh, Ranjeet

    2014-01-01

    Radiation Processing Plant, Vashi (RPP) is the first commercial scale Gamma Irradiator for food processing in India. The facility was commissioned on 1 st January 2000 with the mandate of showcasing commercial viability of food processing using gamma radiation. Some of the food products that are processed at RPP, Vashi include dehydrated onion powder, coriander, turmeric, black pepper, cumin, pet food and dried seafood items. RPP, Vashi is the largest radiation processor of food products in the country. More than 95% of the quantity processed is exported to various countries generating millions of foreign exchange annually

  12. Hydroperiod regime controls the organization of plant species in wetlands.

    Science.gov (United States)

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.

  13. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  14. Radiation exposure in German nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, W.

    1981-01-01

    The individual and collective doses in German nuclear power stations have decreased remarkably since the beginning of the commercial nuclear power production. The paper discusses the influencing factors, that have caused this development and points out areas where improvements are possible in the future. Moreover the interaction between radiation protection practice and the relevant legal regulations is considered. Usually the recording of job related doses is regarded as the most direct access to possible improvements. Concluding, it is therefore demonstrated by some examples how the evaluation of such information has taken effect in practice. (orig.) [de

  15. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  16. Physics contributions to radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1980-01-01

    Physical research and physical methods can essentially contribute to radiation protection in nuclear power plants. With their aid, properties of radiation sources can be determined, and calculations of radiation shields can be performed. In the present paper, such tasks are analyzed, the state of the art of their solution is evaluated, and trends of further work are shown. Focal points of the present study are the calculation of properties of radiation sources outside the reactor (fission products, activated corrosion products, decontamination facilities for contaminated media), exact and engineering methods for calculating radiation fields also in inhomogeneous shields, and classification of concretes for gamma-ray shielding. Objectives, possibilities, and problems of standardization of such activities are discussed. (author)

  17. ICRP proposal on radiation protection of non-human species - with TAEA perspective-

    International Nuclear Information System (INIS)

    Okyar, H. B.

    2006-01-01

    Interest in the protection of the environment has greatly increased in recent years, in relation to all aspects of human activities. Such interest has been accompanied by the development and application of various means of assessing and managing the many forms of human impact upon it. Up to now, the International Commission on Radiation Protection (ICRP) has not published any recommendations on how to assess or manage radiation effects in non-human species. The Turkish Atomic Energy Authority (TAEA) which is the regulatory body of Turkey in radiation protection also recognises that there is a current lack of consistency at international level with respect to addressing such issues in relation to radioactivity, and therefore believes that a more proactive approach is now necessary. The Commission has decided to develop a framework for the assessment of radiation effects in non-human species in order to fill a conceptual gap in radiation protection. The proposed system does not intend to set regulatory standards, but rather to provide guidance and help regulators and operators demonstrate compliance with existing legislation. ICRP developed a small set of reference animals and plants, plus their relevant data bases to serve as a basis for the more fundamental understanding and interpretation of the relationships between exposure and dose, and between dose and certain categories of effect. This concept is similar to that of the reference individual (reference man) used for human radiological protection, in that it is intended to act as a basis for calculations and decisions. The Commission has now established a system to continue the work with defining effects end-points of interest, the types of reference organisms to be used by ICRP, and defining a set of reference dose models for assessing and managing radiation exposure in non-human species. This talk will provide a review of ICRP proposed framework for radiation protection of the environment with TAEA comments

  18. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  19. Plant breeding by using radiation mutation

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Shin, In Chul and others; Yang, Seung Gyun; Choi, Soon Ho; Lee, Jang Ha; Lee, Hyo Yeon; Seo, Yong Won; Lim, Yong Pyo

    2003-04-01

    To improve the crop varieties by using radiation mutation, various mutant lines were selected from the materials irradiated with gamma ray by both in vivo and in vitro mutagenesis. As in vitro selection breeding, various cell lines each with salt, 5-MT and Systeine tolerance were selected from the irradiated calli of rice, and then DNA and molecular markers related with their tolerances were identified. And the rice mutant lines selected from cell lines were evaluated and then some of promising lines were selected by the field trial. Four mutant rice cultivars(Wonmibyeo, Wonpyongbyeo, Heugseonchalbyeo, Wongwangbyeo) were released and their seeds were distributed to farmers. A high quality mutant rice cultivar, Woncheongbyeo, was newly registered. And developed five new cultivars, Wonkangbyeo, Wonpumbyeo, Wonchubyeo, Heugkwangchalbyeo, Nogwonchalbyeo and three mutant cultivars of the rose of Sharon (Mugunghwa) such as Ggoma, Seonnyo, Daegwang were applied to register the national new cultivar list. About promising 30 mutant lines of rice and Mugunghwa were done the field trials and proliferation. Promising soybean mutant lines were selected for improvement of soybean disease resistant, ecological traits and soybean seed quality. Other related two researches not only on development of disease tolerant lines of hot pepper, but also on development of herbicide-resistant cell lines using radiation irradiation, were carried out as a joint projects

  20. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  1. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  2. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG...

  3. γ-ray radiation decontamination of barley plant powder

    International Nuclear Information System (INIS)

    Zhao Xiaojun; Fu Junjie; Wang Zhiping; Zhang Guobin

    2007-01-01

    Radiation decontamination of barley plant powder by 60 Co γ-rays and the effect on its components were studied. Results showed that irradiation was very effective in killing the microorganisms in barley plant powder. The irradiation did not cause obvious changes of the major components of protein, total sugar, free amino acid, crude fiber, but 35% loss of vitamin E was observed after 10kGy irradiation. It is suggested that 7.5-10kGy irradiation is good enough for decontamination of the barley plant powder. (authors)

  4. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  5. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers that...

  6. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  7. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwak, Sang Soo; Kwon, Hye Gyung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    The gamma radiation-induced changes of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in callus cultures of cassava (Manihot esculenta) and sweet potato (Ipomoea batatas) were investigated. Both cell lines irradiated with 50 and 70 Gy on 7 days after subculture inhibited significantly the cell growth by 50% and 80% at 14 days after treatment (DAT), respectively. In 70 Gy irradiated with cassava calli SOD and POD specific activities increased by 4 and 2.5 folds at 14 DAT, respectively, whereas CAT activity was not affected. When sweet potato calli were irradiated 10 Gy POD activity showed the highest at 14 DAT, whereas the CAT activity was not affected. In the transgenic tobacco plants that overexpress swpal encoding anionic POD cDNA or swpnl encoding neutral POD cDNA, POD and SOD activities were not significantly increased after {gamma}-radiation treatment, but swpal-plants showed a higher activity than that of swpnl-or non-transgenic plants. Plant growth was severely inhibited showing a well correlation with the dose of radiation. Specially, {gamma}-radiation affected growth of shoot apical meristem. (author). 32 refs., 7 figs.

  8. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  9. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  10. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  11. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  12. Savannah River Plant/Savannah River Laboratory radiation exposure report

    International Nuclear Information System (INIS)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L.; Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R.

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs

  13. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  14. Radiofrequency radiation exposure from RF-generating plant

    International Nuclear Information System (INIS)

    Wright, J.M.; Bell, K.M.

    2000-01-01

    As part of an intervention to assist industry improve the control of risks associated with the use of RF-generating plant, exposure to radiofrequency radiation (RFR) was assessed in 30 workplaces. Information about the workplace, work practices and knowledge about RFR and its control was also collected. The study found that: 1. For 72% of operators and 35% of bystanders, the spatially averaged exposure exceeded the exposure limits. These figures approximately halved when the duty cycle was applied; 2. Assessment of RFR levels was not common; 3. Task rotation was used to limit exposure of operators; 4. Access was not controlled to areas where RFR sources were used; 5. There was lack of knowledge about RF shielding practices in industry; 6. Nearly 50% of workplaces did not maintain the plant regularly; and 7. There had been no health surveillance on any plant operators in any of the workplaces in the study. Copyright (2000) Australasian Radiation Protection Society Inc

  15. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  16. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing...; Endangered Species Act Listing Determination for Alewife and Blueback Herring AGENCY: National Marine... (Alosa aestivalis) as threatened under the Endangered Species Act (ESA) throughout all or a significant...

  17. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  18. Positive effects of plant species diversity on productivity in the absence of legumes

    NARCIS (Netherlands)

    Ruijven, van J.; Berendse, F.

    2003-01-01

    We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing

  19. Plant breeding by using radiation mutation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Il; Song, Hi Sup; Kim, Jin Kyu; Shin, In Chul; Lee, Sang Jae; Lim, Yong Tack; Lee, In Suk; Kim, Dong Sub; Lee, Yong Su; Yang, Seung Gyun; Choi, Soon Ho; Sim, Dong Bo; Kim, Bong Kyu; Lee, Jang Ha [and others

    2000-04-01

    To improve the crop varieties by using variation, various mutant lines were selected from the materials irradiated with gamma ray due to in vivo and in vitro mutagenesis. The selected mutant lines were evaluated in the agronomic characteristics by field observation and analysis of related DNA patterns in laboratory. the results are summarized as follow; 1. Registered new mutant varieties such as Wonpyeongbyeo, Wonkwangbyeo, Wonmibyeo and Heogseonchalbyeo in the national variety list. 2. Advanced 800 mutant lines of rice soybean perilla and sweet potatoes were selected for radiation genetic resources. 3. Promising rice mutants were evaluated in several district regions for releasing. 4. Bagseul, a new mutant variety of Mugungwha (Hibiscus) were developed. 5. Promising soybean mutant lines were selected for improvement of soybean disease resistant, and soybean seed quality. 6. NaCl resistant cell lines were selected in in vitro and analysed the DNA banks. 7. 5-MT and Cysteine resistant cell lines were obtained from in vitro mutagenesis for improvement of rice quality. 8. Other related researches were carried out with coordinated projects. (author)

  20. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Discriminant WSRC for Large-Scale Plant Species Recognition

    Directory of Open Access Journals (Sweden)

    Shanwen Zhang

    2017-01-01

    Full Text Available In sparse representation based classification (SRC and weighted SRC (WSRC, it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  2. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation

    International Nuclear Information System (INIS)

    Conconi, A.; Smerdon, M.J.; Howe, G.A.; Ryan, C.A.

    1996-01-01

    Many plant genes that respond to environmental and developmental changes are regulated by jasmonic acid, which is derived from linolenic acid via the octadecanoid pathway. Linolenic acid is an important fatty-acid constituent of membranes in most plant species and its intracellular levels increase in response to certain signals. Here we report that irradiation of tomato leaves with ultraviolet light induces the expression of several plant defensive genes that are normally activated through the octadecanoid pathway after wounding. The response to ultraviolet light is blocked by an inhibitor of the octadecanoid pathway and it does not occur in a tomato mutant defective in this pathway. The ultraviolet irradiation maximally induces the defence genes at levels where cyclobutane pyrimidine dimer formation, an indicator of DNA damage, is less than 0.2 dimers per gene. Our evidence indicates that this plant defence response to certain wavelengths of ultraviolet radiation requires the activation of the octadecanoid defence signalling pathway. (author)

  3. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  4. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  5. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log......-transformed species numbers as dependent and log-transformed modified area (i.e. area not covered with barren lava) as an independent variable. This holds both for total species number, for native species number, for endemic species number and for total number of seed plants as well as number of endemic seed plants...

