WorldWideScience

Sample records for plant safety analysis

  1. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  2. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  3. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  4. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  5. Safety analysis of Oi nuclear power plant

    International Nuclear Information System (INIS)

    1979-01-01

    The transient phenomena in Oi nuclear power plant were analyzed, especially on the water level fluctuation and the capability of natural circulation in the primary loop, under the assumptions that the feed water for steam generators is totally lost, and the relief valve on the pressurizer, which is actuated due to the pressure rise in the primary system, is stuck and kept open. These assumptions are related to the TMI accident. The analysing conditions are 1) the main feed water flow is totally lost suddenly during the rated power operation of the reactor, 2) two motor-driven auxiliary feed water pumps are started manually fifteen minutes after the accident initiation, 3) one relief valve on the pressurizer is opened fifteen seconds after the accident initiation and kept open, 4) the reactor is scrammed thirty three seconds after the accident initiation, 5) the turbine is tripped 33.5 seconds after the accident initiation, etc. Two cases were analysed, namely 3,800 seconds and 1,200 seconds after the accident initiation. The analytical code RELEP4/Mod5/U2/J1 was utilized for this analysis. The level fluctuation in the pressurizer after the accident initiation, the flow rate fluctuation through the pressurizer relief valve, especially that of steam, liquid single phase and two phase flows, the water level in the upper plenum in the pressure vessel, the change of flow rate at core inlet, the average pressure in the core, and the temperature fluctuation of coolant in the core, the variation of void fraction in the core, and the change of surface temperature of fuel rods are presented as the analysis results, and they are evaluated. It is recognized that the plant safety is kept under the assumed accident conditions in the Oi nuclear power plant. (Nakai, Y.)

  6. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  7. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  8. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  9. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  10. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  11. Waste Isolation Pilot Plant safety analysis report

    International Nuclear Information System (INIS)

    1997-03-01

    The United States Department of Energy (DOE) was authorized by Public Law 96-164 to provide a research and development facility for demonstrating the safe permanent disposal of transuranic (TRU) wastes from national defense activities and programs of the United States exempted from regulations by the US Nuclear Regulatory Commission (NRC). The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico near Carlsbad, was constructed to determine the efficacy of an underground repository for disposal of TRU wastes. In accordance with the 1981 and 1990 Records of Decision (ROD), the development of the WIPP was to proceed with a phased approach. Development of the WIPP began with a siting phase, during which several sites were evaluated and the present site selected based on extensive geotechnical research, supplemented by testing. The site and preliminary design validation phase (SPDV) followed the siting phase, during which two shafts were constructed, an underground testing area was excavated, and various geologic, hydrologic, and other geotechnical features were investigated. The construction phase followed the SPDV phase during which surface structures for receiving waste were built and underground excavations were completed for waste emplacement

  12. Empirical analysis of selected nuclear power plant maintenance factors and plant safety

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Thurber, J.A.; Sommers, P.E.; Jackson, D.H.

    1985-07-01

    This report contains a statistical analysis of the relationship between selected aspects of nuclear power plant maintenance programs and safety related performance. The report identifies a large number of maintenance resources which can be expected to influence maintenance performance and subsequent plant safety performance. The resources for which data were readily available were related statistically to two sets of performance indicators: maintenance intermediate safety indicators and final safety performance indicators. The results show that the administrative structure of the plant maintenance program is a significant predictor of performance on both sets of indicators

  13. Latest developments on safety analysis methodologies at the Juzbado plant

    International Nuclear Information System (INIS)

    Zurron-Cifuentes, Oscar; Ortiz-Trujillo, Diego; Blanco-Fernandez, Luis A.

    2010-01-01

    Over the last few years the Juzbado Plant has developed and implemented several analysis methodologies to cope with specific issues regarding safety management. This paper describes the three most outstanding of them, so as to say, the Integrated Safety Analysis (ISA) project, the adaptation of the MARSSIM methodology for characterization surveys of radioactive contamination spots, and the programme for the Systematic Review of the Operational Conditions of the Safety Systems (SROCSS). Several reasons motivated the decision to implement such methodologies, such as Regulator requirements, operational experience and of course, the strong commitment of ENUSA to maintain the highest standards of nuclear industry on all the safety relevant activities. In this context, since 2004 ENUSA is undertaking the ISA project, which consists on a systematic examination of plant's processes, equipment, structures and personnel activities to ensure that all relevant hazards that could result in unacceptable consequences have been adequately evaluated and the appropriate protective measures have been identified. On the other hand and within the framework of a current programme to ensure the absence of radioactive contamination spots on unintended areas, the MARSSIM methodology is being applied as a tool to conduct the radiation surveys and investigation of potentially contaminated areas. Finally, the SROCSS programme was initiated earlier this year 2009 to assess the actual operating conditions of all the systems with safety relevance, aiming to identify either potential non-conformities or areas for improvement in order to ensure their high performance after years of operation. The following paragraphs describe the key points related to these three methodologies as well as an outline of the results obtained so far. (authors)

  14. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  15. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  16. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  17. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  18. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  19. Probabilistic analysis of safety in industrial irradiation plants

    International Nuclear Information System (INIS)

    Alderete, F.; Elechosa, C.

    2006-01-01

    The Argentinean Nuclear Regulatory Authority is carrying out the Probabilistic Safety Analysis (PSA) of the two industrial irradiation plants existent in the country. The objective of this presentation is to show from the regulatory point of view, the advantages of applying this tool, as well as the appeared difficulties; for it will be made a brief description of the facilities, of the method and of the normative one. Both plants are multipurpose facilities classified as 'industrial irradiator category IV' (panoramic irradiator with source deposited in pool). Basically, the execution of an APS consists of the following stages: 1. Identification of initiating events. 2. Modeling of Accidental Sequences (Event Trees). 3. Analysis of Systems (Fault trees). 4. Quantification of Accidental Sequences. The argentine normative doesn't demand to these facilities the realization of an APS, however the basic standard of Radiological Safety establishes that in the design of this type of facilities in the cases that is justified, should make sure that the annual probability of occurrence of an accidental sequence and the resulting dose in a person gives as result an radiological risk inferior to the risk limit adopted as acceptance criteria. On the other hand the design standard specifies for these irradiators it demands a maximum fault rate of 10 -2 for the related components with the systems of radiological safety. In our case, the possible initiating events have been identified that carried out to not wanted situations (about people exposure, radioactive contamination). Then, for each one of the significant initiating events, the corresponding accidental sequences were modeled and the safety systems that intervene in this sequences by means of fault trees were analyzed, for then to determine the fault probabilities of the same ones. At the moment they are completing these fault trees, but the difficulty resides in the impossibility of obtaining real data of the reliability

  20. Uncertainty propagation in probabilistic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Fleming, P.V.

    1981-09-01

    The uncertainty propagation in probabilistic safety analysis of nuclear power plants, is done. The methodology of the minimal cut is implemented in the computer code SVALON and the results for several cases are compared with corresponding results obtained with the SAMPLE code, which employs the Monte Carlo method to propagate the uncertanties. The results have show that, for a relatively small number of dominant minimal cut sets (n approximately 25) and error factors (r approximately 5) the SVALON code yields results which are comparable to those obtained with SAMPLE. An analysis of the unavailability of the low pressure recirculation system of Angra 1 for both the short and long term recirculation phases, are presented. The results for the short term phase are in good agreement with the corresponding one given in WASH-1400. (E.G.) [pt

  1. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt

  2. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    International Nuclear Information System (INIS)

    1976-01-01

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  3. Analysis of societal recognition about domestic nuclear power plant safety

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, J. W.; Kang, C. S.

    2003-01-01

    The public acceptance to risk from a new technology depends on not only perceived risk but also many conditional factors. Though nuclear energy has many benefits, it is unreasonably perceived to be more dangerous than real. Hence, it is necessary to estimate the public recognition of safety of nuclear power and to study the social aspects relevant to the subject. To achieve the purpose, poll survey was carried out for the public and expert group. Through the poll survey, it has been found that many crucial differences exist between the quantitative risk and the perceived risk of the public. The results of this study are used as the reference data for establishing the social standards and formulating the safety philosophy for the safety of nuclear power plants hereafter

  4. [Plant-specific pressured thermal shock safety analysis report

    International Nuclear Information System (INIS)

    Selby, D.L.

    1985-01-01

    Information is presented concerning plant data; determination of detailed PTS sequences for analysis; fracture mechanics analysis; integration of analysis; sensitivity and uncertainty analyses of through-wall crack frequencies; and effect of corrective actions on vessel through-wall crack frequency

  5. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  6. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1

    International Nuclear Information System (INIS)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety

  7. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    1997-01-01

    The purpose of the dissertation is to develop real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification plant transients (with and without scram). For this erps, probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents. The real - time information during transients and accidents can be obtained to assess the operator in his decision - making. Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. 5-15 figs., 42 refs

  8. The safety analysis report for nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1976-01-01

    On the basis of the standard format for drawing up safety analysis reports for stationary fission reactors - this format was published in 1959 by the competent Federal Ministry for Atomic Energy - a report is made on the format and scope of German safety analysis reports. The reasons for drawing up a standard safety analysis report for nuclear power plants with pressurized water reactor or boiling water reactor and a KWU draft are discussed. (orig./RW) [de

  9. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  10. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  11. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Science.gov (United States)

    2013-01-22

    ... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power...

  12. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  13. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  14. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2

    International Nuclear Information System (INIS)

    Osborn, R.N.; Olson, J.; Sommers, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators

  15. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    EL-Kafas, A.E.A.E.

    1996-01-01

    the purpose of the dissertation is to develop a real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification of plant transients (with and without scram). for this ERPS. probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents . the real- time information during transients and accidents can be obtained to asses the operator in his decision - making . Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. The system model consists of the dynamic differential equations for reactor core, pressurizer, steam generator, turbine and generator, piping and plenums. The system of equations can be solved by appropriate codes also displayed directly from sensors of the plant. All scenarios of transients, accidents and fault tress for plant systems are learned to ERPS

  16. Technology development of maintenance optimization and reliability analysis for safety features in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Choi, Seong Soo; Lee, Dong Gue; Kim, Young Il

    1999-12-01

    The reliability data management system (RDMS) for safety systems of PHWR type plants has been developed and utilized in the reliability analysis of the special safety systems of Wolsong Unit 1,2 with plant overhaul period lengthened. The RDMS is developed for the periodic efficient reliability analysis of the safety systems of Wolsong Unit 1,2. In addition, this system provides the function of analyzing the effects on safety system unavailability if the test period of a test procedure changes as well as the function of optimizing the test periods of safety-related test procedures. The RDMS can be utilized in handling the requests of the regulatory institute actively with regard to the reliability validation of safety systems. (author)

  17. Influence of probabilistic safety analysis on design and operation of PWR plants

    International Nuclear Information System (INIS)

    Bastl, W.; Hoertner, H.; Kafka, P.

    1978-01-01

    This paper gives a comprehensive presentation of the connections and influences of probabilistic safety analysis on design and operation of PWR plants. In this context a short historical retrospective view concerning probabilistic reliability analysis is given. In the main part of this paper some examples are presented in detail, showing special outcomes of such probabilistic investigations. Additional paragraphs illustrate some activities and issues in the field of probabilistic safety analysis

  18. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  19. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  20. Safety analysis of disposal of decommissioning waste from the Olkiluoto nuclear power plant - PURKU-93

    International Nuclear Information System (INIS)

    Vieno, T.; Meszaros, F.; Nordman, H.; Taivassalo, V.