  7. Status of annual plant species in the Baneberry fallout pattern first and sixth years after initial irradiation

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1977-01-01

    At Project Baneberry on December 18, 1970, there was an accidental venting of radioactive debris into the environment which resulted in the irradiation of vegetation about 1.5 km to the north with doses estimated to reach a maximum of 6.2 K rads, beta plus gamma. At the highest doses, 35 percent of the dominant shrub in the area, Coleogyne (black brush), were killed and 65% severely damaged; and at lesser doses there was correspondingly less damage. Other species of shrubs were also affected. Grayia spinosa showed a low frequency of stem fasciation at the higher doses as well as other manifestations of radiation damage. In June 1971, the annual plant species which were probably small seedlings at fallout time were more frequently absent from the higher radiation areas than in the lower. At the same time, there was a greater frequency of higher dry weights produced by annuals at the higher radiation exposures. The frequency of occurrence of annuals varied from means of 8.5/m 2 at the higher doses to 24.3/m 2 at the lower doses. In June 1976, five years after irradiation, there were 300 to 400 plants/m 2 . By extrapolating the plants/m 2 against dose back to zero plants/m 2 , some indication of radiation doses which might destroy all annuals was derived

  8. Molecular Fingerprinting Approach in Plant Species Evaluation for a Nuclear Power Programme

    International Nuclear Information System (INIS)

    Azhar Mohamed

    2011-01-01

    Deoxyribonucleic acid (DNA) as a tool for marker technology is found to be remarkable, advanced and exciting in recent years. DNA markers are valuable tools and important in various plant breeding analyses for identification, gene mapping, marker systems and mutagenesis response. As gene expression is related to concurrent cellular activities and is mobilised in the adaptation of plants to adverse environmental conditions, changes at the DNA levels can be detected simultaneously. The changes also reflect response onto plant traits in which selection for better quality plant materials can be made and/or used as bio-indicator response in tracking any environmental change. The objective of the present study is to show Inter Simple Sequence Repeat (ISSR) markers as an important technique in differentiating plant DNA genomic in various species for the evaluation of their diversity and radiation effects in population. The technique has been found to be rapid, simple, reliable and robust in generating molecular fingerprinting database in bio surveillance for a nuclear power programme. (author)

  9. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  10. Gamma radiation of cotton seeds pre-planting

    International Nuclear Information System (INIS)

    Gulyamov, M-K.; Atadzhanov, M.; Narimov, S.

    1977-01-01

    The study of pre-planting irradiation of the cotton plant seeds with gamma rays is summed up. It is for the first time that for the industrial grades stimulating doses for preplanting gamma irradiation of seeds have been offered depending on the power of a radiation source, time before planting, reproduction and the site of origin of seeds. In the Tashkent area doses stimulating the growth, development, and productivity of the cotton plant G. hirsutum L. for seeds, resting in the dry condition are 0.5-2 krad by Co 60 gamma-rays. The early maturing kinds of the type C-4727 should be irradiated with slightly lowered doses (0.5-1 krad) while the usual types of the kind 108-F require doses nearer to 2 krad. Time from irradiation of the seed to planting influences not only the character of changes in the plants, but also heredity. Study during the vegetation period shows that at a dose of 1 krad a much earlier maturity (by 2 days) is observed for irradiation 10 days before planting. Irradiation 20 days before planting shows considerable delay in maturing and productivity as compared to controls

  11. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  12. Review of the radiation protection calculations for the encapsulation plant

    International Nuclear Information System (INIS)

    Ranta-aho, A.

    2008-09-01

    The radiation protection calculations of the encapsulation plant have been carried out with the MCNP5 Monte Carlo code. The focus of the study has been in the parts of the encapsulation plant where the spent fuel is handled after discharge from the transportation casks i.e. the fuel handling cell, the fuel drying station, the canister transfer corridor, the welding chamber, the weld inspection room, the canister buffer storage and the canister lift. The protection against radiation hazard has been mainly designed with thick concrete walls. Additionally, the entrances to the rooms with shielding requirements have been equipped with mazes. The present design excludes doors with shielding properties. The aim of this work was to verify and evaluate the necessary wall thicknesses and the functioning of the mazes in the current design. The calculations verified that for the most parts of the facility, the currently designed walls thicknesses provide adequate protection against radiation from the different spent fuel assembly configurations. Some corrective actions however seem necessary in order to stay clearly below desired radiation limits. For the most parts the functioning of the mazes was inadequate. In some of the cases a different design of the maze will be sufficient action but in some cases the radiation protection can only be secured by heavy doors for practical reasons. (orig.)

  13. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  14. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  15. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Directory of Open Access Journals (Sweden)

    Antonio I Arroyo

    Full Text Available Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain. Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the

  16. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Science.gov (United States)

    Arroyo, Antonio I; Pueyo, Yolanda; Giner, M Luz; Foronda, Ana; Sanchez-Navarrete, Pedro; Saiz, Hugo; Alados, Concepción L

    2018-01-01

    Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain). Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community) beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC) to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic) and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the significance of

  17. Methyl halide fluxes from tropical plants under controlled radiation and temperature regimes

    Science.gov (United States)

    Blei, Emanuel; Yokouchi, Yoko; Saito, Takuya; Nozoe, Susumu

    2015-04-01

    Methyl halides (CH3Cl, CH3Br, CH3I) contribute significantly to the halogen burden of the atmosphere and have the potential to influence the stratospheric ozone layer through their catalytic effect in the Chapman cycle. As such they have been studied over the years, and many plants and biota have been examined for their potential to act as a source of these gases. One of the potentially largest terrestrial sources identified was tropical vegetation such as tropical ferns and Dipterocarp trees. Most of these studies concentrated on the identification and quantification of such fluxes rather than their characteristics and often the chambers used in these studies were either opaque or only partially transparent to the full solar spectrum. Therefore it is not certain to which degree emissions of methyl halides are innate to the plants and how much they might vary due to radiation or temperature conditions inside the enclosures. In a separate development it had been proposed that UV-radiation could cause live plant materials to be become emitters of methane even under non-anoxic conditions. As methane is chemically very similar to methyl halides and had been proposed to be produced from methyl-groups ubiquitously found in plant cell material there is a relatively good chance that such a production mechanism would also apply to methyl halides. To test whether radiation can affect elevated emissions of methyl halides from plant materials and to distinguish this from temperature effects caused by heat build-up in chambers a set of controlled laboratory chamber enclosures under various radiation and temperature regimes was conducted on four different tropical plant species (Magnolia grandiflora, Cinnamonum camphora, Cyathea lepifera, Angiopteris lygodiifolia), the latter two of which had previously been identified as strong methyl halide emitters. Abscised leaf samples of these species were subjected to radiation treatments such UV-B, UV-A and broad spectrum radiation

  18. Radiation protection in connection with the decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI's task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI's continued work on guidelines and regulations for the decommissioning of nuclear plants

  19. Radiation safety for operators of gamma irradiation plants

    International Nuclear Information System (INIS)

    1989-01-01

    These notes have been prepared by the UK Panel for Gamma and Electron Irradiation with advice from the HSE (Technology Division and Factory and Agricultural Inspectorate) to assist operators of Gamma irradiation plants to comply with the requirements of the Ionising Radiations Regulations (IRR 1985), and other relevant regulations (see below). The process is currently used for the sterilisation of medical devices and in the treatment of plastics materials etc. The Government has proposed that the process should also be permitted for the treatment of foodstuffs, and these notes will also be relevant to any irradiation plants which may be used in the UK for this purpose. (author)

  20. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    International Nuclear Information System (INIS)

    Richter, D.; Schreiter, W.

    1975-11-01

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  1. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  2. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  3. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  4. Effects of low doses of radiation on crop plants

    International Nuclear Information System (INIS)

    1966-01-01

    Claims for radiation-induced growth stimulations in plants have been made, starting almost from the time of the discovery of X-rays. However, there is general disagreement on this question, since the numerous studies designed to prove or disprove the existence of the phenomenon have produced inconclusively and erratic results. It is obvious that small, but significant, growth increases may be produced at times by ionizing radiations in certain crop plants, but such increases have not always been reproducible from one experiment to another, and marked inconsistencies often occur with regard to the optimal exposures to produce such effects. The purpose of the FAO/IAEA Panel meeting held in Rome on 1 June, 1964, was to review and evaluate the experimental results in this area and applications for increasing crop yields. Refs, figs and tabs

  5. Effects of near ultraviolet and green radiations on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.M.; Edsall, P.C.; Gentile, A.C.

    1965-01-01

    Selective removal of near ultraviolet and green wavelengths from white light permitted enhanced growth of marigold, tomato, corn, and Impatiens plants, Chlamydomonas cells and the mycelium of Sordaria. Additions of near ultraviolet and green radiations caused repressions in the growth of marigold and Sordaria. These wavelengths do not alter the oxidative mechanisms of mitochondria, intact algal cells or marigold leaf tissues. The capacity for chlorophyll and carotenoid synthesis by Euglena cells was unaffected by these wavelengths. 23 references, 2 figures, 4 tables.

  6. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  7. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  8. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  9. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  10. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  11. Signal Network Analysis of Plant Genes Responding to Ionizing Radiation

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Kim, Sang Hoon

    2012-12-01

    In this project, we irradiated Arabidopsis plants with various doses of gamma-rays at the vegetative and reproductive stages to assess their radiation sensitivity. After the gene expression profiles and an analysis of the antioxidant response, we selected several Arabidopsis genes for uses of 'Radio marker genes (RMG)' and conducted over-expression and knock-down experiments to confirm the radio sensitivity. Based on these results, we applied two patents for the detection of two RMG (At3g28210 and At4g37990) and development of transgenic plants. Also, we developed a Genechip for use of high-throughput screening of Arabidopsis genes responding only to ionizing radiation and identified RMG to detect radiation leaks. Based on these results, we applied two patents associated with the use of Genechip for different types of radiation and different growth stages. Also, we conducted co-expression network study of specific expressed probes against gamma-ray stress and identified expressed patterns of duplicated genes formed by whole/500kb segmental genome duplication

  12. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  13. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  14. A new Legionella species, Legionella feeleii species nova, causes Pontiac fever in an automobile plant.

    Science.gov (United States)

    Herwaldt, L A; Gorman, G W; McGrath, T; Toma, S; Brake, B; Hightower, A W; Jones, J; Reingold, A L; Boxer, P A; Tang, P W

    1984-03-01

    From 15 to 21 August 1981, Pontiac fever affected 317 automobile assembly plant workers. Results of serologic tests were negative for Mycoplasma, Chlamydia, respiratory tract viruses, and previously described legionellae. A gram-negative, rod-shaped organism (WO-44C) that did not grow on blood agar, required L-cysteine for growth, and contained large amounts of branched-chain fatty acids was isolated from a water-based coolant. The organism did not react with antisera against other legionellae, and on DNA hybridization the organism was less than 10% related to other Legionella species. Geometric mean titers found by indirect fluorescent antibody testing to WO-44C were significantly higher in ill employees than in controls (p = 0.0001). Attack rates by department decreased linearly with the department's distance from the implicated coolant system. The etiologic agent apparently was a new Legionella species; we propose the name Legionella feeleii species nova (AATC 35072). This is the first outbreak of nonpneumonic legionellosis in which the etiologic agent is not L. pneumophila, serogroup 1.

  15. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  16. Impact of ultraviolet-beta radiation on two species of forest dwarf shrubs: bilberry (Vaccinium myrtillus L.) and cowberry (Vaccinium vitis-idaea L.)

    International Nuclear Information System (INIS)

    Robakowski, P.

    1999-01-01

    The impact of UV-B radiation on chlorophyll content and chlorophyll fluoroscence of two dwarth shrub species was investigated. The plants originating from different latitudes were used. Three variants of ultraviolet-B radiation were applied: control = 0, lower dose = 11,32 and higher dose = 22,64 kJ/square m/day. Measurements of chlorophyll fluorescence and chlorophyll content were carried out. The response of dwarf shrubs to the increased UV-B radiation depended on UV-B dose, species traits and provenance

  17. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  18. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  19. The responses to supplementary of UV radiation of some temperate meadow species

    International Nuclear Information System (INIS)

    Cooley, N.M.

    2002-01-01

    Full text: The growth and development of various meadow species was monitored while growing under enhanced UV-radiation in the natural light environment. Growth responses to supplementary ultraviolet-B (UV-B+A) and ultraviolet-A (UV-A) were compared to the ambient daylight treatment for Bellis perennis, Cardamine pratensis, Cynosurus critatus and Ranunculus ficaria. When the response of ultraviolet A (UV-A) treated plants were compared with those of the UV-B+A, differences were found which varied according to the species and parameter investigated. To further understand the growth responses of the UV-A treatment and their relationship to the UV-B responses polychromatic action spectra in the natural environment was employed B perennis had an action maximum in the UV B (280-315 nm) while C cristatus demonstrates no action in the UV-B but action in the UV-A region (315-400 nm.). To enable further explanation of the effects of elevated UV radiation on the meadow plants Arabidopsis thaliana ecotypes and mutants were investigated. A thaliana ecotypes dry weight accumulation was found to respond differently to the UV treatments. UV B+A treatment was found to inhibit dry weight accumulation in most ecotypes. When UV B+A induced inhibition was expressed in terms of ambient growth rate for each ecotype a linear relationship could be derived. The higher the growth rate the more susceptible the ecotype was to UV-B+A inhibition. The pertinence of the UV-A treatment and UV protocol is discussed. It is suggested that UV responses could alter the diversity of the meadow equilibrium

  20. Comparative study on the catalase activity in grassy and forestry plants exposed to low gamma radiation

    International Nuclear Information System (INIS)

    Arteni, A. A; Mocanasu, R. C.; Arteni, V.; Creanga, I.

    2001-01-01

    Since gamma rays level in atmosphere occasionally increases affecting biosphere,the radiation effect damages seriously certain plant species. This study was focused on a grassy species,Triticum aestivum, in comparison to a forestry species, namely Quercus robur. Young plantlets were exposed to weak gamma rays delivered by a laboratory 60 Co source, for different irradiation times. The enzymatic activity of catalase was evaluated using biochemical methods. Triticum aestivum presented a slight enhancing of catalase, both in caryopsides and leafs. Quercus robur revealed a rapid linear enhancing of catalase in saplings cultivated in laboratory while saplings grown in forestry were characterized by a reduced catalase activity. Concurrent phenomena of enzyme biosynthesis stimulation and enzyme structure damage are presumed to be the cause of such behavior. (authors)

  1. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity

    NARCIS (Netherlands)

    Dassen, S.; Cortois, R.; Martens, Henk; De Hollander, M.; Kowalchuk, G.A.; van der Putten, W.H.; De Deyn, G.B.

    2017-01-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil

  2. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    NARCIS (Netherlands)

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  3. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  4. effect of gamma radiation and some plant extracts on the black cutworm Agrotis Ipsilon (Hufn.)

    International Nuclear Information System (INIS)

    Sileem, T.M.

    2004-01-01

    the present study was carried out to determine the effects of gamma radiation and plant extracts separately or combined on certain biological and histological aspects of the black cut worm agrotis ipsilon (Hufn). , throughout two successive generations. this work comprised the study of effects of two low doses 75 and 150 Gy) of gamma irradiation as well as two species of plant extracts(M.azedarach and S. terebinthifolius). special stress was given to study the reproductive biology and the histological changes in the gonads of the parental adult males . parental adult females and their f1 generation. - effect of gamma irradiation on p1 and f1 generation: 1. when full grown male pupae were irradiated with the doses of 75 or 150, the number of deposited eggs per mated female was not significantly affected among p1 generations at the two tested radiation doses while it was significantly affected among f1 generation. 2. the eg hatchability percentage among p1 and f1 generations was significantly reduced by increasing the radiation dose applied to p1 male. 3. the two tested doses of gamma irradiation (75 and 150 Gy) did not clearly affect the percentage of mated females among p1 and f1 generations. 4. the average number of spermatophores per mated female was not evidently different from the control.-effect of plant extracts on p1 and f1 generations:1)effect of petroleum ether (p.t) extract treatment on certain biological aspects. 2) effect of acetone extracts treatment on certain biological aspects.3)effect o plant extracts on reproductive biology through p1 generation.4)effect of plant extracts on the reproductive biology through f1 generation.3. the combined effects of irradiation and plant extracts.4.histological effects of different treatments on on gonads of adult and females

  5. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  6. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  7. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  8. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; van Dijk, Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  9. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  10. 78 FR 40669 - Endangered and Threatened Wildlife and Plants; Endangered Species Status for Cape Sable...

    Science.gov (United States)

    2013-07-08

    ... and Plants; Endangered Species Status for Cape Sable Thoroughwort, Florida Semaphore Cactus, and... thoroughwort), Consolea corallicola (Florida semaphore cactus), and Harrisia aboriginum (aboriginal prickly...

  11. Radiation-induced paramagnetic species in natural calcite speleothems

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1989-01-01

    The ESR natural spectrum of humic-free speleothem calcite single crytals in the region of g = 2.0000 is a composite of lines from 4 radiogenic species, in addition to Mn ++ lines. Laboratory irradiation causes appearrance of three more species. Use of isotropic F species (g = 2.0003) for dating is possible if specific cautions are followed. (author) [pt

  12. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  13. Computer aided radiation protection system at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ishida, J.; Saruta, J.; Yonezawa, R.

    1996-01-01

    Radiation control for workers and workforce has been carried out strictly and effectively taking into account ALARA principle at Tokai Reprocessing Plant (TRP) which has treated about 860 tons of irradiated fuels by now since 1977. The outline of radiation control method at TRP has already been described. This paper briefly describes our experiences and the capabilities of Radiological Information Management System (RIMS) for the safety operation of TRP, followed by radiation exposure control and activity discharge control as examples. By operating the RIMS, the conditions of workplace such as dose equivalent rate and air-contamination are easily and rapidly grasped to take prompt countermeasures for radiological protection, localization and elimination of contamination, and also the past experience data are properly applied to new radiological works to reduce exposures associated with routine and special repetitive maintenance operations at TRP. Finally, authors would like to emphasize that the form and system for radiological control of reprocessing plant has been established throughout our 15-year-experience at TRP. (author)

  14. Low doses of ionizing radiation and hydrogen peroxide stimulate plant growth

    International Nuclear Information System (INIS)

    Korystov, Y.; Narimanov, A.

    1997-01-01

    The present study shows that low-dose oxidative stress induced by ionizing radiation (10-20 cGy) and hydrogen peroxide (1-100 pmol per litre) stimulates germination of seeds and growth of sprouts and roots. The growth of seedlings can be stimulated by treatment of seeds as well as seedlings but in the latter case it needs lower doses. The stimulation effect is observed in a narrow dose interval which is the same for the plant species studied: barley, wheat, pea, maize and melon

  15. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng-Soon; Kwon, Seock-Yoon; Shin, Seung-Yung [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    In an attempt to analysis the POD isoenzymes (swpa1, swpa2, swpa3, and swpn1) expression in response to gamma-irradiation in sweet potato. In suspension cells POD isoenzymes was highly expressed at 6 h postirradiation, and the transcript levels increased at 0 and 6 h at 50 Gy in plants. POD isoenzymes expression in response to irradiation appears not to be regulated in a different manner in cultured cells and plants. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by SDS-PAGE. In tobacco cultured cells gamma irradiation did not significantly change the protein patterns. This indicates that the gamma irradiation-induced protein was not highly expressed or might be overlap with others. In the tobacco transgenic plants simultaneously expressing SOD and/or APX in chloroplast, the specific activities of SOD and APX of gamma-irradiated plants increased according to the dose of gamma-irradiation. These results indicate that antioxidative genes depends on antioxidative isoenzymes differently respond to gamma irradiation in transgenic tobacco plant lines. 35 refs., 9 figs. (Author)

  16. Radiation induces aerobic glycolysis through reactive oxygen species

    International Nuclear Information System (INIS)

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  17. Fifteen-Year Growth of Six Planted Hardwood Species on Sharkey Clay Soil

    Science.gov (United States)

    Roger M. Krinard; Harvey E. Kennedy

    1987-01-01

    Six hardwood species planted on Sharkey clay soil that had been disked the first 5 years for weed control were significantly taller at age 5 when compared to species grown on mowed sites. By age 15, there were no differences in heights within species except for sweet pecan. Average heights by species at age 15 were: cottonwood (Populus deltoides...

  18. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Curtis H. Flather; Pam L. Fuller; Bruce G. Peterjohn; John T. Kartesz; Lawrence L. Master

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following...