    1993-12-01

    Decommissioning waste from the Olkiluoto nuclear power plant will be disposed of at the depth between 60 and 100 meters in the bedrock at the power plant site. The existing VLJ repository for low and medium level operating waste will be extended with three new silos for the decommissioning waste of the TVO I and II reactors and the spent fuel interim store at the Olkiluoto site. Besides dismantling waste also used fuel boxes, control rods and other activated metal components accumulated during the operation of the reactors will be disposed of in the repository. The safety analysis is based on the detailed decommissioning plan of the Olkiluoto power plants and the comprehensive safety analysis carried out for the Final Safety Analysis Report of the VLJ repository. (58 refs., 31 figs., 38 tabs.)

  1. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  2. Present and future of probabilistic safety analysis of Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Salomon, J.; Rivero, J.J.

    1993-01-01

    This work present the main conditions of probabilistic safety analysis of Juragua Nuclear Power Plant, which includes the following aspects: Staff preparedness; Creation of ANCON code; Analysis activity; IAEA technical assistance project. The present situation of PSA National Project and its perspectives development are reported

  3. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Perdomo, Manuel

    1995-01-01

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential 'weak points' at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs

  4. An empirical analysis of nuclear power plant organization and its effect on safety performance

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1985-01-01

    The paper documents work performed on three tasks. The first task concerned the creation of measures of organizational structure. An earlier review of the literature supported the position that organizational structure (e.g., the way the work of the organization is divided, administered, and coordinated) is a likely determinant of plant safety performance. While data were not available on some salient dimensions of organizational structure, Final Safety Analysis Reports (FSARs), Technical Specifications, and a survey of plant technical resources allowed for measurement on three primary dimensions. These are the vertical structure of the plant (e.g., the number of ranks and the ratio of supervisors to subordinates), the horizontal structure of the plant (e.g., the way the organization is divided into administrative and work units), and the coordinative structure of the plant (e.g., the ways that work units are linked)

  5. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals

  6. Development of vendor independent safety analysis capability for nuclear power plants in Taiwan

    International Nuclear Information System (INIS)

    Tang, J.-R.

    2001-01-01

    The Institute of Nuclear Energy Research (INER) and the Taiwan Power Company (TPC) have long-term cooperation to develop vendor independent safety analysis capability to provide support to nuclear power plants in Taiwan in many aspects. This paper presents some applications of this analysis capability, introduces the analysis methodology, and discusses the significance of vendor independent analysis capability now and future. The applications include a safety analysis of core shroud crack for Chinshan BWR/4 Unit 2, a parallel reload safety analysis of the first 18-month extended fuel cycle for Kuosheng BWR/6 Unit 2 Cycle 13, an analysis to support Technical Specification change for Maanshan three-loop PWR, and a design analysis to support the review of Preliminary Safety Analysis Report of Lungmen ABWR. In addition, some recent applications such as an analysis to support the review of BWR fuel bid for Chinshan and Kuosheng demonstrates the needs of further development of the analysis capability to support nuclear power plants in the 21 st century. (authors)

  7. Standard model for safety analysis report of hexafluoride power plants from natural uranium

    International Nuclear Information System (INIS)

    1983-01-01

    The standard model for safety analysis report for hexafluoride production power plants from natural uranium is presented, showing the presentation form, the nature and the degree of detail, of the minimal information required by the Brazilian Nuclear Energy Commission - CNEN. (E.G.) [pt

  8. Modern licensing approaches for analysis of important to safety processes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Andreeva, M.; Groudev, P.; Pavlova, M.; Stoyanov, S.

    2008-01-01

    It is presented within the paper the modern approaches for analysis of important to safety assessment processes in Nuclear Power Plants, included Bulgarian Regulatory Agency's requirements for quantity assessment of these processes applying deterministic and probabilistic approaches for establishing and confirming the design basis and defence-in-depth effectiveness. (authors)

  9. Initiating events in the safety probabilistic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Stasiulevicius, R.

    1989-01-01

    The importance of the initiating event in the probabilistic safety analysis of nuclear power plants are discussed and the basic procedures necessary for preparing reports, quantification and grouping of the events are described. The examples of initiating events with its occurence medium frequency, included those calculated for OCONEE reactor and Angra-1 reactor are presented. (E.G.)

  10. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  11. Evaluation of static analysis tools used to assess software important to nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ourghanlian, Alain [EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R and D, Cedex (France)

    2015-03-15

    We describe a comparative analysis of different tools used to assess safety-critical software used in nuclear power plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricit e de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Currently, new industrial tools based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software packages is substantially improved. In the first part of this article, we present the analysis principles of the tools used in our experimentation. In the second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools.

  12. Analysis of events significant with regard to safety of Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Suchomel, J.; Maron, V.; Kmosena, J.

    1986-01-01

    An analysis was made of operating safety of the V-1 nuclear power plant in Jaslovske Bohunice for the years 1980 - 1983. Of the total number of 676 reported failures only three were events with special safety significance, namely a complete loss of power supply for own consumption from the power grid, a failure of pins on the collectors of steam generators, and a failure of the heads of heat technology inspection channels. The failures were categorized according to the systems used in the USSR and in the USA and compared with data on failures in nuclear power plants in the two countries. The conclusions show that the operation of the V-1 nuclear power plant achieves results which are fully comparable with those recorded in 9 WWER-440 power plants operating in various countries. The average coefficient of availability is 0.72 and ranks the power plant in the fourth place among the said 9 plants. A comparison of the individual power plant units showed that of the total number of 22, the first unit of the V-1 plant ranks fifth with a coefficient of 0.78 and the second unit with a coefficient of 0.69 ranks 15th. (Z.M.)

  13. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  14. Results of safety analysis on PWR type nuclear power plants with two and three loops

    International Nuclear Information System (INIS)

    1979-01-01

    The results of safety analysis on PWR type nuclear power plants with two and three loops are presented, which was conducted by the Resource and Energy Agency, in June, 1979. This analysis was made simulating the phenomenon relating to the pressurizer level gauge at the time of the TMI accident. The model plants were the Ikata nuclear power plant with two loops and the Takahama No. 1 nuclear power plant with three loops. The premise conditions for this safety analysis were as follows: 1) the main feed water flow is totally lost suddenly at the full power operation of the plants, and the feed water pump is started manually 15 minutes after the accident initiation, 2) the relief valve on the pressurizer is kept open even after the pressure drop in the primary cooling system, and the primary cooling water flows out into the containment vessel through the rupture disc of the pressurizer relief tank, and 3) the electric circuit, which sends out the signal of safety injection at the abnormal low pressure in the reactor vessel, is added from the view-point of starting the operation of the emergency core cooling system as early as possible. Relating to the analytical results, the pressure in the reactor vessels changes less, the water level in the pressurizers can be regulated, and the water level in the steam generators is recovered safely in both two and three-loop plants. It is recognized that the plants with both two- and three loops show the safe transient phenomena, and the integrity of the cores is kept under the premise conditions. The evaluation for each analyzed result was conducted in detail. (Nakai, Y.)

  15. Plant Operation Station for HTR-PM Low Power and Shutdown operation Probabilistic safety analysis

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan

    2014-01-01

    Full range Probabilistic safety analysis (PSA) is one of key conditions for nuclear power plant (NPP) licensing according to the requirement of nuclear safety regulatory authority. High Temperature Gas Cooled Reactor Pebble-bed Module (HTR-PM) has developed construction design and prepared for the charging license application. So after the normal power operation PSA submitted for review, the Low power and Shutdown operation Probabilistic safety analysis (LSPSA) also begin. The results of LSPSA will together with prior normal power PSA results to demonstrate the safety level of HTR-PM NPP Plant Operation Station (POS) is one of important terms in LSPSA. The definition of POS lays the foundation for LSPSA modeling. POS provides initial and boundary conditions for the following event tree and fault tree model development. The aim of this paper is to describe the state-of-the-art of POS definition for HTR-PM LSPSA. As for the first attempt to the high temperature gas cooled reactor module plant, the methodology and procedure of POS definition refers to the LWR LSPSA guidance, and adds to plant initial status analysis due to the HTR-PM characteristics. A specific set of POS grouping vectors is investigate and suggested for HTR-PM NPP, which reflects the characteristics of plant modularization and on-line refueling. As a result, seven POSs are given according to the grouping vectors at the end of the paper. They will be used to the LSPSA modelling and adjusted if necessary. The papers ’work may provide reference to the analogous NPP LSPSA. (author)

  16. Impact of the specialization from failures data in probability safety analysis for process plants

    International Nuclear Information System (INIS)

    Ribeiro, Antonio C.O.; Melo, P.F. Frutuoso e

    2005-01-01

    Full text: The aim of this paper is to show the Bayesian inference in reliability studies, which are used to failures, rates updating in safety analyses. It is developed the impact of its using in quantitative risk assessments (QRA) for industrial process plants. With this approach we find a structured and auditable way of showing the difference between an industrial installation with a good project and maintenance structure from another one that shows a low level of quality in these areas. In general the evidence from failures rates and as follow the frequency of occurrence from scenarios, which the risks taken in account in ERA, are taken from generics data banks, instead of, the installation in analysis. The use of this methodology in probabilistic safety analysis (PSA) for nuclear plants is commonly used when you need to find the final fault tree event evaluation applied to a scenario, but it is not showed in a PSA level III. (author)

  17. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  18. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  19. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  20. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  1. The Use of Coupled Code Technique for Best Estimate Safety Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Bousbia Salah, A.; D'Auria, F.

    2006-01-01

    Issues connected with the thermal-hydraulics and neutronics of nuclear plants still challenge the design, safety and the operation of Light Water nuclear Reactors (LWR). The lack of full understanding of complex mechanisms related to the interaction between these issues imposed the adoption of conservative safety limits. Those safety margins put restrictions on the optimal exploitation of the plants and consequently reduced economic profit of the plant. In the light of the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. In fact, during the last decades Best Estimate (BE) neutronic and thermal-hydraulic calculations were so far carried out following rather parallel paths with only few interactions between them. Nowadays, it becomes possible to switch to new generation of computational tools, namely, Coupled Code technique. The application of such method is mandatory for the analysis of accident conditions where strong coupling between the core neutronics and the primary circuit thermal-hydraulics, and more especially when asymmetrical processes take place in the core leading to local space-dependent power generation. Through the current study, a demonstration of the maturity level achieved in the calculation of 3-D core performance during complex accident scenarios in NPPs is emphasized. Typical applications are outlined and discussed showing the main features and limitations of this technique. (author)

  2. Armenian nuclear power plant: US NRC assistance programme for seismic upgrade and safety analysis

    International Nuclear Information System (INIS)

    Simos, N.; Perkins, K.; Jo, J.; Carew, J.; Ramsey, J.

    2003-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (US NRC) technical support program activities associated with the Armenian Nuclear Power Plant (ANPP) safety upgrade. The US NRC program, integrated within the overall IAEA-led initiative for safety re-evaluation of the WWER plants, has as its main thrust the technical support to the Armenian Nuclear Regulatory Authority (ANRA) through close collaboration with the scientific staff at Brookhaven National Laboratory (BNL). Several major technical areas of support to ANRA form the basis of the NRC program. These include the seismic re-evaluation and upgrade of the ANPP, safety evaluation of critical systems, and the generation of the Safety Analysis Report (SAR). Specifically, the seismic re-evaluation of the ANPP is part of a broader activity that involves the re-assessment of the seismic hazard at the site, the identification of the Safe Shutdown Equipment at the plant and the evaluation of their seismic capacity, the detailed modeling and analysis of the critical facilities at ANPP, and the generation of the Floor Response Spectra (FRS). Based on the new spectra that incorporate all new findings (hazard, site soil, structure, etc.), the overall capacity of the main structures and the seismic capacity of the critical systems are being re-evaluated. In addition, analyses of critical safe shutdown systems and safe shutdown processes are being performed to ensure both the capabilities of the operating systems and the enhancement of safety due to system upgrades. At present, one of the principal goals of the US NRC's regulatory assistance activities with ANRA is enhancing ANRA's regulatory oversight of high-priority safety issues (both generic and plant-specific) associated with operation of the ANPP. As such, assisting ANRA in understanding and assessing plant-specific seismic and other safety issues associated with the ANPP is a high priority given the ANPP's being located in a seismically active area

  3. Reliability analysis of repairable safety systems of a reprocessing plant allowing for tolerable system downtimes

    International Nuclear Information System (INIS)

    Schaefer, H.

    1987-01-01

    GRS has been engaged in safety analysises of the German Reprocessing Plant for several years. The development and verification of appropriate reliability analysis methods, the generation of data as well as the search for an adequate structural presentation of the results to form a basis of recommendations for technical or administrative measures or contributions to risk oriented evaluations have been or are in the process of being established. In contrast to NPP-studies, the reliability assessment of safety systems of a reprocessing plant is applied to repairable and often relatively small systems allowing for tolerable system downtimes. A sketch of the diverse cooling systems of a vessel containing a selfheating solution is given. The interruption of the cooling function for about one day might be tolerable before boiling will be reached. This interval is suitable for transfer of the solution to a spare vessel or for repairing the failed components, thus restoring the cooling function

  4. Safety Effect Analysis of the Large-Scale Design Changes in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Lee, Hyun-Gyo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    These activities were predominantly focused on replacing obsolete systems with new systems, and these efforts were not only to prolong the plant life, but also to guarantee the safe operation of the units. This review demonstrates the safety effect evaluation using the probabilistic safety assessment (PSA) of the design changes, system improvements, and Fukushima accident action items for Kori unit 1 (K1). For the large scale of system design changes for K1, the safety effects from the PSA perspective were reviewed using the risk quantification results before and after the system improvements. This evaluation considered the seven significant design changes including the replacement of the control building air conditioning system and the performance improvement of the containment sump using a new filtering system as well as above five system design changes. The analysis results demonstrated that the CDF was reduced by 12% overall from 1.62E-5/y to 1.43E-5/y. The CDF reduction was larger in the transient group than in the loss of coolant accident (LOCA) group. In conclusion, the analysis using the K1 PSA model supports that the plant safety has been appropriately maintained after the large-scale design changes in consideration of the changed operation factors and failure modes due to the system improvements.

  5. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  6. Methodology and development of instruments for the safety analysis of a nuclear reprocessing plant

    International Nuclear Information System (INIS)

    Markett, J.

    1987-01-01

    Characteristics and overlapping aspects in the elaboration of safety analyses for the nuclear and conventional units are presented. The current methods are presented and their limits of applicability characterized. The transferability of individual methods or their elements to the analysis of the reference plant of Wackersdorf is examined and the procedure for the systems analysis is determined. It is of great importance to prove that the essential kinds of incidents and possibilities of release with potential effects in the environment are completely identified. The incidents are divided into basic incidents, which are characterized by superior physical/chemical release mechanisms. An essential objective is to systematize the safety analysis and to summarize the presentation of results. Selection criteria are presented, which allow a limitation of the analysis to essential influencing parameters without removing aspects from the overall safety-relevant statement. Besides the selection criteria, instruments and mathematical models are explained with the help of which the representative and possible incidents covering all potential risks for all areas of the plant, systems and components can be selected. These design-basis accidents (criticality, self-heating, fire, explosion, leakages, earth quakes) are decisive for the determination of potential damaging effects in the environment and thus for the overall statement on the licensability. (orig./HP) [de

  7. Human reliability analysis in probabilistic safety assessment for nuclear power plants. A Safety Practice. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1995-01-01

    Probabilistic safety assessment (PSA) is playing an increasingly important role in the safe operation of nuclear power plants throughout the world. In order to establish a consistent framework for conducting PSA studies, for promoting technology transfer of the state of the art, and for encouraging uniformity in the way PSA is carried out, the IAEA is preparing a set of publications which gives guidance on various aspects of PSA. This document presents a practical approach for incorporating human reliability analysis (HRA) into PSA. It describes the steps needed and the documentation that should be provided both to support the PSA itself and to ensure effective communication of important information arising from the studies. It also describes a framework for analysing those human actions which could affect safety and for relating such human influences to specific parts of a PSA. This Safety Practice also addresses the limitations of PSA in taking account of human factors in relation to safety and risk. Refs, figs and tabs

  8. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  9. Probabilistic analysis of safety of a production plant of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Flores F, A.; Nelson E, P.F.; Francois L, J.L.

    2005-01-01

    The present work makes use of the Probabilistic Safety analysis to evaluate and to quantify the safety in a plant producer of hydrogen coupled to a nuclear reactor of high temperature, the one which is building in Japan. It is had the description of systems and devices of the HTTR, the pipe diagrams and instrumentation of the plant, as well as the rates of generic faults for the components of the plant. The first step was to carry out a HAZOP study (Hazard and Operability Study) with the purpose of obtaining the initiator events; once obtained these, it was developed a tree of events by each initiator event and for each system it was developed a fault tree; the data used for the quantification of the failure probability of the systems were obtained starting from several generic sources of information. In each tree of events different final states were obtained and it stops each one, their occurrence frequency. The construction and evaluation of the tree of events and of failures one carries out with the SAPHIRE program. The results show the safety of the shutdown system of the HTTR and they allow to suggest modifications to the auxiliary system of refrigeration and to the heat exchanger helium/water pressurized. (Author)

  10. Dependability Assessment by Static Analysis of Software Important to Nuclear Power Plant Safety

    Energy Technology Data Exchange (ETDEWEB)

    Ourghanlian, Alain [EDF Lab, Chatou (France)

    2014-08-15

    We describe a practical experimentation of safety assessment of safety-critical software used in Nuclear Power Plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricite de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Today, new industrial tools, based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software is very significantly improved. In a first part, we present the analysis principles of the tools used in our experimentation. In a second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools. In the last part, we present an overview of the results and the limitation of the tools.

  11. The software safety analysis based on SFTA for reactor power regulating system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Zhaohui; Yang Xiaohua; Liao Longtao; Wu Zhiqiang

    2015-01-01

    The digitalized Instrumentation and Control (I and C) system of Nuclear power plants can provide many advantages. However, digital control systems induce new failure modes that differ from those of analog control systems. While the cost effectiveness and flexibility of software is widely recognized, it is very difficult to achieve and prove high levels of dependability and safety assurance for the functions performed by process control software, due to the very flexibility and potential complexity of the software itself. Software safety analysis (SSA) was one way to improve the software safety by identify the system hazards caused by software failure. This paper describes the application of a software fault tree analysis (SFTA) at the software design phase. At first, we evaluate all the software modules of the reactor power regulating system in nuclear power plant and identify various hazards. The SFTA was applied to some critical modules selected from the previous step. At last, we get some new hazards that had not been identified in the prior processes of the document evaluation which were helpful for our design. (author)

  12. Auditable safety analysis for the surveillance and maintenance of U plant

    International Nuclear Information System (INIS)

    Cuneo, V.J.

    1997-02-01

    This document provides the auditable safety analysis for the post-deactivation, long-term surveillance and maintenance (S ampersand amp;M) phase of the U Plant. The U Plant is an inactive, surplus facility constructed in 1944 as one of three original chemical separations plants. However, U-Plant was never used for its original purpose and was eventually transferred to S ampersand amp;M. In 1957 it was converted to the tributyl phosphate process to recover uranium from the bismuth phosphate process waste. In 1958 it was placed on standby and was used to store inoperable and contaminated equipment from other facilities.This document evaluates the ability of the U Plant to withstand the effects of natural phenomena hazard events and describes the active support systems used to maintain ventilation and/or prevent the spread of contamination. This document also evaluates S ampersand amp;M activities that are routinely required (i.e., the S ampersand amp;M of facility barriers, equipment, structures, and postings [including repair and upgrade]; measures to identify, remove, or repair damaged asbestos; measures to identify, remove, or appropriately manage existing containers of hazardous substances; the performance of spill response measures as needed; and perform nondestructive assaying, waste characterization, and sampling). This document identifies the type and nature of the hazards presented by the U Plant and the specific controls that are required to maintain these hazards at acceptable levels

  13. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  14. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  15. Plotting and analysis of fault trees in safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Wild, A.

    1979-12-01

    Fault tree analysis is a useful tool in determining the safety and reliability of nuclear power plants. The main strength of the fault tree method, its ability to detect cross-links between systems, can be used only if fault trees are constructed for complete nuclear generating stations. Such trees are large and have to be handled by computers. A system is described for handling fault trees using small computers such as the HP-1000 with disc drive, graphics terminal and x-y plotter

  16. Standard Review Plan for the review of safety analysis reports for nuclear power plants: LWR edition

    International Nuclear Information System (INIS)

    1987-06-01

    The Standard Review Plan (SRP) is prepared for the guidance of staff reviewers in the Office of Nuclear Reactor Regulation in performing safety reviews of applications to construct or operate nuclear power plants. The principal purpose of the SRP is to assure the quality and uniformity of staff reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. It is also a purpose of the SRP to make information about regulatory matters widely available and to improve communication and understanding of the staff review process by interested members of the public and the nuclear power industry. The safety review is primarily based on the information provided by an applicant in a Safety Analysis Report (SAR). The SAR must be sufficiently detailed to permit the staff to determine whether the plant can be built and operated without undue risk to the health and safety of the public. The SAR is the principal document in which the applicant provides the information needed to understand the basis upon which this conclusion has been reached. The individual SRP sections address, in detail, who performs the review, the matters that are reviewed, the basis for review, how the review is accomplished, and the conclusions that are sought. The safety review is performed by 25 primary branches. One of the objectives of the SRP is to assign the review responsibilities to the various branches and to define the sometimes complex interfaces between them. Each SRP section identifies the branch that has the primary review responsibility for that section. In some review areas the primary branch may require support, and the branches that are assigned these secondary review responsibilities are also identified for each SRP section

  17. Software analysis by simulation for nuclear plant availability and safety goals

    International Nuclear Information System (INIS)

    Lapassat, A.M.; Segalard, J.; Salichon, M.; Le Meur, M.; Boulc'h, J.

    1988-01-01

    The microprocessors utilisation for monitoring protection and safety of nuclear reactor has become reality in the eighties. The authorities responsible for reactor safety systems have considered the necessity of the correct functioning of reactor control systems. The problems take off, when analysis of software, has led us in a first time to develop a completely software tool of verification and validation of programs and specifications. The CEA (French Atomic Energie Commission) responsible of reliable distributed techniques of nuclear plant discusses in this paper the software test and simulation tools used to analyse real-time software. The tool O.S.T. make part of a big program of help for the conception and the evaluation for the systems' fault tolerance which the European ESPRIT SMART no. 1609 (System Measurement and Architecture Technique) will be the kernel [fr

  18. Review of the safety analysis of the Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    Weber, J.P.

    1999-01-01

    Description of the review of safety analysis report (SAR) of Ignalina NPP is presented. this review, called RSR, was conducted by independent group of international experts. SAR and RSR represented a unique international effort in a very short time. It was first attempt to provide Western-type SAR for any Soviet designed NPP. SAR was completed in December 1996, RSR was completed in March 1997. SAR has produced 85 reports, available on CR-ROM and RSR produced 86 reports also available on CD-ROM. SAR presented a large list of recommendations. RSR agreed with most of SAR recommendations and added further recommendations. SAR and RSR contributed significantly to better understanding of RBMK plant behaviour. Ignalina NPP has responded to the SAR/RSR recommendations by an ambitious Safety Improvement Programme SIP-2 which currently is under implementation

  19. Human actions in the pre-operational probabilistic safety analysis of Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ferro, R.