  19. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  20. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  1. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  2. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  3. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  4. Photocatalysis and radiation absorption in a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Curco, D; Gimenez, J [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Barcelona, Barcelona (Spain); Malato, S; Blanco, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Plataforma Solar de Almeria, Almeria (Spain)

    1996-11-15

    Recently, many papers have appeared in literature about photocatalytic detoxification. However, progress from laboratory data to the industrial solar reactor is not easy. Kinetic models for heterogeneous catalysis can be used to describe the photocatalytic processes, but luminic steps, related to the radiation, have to be added to the physical and chemical steps considered in heterogeneous catalysis. Thus, the evaluation of the radiation, and its distribution, inside a photocatalytic reactor is essential to extrapolate results from laboratory to outdoor experiments and to compare the efficiency of different installations. This study attempts to validate the experimental set up and theoretical data treatment for this purpose in a Solar Pilot Plant. The procedure consists of the calibration of different sunlight radiometers, the estimation of the radiation inside the reactor, and the validation of the results by actinometric experiments. Finally, a comparison between kinetic constants, for the same reaction in the laboratory (artificial light) and field conditions (sun light), is performed to demonstrate the advantages of knowing the radiation inside a large photochemical reactor

  5. Install and operate type radiation processing plant for marine products

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, A.K. [BARC-BTIR Complex, Mumbai (India). Dept. of Atomic Energy. Board of Radiation and Isotope Technology

    2002-07-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  6. Install and operate type radiation processing plant for marine products

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  7. Effects of Low Dose Chronic Radiation and Heavy Metals on Plants and Their Fungal and Virus Infections

    Directory of Open Access Journals (Sweden)

    A Dmitriev

    2009-06-01

    Full Text Available The effects of low dose chronic radiation on plant disease resistance and fungal and virus infections have been studied. The results obtained in the 10-km Chernobyl zone demonstrated a decrease in plant disease resistance and appearance of a "new" population of stem rust agents of cereal with a high frequency of more virulent clones. Radionuclide contamination and heavy metals lead to wider virus spread and a higher diversity of virus species. The Chernobyl zone is a territory of enhanced risk and potential threats for the environment. A special type of monitoring of microevolution processes in plant pathogens should provide better understanding of how serious these potential threats are.

  8. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  9. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  10. Cancer near the Three Mile Island nuclear plant: radiation emissions.

    Science.gov (United States)

    Hatch, M C; Beyea, J; Nieves, J W; Susser, M

    1990-09-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation. Overall, the pattern of results does not provide convincing evidence that radiation releases from the Three Mile Island nuclear facility influenced

  11. Interactions of electromagnetic radiations and reactive oxygen species on skin

    International Nuclear Information System (INIS)

    Ferramola de Sancovich, A.M.; Sancovich, H.A. . E- mail: ferramol@qb.fcen.uba.ar

    2006-01-01

    The energy of electromagnetic radiation is derived from the fusion in the sun of four hydrogen nuclei to form a helium nucleus. The sun radiates energy representing the entire electromagnetic spectrum. Light is a form of electromagnetic radiation: all electromagnetic radiation has wave characteristics and travels at the same speed (c: speed of light). But radiations differ in wavelength (λ). Light energy is transmitted not in a continuum stream but only in individual units or photons: E = h c / λ. Short wave light is more energetic than photons of light of longer wavelength. Ultraviolet radiations (UV) (λ s 200- 400 nm) can be classified in UV A (λ s 315 - 400 nm.); UV B (λ s 280 - 315 nm) and UV C (λ s 2 content in biological systems promotes ROS synthesis. If ROS are not controlled by endogenous antioxidants, cell redox status is affected and tissue damage is produced ('oxidative stress'). ROS induce lipid peroxidation, protein cross-linking, enzyme inhibition, loss of integrity and function of plasmatic and mitochondrial membranes conducing to inflammation, aging, carcinogenesis and cell death. While infra-red radiations lead to noticeable tissue temperature conducing to severe burns, UV A and UV B undercover react with skin chromophores producing photochemical alterations involved in cellular aging and cancer induction. As UV radiations can reach cellular nucleus, DNA can be damage. Human beings need protection from the damaging sunbeams. This is a very important concern of public health. While humans need to protect their skin with appropriate clothing and/or by use of skin sun blocks of broad spectrum, some bacteria that are extensively exposed to sunlight have developed genomic evolution (plasmid-encoded DNA repair system) which confers protection from the damaging effect of UV radiation. (author) [es

  12. Application of neutron radiation inspection at the Pantex Plant

    International Nuclear Information System (INIS)

    Cassidy, J.P.

    1983-01-01

    A neutron radiographic capability has been established at the Pantex Plant in Amarillo, Texas, which is operated for the Department of Energy by Mason and Hanger-Silas Mason Co. A 3 MeV Van de Graaf accelerator is employed as the neutron source. Neutron radiation inspection techniques have been developed to detect and observe discontinuities in explosive materials encased in aluminum, lead, steel and combinations of these casement materials. These data demonstrate that the capability exists for obtaining satisfactory neutron radiographs of many explosive-loaded components. Additional work will be performed in order to further determine applicable capabilities of the 3 MeV Van de Graaf accelerator. (Auth.)

  13. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  14. Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards

    International Nuclear Information System (INIS)

    1992-01-01

    The 1977 Recommendations of the International Commission on Radiological Protection stated that the commission believes that if man is adequately protected from radiation, other organisms are also likely to be sufficiently protected. The present report examines this statement by considering the effects of ionizing radiation on animals and plants in both terrestrial and aquatic ecosystems. The conclusions are that chronic dose rates of IMGy.d -1 or less are unlikely to cause measurable deleterious effects in terrestrial populations, and that in the aquatic environment limiting chronic dose rates to 10MGy.d -1 to the maximally exposed individuals would provide adequate protection for the population. Thus specific radiation protection standards for non-human organisms are not needed. 193 refs, 2 figs, 7 tabs

  15. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  16. Determination of incoming solar radiation in major tree species in Turkey.

    Science.gov (United States)

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p solar radiation values of sites and light requirements of forest trees ranked similarly.

  17. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  18. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  19. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  20. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  1. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  2. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  3. Impact of mine dumps on transport the invasive plant species to Upper Silesia

    Science.gov (United States)

    Sotkova, N.; Lokajickova, B.; Mec, J.; Svehlakova, H.; Stalmachova, B.

    2017-10-01

    Human activities significantly change the species composition in the area. The main factor of change was the mining industry, which changed the natural conditions on Upper Silesia. The anthropogenic relief of mine dumps are the main centre of alien plant in an industrial landscape. The poster deals with the state of the invasive plant species by the phyto-sociological surveys on Upper Silesia.

  4. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  5. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  6. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-06-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the US Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  7. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-01-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the U.S. Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  8. Relationships between pigment composition variation and reflectance for plant species from a coastal savannah in California

    Science.gov (United States)

    Ustin, Susan L.; Sanderson, Eric W.; Grossman, Yaffa; Hart, Quinn J.

    1993-01-01

    Advances in imaging spectroscopy have indicated that remotely sensed reflectance measurements of the plant canopy may be used to identify and qualify some classes of canopy biochemicals; however, the manner in which differences in biochemical compositions translate into differences is not well understood. Most frequently, multiple linear regression routines have been used to correlate narrow band reflectance values with measured biochemical concentrations. Although some success has been achieved with such methods for given data sets, the bands selected by multiple regression are not consistent between data sets, nor is it always clear what physical or biological basis underlies the correlation. To examine the relationship between biochemical concentration and leaf reflectance signal we chose to focus on the visible spectrum where the primary biochemical absorbances are due to photosynthetic pigments. Pigments provide a range of absorbance features, occur over a range of concentrations in natural samples, and are ecophysiologically important. Concentrations of chlorophyll, for example, have been strongly correlated to foliar nitrogen levels within a species and to photosynthetic capacity across many species. In addition pigments effectively absorb most of the photosynthetically active radiation between 400-700 nm, a spectral region for which silicon detectors have good signal/noise characteristics. Our strategy has been to sample a variety of naturally occurring species to measure leaf reflectance and pigment compositions. We hope to extend our understanding of pigment reflectance effects to interpret small overlapping absorbances of other biochemicals in the infrared region. For this reason, selected samples were also tested to determine total nitrogen, crude protein, cellulose, and lignin levels. Leaf reflectance spectra measured with AVIRIS bandwidths and wavelengths were compared between species and within species and for differences between seasons, for changes

  9. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  10. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  12. Radiation protection programme at Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Breznik, B.

    1996-01-01

    Krsko NPP, a Westinghouse two-loop PWR of 632 M We power, is in commercial operation since 1982. Reduction of radioactive releases to the environment and the reduction of doses to workers is the basic goal in the plant radiological protection. The radiation protection programme is established to ensure that the radiation exposures to workers and members of the public are minimized according to the As Low As Reasonably Achievable approach and controlled in accordance with international safety standards and Slovenian regulations. The basis for the operational and technical measures has been provided according to the industrial good practice. The effluent control is based on the Standard Radioactive Effluent Technical Specifications, and environmental surveillance is established according to the programme defined by the regulations. The dose constraints and performance indicators are used to assure the effectiveness of the radiation protection programme and provide a convenient follow-up tool. The monitoring programme results of each year show that there is no measurable dose to the public due to radioactive releases. The commitment to the dose burden of any member of a critical group is assessed to be below the dose constraint. Individual and collective doses of the workers are within a range typical for the PWRs of a similar type. (author)

  13. Cancer near the Three Mile Island nuclear plant: Radiation emissions

    International Nuclear Information System (INIS)

    Hatch, M.C.; Beyea, J.; Nieves, J.W.; Susser, M.

    1990-01-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation

  14. Regulatory inspections in nuclear plants in the field of radiation protection

    International Nuclear Information System (INIS)

    Hort, M.; Fuchsova, D.

    2014-01-01

    State Office for Nuclear Safety executes state administration and performs inspections at peaceful use of nuclear energy and ionizing radiation in the field of radiation protection and nuclear safety. Inspections on radiation protection at nuclear power plants are secured by inspectors of the Department of Radiation Protection in Fuel Cycle, who work at the Regional centre Brno and Ceske Budejovice. (authors)

  15. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  16. comparative study on the effects of cadmium and gamma radiation on three aspergillus species

    International Nuclear Information System (INIS)

    Adam, Y.M.; Abulyazid, I.; Fathi, I.A.

    2004-01-01

    The effect of cadmium on the ability of fungi to survive in the rhizosphere of Ambrosia miritima plant at different concentrations was studied. With respect to the frequency of occurrence of Aspergillus species in the field even at the highest Cd concentration, the following sequence of decreasing tolerance to Cd was obtained: A. tamarii > A. sydowi > A. niger. On studying the effect of different concentrations of Cd in vitro culture on the growth parameters (dry weight and mycelial linear growth) of these three selected fungi, it was noticed that the most tolerant fungus was A. tamarii, while A. sydowi was moderately tolerant and A. niger was sensitive to the effect of Cd. Amino acids analysis revealed that Cd treatment was accompanied with increasing in the total free amino acids contents of both A. tamarii and A. sydowi compared to A. niger cells, where a reduction in this component was observed. Moreover, SDS-PAGE indicated high content of protein under Cd stress compared to non-treated culture of both A. tamarii and A. sydowi. In contrast, a decrease in protein content in Cd-treated cells of A. niger was recorded. Furthermore, SDS-PAGE revealed that Cd treated fungal cells of A. tamarii can synthesized new three stress proteins (hsp 's) while A. sydowi synthesized new four stress proteins. In cell culture of A. niger, cadmium induced new four stress proteins. Regarding the nucleic acids (RNA and DNA) content, it is clear that presence of Cd led to significant decrease in the RNA contents of the three tested fungi, while only the DNA content of A. niger was significantly decreased by Cd treatment compared to the corresponding control. The data also showed that Cd-gamma radiation combination acted synergistically at the low doses of gamma radiation, while an antagonistic effect was recorded at the higher one for both A. tamarii and A. sydowi. Both treatments acted synergistically at all doses of gamma radiation on the growth of A. niger

  17. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    Modularity is a structural property of ecological networks, which has received much interest, but has been poorly explored. Modules are distinct subsets of species interacting strongly with each other, but sparsely with species outside the subset. Using a series of temporal cumulative networks, we...... all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  18. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  19. Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species.