    1995-01-01

    Human error is one of the main contributors to the biggest industrial disasters that the world has suffered in the last years. Safety probabilistic analysis techniques allow to consider, in the some study, the contribution of a facility's mechanical and human components safety, this guaranteeing a move integral assessment of these two factors although the PSA study of Juragua Nuclear Power Plant is carried out at a preoperational stage which causes important information limitations fos assessment of human reliability some considerations and suppositions in order to conduct treatment of human actions this stage were adopted. The present work describes the projected targets, approach applied and results obtained from the lakes of human reliability of this study

  20. Development of specific data of plant for a safety probabilistic analysis

    International Nuclear Information System (INIS)

    Gonzalez C, M.; Nelson E, P.

    2004-01-01

    In this work the development of specific data of plant is described for the Safety Probabilistic Analysis (APS) of the Laguna Verde Central. The description of those used methods concentrate on the obtention of rates of failure of the equipment and frequencies of initiator events modeled in the APS, making mention to other types of data that also appeal to specific sources of the plant. The method to obtain the rates of failure of the equipment takes advantage the information of failures of components and unavailability of systems obtained entreaty in execution with the Maintenance Rule (1OCFR50.65). The method to develop the frequencies of initiators take in account the registered operational experience as reportable events. In both cases the own experience is combined with published generic data using Bayesian realized techniques. Details are provided about the gathering of information, the confirmations of consistency and adjustment necessities, presenting examples of the obtained results. (Author)

  1. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  2. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  3. An approach to review design bases and safety analysis of earlier generation atomic power plants; a case study of TAPS

    International Nuclear Information System (INIS)

    Malhotra, P.K.; Bajaj, S.S.

    2002-01-01

    The twin unit boiling water reactor (BWR) station at TAPS has completed 30 years of power operation and for further extending plant operating life, a fresh extensive exercise involving review of plant operating performance, aging management and review of design bases and safety analysis has been carried out. The review exercise resulted in assessment of acceptability of identified non-conformances and recommendation for compensatory measures in the form of design modification or plant operating procedures. The second part of the exercise is related to safety analysis, which is carried out in view of the plant modifications done and advances taken place in methodologies of analytical techniques. Chiefly, it involves LOCA analysis done for various break sizes at different locations and plant transient studies. It also includes the fatigue analysis of the reactor pressure vessel. The related review approach adopted is presented here

  4. Analysis of safety information for nuclear power plants and development of source term estimation program

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Choi, Seong Soo; Park, Jin Hee

    1999-12-01

    Current CARE(Computerized Advisory System for Radiological Emergency) in KINS(Korea Institute of Nuclear Safety) has no STES(Source Term Estimation System) which links between SIDS(Safety Information Display System) and FADAS(Following Accident Dose Assessment System). So in this study, STES is under development. STES system is the system that estimates the source term based on the safety information provided by SIDS. Estimated source term is given to FADAS as an input for estimation of environmental effect of radiation. Through this first year project STES for the Kori 3,4 and Younggwang 1,2 has been developed. Since there is no CARE for Wolsong(PHWR) plants yet, CARE for Wolsong is under construction. The safety parameters are selected and the safety information display screens and the alarm logic for plant status change are developed for Wolsong Unit 2 based on the design documents for CANDU plants

  5. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  6. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  7. The fault tree as a tool in safety analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Waddington, J.G.; Wild, A.

    1981-01-01

    Modern safety analysis must be able to identify realistic failure modes based on realistic operation and system malfunction, demonstrate rigorously that adequate independence exists between a malfunctioning system and those other systems required to mitigate the effects of the malfunction, design adequate reliability into systems important to plant safety and to demonstrate rigorously that the design reliability is met in operation, and identify the realistic actions expected of the operator. Fault trees, which have proved to be a powerful tool to achieve these objectives, are inevitably large and must be computerized. However, the computerized system must be simple, must allow merging of branches developed independently, must provide for easy modification and the processing must be economical and easily accessible. A new system for displaying, plotting and analysing fault trees has been developed and implemented on a small computer at AECB to demonstrate the viability of the approach to designers, and to provide a tool to assess licensee's submissions on failure modes of support systems such as electrical, service water and air, and to assess reliability predictions for special safety systems. (author)

  8. Simplified application of probabilistic safety analysis in nuclear power plants by means of artificial neural networks

    International Nuclear Information System (INIS)

    Oehmgen, T.; Knorr, J.

    2004-01-01

    Probabilistic safety analyses (PSA) are conducted to assess the balanced nature of plant design in terms of technical safety and the administrative management of plant operation in nuclear power plants. In the evaluation shown in this article of the operating experience accumulated in two nuclear power plants, all failures are traced back consistently to the plant media and component levels, respectively, for the calculation of reliability coefficients. Moreover, the use of neural networks for probabilistic calculations is examined. The results are verified on the basis of test examples. Calculations with neural networks are very easy to carry out in a kind of 'black box'. There is a possibility, for instance, to use the system in plant maintenance. (orig.) [de

  9. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  10. Effect Analysis of Digital I and C Systems on Plant Safety based on Fault-Tree Analysis

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Jung, Wondea

    2014-01-01

    Deterioration and an inadequate supply of components of analog I and C systems have led to inefficient and costly maintenance. Moreover, since the fast evolution of digital technology has enabled more reliable functions to be designed for NPP safety, the transition from analog to digital has been accelerated. Owing to the distinguishable characteristics of digital I and C systems, a reliability analysis of digital systems has become an important element of a probabilistic safety assessment (PSA). Digital I and C systems have unique characteristics such as fault-tolerant techniques and software. However, these features have not been properly considered yet in most NPP PSA models. The effect of digital I and C systems should be evaluated by comparing them to that of analog I and C systems. Before installing a digital I and C system, even though it is expected that the plant safety can be improved through the advantageous features of digital I and C systems, it should be validated whether the total NPP safety is better than analog systems or is the same at least. In this work, the fault-tree (FT) technique, which is most widely used in a PSA, was used to compare the effects of analog and digital I and C systems. From a case study, the results of plant safety were compared. In this work, the effect of a digital RPS was evaluated by comparing it to that of an analog RPS based on the FT models. In the evaluation results, it was observed that digital RPS has a positive effect on reducing the system unavailability. The analysis results can be used for the development of a guide for evaluating digital I and C systems and reliability requirements

  11. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  12. Safety and security analysis for distributed control system in nuclear power plants

    International Nuclear Information System (INIS)

    Lu Zhigang; Liu Baoxu

    2011-01-01

    The Digital Distributed Control System (DCS) is the core that manages all monitoring and operation tasks in a Nuclear Power Plant (NPP). So, Digital Distributed Control System in Nuclear Power Plant has strict requirements for control and automation device safety and security due to many factors. In this article, factors of safety are analyzed firstly, while placing top priority on reliability, quality of supply and stability have also been carefully considered. In particular, advanced digital and electronic technologies are adopted to maintain sufficient reliability and supervisory capabilities in nuclear power plants. Then, security of networking and information technology have been remarked, several design methodologies considering the security characteristics are suggested. Methods and technologies of this article are being used in testing and evaluation for a real implement of a nuclear power plant in China. (author)

  13. Safety analysis of disposal of decommissioning wastes from Loviisa nuclear power plant

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Rasilainen, K.; Suolanen, V.

    1987-12-01

    The repository for decommissioning wastes from the Loviisa nuclear power plant consisting of two 445 MWe PWR units is planned to be excavated at the depth of 90-130 meters in the bedrock of the power plant site. The reactor vessels weighing each about 215 tons will be transferred each in one piece into the repository. They are emplaced in an upright position in big holes excavated in the bottom of repository caverns. The reactor vessel internals are then emplaced inside the vessels. Finally, the vessels will be filled with concrete and the lids will be emplaced and sealed. Steam generators and pressurizers will also be disposed of uncutted. Other decommissioning wastes will be cut into smaller pieces and emplaced in concrete or wooden containers. The repository will be situated on the small island on which the power plant is located. The groundwater on the island contains two zones of different salinity: an upper zone of fresh, flowing groundwater and a lower zone of saline, stagnant groundwater where the repository will be situated. Three groundwater scenarios have been considered in the safety analysis: a scenario based on the present site conditions, an altered scenario where the repository is assumed to be situated in a zone of fresh, flowing groundwater and a distruptive event scenario with an intensive groundwater flow through the repository. The obtained results of the analysis show clear safety margins. In the basic scenario the maximum annul dose rate is 6x10 -14 Sv/a via the local sea pathways, 6x10 -11 Sv/a via the lake pathways and 4x10 -8 Sv/a via a well bored in the vicinity of the repository. In the altered groundwater scenario the maximum annual dose rate is 4x10 -10 Sv/a via the sea pathways, 3x10 -7 Sv/a via the lake pathways and 1x10 -5 Sv/a via the well pathway. In the unlikely disruptive event scenario the corresponding dose rates are 8x10 -10 Sv/a (sea), 7x10 -7 Sv/a (lake) and 2x10 -4 Sv/a (well)

  14. Process and plant safety

    CERN Document Server

    Hauptmanns, Ulrich

    2015-01-01

    Accidents in technical installations are random events. Hence they cannot be totally avoided. Only the probability of their occurrence may be reduced and their consequences be mitigated. The book proceeds from hazards caused by materials and process conditions to indicating technical and organizational measures for achieving the objectives of reduction and mitigation. Qualitative methods for identifying weaknesses of design and increasing safety as well as models for assessing accident consequences are presented. The quantitative assessment of the effectiveness of safety measures is explained. The treatment of uncertainties plays a role there. They stem from the random character of the accident and from lacks of knowledge on some of the phenomena to be addressed. The reader is acquainted with the simulation of accidents, safety and risk analyses and learns how to judge the potential and limitations of mathematical modelling. Risk analysis is applied amongst others to “functional safety” and the determinat...

  15. Power plants and safety 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The papers of this volume deal with the whole range of safety issues from planning and construction to the operation of power plants, and discuss also issues like availability and safety of power plants, protective clothes and their incommodating effect, alternatives for rendering hot-water generators safe and the safety philosophy in steam turbine engineering. (HAG) [de

  16. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  17. Pantex Plant final safety analysis report, Zone 4 magazines. Staging or interim storage for nuclear weapons and components: Issue D

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This Safety Analysis Report (SAR) contains a detailed description and evaluation of the significant environmental, safety, and health (ES&H) issues associated with the operations of the Pantex Plant modified-Richmond and steel arch construction (SAC) magazines in Zone 4. It provides (1) an overall description of the magazines, the Pantex Plant, and its surroundings; (2) a systematic evaluations of the hazards that could occur as a result of the operations performed in these magazines; (3) descriptions and analyses of the adequacy of the measures taken to eliminate, control, or mitigate the identified hazards; and (4) analyses of potential accidents and their associated risks.

  18. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  19. Standard Review Plan for the review of safety analysis reports for nuclear power plants, Revision No. 7 to Section 9

    International Nuclear Information System (INIS)

    1978-03-01

    Revision No. 1 to Section 9 of the Standard Review Plan incorporates changes that have been developed since the original issuance in September 1975, many of which are editorial in nature, to reflect current staff practice in the review of safety analysis reports for nuclear power plants

  20. PGDP [Paducah Gaseous Diffusion Plant]-UF6 handling, sampling, analysis and associated QC/QA and safety related procedures

    International Nuclear Information System (INIS)

    Harris, R.L.

    1987-01-01

    This document is a compilation of Paducah Gaseous Diffusion Plant procedures on UF 6 handling, sampling, and analysis, along with associated QC/QA and safety related procedures. It was assembled for transmission by the US Department of Energy to the Korean Advanced Energy Institute as a part of the US-Korea technical exchange program

  1. Application of the methodology of safety probabilistic analysis to the modelling the emergency feedwater system of Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Troncoso, M.; Oliva, G.

    1993-01-01

    The application of the methodology developed in the framework of the national plan of safety probabilistic analysis (APS) to the emergency feed water system for the failures of small LOCAS and external electrical supply loss in the nuclear power plant is illustrated in this work. The facilities created by the ARCON code to model the systems and its documentation are also expounded

  2. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  3. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  4. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  5. Development of Draft Regulatory Guide on Accident Analysis for Nuclear Power Plants with New Safety Design Features

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Woo, Sweng Woong; Hwang, Tae Suk [KINS, Daejeon (Korea, Republic of); Sim, Suk K; Hwang, Min Jeong [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The present paper discusses the development process of the draft version of regulatory guide (DRG) on accident analysis of the NPP having the NSFD and its result. Based on the consideration on the lesson learned from the previous licensing review, a draft regulatory guide (DRG) on accident analysis for NPP with new safety design features (NSDF) was developed. New safety design features (NSDF) have been introduced to the new constructing nuclear power plants (NPP) since the early 2000 and the issuance of construction permit of SKN Units 3 and 4. Typical examples of the new safety features includes Fluidic Device (FD) within Safety Injection Tanks (SIT), Passive Auxiliary Feedwater System (PAFS), ECCS Core Barrel Duct (ECBD) which were adopted in APR1400 design and/or APR+ design to improve the safety margin of the plants for the postulated accidents of interest. Also several studies of new concept of the safety system such as Hybrid ECCS design have been reported. General and/or specific guideline of accident analysis considering the NSDF has been requested. Realistic evaluation of the impact of NSDF on accident with uncertainty and separated accident analysis accounting the NSDF impact were specified in the DRG. Per the developmental process, identification of key issues, demonstration of the DRG with specific accident with specific NSDF, and improvement of DGR for the key issues and their resolution will be conducted.

  6. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1991-10-01

    The requirements for Westinghouse Hanford independent review of the Preliminary Safety Analysis Report (PSAR) are contained in Section 1.0, Subsection 4.3 of WCH-CM-4-46. Specifically, this manual requires the following: (1) Formal functional reviews of the HWVP PSAR by the future operating organization (HWVP Operations), and the independent review organizations (HWVP and Environmental Safety Assurance, Environmental Assurance, and Quality Assurance); and (2) Review and approval of the HWVP PSAR by the Tank Waste Disposal (TWD) Subcouncil of the Safety and Environmental Advisory Council (SEAC), which provides independent advice to the Westinghouse Hanford President and executives on matters of safety and environmental protection. 7 refs

  7. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    other reactor types, including innovative developments in future systems, some of the requirements may not be applicable, or may need some judgment in their interpretation. Various Safety Guides will provide guidance in the interpretation and implementation of these requirements. This publication is intended for use by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies. This publication establishes design requirements for structures, systems and components important to safety that must be met for safe operation of a nuclear power plant, and for preventing or mitigating the consequences of events that could jeopardize safety. It also establishes requirements for a comprehensive safety assessment, which is carried out in order to identify the potential hazards that may arise from the operation of the plant, under the various plant states (operational states and accident conditions). The safety assessment process includes the complementary techniques of deterministic safety analysis and probabilistic safety analysis. These analyses necessitate consideration of postulated initiating events (PlEs), which include many factors that, singly or in combination, may affect safety and which may: originate in the operation of the nuclear power plant itself; be caused by human action; be directly related to the nuclear power plant and its environment. This publication also addresses events that are very unlikely to occur, such as severe accidents that may result in major radioactive releases, and for which it may be appropriate and practicable to provide preventive or mitigatory features in the design. This publication does not address: external natural or human induced events that are extremely unlikely (such as the impact of a meteorite or an artificial satellite); conventional industrial accidents that under no circumstances could affect the safety of the nuclear power plant; or non-radiological effects arising

  8. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    other reactor types, including innovative developments in future systems, some of the requirements may not be applicable, or may need some judgment in their interpretation. Various Safety Guides will provide guidance in the interpretation and implementation of these requirements. This publication is intended for use by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies. This publication establishes design requirements for structures, systems and components important to safety that must be met for safe operation of a nuclear power plant, and for preventing or mitigating the consequences of events that could jeopardize safety. It also establishes requirements for a comprehensive safety assessment, which is carried out in order to identify the potential hazards that may arise from the operation of the plant, under the various plant states (operational states and accident conditions). The safety assessment process includes the complementary techniques of deterministic safety analysis and probabilistic safety analysis. These analyses necessitate consideration of postulated initiating events (PlEs), which include many factors that, singly or in combination, may affect safety and which may: originate in the operation of the nuclear power plant itself. Be caused by human action. Be directly related to the nuclear power plant and its environment. This publication also addresses events that are very unlikely to occur, such as severe accidents that may result in major radioactive releases, and for which it may be appropriate and practicable to provide preventive or mitigatory features in the design. This publication does not address: external natural or human induced events that are extremely unlikely (such as the impact of a meteorite or an artificial satellite). Conventional industrial accidents that under no circumstances could affect the safety of the nuclear power plant. Or non-radiological effects arising

  9. Regulatory analysis for resolution of Unresolved Safety Issue A-46, seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Chang, T.Y.; Anderson, N.R.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform required safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring these plants to meet the criteria that are applied to new plants. This report presents the regulatory analysis for Unresolved Safety Issue (USI) A-46. It includes: Statement of the Problem; the Objective of USI A-46; a Summary of A-46 Tasks; a Proposed Implementation Procedure; a Value-Impact Analysis; Application of the Backfit Rule; 10 CFR 50.109; Implementation; and Operating Plants To Be Reviewed to USI A-46 Requirements

  10. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  11. Applying the results of probablistic safety analysis of nuclear power plants: a survey of experience

    International Nuclear Information System (INIS)

    Andrews, W.B.; Herttrich, M.; Koeberlein, K.; Schwager.

    1985-01-01

    To date, discussions of the many different types of potential applications of PRA/PSA results and insights to safety-decision-making have been mainly theoretical. Various safety goals have been proposed as decision criteria. However, the discussion on the role of PRA/PSA and Safety Goals in safety-decision-making, especially in licensing, is controversial. A Working Group of the OECD Nuclear Energy Agency is completing a compilation and evaluation of real examples of past and present practical experience with the application of probabilistic methods in reactor safety decision-making, with the idea of developing a common understanding in this area. More than fifty different cases where PRA has influenced decision-making have been surveyed. These include, for example, regulatory changes, fixing of licensing requirements, plant specific modifications of design of operation, prioritization of safety issues and emergency planning. This feedback of experience - both positive and negative - with PRA/PSA applications is considered to provide guidance on how probabilistic approaches can be introduced into current safety practices, and on desirable future developments in probabilistic methods and specific PSA/PRA studies. Generic insights from the survey are given

  12. Special safety requirements applied to Brazilian nuclear power plant

    International Nuclear Information System (INIS)

    Lepecki, W.P.S.; Hamel, H.J.E.; Koenig, N.; Vieira, P.C.R.; Fritzsche, J.C.

    1981-01-01

    Some safety aspects of the Angra 2 and 3 nuclear power plants are presented. An analysis of the civil and mechanical project of these nuclear power plant having in view a safety analysis is done. (E.G.) [pt

  13. CARES-ESTSC, Seismic Structure Safety Analysis for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Heymsfield, E.; Yang, A.

    1999-01-01

    1 - Description of program or function: CARES, Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. CARES is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis. In this release, only the seismic module is implemented. This module defines the design seismic criteria at a given site, evaluates the free-field motion, and computes the structural response and floor response spectra including soil-structure interaction. The eight options in CARES currently are: a general manager for the seismic module, deconvolution analysis, structural data preparation for soil-structure interaction (SSI) analysis, input motion preparation for SSI analysis, SSI analysis, earthquake simulations/data, PSD (Power Spectral Density) related acceleration time history/spectra analysis, and plot generation. 2 - Method of solution: The seismic module works in the frequency domain. Earthquake motion simulation is based on the fundamental property that any periodic function can be expanded in a series of sinusoidal waves. The computer uses a random number generator to produce strings of phase angles with uniform distribution in the 0-2 pi range. Then, a linear correction procedure due to Scanlon and Sacks is employed to derive an adjusted array of amplitudes. The acceleration ensemble is subsequently modified by a deterministic intensity function composed of three segments: an initial buildup, a stationary duration, and exponential steady decay. A parabolic correction procedure outlined by Jennings and Housner is applied to the acceleration ensemble to bring the end velocity of the ground motion to zero. The soil-structure system is represented by a three-dimensional lumped parameter type model. The structural model is built up from three

  14. Development of the safety analysis system - SAIS - application to the Kola nuclear power plant

    International Nuclear Information System (INIS)

    Balfanz, H.P.; Fuhrmann, C.; Neumann, L.; Rumpf, J.; Kubintsev, B.; Marakulin, I.; Shevelev, V.; Terekhov, I.

    1995-01-01

    The project was started in July 1991 and finished by the end of 1993. It was aimed at adapting SAIS to WWER-440/W213 plant design and operational procedures, demonstrating the possibilities of SAIS for safety evaluation and examining the system by plant personnel and a PSA team. The project covered -the use of data form as well as fault and event tree methods of SAIS, - a probabilistic assessment of the high pressure injection system in case of a small break loss-of-coolant accident, - a quantification of human error probabilities for operator actions to cool down the primary circuit in case of a small break loss-of-coolant accident when the high pressure injection system has failed and - a comparison of Russian and German operational procedures and safety documents used in the probabilistic analyses of the SAIS-Kola project. As a main result SAIS was found to be an appropriate tool to give assistance to the plant personnel on safety evaluation of the plant within the frame of reconstruction measures and on the establishment of a qualified reliability data collection system at Kola NPP. (orig./HP) [de

  15. Layout of the safety analysis report for nuclear power plants with pressurized water reactor or boiling water reactor in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Albrecht, E.

    1980-01-01

    For a licence according to paragraph 7 of the Atomic Energy Act to construct and operate a nuclear power plant, the applicant has to submit a safety analysis report, which must describe the site, the plant, all hazards in connection with the plant and the proposed safety precautions. For the structure and the content of a safety analysis report, a first guideline was published in 1959. Only a few safety analysis reports were prepared nearly strictly according to this guideline. In 1976 a second guideline was published for a standard safety analysis report. The lecture deals with the guidelines. A survey over the structure and content of the German safety analysis reports will be given. The experience gained by the new safety analysis reports will be discussed. (orig.)