    Science.gov (United States)

    Ikin, Karen; Tulloch, Ayesha; Gibbons, Philip; Ansell, Dean; Seddon, Julian; Lindenmayer, David

    2016-10-01

    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and

  20. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  1. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  2. Evaluation of radiation use efficiency and its relationship with dry matter accumulation in three millet species

    Directory of Open Access Journals (Sweden)

    behnam kamkar

    2009-06-01

    Full Text Available A factorial arrangement of three millets species (Panicum miliaceum, Pennisetum glaucum, and Setaria italica and two sowing dates with three replications were used in a completely randomized design to evaluate the radiation use efficiency and its relationship with dry matter accumulation. Leaf area index was used in daily intervals to calculate daily intercepted radiation. Light extinction coefficient was calculated as the slope of regression line between log transformed fraction of intercepted radiation and leaf area index during growing season. Radiation use efficiency was calculated as the slope of linear regression between cumulative intercepted radiation and cumulative biomass during growing season. Results showed that light extinction coefficient and radiation use efficiency for proso, pearl and foxtail millets were 0.75, 0.66, 0.57 and 1.43, 1.83, 1.74 g/MJ in terms of total radiation, respectively. Differences in biomass production were not significant between proso and pearl millets. Proso millet had higher intercepted radiation, but lower radiation use efficiency in comparison with pearl millet. Foxtail millet had lower intercepted radiation than proso and pearl millets, but its radiation use efficiency was higher than pearl millet. Total biomass of foxtail millet was lower than other species. Results indicated that proso and pearl millets can produce more biomass than foxtail millet.

  3. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  4. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  5. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  6. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  7. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  8. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  9. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  10. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1 - 3. The government has not as yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  11. Development of Plant Mutant Resources with an useful characters by Radiation Fusion Technology

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2009-02-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomics researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasms, and sharing the valuable mutants and mutated gene information for the genomics and biotech researches that eventually leads to economic benefits

  12. Influence of high doses gamma radiation on group of meadow plants and water organisms

    International Nuclear Information System (INIS)

    Wlodek, St.; Wasilewski, A.; Indeka, L.; Kobuszewska, B.; Krzysztofik, B.; Ossowska-Cypryk, K.; Slomczynski, T.

    1979-01-01

    The plot of 100 square meters area has been irradiated for 526 days by gamma radiation which simulated the external radiation of the local fall-out. This field experiment has been performed in specially preserved conditions. The organisms of land and water complexes present in this area have received the total of 50 000 R in the center and 600 R on periphery. It has been shown that: changes in the quantitative and qualitative composition of bacteria and soil and water fungi were generally little: among the physiological groups the greatest disfunctions have been observed for the bacteria of the nitric cycle; Lemna minor appeared to be the most radiosensitive water plant which perished completely in the zone around the center of the plot what in turn resulted in secondary changes in the composition of water microflora and micro- and macrofauna; the growth of 14 species of meadow plants present around the center of the plot has been reduced about 25% of biomass in comparison with the control plots; on the other hand, the stimulation of growth of meadow plants, mostly weeds, has been observed on the periphery of the plot. (author)

  13. Influence of high doses gamma radiation on group of meadow plants and water organisms

    Energy Technology Data Exchange (ETDEWEB)

    Wlodek, St; Wasilewski, A; Indeka, L; Kobuszewska, B; Krzysztofik, B; Ossowska-Cypryk, K; Slomczynski, T

    1979-01-01

    The plot of 100 square meters area has been irradiated for 526 days by gamma radiation which simulated the external radiation of the local fall-out. This field experiment has been performed in specially preserved conditions. The organisms of land and water complexes present in this area have received the total of 50 000 R in the center and 600 R on periphery. It has been shown that: changes in the quantitative and qualitative composition of bacteria and soil and water fungi were generally little: among the physiological groups the greatest disfunctions have been observed for the bacteria of the nitric cycle; Lemna minor appeared to be the most radiosensitive water plant which perished completely in the zone around the center of the plot what in turn resulted in secondary changes in the composition of water microflora and micro- and macrofauna; the growth of 14 species of meadow plants present around the center of the plot has been reduced about 25% of biomass in comparison with the control plots; on the other hand, the stimulation of growth of meadow plants, mostly weeds, has been observed on the periphery of the plot.

  14. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Evaluation of the effects of gamma radiation in minimally processed vegetables of Brassica oleracea species

    International Nuclear Information System (INIS)

    Nunes, Thaise Cristine Fernandes

    2009-01-01

    The consumption of collard greens (Brassica oleracea cv. acephala) and broccoli (Brassica oleracea L. var. italica) has been inversely associated with morbidity and mortality caused by degenerative diseases. These species are highly consumed in Brazil, which enables its use as minimally processed (MP). The growing worldwide concern with the storage, nutritional quality and microbiological safety of food has led to many studies aimed at microbiological analysis, vitamin and shelf life. To improve the quality of these products, radiation processing can be effective in maintaining the quality of the product, rather compromising their nutritional values and sensory. The aim of this study was to evaluate the effectiveness of gamma radiation from 60 Co at doses of 0, 1.0 and 1.5 kGy on the reduction of microbiota in these plants, and analyze their nutritional and sensory characteristics. The methodology used in this study was microbiological analysis, colorimetric analysis, analysis of phenolic compounds, antioxidant analysis and sensory analysis. The microbiological analysis showed a decrease in the development of populations of aerobic microorganisms, psychotropic and yeast and mold with increasing doses of radiation. The sensory analysis showed no significant difference between different times of cooking analyzed. The analysis of phenolic compounds, significant differences between the samples, suggesting that with increasing dose of irradiation was an increase in the amount of phenolic compounds found in broccoli and collard greens MP. It can be observed that the sample of control collard greens showed high antioxidant activity and for the samples treated by irradiation was a decrease of percentage. In contrast the samples of broccoli show an increase in the rate of scavenging DPPH with increase of the dose of radiation. The colorimetric analysis revealed that for samples of MP collard greens and broccoli foil of no significant differences, but for samples of stems of

  16. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  17. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  18. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  19. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  20. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    Science.gov (United States)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  1. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  2. The new flora of the northeastern USA: quantifying introduced plant species occupancy in forest ecosystems

    Science.gov (United States)

    Bethany K. Schulz; Andrew N. Gray

    2013-01-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment...

  3. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  4. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  5. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios

    International Nuclear Information System (INIS)

    Tosserams, M.; Rozema, J.

    1995-01-01

    Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed

  6. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  7. Antimicrobial activity of some endemic plant species from Turkey

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... Antibacterial and antifungal activity of Heracleum sphondylium subsp. arvinense. Afr. J. Biotechnol. 5: 1087-1089. Ertürk Ö (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia. 61: 275-278. Fazly Bazzaz BS, Haririzadeh G (2003). Screening of Iranian plants for.

  8. Susceptibility of Australian plant species to Phytophthora ramorum

    Science.gov (United States)

    Kylie Ireland; Daniel H& uuml; berli; Bernard Dell; Ian Smith; David Rizzo; Giles. Hardy

    2010-01-01

    Phytophthora ramorum is an invasive plant pathogen causing considerable and widespread damage in nurseries, gardens, and natural woodland ecosystems of the United States and Europe, and is classified as a Category 1 pest in Australia. It is of particular interest to Australian plant biosecurity as, like P. cinnamomi; it has...

  9. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Science.gov (United States)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  10. Environmental radiation protection of non-human vertebrate species: considerations for environmental monitoring and assessment in Canada

    International Nuclear Information System (INIS)

    MacDonald, C.R.

    1996-01-01

    The risk to non-human species from activities associated with the nuclear fuel waste cycle is coming under increased scrutiny from the public and regulators. In the past, protection of the environment was assumed to be an outcome of the protection of humans living in the same area. Thus it was assumed that if nuclides were maintained at low enough levels in water, air and soil to protect humans, then plants and animals inhabiting the same area would be protected. This approach of relying on humans as a sensitive indicator implicitly protects all species, at least at the population level. To adequately predict exposure and response in wild communities requires a detailed knowledge of the ecosystem under study and a method of predicting both the transfer of nuclides to individual species and the consequence of exposure. Detailed environmental, or ecological, risk estimation requires information on the normal levels of radiation and general physiological stress in the exposed group, an estimate of the additional radiation exposure from all pathways and a prediction of the consequences of the total exposure. The purpose of this paper is to review these requirements in the context of ecological radiation protection in the Canadian environment using examples of birds and mammals from the Canadian shield. Our goal is to develop methods which provide better estimates of potential risk to wild animals

  11. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  12. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... 3Department of Botany, Post Graduate College Abbottabad, Pakistan. Accepted 17 March, 2011. A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration.

  13. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration. A questionnaire was used as a survey instrument to obtain desired data. For this study, 10 villages were randomly ...

  14. Radiation hormesis. Stimulatory effects of low level ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shigenobu; Masui, Hisashi; Yoshida, Shigeo; Murata, Isao [Osaka Univ., Suita (Japan). Faculty of Engineering

    1999-04-01

    Recently, the study for radiation hormesis has been executed against animals and plants; subharmful doses of radiation may evoke a stimulatory response in any organism. We executed irradiating experiments of dry seeds with fusion (D-T) neutron, fission neutron, cobalt-60 gamma-ray and investigated existence of the radiation hormesis effects by measuring germination, the length of a stalk and the total weight of a seed leaf on the 7th day after starting cultivation. And we estimated radiation hormesis effects by relative effectiveness, the ratio of the mean value of measurement subjects for the irradiated group to that of non-irradiated group. In relation to Raphanus sativus, the hormesis effects on seed leaf growth from irradiated seeds have only turned up in seed groups irradiated by the fusion (D-T) neutron. We have confirmed that absorbed dose range which revealed the effects is from 1 cGy to 10 Gy and the increasing rate is from 5 percent to 25 percent against a control group. (author)

  15. 75 FR 15454 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species

    Science.gov (United States)

    2010-03-29

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species AGENCY: Fish... species or subspecies of fish, wildlife, or plant, and any distinct population segment of any species of... extinction throughout all or a significant portion of its range. C. Threatened species (T) means any species...

  16. 75 FR 55820 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species

    Science.gov (United States)

    2010-09-14

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species AGENCY: Fish... CFR 424.02: (A) Species includes any species or subspecies of fish, wildlife, or plant, and any... species means any species that is in danger of extinction throughout all or a significant portion of its...

  17. Postglacial migration supplements climate in determining plant species ranges in Europe

    Science.gov (United States)

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  18. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  19. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  20. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  1. Using airborne middle-infrared (1.45–2.0 μm) video imagery for distinguishing plant species and soil conditions

    International Nuclear Information System (INIS)

    Everitt, J.H.; Escobar, D.E.; Alaniz, M.A.; Davis, M.R.

    1987-01-01

    This paper describes the use of a black-and-white visible/infrared (0.4–2.4 μm) sensitive video camera, filtered to record radiation within the 1.45–2.0 μm middle-infrared water absorption region, for discriminating among plant species and soil conditions. The camera provided adequate quality airborne imagery that distinguished the succulent plant species onions (Allium cepum L.) and aloe vera (Aloe barbadensis Mill.) from nonsucculent plant species. Moreover, wet soil, dry crusted soil, and dry fallow soil could be differentiated in middle-infrared video images. Succulent plants, however, could not be distinguished from wet soil or water. These results show that middle-infrared video imagery has potential use for remote sensing research and applications

  2. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  5. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  6. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  7. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  8. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... but offered no explicit guidance about how these water quality targets might be achieved. ... the limited knowledge that exists about the performance of local plant ...... reuse: designing biofiltration systems for reliable treatment.

  9. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  10. Rotating machinery surveillance system reduces plant downtime and radiation exposure

    International Nuclear Information System (INIS)

    Bohanick, J.S.; Robinson, J.C.; Allen, J.W.

    1988-01-01

    A rotating machinery surveillance system (RMSS) was permanently installed at Grand Gulf nuclear station (GGNS) as part of a program sponsored by the US Department of Energy whose goal was to reduce radiation exposure to power plant personnel resulting from the inspection, maintenance, and repair of rotating machinery. The RMSS was installed at GGNS in 1983 to continuously monitor 173 analog vibration signals from proximity probes mounted on 26 machine trains and ∼450 process data points via a computer data link. Vibration frequency spectra, i.e., the vibration amplitude versus frequency of vibration, and various characterizations of these spectra are the fundamental data collected by the RMSS for performing machinery diagnostics. The RMSS collects vibration frequency spectra on a daily basis for all the monitored rotating equipment and automatically stores the collected spectra for review by the vibration engineer. Vibration spectra automatically stored by the RMSS fall into categories that include the last normal, alarm, minimum and maximum, past three-day data set, baseline, current, and user-saved spectra. During first and second fuel-cycle operation at GGNS, several significant vibration problems were detected by the RMSS. Two of these are presented in this paper: recirculation pumps and turbine-generator bearing degradation. The total reduction in personnel radiation exposure at GGNS from 1985 to 1987 due to the presence of the RMSS was estimated to be in the range from 49 to 54 person-rem

  11. Organisation of radiation protection at Sizewell Nuclear Power Plant in the UK. Report n. 290

    International Nuclear Information System (INIS)

    Crouail, P.; Jeannin, B.; Lefaure, C.; Panisset, L.

    2004-01-01

    This report first describes the organisation and management of radiation protection at Sizewell Nuclear Power Plant (UK): general organisation, organisation of the radiation protection department, goals of radiation protection at plant and corporate levels, measurement of radiation protection performance, presence of health physicists in the plant, national and international comparisons. Then, it addresses the training of workers and radiation protection specialists with respect to radiation protection, the management of zoning and surveillance (action to address the radiation risk and the contamination risk). It describes the relationships of Health physicists with contractors and other workers teams, and the relationships with safety authorities. It indicates the different outages of this organisation: general planning, information sheets, physicists work planning, reviews and meetings. It describes the management of personal dosimetry with radiation work permits and actions aimed at the reduction of doses during various operations. The last part proposes a feedback experience report and evokes the generated database, and addresses events reporting

  12. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Science.gov (United States)

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.

  13. Monitoring of some Wild Plant Species Grown on Natural Radioactive Soils, Wadi EI -Gemal Area, Southeastern Desert, Egypt

    International Nuclear Information System (INIS)

    Morsy, A.M.A.; Afifi, S.Y.

    2008-01-01

    Fore long time ago, human kind has relied on natural products of plants as a primary source for medicine. Herbs, flora, molt and even leeches were employed to bring up relief to the sick and infirmly. As a part of ongoing investigations for the effect of natural radionuclide radiations on biochemical constituents of plants, .two native species (Salvadora persica and Balanites aegyptiaca). grown on virgin radionuclide soils along with Wadi EI-Gemal area, Southeastern Desert, Egypt were collected. This study dealt with amounts of radionuclide taken by plants and their effects on their biochemical constituents, beneficiation uses on remedy of contaminated and even polluted soils and sick treatments as well as exploration of radioactive materials. These plant samples were subjected to certain analysis techniques for the amounts of uranium that were followed by determining carbohydrates, lipids and proteins. The results indicated that both plants uptake uranium but with different amounts. Uranium has a passive effect on the total soluble suger (T.S.S.) of Balanties aegyptiaca plant, while no clear trend appears on T.S.S. of Snlvndora persica root samples. No clear trend appeared for effect of uranium on both fatty acids and amino acids of the investigated plants. Meanwhile uranium has a passive effect on saponin in both plant species, alkaloid in S. persica root and flavonoids in B. aegyptiaca fruits, while showed a positive effect on alkaloids in B. aegyptiaca and no clear trend appeared for flavonoids in S. persica. As for diosgenin uranium has passive effect on its amount in B. aegyptiaca

  14. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    higher inspector presence than normal and more stringent reporting requirements. In SKI's opinion, Barsebaeck Kraft AB (BKAB), with the measures that have been implemented, is maintaining safety at the Barsebaeck nuclear power plant. In December, Studsvik Nuclear AB decided to close down the two reactors at Studsvik. Therefore, SKI immediately initiated an intensified supervision of the decommissioning process at the reactors. The handling of nuclear waste at nuclear power plants, including the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB) has largely functioned well for the most part. In 2004, the total radiation dose to the personnel at nuclear power plants was 6.4 manSv, which is lower than in 2003. The average value for the past five years is 9 manSv. The shutdown periods were shorter at a few reactors due to the fact that work progress surpassed expectations. Technical problems and unplanned repair work resulted in a somewhat higher dose than expected at a few reactors. No individual received a radiation dose greater than 20 mSv. The fuel defects that occurred in 2004 did not result in any significant impact on radiation protection. The dose to people living in the vicinity of the nuclear power plants in 2004 was below 1 per cent of the permitted dose. The control measurements that SSI conducts on environmental samples around nuclear power plants and on the radioactive releases to water show a good agreement with the licensees' own measurements

  15. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  16. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  18. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  19. Evaluation of Some Plant Extracts and Gamma Radiation for Controlling Potato Tuber Moth, Phthorimea operculella (Zeller)

    International Nuclear Information System (INIS)

    Ghally, S.E.; Abdel Kawy, F.K; Abd-alla, M.S; Mohamed, S.A.

    2005-01-01

    In This work two plant species: fruits of chinaberry, Melia azedarach and leaves of Duranta plumieri were chosen to study the efficiency of these plant extracts with concentrations from 2 to 6 % (w/v) for the first and from 15 to 25% (w/v) for the second with joint action of gamma radiation at 200 Gy in controlling potato tuber moth Ph. operculella. It was noticed that, the solved used have no effect on the larval development. Percent pupation was adversely affected by increasing the concentration of plant extracts. Also the reduction in adult emergence was increased with increasing treatments used. The gradual increase in susceptibility of insect larvae to plant extract was noticed as the dose of gamma irradiation applied. The sex ratio of the resulting adults was not affected at all concentrations used. Duranta extracts have a slight effects on all the stages of Ph. operculella. Percent pupation was 19.54% with Melia fruits extract at concentration 5%, while it was 45.05% with Duranta leaves extract at 15% concentration. Finally Duranta extract had a little toxicity against Ph. operculella comparing with another extract

  20. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  1. Control of invasive plant species in created wetlands.

    Science.gov (United States)

    1994-01-01

    The Virginia Department of Transportation (VDOT) has been using a herbicide in the form of glyphosate for the control of unwanted species in created wetlands. Results with this particular herbicide have been somewhat mixed. It was requested that the ...

  2. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Science.gov (United States)

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  3. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana; Šurinová, Mária

    2015-01-01

    Roč. 6, č. 11 (2015), s. 1-16 ISSN 2150-8925 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 Keywords : phylogenetic relationships * species traits * plant-soil feedback Subject RIV: EF - Botanics Impact factor: 2.287, year: 2015

  4. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  5. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  6. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    Science.gov (United States)

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  7. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  8. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  9. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  10. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  11. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  12. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P guiding invasive species monitoring, and we support the use of an iterative sampling design for

  13. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  14. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  15. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  16. Handbook of plant cell culture. Volume 2. Crop species

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.R.; Evans, D.A.; Ammirato, P.V.; Yamada, Y. (eds.)

    1984-01-01

    In this volume the state-of-the-art plant cell culture techniques described in the first volume are applied to several agricultural and horticultural crops. In 21 chapters, they include maize, oats, wheat, beans, red clover and other forage legumes, asparagus, celery, cassava, sweet potato, banana, pawpaw, apple, grapes, conifers, date palm, rubber, sugarcane and tobacco. Each chapter contains (1) detailed protocols to serve as the foundation for current research, (2) a critical review of the literature, and (3) in-depth evaluations of the potential shown by plant cell culture for crop improvement. The history and economic importance of each crop are discussed. This volume also includes an essay, ''Oil from plants'', by M. Calvin.

  17. Activities of arginine and ornithine decarboxylases in various plant species.

    Science.gov (United States)

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  18. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    Science.gov (United States)

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  19. Radiation environmental monitoring and assessment of plant-221 site ten years after decommissioning

    International Nuclear Information System (INIS)

    Li Yang; Gu Zhijie; Pan Wei; Ren Xiaona; Hu Xiaolin; She Haiqiang

    2011-01-01

    More than 10 years have passed since nuclear facility decommissioning practice for Plant-221 finished. Environmental radiation monitoring and post assessment of the decommissioning site of Plant-221 was carried out during 2003-2006, which was organized by Department of Environmental Protection and executed by China Institute for Radiation Protection, Environmental Radiation Monitoring station of Qinghai Province, etc. It shows that the decommissioning practice for Plant-221 complied with relevant limits for decommissioning, and its environmental radiation situation has not had significant change in general after 10 years, and the potential impact to the public and the environmental is acceptable. (authors)

  20. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables

  1. 78 FR 32013 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for 38 Species...