  16. Validation study on reliability analysis of main safety system in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Cho, Chang Keun; Kim, Yong Hui; Kim, Tae Hyeong; Hong, Seo Kee; Park, Keon Woo; Park, Chang Jea [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cheong, Woo Sik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Moon Kyu [KEPRI, Taejon (Korea, Republic of)

    1993-12-15

    The scope and contents of this validation study are to review the design changes of the four main safety systems in Wolsong 2/3/4 Nuclear Power Plants, to review the consideration of the above design changes in the AECL reports, the structure of fault trees, and the data base used in the quantification of the fault trees, to quantify the unavailabilities of main safety systems and check them if they meet the requirements, and to recommend desirable design changes in the emergency core cooling system to reduce the unavailability.

  17. Analysis of differences in fuel safety criteria for WWER and western PWR nuclear power plants

    International Nuclear Information System (INIS)

    2003-11-01

    In 2001 the OECD issued a report of the NEA/CSNI (Committee on the Safety of Nuclear Installations) Task Force on the existing safety criteria for reactor fuel for western LWR nuclear power plants (both for PWRs and BWRs) under new design elements. Likewise in 2001, the IAEA released a report by a Working Group on the existing safety criteria for reactor fuel for WWER nuclear power plants under new design requirements. However, it was found that it was not possible to compare the two sets of criteria on the basis upon which they had been established. Therefore, the IAEA initiated an assessment of the common features and differences in fuel safety criteria between plants of eastern and western design, focusing on western PWRs and eastern WWER reactors. Between October 2000 and November 2001, the IAEA organized several workshops with representatives from eastern and western European countries in which the current fuel safety related criteria for PWR and WWER reactors were reviewed and compared. The workshops brought together expert representatives from the Russian Federation, from the Ukraine and from western countries that operate PWRs. The first workshop focused on a general overview of the fuel safety criteria in order for all representatives to appreciate the various criteria and their respective bases. The second workshop (which involved one western and one eastern expert) concentrated on addressing and explaining the differences observed, and documenting all these results in preparation for a panel discussion. This panel discussion took place during the third workshop, where the previously obtained results were reviewed in detail and final recommendations were made. This report documents the findings of the workshops. It highlights the common features and differences between PWR and WWER fuel, and may serve as a general basis for the safety evaluation of these fuels. Therefore, it will be very beneficial for licensing activities for PWR and WWER plants, as it

  18. Structural Safety Analysis Based on Seismic Service Conditions for Butterfly Valves in a Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Sang-Uk Han

    2014-01-01

    Full Text Available The structural integrity of valves that are used to control cooling waters in the primary coolant loop that prevents boiling within the reactor in a nuclear power plant must be capable of withstanding earthquakes or other dangerous situations. In this study, numerical analyses using a finite element method, that is, static and dynamic analyses according to the rigid or flexible characteristics of the dynamic properties of a 200A butterfly valve, were performed according to the KEPIC MFA. An experimental vibration test was also carried out in order to verify the results from the modal analysis, in which a validated finite element model was obtained via a model-updating method that considers changes in the in situ experimental data. By using a validated finite element model, the equivalent static load under SSE conditions stipulated by the KEPIC MFA gave a stress of 135 MPa that occurred at the connections of the stem and body. A larger stress of 183 MPa was induced when we used a CQC method with a design response spectrum that uses 2% damping ratio. These values were lower than the allowable strength of the materials used for manufacturing the butterfly valve, and, therefore, its structural safety met the KEPIC MFA requirements.

  19. Industrial safety in power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings of the VGB conference 'Industrial safety in power plants' held in the Gruga-Halle, Essen on January 21 and 22, 1987, contain the papers reporting on: Management responsibility for and legal consequences of industrial safety; VBG 2.0 Industrial Accident Prevention Regulation and the power plant operator; Operational experience gained with wet-type flue gas desulphurization systems; Flue gas desulphurization systems: Industrial-safety-related requirements to be met in planning and operation; the effects of the Hazardous Substances Ordinance on power plant operation; Occupational health aspects of heat-exposed jobs in power plants; Regulations of the Industrial Accident Insurance Associations concerning heat-exposed jobs and industrial medical practice; The new VBG 30 Accident Prevention Regulation 'Nuclear power plants'; Industrial safety in nuclear power plants; safe working on and within containers and confined spaces; Application of respiratory protection equipment in power plants. (HAG) [de

  20. Operational safety analysis of the Olkiluoto encapsulation plant and disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Suolanen, V.

    2012-11-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented. This research is limited to the deterministic analysis. During about 30 operation years of our four nuclear power plant units there have been found 58 broken fuel pins. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the most exposed group is less than 0.001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety

  1. Operational safety analysis of the Olkiluoto encapsulation plant and disposal facility; Olkiluodon kapselointi- ja loppusijoituslaitoksen kaeyttoeturvallisuusanalyysi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Suolanen, V. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-11-15

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented. This research is limited to the deterministic analysis. During about 30 operation years of our four nuclear power plant units there have been found 58 broken fuel pins. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the most exposed group is less than 0.001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety

  2. Organizational learning in commercial nuclear power plant safety: An empirical analysis

    International Nuclear Information System (INIS)

    Marcus, A.A.; Bromiley, P.; Nichols, M.L.

    1989-01-01

    The need for knowledge in organizations that manage and run high risk technologies is very high. The acquisition of useful knowledge is referred to as organizational learning. The theoretical roots of this concept are well established in the academic literature and in practice, especially in manufacturing industries. This paper focuses on organizational problem solving and learning as it relates to the safe and efficient management of commercial nuclear power plants. The authors are co-investigators on a larger team working under contract with the Nuclear Regulatory Commission to develop a logical framework that enables systematic examination of potential linkages between management and organizational factors and safety in nuclear power plant performance. Management and organizational factors that facilitate or impede organizational learning are only a part of the larger study, but are the major focus of this paper. In this paper, the theoretical roots of the concept of organizational learning are discussed, relationships to measures of safety and efficiency of commercial nuclear power plants are hypothesized, and empirical findings which provide partial tests of the hypotheses are discussed. This line of research appears promising; implications for further research, regulatory application, and nuclear power plant management are described

  3. Evaluation of the Safety Analysis Report for the Waste Isolation Pilot Plant Project

    International Nuclear Information System (INIS)

    Little, M.S.

    1985-05-01

    The Safety Analysis Report (SAR) for the Waste Isolation Pilot Plant (WIPP) Project was first published by the US Department of Energy (DOE), WIPP Project Office (WPO) in 1980. Since that time a total of eight amendments to this Report have been published. As part of its independent evaluation of the WIPP Project for the State of New Mexico, the Environmental Evaluation Group (EEG) maintains a continuing technical assessment of the information in this Report and its amendments. Beginning with the initial publication, and following the amendments, the EEG prepares detailed written comments and recommendations which are submitted to the WPO for consideration in future amendments. The WPO has made many substantial changes to the SAR in response to the EEG's comments. On frequent occasions, meetings between the two groups have been held in an effort to reach an accord on some of the more controversial issues. These meetings generally have been very constructive, but several important areas of conflict remain. In many instances, these areas represent changes which are to be considered by the WPO at some future date, rather than irreconcilable issues. The most important issues remaining to be resolved are included in the discussions of this report, and could be summarized as follows: (1) An amendment of the topical content to be more in accord with the DOE Order 5481.1A and AL 5481.1A. (2) Substantial revisions of the classification of components, structures and systems, and related quality assurance. (3) Revisions to the site geological and hydrologic data based on studies agreed to between DOE and the State

  4. Use of F.M.E.A. for reliability analysis of safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Barbet, J.F.; Llory, M.; Villemeur, A.

    1982-01-01

    In the framework of the French nuclear power plant program, reliability studies of safety systems have been carried out at the Electricite de France since 1975. The main results of the studies are examined; about the methodological aspects it appears useful to develop an inductive approach such as the Failure Modes and Effects Analysis (F.M.E.A.). The method is described with its advantages and limitations; the possibilities of use of F.M.E.A. to solve specific safety problems are investigated. To conclude, the future trends of research and development in this field at Electricite de France are pointed out [fr

  5. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  6. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    International Nuclear Information System (INIS)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed

  7. Containment response analysis for the PSA (Probabilistic Safety Assessment) of the CAREM-25 nuclear power plant

    International Nuclear Information System (INIS)

    Baron, J.H.

    1997-01-01

    This work is part of the probabilistic safety assessment actually under development for the CAREM-25 nuclear power station, and departs from the accident sequences already obtained and quantified by the Event Trees/Fault Trees techniques. At first, the potential containment failure modes for nuclear stations are listed, based on the experience. Then, the CAREM-25 design peculiarities are analyzed, on their possible influence on the containment behavior during severe accidents. Then plan damage states are defined. Furthermore, containment damage states are also defined, and containment event trees are built for each plant damage state. Those sequences considered representative from the annual probability (those which exceed or probability of IE-09 per year, are used to quantify the combinations of plant damage states/containment damage states, based on the estimation of a vulnerability matrix. (author) [es

  8. Probabilistic safety analysis of DC power supply requirements for nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; Kolaczkowski, A.M.; Fedele, M.A.

    1981-04-01

    A probabilistic safety assessment was performed as part of the Nuclear Regulatory Commission generic safety task A-30, Adequacy of Safety Related DC Power Supplies. Event and fault tree analysis techniques were used to determine the relative contribution of DC power related accident sequences to the total core damage probability due to shutdown cooling failures. It was found that a potentially large DC power contribution could be substantially reduced by augmenting the minimum design and operational requirements. Recommendations included (1) requiring DC power divisional independence, (2) improved test, maintenance, and surveillance, and (3) requiring core cooling capability be maintained following the loss of one DC power bus and a single failure in another system

  9. Safety analysis code input automation using the Nuclear Plant Data Bank

    International Nuclear Information System (INIS)

    Kopp, H.; Leung, J.; Tajbakhsh, A.; Viles, F.

    1985-01-01

    The Nuclear Plant Data Bank (NPDB) is a computer-based system that organizes a nuclear power plant's technical data, providing mechanisms for data storage, retrieval, and computer-aided engineering analysis. It has the specific objective to describe thermohydraulic systems in order to support: rapid information retrieval and display, and thermohydraulic analysis modeling. The Nuclear Plant Data Bank (NPBD) system fully automates the storage and analysis based on this data. The system combines the benefits of a structured data base system and computer-aided modeling with links to large scale codes for engineering analysis. Emphasis on a friendly and very graphically oriented user interface facilitates both initial use and longer term efficiency. Specific features are: organization and storage of thermohydraulic data items, ease in locating specific data items, graphical and tabular display capabilities, interactive model construction, organization and display of model input parameters, input deck construction for TRAC and RELAP analysis programs, and traceability of plant data, user model assumptions, and codes used in the input deck construction process. The major accomplishments of this past year were the development of a RELAP model generation capability and the development of a CRAY version of the code

  10. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  11. Requirement analysis of the safety-critical software implementation for the nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Hoon Seon; Jung, Jae Cheon; Kim, Jae Hack; Nam, Sang Ku; Kim, Hang Bae

    2005-01-01

    The safety critical software shall be implemented under the strict regulation and standards along with hardware qualification. In general, the safety critical software has been implemented using functional block language (FBL) and structured language like C in the real project. Software design shall comply with such characteristics as; modularity, simplicity, minimizing the use of sub-routine, and excluding the interrupt logic. To meet these prerequisites, we used the computer-aided software engineering (CASE) tool to substantiate the requirements traceability matrix that were manually developed using Word processors or Spreadsheets. And the coding standard and manual have been developed to confirm the quality of software development process, such as; readability, consistency, and maintainability in compliance with NUREG/CR-6463. System level preliminary hazard analysis (PHA) is performed by analyzing preliminary safety analysis report (PSAR) and FMEA document. The modularity concept is effectively implemented for the overall module configurations and functions using RTP software development tool. The response time imposed on the basis of the deterministic structure of the safety-critical software was measured

  12. Safety analysis methodology for Chinshan nuclear power plant spent fuel pool under Fukushima-like accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hao-Tzu [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China). Research Atomic Energy Council; Li, Wan-Yun; Wang, Jong-Rong; Tseng, Yung-Shin; Chen, Hsiung-Chih; Shih, Chunkuan; Chen, Shao-Wen [National Tsing Hua Univ., HsinChu, Taiwan (China). Inst. of Nuclear Engineering and Science

    2017-03-15

    Chinshan nuclear power plant (NPP), a BWR/4 plant, is the first NPP in Taiwan. After Fukushima NPP disaster occurred, there is more concern for the safety of NPPs in Taiwan. Therefore, in order to estimate the safety of Chinshan NPP spent fuel pool (SFP), by using TRACE, MELCOR, CFD, and FRAPTRAN codes, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of Chinshan NPP SFP. There were two main steps in this research. The first step was the establishment of Chinshan NPP SFP models. And the transient analysis under the SFP cooling system failure condition (Fukushima-like accident) was performed. In addition, the sensitive study of the time point for water spray was also performed. The next step was the fuel rod performance analysis by using FRAPTRAN and TRACE's results. Finally, the animation model of Chinshan NPP SFP was presented by using the animation function of SNAP with MELCOR analysis results.

  13. Tools for plant safety engineer

    International Nuclear Information System (INIS)

    Fabic, S.

    1996-01-01

    This paper contains: - review of tools for monitoring plant safety equipment reliability and readiness, before and accident (performance indicators for monitoring the risk and reliability performance and for determining when degraded performance alert levels are achieved) - brief reviews of tools for use during an accident: Emergency Operating Procedures (EOPs), Emergency Response Data System (ERDS), Reactor Safety Assessment System (RSAS), Computerized Accident Management Support

  14. Safety of industrial irradiation plants

    International Nuclear Information System (INIS)

    1992-01-01

    Radiation is nowadays used in many applications in industry and medicine; accidental exposure, however, can have grave consequences as large doses of radiation occur in the 600 accelerator or gamma source plants in use around the world. This film explains the operation of irradiation plants and the safety procedures that must be followed to prevent accidents and to ensure safe use

  15. Topics to be covered in safety analysis reports for nuclear power plants with pressurized water reactors or boiling water reactors in the F.R.G

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1977-01-01

    This manual aims at defining the standards to be used in Safety Analysis Reports for Nuclear Power Plants with Pressurized Water Reactors or Boiling Water Reactors in the Federal Republic of Germany. The topics to be covered are: Information about the site (geographic situation, settlement, industrial and military facilities, transport and communications, meteorological conditions, geological, hydrological and seismic conditions, radiological background), description of the power plant (building structures, safety vessel, reactor core, cooling system, ventilation systems, steam power plant, electrical facilities, systems for measurement and control), indication of operation (commissioning, operation, safety measures, radiation monitoring, organization), incident analysis (reactivity incidents, loss-of-coolant incidents, external impacts). (HP) [de

  16. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  17. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  18. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  19. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  20. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  1. Preliminary safety analysis of a PBMR supplying process heat to a co-located ethylene production plant

    International Nuclear Information System (INIS)

    Scarlat, Raluca O.; Cisneros, Anselmo T.; Koutchesfahani, Tawni; Hong, Rada; Peterson, Per F.

    2012-01-01

    This paper considers the safety analysis and licensing approach for co-locating a pebble bed modular reactor (PBMR) to provide process heat to an ethylene production unit. The PBMR is an advanced nuclear reactor design that provides 400 MW of thermal energy. Ethylene production is an energy intensive process that utilizes large gas furnaces to provide the heat for the process. Coupling a PBMR with an ethylene production plant would open a new market for nuclear power, and would provide the chemical industry with a cleaner power source, helping to achieve the Clean Air Act standards, and eliminating the 0.5 ton of CO 2 emissions per ton of produced ethylene. Our analysis uses the Chevron Phillips chemical plant in Sweeney, TX as a prototypical site. The plant has four ethylene production trains, with a total power consumption of 2.4 GW, for an ethylene output of 3.7 million tons per year, 4% of the global ethylene production capacity. This paper proposes replacement of the gas furnaces by low-emission PBMR modules, and presents the safety concerns and risk mitigation and management options for this coupled system. Two coupling design options are proposed, and the necessary changes to the design basis events and severe accidents for the PBMR licensing application are discussed. A joint effort between the chemical and the nuclear entities to optimize the coupling design, establish preventive maintenance procedures, and develop emergency response plans for both of the units is recommended.

  2. Preliminary safety analysis of a PBMR supplying process heat to a co-located ethylene production plant

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, Raluca O., E-mail: rscarlat@nuc.berkeley.edu [University of California Berkeley, Nuclear Engineering, 4118 Etcheverry Hall, Berkeley, CA 94720 (United States); Cisneros, Anselmo T. [University of California Berkeley, Nuclear Engineering, 4118 Etcheverry Hall, Berkeley, CA 94720 (United States); Koutchesfahani, Tawni [University of California, Chemical and Biomolecular Engineering, 201 Gilman Hall, Berkeley, CA 94720 (United States); Hong, Rada; Peterson, Per F. [University of California Berkeley, Nuclear Engineering, 4118 Etcheverry Hall, Berkeley, CA 94720 (United States)

    2012-10-15

    This paper considers the safety analysis and licensing approach for co-locating a pebble bed modular reactor (PBMR) to provide process heat to an ethylene production unit. The PBMR is an advanced nuclear reactor design that provides 400 MW of thermal energy. Ethylene production is an energy intensive process that utilizes large gas furnaces to provide the heat for the process. Coupling a PBMR with an ethylene production plant would open a new market for nuclear power, and would provide the chemical industry with a cleaner power source, helping to achieve the Clean Air Act standards, and eliminating the 0.5 ton of CO{sub 2} emissions per ton of produced ethylene. Our analysis uses the Chevron Phillips chemical plant in Sweeney, TX as a prototypical site. The plant has four ethylene production trains, with a total power consumption of 2.4 GW, for an ethylene output of 3.7 million tons per year, 4% of the global ethylene production capacity. This paper proposes replacement of the gas furnaces by low-emission PBMR modules, and presents the safety concerns and risk mitigation and management options for this coupled system. Two coupling design options are proposed, and the necessary changes to the design basis events and severe accidents for the PBMR licensing application are discussed. A joint effort between the chemical and the nuclear entities to optimize the coupling design, establish preventive maintenance procedures, and develop emergency response plans for both of the units is recommended.

  3. Safety analysis, 200 Area, Savannah River Plant H-Canyon operations. Supplement 5

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M M; Collier, C D; Fairobent, L A; Graham, R F; Mason, C L; McDuffee, W T; Owen, T L; Walker, D H [Science Applications International Corp., San Diego, CA (United States)

    1986-02-01

    The H-Canyon facility is located in the 200 Separations Area and uses the HM process to separate uranium, neptunium, plutonium, and fission products. Irradiated uranium fuels containing {sup 235}U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium isotopes. This Safety Analysis Report (SAR) documents an analysis of the H-Canyon operations and is an update to a section of a previous SAR. This SAR documents an analysis of the H-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the Conclusions of this SAR is found in the Systems Analysis. Some H-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the H-Carbon can be operated without due risk to onsite or offsite populations and to the environment. In this report, risk is defined an the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological does are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  4. A probabilistic analysis method to evaluate the effect of human factors on plant safety

    International Nuclear Information System (INIS)

    Ujita, H.

    1987-01-01

    A method to evaluate the effect of human factors on probabilistic safety analysis (PSA) is developed. The main features of the method are as follows: 1. A time-dependent multibranch tree is constructed to treat time dependency of human error probability. 2. A sensitivity analysis is done to determine uncertainty in the PSA due to branch time of human error occurrence, human error data source, extraneous act probability, and human recovery probability. The method is applied to a large-break, loss-of-coolant accident of a boiling water reactor-5. As a result, core melt probability and risk do not depend on the number of time branches, which means that a small number of branches are sufficient. These values depend on the first branch time and the human error probability

  5. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ashgar; Omidvari, Nima [Iran Radioactive Waste Management Company, Tehran (Iran, Islamic Republic of); Hassanzadeh, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-12-15

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k{sub eff}) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  6. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    International Nuclear Information System (INIS)

    Mohammadi, Ashgar; Omidvari, Nima; Hassanzadeh, Mostafa

    2017-01-01

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k eff ) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  7. Robots and plant safety

    International Nuclear Information System (INIS)

    Christensen, P.

    1996-02-01

    The application of robots in the harsh environments in which TELEMAN equipment will have to operate has large benefits, but also some drawbacks. The main benefit is the ability gained to perform tasks where people cannot go, while there is a possibility of inflicting damage to the equipment handled by the robot, and the plant when mobile robots are involved. The paper describes the types of possible damage and the precautions to be taken in order to reduce the frequency of the damaging events. A literature study for the topic only gave some insight into examples, but no means for a systematic treatment of the topic. (au) 16 refs

  8. Safety goals for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Roe, J.W.

    1988-01-01

    In its official policy statement on safety goals for the operation of nuclear power plants, the Nuclear Regulatory Commission (NRC) set two qualitative goals, supported by two quantitative objectives. These goals are that (1) individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health; and (2) societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risks. As an alternative, this study proposes four quantitative safety goals for nuclear power plants. It begins with an analysis of the NRC's safety-goal development process, a key portion of which was devoted to delineating criteria for evaluating goal-development methods. Based on this analysis, recommendations for revision of the NRC's basic benchmarks for goal development are proposed. Using the revised criteria, NRC safety goals are evaluated, and the alternative safety goals are proposed. To further support these recommendations, both the NRC's goals and the proposed goals are compared with the results of three major probabilistic risk assessment studies. Finally, the potential impact of these recommendations on nuclear safety is described

  9. Probabilistic analysis of safety in industrial irradiation plants; Analisis probabilistico de seguridad en plantas industriales de irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Alderete, F.; Elechosa, C. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250 - Buenos Aires (Argentina)]. e-mail: falderet@sede.arn.gov.ar

    2006-07-01

    The Argentinean Nuclear Regulatory Authority is carrying out the Probabilistic Safety Analysis (PSA) of the two industrial irradiation plants existent in the country. The objective of this presentation is to show from the regulatory point of view, the advantages of applying this tool, as well as the appeared difficulties; for it will be made a brief description of the facilities, of the method and of the normative one. Both plants are multipurpose facilities classified as 'industrial irradiator category IV' (panoramic irradiator with source deposited in pool). Basically, the execution of an APS consists of the following stages: 1. Identification of initiating events. 2. Modeling of Accidental Sequences (Event Trees). 3. Analysis of Systems (Fault trees). 4. Quantification of Accidental Sequences. The argentine normative doesn't demand to these facilities the realization of an APS, however the basic standard of Radiological Safety establishes that in the design of this type of facilities in the cases that is justified, should make sure that the annual probability of occurrence of an accidental sequence and the resulting dose in a person gives as result an radiological risk inferior to the risk limit adopted as acceptance criteria. On the other hand the design standard specifies for these irradiators it demands a maximum fault rate of 10{sup -2} for the related components with the systems of radiological safety. In our case, the possible initiating events have been identified that carried out to not wanted situations (about people exposure, radioactive contamination). Then, for each one of the significant initiating events, the corresponding accidental sequences were modeled and the safety systems that intervene in this sequences by means of fault trees were analyzed, for then to determine the fault probabilities of the same ones. At the moment they are completing these fault trees, but the difficulty resides in the impossibility of obtaining real data

  10. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  11. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  12. Reliability Analysis of Safety Grade PLC(POSAFE-Q) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lyou, J.; Lee, D. Y.; Choi, J. G.; Park, W. M.