    Science.gov (United States)

    2013-05-28

    ... potential for destruction of plants due their proximity to a popular hiking and jeep trail; and habitat... restoration of ecosystem functionality for the recovery of each species, and provide conservation benefits for...

  2. Threatened plant species in the river ports of Central Europe: a potential for nature conservation

    Czech Academy of Sciences Publication Activity Database

    Jehlík, V.; Dostálek, J.; Frantík, Tomáš

    2016-01-01

    Roč. 19, č. 2 (2016), s. 999-1012 ISSN 1083-8155 Institutional support: RVO:67985939 Keywords : Central Europe * plant species richness * waterway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.970, year: 2016

  3. Distribution of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (Russia).

    Science.gov (United States)

    Chadin, Ivan; Dalke, Igor; Zakhozhiy, Ilya; Malyshev, Ruslan; Madi, Elena; Olga Kuzivanova; Kirillov, Dmitrii; Elsakov, Vladimir

    2017-01-01

    Occurrences of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (northeastern part of European Russia) were recorded and published in the Global Biodiversity Information Facility (GBIF http://www.gbif.org) using the RIVR information system (http://ib.komisc.ru/add/rivr/en). RIVR stands for "Rasprostranenie Invasionnyh Vidov Rastenij" [Occurrence of Invasion Plant Species]. This citizen science project aims at collecting occurrence data about invasive plant species with the help of citizen scientists. Information can be added by any user after a simple registration (concept) process. However, the data published in GBIF are provided only by professional scientists. The total study area is approximately 19,000 km 2 . The GBIF resource contains 10894 Heracleum sosnowskyi occurrence points, each with their geographical coordinates and photographs of the plants in the locus of growth. The preliminary results of species distribution modelling on the territory of European North-East Russia presented.

  4. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  5. The evolutionary response of plants to increased UV-B radiation: Field studies with Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Trumbull, V.L.; Paige, K.N.

    1995-01-01

    The response of a species to any environmental change is determined by both phenotypic and evolutionary adjustments. To date, the majority of research concerning the response of terrestrial plants to increased UV-B radiation has focused on phenotypic adjustments. Recently we have initiated field studies aimed at assessing genetic variation for UV-B sensitivity within a natural population of Arabidopsis thaliana. This population consists of at least eight discrete genotypes that have been confirmed by RAPD analysis. We used an incomplete block design to assess the impact of UV-B (ambient and ambient + 6 kJ) and PAR (low and high) on these genotypes. The high UV-B treatment caused a significant reduction in fruit number and plant height while the high PAR treatment caused a significant increase in these variables. In addition, there was a marginally significant (p=0.1) UV-B x PAR x maternal line interaction for fruit number, indicating that genetic variation for UV-B sensitivity within this population depends on the PAR environment. The combination of high UV-B and high PAR caused a change in fruit number (relative to the ambient UV-B/high PAR treatment) ranging from an increase of 24% to a decrease of 47%. This range was much smaller in the low PAR treatment. These results indicate the potential for increased UV-B radiation to act as an agent of natural selection within this population

  6. Tree-Dwelling Ants: Contrasting Two Brazilian Cerrado Plant Species without Extrafloral Nectaries

    Directory of Open Access Journals (Sweden)

    Jonas Maravalhas

    2012-01-01

    Full Text Available Ants dominate vegetation stratum, exploiting resources like extrafloral nectaries (EFNs and insect honeydew. These interactions are frequent in Brazilian cerrado and are well known, but few studies compare ant fauna and explored resources between plant species. We surveyed two cerrado plants without EFNs, Roupala montana (found on preserved environments of our study area and Solanum lycocarpum (disturbed ones. Ants were collected and identified, and resources on each plant noted. Ant frequency and richness were higher on R. montana (67%; 35 spp than S. lycocarpum (52%; 26, the occurrence of the common ant species varied between them, and similarity was low. Resources were explored mainly by Camponotus crassus and consisted of scale insects, aphids, and floral nectaries on R. montana and two treehopper species on S. lycocarpum. Ants have a high diversity on cerrado plants, exploring liquid and prey-based resources that vary in time and space and affect their presence on plants.

  7. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  8. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  9. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A S; Zhakov, Yu A; Yambrovskii, Ya M

    1977-12-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of effluents from operating nuclear power plants it is found that the effluents can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and effluents from nuclear power plants.

  10. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    International Nuclear Information System (INIS)

    Zykova, A.S.; Zhakov, Yu.A.; Jambrovskij, Ya.M.

    1977-01-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of flowouts from operating nuclear power plants it is found that the flowouts can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and flowouts from nuclear power plants

  11. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata. (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented.

  12. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... contaminated soil and sediment is an emerging techno- logy that promises effective and inexpensive clean up of certain hazardous wastes (Simeon 1993; Nwoko, 1995). Some of these processes occurs within the plants and involves the degradation or breakdown of organic and inorganic contaminants ...

  13. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented with auxin and ...

  14. Tritrophic interactions in wild and cultivated brassicaceous plant species

    NARCIS (Netherlands)

    Gols, R.

    2008-01-01

    Plants have evolved a range of defence traits that prevent or reduce attack by insect herbivores. Direct defence traits hamper or reduce the performance and behaviour of the herbivores, whereas indirect defence promote the efficiency of natural enemies to attack the herbivores. Here, I focused on

  15. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  16. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats

  17. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distributi...... than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality....

  18. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  19. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  20. Bridging plant and human radiation response and DNA repair through an in silico approach

    Czech Academy of Sciences Publication Activity Database

    Nikitaki, Z.; Pavlopoulou, A.; Holá, Marcela; Donà, M.; Michalopoulos, I.; Balestrazzi, A.; Angelis, Karel; Georgakilas, A. G.

    2017-01-01

    Roč. 9, č. 6 (2017), č. článku 65. ISSN 2072-6694 R&D Projects: GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : Bioinformatics * DNA damage repair * In silico analysis * Ionizing radiation * Plant radiation biodosimeter * Ultraviolet radiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology

  1. Practice of radiation dose control for tech-modification items in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Zhongyu; Xu Hongming; Fan Liguang; Jiang Jianqi; Bu Weidong

    2006-01-01

    In order to improve the safety and reliability of nuclear power plant operation, many tech-modifications related to system or equipment have been completed since operation in Qinshan NPP. this paper introduces radiation dose control for mainly tech-modifications items related to radiation, including radiation protection optimization measures and experience in aspects of item planning, program writing, process control, etc. (authors)

  2. Radiation protection service for a nucleonic control system of continuous casting plant after events of accident

    International Nuclear Information System (INIS)

    Chakrabarti, Santanu; Massand, O.P.

    1998-01-01

    Extensive use of nucleonic control systems like level controllers was observed during radiation protection surveys in industries such as refineries, steel plants etc., located in the eastern region of India. There were two accidents at continuous casting plant in 1995 which affected the nucleonic control system installed in 1992. The authorities contacted Bhabha Atomic Research Centre (BARC) for radiation protection surveys for the involved nucleonic gauges. The present paper describes the radiation protection services rendered by BARC during such accidents. (author)

  3. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Eiichi [Omiya Technical Institute, Saitama-ken (Japan)

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  4. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  5. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    a School of Agricultural, Earth and Environmental Sciences, University of ... variation of an environment due to localised extinction of endemic species. ... the abundance and impact of IAPs is still increasing (Müllerová et al., 2013). ... One of issues related to satellite image acquisition is cloud cover (Kerr & Ostrovsky, 2003).

  6. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    Yusuf Adama, Njoya S Ngetara, Syd Ramdhanib a School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Howard ... Shaanker, 2013). These species affect human health, agriculture, forestry and biodiversity .... 2.2 Field data collection and image processing. Field data for the classification of ...

  7. Research Note Impacts of mine dump pollution on plant species ...

    African Journals Online (AJOL)

    Effects of mine dump pollution on semiarid savanna vegetation were investigated in Kombat, Namibia. Vegetation structure, species richness, composition and diversity were compared between polluted and control sites. Concentrations of arsenic, chromium, copper, lead and zinc in soils were significantly higher closer to a ...

  8. Growth responses to ozone in plant species from wetlands

    NARCIS (Netherlands)

    Franzaring, J.H.; Tonneijck, A.E.G.; Kooijman, A.W.N.; Dueck, Th.A.

    2000-01-01

    Ten wet grassland species were fumigated with four concentrations of ozone (charcoal-filtered air, non-filtered air and non-filtered air plus 25 or 50 nl 1-1 ozone) in open-top chambers during one growing season to investigate the long-term effect of this air pollutant on various growth variables.

  9. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    P.B. Adler; E.T. Borer; H. Hillebrand; Y. Hautier; A. Hector; S. Harpole; L.R. O’Halloran; J.B. Grace; M. Anderson; J.D. Bakker; L.A. Biederman; C.S. Brown; Y.M. Buckley; L.B. Calabrese; C.-J. Chu; E.E. Cleland; S.L. Collins; K.L. Cottingham; M.J. Crawley; E.I. Damschen; K.W. Davies; N.M. DeCrappeo; P.A. Fay; J. Firn; P. Frater; E.I. Gasarch; D.S. Gruner; N. Hagenah; J. Hille. Ris Lambers

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent...

  10. Unique parallel radiations of high-mountainous species of the genus Sedum (Crassulaceae) on the continental island of Taiwan.

    Science.gov (United States)

    Ito, Takuro; Yu, Chih-Chieh; Nakamura, Koh; Chung, Kuo-Fang; Yang, Qin-Er; Fu, Cheng-Xin; Qi, Zhe-Chen; Kokubugata, Goro

    2017-08-01

    We explored the temporal and spatial diversification of the plant genus Sedum L. (Crassulaceae) in Taiwan based on molecular analysis of nrITS and cpDNA sequences from East Asian Sedum members. Our phylogenetic and ancestral area reconstruction analysis showed that Taiwanese Sedum comprised two lineages that independently migrated from Japan and Eastern China. Furthermore, the genetic distances among species in these two clades were smaller than those of other East Asian Sedum clades, and the Taiwanese members of each clade occupy extremely varied habitats with similar niches in high-mountain regions. These data indicate that species diversification occurred in parallel in the two Taiwanese Sedum lineages, and that these parallel radiations could have occurred within the small continental island of Taiwan. Moreover, the estimated time of divergence for Taiwanese Sedum indicates that the two radiations might have been correlated to the formation of mountains in Taiwan during the early Pleistocene. We suggest that these parallel radiations may be attributable to the geographical dynamics of Taiwan and specific biological features of Sedum that allow them to adapt to new ecological niches. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Science.gov (United States)

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-07

    The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  12. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  13. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  14. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  15. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  16. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  17. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  18. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya.

    Science.gov (United States)

    Manish, Kumar; Pandit, Maharaj K; Telwala, Yasmeen; Nautiyal, Dinesh C; Koh, Lian Pin; Tiwari, Sudha

    2017-09-01

    Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.

  19. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  20. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  1. Biochar effects on the nursery propagation of 4 northern Rocky Mountain native plant species

    Science.gov (United States)

    Clarice P. Matt; Christopher R. Keyes; R. Kasten Dumroese

    2018-01-01

    Biochar has emerged as a promising potential amendment of soilless nursery media for plant propagation. With this greenhouse study we used biochar to displace standard soilless nursery media at 4 rates (0, 15, 30, and 45% [v:v]) and then examined media chemistry, irrigation frequency, and the growth of 4 northern Rocky Mountain native plant species: Clarkia pulchella...

  2. Public reaction to invasive plant species in a disturbed Colorado landscape

    Science.gov (United States)

    Michael T. Daab; Courtney G. Flint

    2010-01-01

    Invasive plant species degrade ecosystems in many ways. Controlling invasive plants is costly for government agencies, businesses, and individuals. North central Colorado is currently experiencing large-scale disturbance, and millions of acres are vulnerable to invasion because of natural and socioeconomic processes. Mountain pine beetles typically endemic to this...

  3. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  4. 75 FR 18233 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species

    Science.gov (United States)

    2010-04-09

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species AGENCY: Fish.... Definitions A. Species includes any species or subspecies of fish, wildlife, or plant, and any distinct... means any species that is in danger of extinction throughout all or a significant portion of its range...

  5. 77 FR 38762 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2012-06-29

    ... reviews under the Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... species means any species that is in danger of extinction throughout all or a significant portion of its...

  6. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  7. A retrospective analysis of pollen host plant use by stable and declining bumble bee species.

    Science.gov (United States)

    Kleijn, David; Raemakers, Ivo

    2008-07-01

    Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem by studying species' characteristics on specimens that were collected before the onset of their decline and preserved in natural history museums. In northwestern Europe, some bumble bee species declined dramatically during the 20th century whereas other, ecologically similar, species maintained stable populations. A long-standing debate focuses on whether this is caused by declining species having stricter host plant preferences. We compared the composition of pollen loads of five bumble bee species with stable populations and five with declining populations using museum specimens collected before 1950 in Belgium, England, and The Netherlands. Prior to 1950, the number of plant taxa in pollen loads of declining species was almost one-third lower than that in stable species even though individuals of stable and declining species generally originated from the same areas. There were no systematic differences in the composition of pollen loads between stable and declining species, but the plant taxa preferred by declining species before 1950 had experienced a stronger decline in the 20th century than those preferred by stable species. In 2004 and 2005, we surveyed the areas where bumble bees had been caught in the past and compared the composition of past and present pollen loads of the stable, but not of the by now locally extinct declining species. The number of collected pollen taxa was similar, but the composition differed significantly between the two periods. Differences in composition reflected the major changes in land use in northwestern Europe but also the spread of the invasive plant species Impatiens glandulifera. The main question now is why declining species

  8. The Effect of Designated Pollutants on Plant Species

    Science.gov (United States)

    1981-01-01

    L.) Burm. J. Roughlemon seedling 12 Citrus C. limo, Lisbon lemon graft 80 Citrus C. sinensis (L.) Osbeck Valencia orange graft 80 Dudleya Dudleya...CALIFORNIA UNIVERSITY OF CALIFORNIA, IR VINE IR VINE, ORANGE COUNTY, CALIFORNIA 92664 JANUARY 1981 S Approved for public release; distribution...California poppy, indigenous to the Vandenberg Air Force Base area, blooms in the spring. Since flowering of individual plants could not be closely

  9. Mycorrhizal status helps explain invasion success of alien plant species

    Czech Academy of Sciences Publication Activity Database

    Menzel, A.; Hempel, S.; Klotz, S.; Moora, M.; Pyšek, Petr; Rillig, M. C.; Zobel, M.; Kühn, I.

    2017-01-01

    Roč. 98, č. 1 (2017), s. 92-102 ISSN 0012-9658 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : plant invasion * mycorrhiza * naturalization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.809, year: 2016

  10. Productivity of selected plant species adapted to arid regions. [Crassulacean metabolizing plants; Agave deserti and Ferocactus acanthodes

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1980-01-01

    The biomass potential of selected arid region species for alcohol production merits careful consideration. The basis for this interest is the current low agronomic use of arid lands and the potential productivity of certain species adapted to these lands. Plants displaying Crassulacean acid metabolism (CAM) are particularly interesting with reference to biomass for fuel in regions with low rainfall, because plants with this photosynthetic process are strikingly efficient in water requirements. For CAM plants, CO/sub 2/ fixation occurs primarily at night, when tissue surface temperature and hence transpirational water loss is less than daytime values. For Agave deserti in the Sonoran desert, the water-use efficiency (mass of CO/sub 2/ fixed/mass of water transpired) over an entire year is an order of magnitude or more larger than for C-3 and C-4 plants. This indicates how well adapted CAM species are to arid regions. The potential productivity per unit land area of CAM plants is fairly substantial and, therefore, of considerable economic interest for arid areas where growth of agricultural plants is minimal.

  11. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  12. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  13. Effects of ecological restoration alternative treatments on nonnative plant species establishment

    Science.gov (United States)

    Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule

    2008-01-01

    Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...

  14. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing

  15. Students' Perception of Plant and Animal Species: A Case Study from Rural Argentina

    Science.gov (United States)

    Nates, Juliana; Campos, Claudia; Lindemann-Matthies, Petra

    2010-01-01

    Exotic species seriously affect local biodiversity in Argentina. This article investigates how students in San Juan province perceive native and exotic species. With the help of a written questionnaire, 865 students (9-17 years old) were asked to name the plant and animal they liked most, disliked most, and perceived as most useful, and to name…

  16. Determining habitat potential and surveying for nine rare plant species in south-central Utah

    Science.gov (United States)

    Deborah J. Clark; Christine M. Groebner

    2001-01-01

    In south-central Utah, lands within and adjacent to Capitol Reef National Park contain populations of nine rare plant species. In an effort to enhance the combined knowledge about these species, the Bureau of Land Management, the USDA Forest Service, and the National Park Service signed an Interagency Agreement and hired an interagency biologist and field crew to...

  17. Danger to biodiversity of High Tatras by spreading of invasive plant species

    International Nuclear Information System (INIS)

    Strba, P.; Gogolakova, A.

    2010-01-01

    The aim of our work was to analyze the current status of invasive plant species - their generic representation and current extension (horizontal and vertical extension). The authors used the method of inventory of species richness. Sites were recorded on a tourist map and GPS (Garmin).

  18. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  20. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  1. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space.

    Science.gov (United States)

    Tanentzap, Andrew J; Brandt, Angela J; Smissen, Rob D; Heenan, Peter B; Fukami, Tadashi; Lee, William G

    2015-07-01

    Plant radiations are widespread but their influence on community assembly has rarely been investigated. Theory and some evidence suggest that radiations can allow lineages to monopolize niche space when founding species arrive early into new bioclimatic regions and exploit ecological opportunities. These early radiations may subsequently reduce niche availability and dampen diversification of later arrivals. We tested this hypothesis of time-dependent lineage diversification and community dominance using the alpine flora of New Zealand. We estimated ages of 16 genera from published phylogenies and determined their relative occurrence across climatic and physical gradients in the alpine zone. We used these data to reconstruct occupancy of environmental space through time, integrating palaeoclimatic and palaeogeological changes. Our analysis suggested that earlier-colonizing lineages encountered a greater availability of environmental space, which promoted greater species diversity and occupancy of niche space. Genera that occupied broader niches were subsequently more dominant in local communities. An earlier time of arrival also contributed to greater diversity independently of its influence in accessing niche space. We suggest that plant radiations influence community assembly when they arise early in the occupancy of environmental space, allowing them to exclude later-arriving colonists from ecological communities by niche preemption. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Directory of Open Access Journals (Sweden)

    Linjian Jiang

    Full Text Available Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  4. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Science.gov (United States)

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  5. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.

    Science.gov (United States)

    Mahmud, Rezwanul; Inoue, Naoto; Kasajima, Shin-Ya; Shaheen, Riffat

    2008-01-01

    Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.

  6. Rarity, Species Richness, and the Threat of Extinction—Are Plants the Same as Animals?

    OpenAIRE

    Knapp, Sandra

    2011-01-01

    Assessment of conservation status is done both for areas or habitats and for species (or taxa). IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely followi...

  7. Richness of Ancient Forest Plant Species Indicates Suitable Habitats for Macrofungi

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Dvořák, D.; Beran, M.; Deckerová, H.; Burel, J.; Kříž, M.; Borovička, Jan; Běťák, J.; Vašutová, Martina

    2014-01-01

    Roč. 23, č. 8 (2014), s. 2015-2031 ISSN 0960-3115 Grant - others:GA MŽP(CZ) SP/2D1/146/08 Institutional support: RVO:67985807 ; RVO:67985831 ; RVO:67179843 Keywords : diversity * forest continuity * forest management * Herb-layer plant species * red-listed species * species richness * surrogacy Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (GLU-S); EH - Ecology, Behaviour (UEK-B) Impact factor: 2.365, year: 2014

  8. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    Science.gov (United States)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  10. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  11. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  12. Effects of radiation exposure on plant populations and radiation protection of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation); Evseeva, T.I. [Institute of Biology, Komi Scientific Center, Ural Div. RAS, Syktyvkar (Russian Federation)

    2006-07-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  13. Effects of radiation exposure on plant populations and radiation protection of the environment

    International Nuclear Information System (INIS)

    Geras'kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A.; Evseeva, T.I.

    2006-01-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  14. On the role of natural radiation background in the initial development of plants

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Primak-Mirolyubov, V.N.

    1977-01-01

    To obtain data on plant development under strictly controlled decreased natural radiation conditions, the experiment with radish seeds was conducted in a special chamber having a decreased natural radiation background. It has been shown that the development of seedlings in the course of the first 4-5 days in significantly delayed, and it normalizes when radiation sources, imitating the natural radiation background, are placed inside the chamber

  15. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  16. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  17. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  18. Effect of diesel fuel on growth of selected plant species

    OpenAIRE

    Adam, G.; Duncan, H.J.

    1999-01-01

    Diesel oil is a complex mixture of hydrocarbons with an average carbon number of C8–\\ud C26. The majority of components consist of alkanes, both straight chained and branched and aromatic\\ud compounds including mono-, di- and polyaromatic hydrocarbons. Regardless of this complexity,\\ud diesel oil can be readily degraded by a number of soil microorganisms making it a likely candidate for\\ud bioremediation. The concept of using plants to enhance bioremediation, termed phytoremediation,\\ud is a ...

  19. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  20. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.