    2006-01-01

    The Part Count Method of the military standard MILHDK- 217F has been used for the reliability prediction of the nuclear field. This handbook determines the Programmable Logic Controller (PLC) failure rate by summing the failure rates of the individual component included in the PLC. Normally it is easily predictable that the components added for the fault detection improve the reliability of the PLC. But the application of this handbook is estimated with poor reliability because of the increased component number for the fault detection. To compensate this discrepancy, the quantitative reliability analysis method is suggested using the functional separation model in this paper. And it is applied to the Reactor Protection System (RPS) being developed in Korea to identify any design weak points from a safety point of view

  13. Nuclear plant safety

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The four-member New York Power Pool Panel concluded that, for a number of reasons, no nuclear power plant in New York State is prone to the type of accident that occurred at Three Mile Island (TMI). The Panel further concluded that changes in operating practices, both regulatory and voluntary, and heightened sensitivity to reactor-core-cooling requirements will substantially reduce the chances for another such accident anywhere. Panel members found that New York State utilities have taken a responsible attitude with regard to requirements set forth by the Nuclear Regulatory Commission (NRC) as a result of the TMI accident. In a cover letter that accompanied the report to Federal and New York state officials, New York Power Pool Executive Committee Chairman Francis E. Drake, Jr. expressed hope that the report will alleviate public fears of nuclear reactors and promote wider acceptance of nuclear energy as an economic and safe means of power production. 17 references

  14. Plutonium finishing plant safety systems and equipment list

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1995-01-01

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex

  15. Systems analysis of radiation safety during dismantling of power-plant equipment at a nuclear power station

    International Nuclear Information System (INIS)

    Bylkin, B.K.; Shpitser, V.Ya.

    1993-01-01

    A systems analysis of the radiation safety makes possible an ad hoc determination of the elements forming the system, as well as the establishment of the characteristics of their interaction with radiation-effect factors. Here the authors will present part of the hierarchical analysis procedure, consisting in general of four separate procedures. The purpose is to investigate and analyze the mean and stable (on the average) indices of radiation safety, within the framework of alternative mathematical models of dismantling the power-plant equipment of a nuclear power station. The following three of the four procedures are discussed: (1) simulated projection, of the processing of radioactive waste; (2) analysis of the redistribution of radionuclides during the industrial cycle of waste treatment; (3) planning the collective dose load during the dismantling operation. Within the framework of the first of these procedures, the solutions to the problem of simulating a waste-treatment operation of maximum efficiency are analyzed. This analysis is based on the use of a data base for the parameters of the installations, assemblies, and equipment, enabling the integration of these in a simulation of a complex automated facility. The results were visualized in an AUTOCAD-10 medium using a graphical data base containing an explanation of the rooms

  16. Reliability analysis and computation of computer-based safety instrumentation and control used in German nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Ding, Yongjian; Krause, Ulrich; Gu, Chunlei

    2014-01-01

    extended according to cope with special needs of the digital safety I and C system. The new modelling method based on fault tree analysis (FTA) combined with MCBFR model is provided and validated by a real example system from an industrial partner. The reliability data are taken from a platform specific data base of the industrial partner and an international generic data base. The results demonstrate the applicability of the new approach although the modelling quality is strongly dependent on the observed failure cases from the plant operation. Therefore more failure data of safety I and C should be collected in the future. This report is the final project report.

  17. Problems with geologic fault assessment in the safety analysis of earthquake-resistance for nuclear power plants

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakata, Takashi; Watanabe, Mitsuhisa

    2008-01-01

    The Niigata-ken Chuetsu-oki Earthquake, occurring on July 16, 2007 in Niigata-prefecture, Japan, the magnitude of which was only 6.8, brought about an unexpectedly huge tremor in the area of Kashiwazaki-Kariwa nuclear plants, Tokyo Electric Power Co. The present paper points out that the huge tremor they experienced could be within the scope of expectation if an adequate analysis was performed for the investigation results on acoustic seafloor exploration done during the 1980's and presented at application for go-ahead for construction of the nuclear reactor and also at the occasion of official safety analysis. The present examination demonstrates clearly the existence of active faults on a large scale in the hypocentral region of the earthquake in the offshore seabed. This fact might be of extremely serious nature and the authors recommend to learn what may be a cause of overlooking the existing fault. (S. Ohno)

  18. Fracture toughness requirements of reactor vessel material in evaluation of the safety analysis report of nuclear power plants

    International Nuclear Information System (INIS)

    Widia Lastana Istanto

    2011-01-01

    Fracture toughness requirements of reactor vessel material that must be met by applicants for nuclear power plants construction permit has been investigated in this paper. The fracture toughness should be described in the Safety Analysis Reports (SARs) document that will be evaluated by the Nuclear Energy Regulatory Agency (BAPETEN). Because BAPETEN does not have a regulations or standards/codes regarding the material used for the reactor vessel, especially in the fracture toughness requirements, then the acceptance criteria that applied to evaluate the fracture toughness of reactor vessel material refers to the regulations/provisions from the countries that have been experienced in the operation of nuclear power plants, such as from the United States, Japan and Korea. Regulations and standards used are 10 CFR Part 50, ASME and ASTM. Fracture toughness of reactor vessel materials are evaluated to ensure compliance of the requirements and provisions of the Regulatory Body and the applicable standards, such as ASME or ASTM, in order to assure a reliability and integrity of the reactor vessels as well as providing an adequate safety margin during the operation, testing, maintenance, and postulated accident conditions over the reactor vessel lifetime. (author)

  19. Requirements and analysis of electromagnetic compatibility of safety-related instrumentation and control system in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Sujuan

    2002-01-01

    The state-of-the-art instrumentation and control system and the influence of their application to the electromagnetic compatibility is analyzed. Based on the present situation of nuclear safety in China and relevant experiences from other countries, the author tries to probe into the requirements and test methods about how safety-related instrument and control system to accommodate electromagnetic interference, radio-frequency interference and power surges in the environments of nuclear power plant so as to develop Chinese safety standards

  20. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  1. Conceptual design of an integrated information system for safety related analysis of nuclear power plants (IRIS Phase 1)

    International Nuclear Information System (INIS)

    Hofer, K.; Zehnder, P.; Galperin, A.

    1994-01-01

    This report deals with a conceptual design of an integrated information management system, called PSI-IRIS, as needed to assist the analysts for reactor safety related investigations on Swiss nuclear power plants within the project STARS. Performing complicated engineering analyses of an NPP requires storage and manipulation of a large amount of information, both data and knowledge. This information is characterized by its multi-disciplinary nature, complexity, and diversity. The problems caused by inefficient and lengthy manual operations involving the data flow management within the framework of the safety related analysis of an NPP, can be solved by applying computer aided engineering (CAE) principles. These principles are the basis for the design of the integrated information management system PSI-IRIS presented in this report. The basic idea is to create a computerized environment, which includes both database and functional capabilities. The database of the PSI-IRIS consists of two parts, an NPP generic database (GDB) and a collection of analysis results (CASE L IB). The GDB includes all technical plant data and information needed to generate input decks for all computer codes utilized within the STARS project. The CASE L IB storage contains the accumulated knowledge, input decks, and result files of the NPP transient analyses. Considerations and analysis of the data types and the required data manipulation capabilities as well as operational requirements resulted in the choice of an object-oriented database management system (OODBMS) as a development platform for solving the software engineering problems. Several advantages of OODBMS's over conventional relational database management systems were found of crucial importance, especially providing the necessary flexibility for different data types and the potential for extensibility. (author) 15 figs., tabs., 20 refs

  2. Fire probability safety analysis in France for 900 MWe nuclear power plants

    International Nuclear Information System (INIS)

    Bertrand, R.; Bonneval, F.; Mattei, J.M.

    2000-01-01

    This paper describes the methodology implemented by the Institute for Nuclear Safety and Protection (IPSN) to carry out the Fire Probabilistic Safety Assessment (Fire PSA) for French 900 MWe pressurised water reactors. The initial results obtained are presented. Additional research and development activities are indicated which IPSN carried out or decided to perform in order to reduce the amount of uncertainty associated with the data or to confirm hypotheses that can impact significantly the study results. (orig.) [de

  3. Standard model for the safety analysis report of nuclear fuel reprocessing plants; Modelo padrao para relatorio de analise de seguranca de usinas de reprocessamento de combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-15

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization.

  4. An investigation and analysis of safety issues in Polish small construction plants.

    Science.gov (United States)

    Dąbrowski, Andrzej

    2015-01-01

    The construction industry is a booming sector of the Polish economy; however, it is stigmatised by a lower classification due to high occupational risks and an unsatisfactory state of occupational safety. Safety on construction sites is compromised by small construction firms which dominate the market and have high accident rates. This article presents the results of studies (using a checklist) conducted in small Polish construction companies in terms of selected aspects of safety, such as co-operation with the general contractor, occupational health and safety documents, occupational risk assessment, organization of work, protective gear and general work equipment. The mentioned studies and analyses provided the grounds to establish the main directions of preventive measures decreasing occupational risk in small construction companies, e.g., an increase in engagement of investors and general contractors, improvement of occupational health and safety (OSH) documents, an increase in efficiency of construction site managers, better stability of employment and removal of opposing objectives between economic strategy and work safety.

  5. Plutonium Finishing Plant safety evaluation report

    International Nuclear Information System (INIS)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE's independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91

  6. Westinghouse Advances in Passive Plant Safety

    International Nuclear Information System (INIS)

    Bruschi, H. J.; Manager, General; Gerstenhaber, E.

    1993-01-01

    On June 26, 1992, Westinghouse submitted the Ap600 Standard Safety Analysis Report and comprehensive PIRA results to the U. S. NRC for review as part of the Ap600 design certification program. This major milestone was met on time on a schedule set more than 3 years before submittal and is the result of the cooperative efforts of the U. S. Department of Energy (DOE), the Electric Power Requirements Program, and the Westinghouse Ap600 design team. These efforts were initiated in 1985 to develop a 600 MW advanced light water reactor plant design based on specific technical requirements established to provide the safety, simplicity, reliability, and economics necessary for the next generation of nuclear power plants. The Ap600 design achieves the ALRR safety requirements through ample design margins, simplified safety systems based on natural driving forces, and on a human-engineered man-machine interface system. Extensive Probabilistic Risk evolution, have recently shown that even if none of the active defense-in-depth safety systems are available, the passive systems alone meet safety goals. Furthermore, many tests in an extensive test program have begun or have been completed. Early tests show that passive safety perform well and meet design expectations

  7. Preliminary systems-interaction results from the Digraph Matrix Analysis of the Watts Bar Nuclear Power Plant safety-injection systems

    International Nuclear Information System (INIS)

    Sacks, I.J.; Ashmore, B.C.; Champney, J.M.; Alesso, H.P.

    1983-06-01

    This report provides preliminary results generated by a Digraph Matrix Analysis (DMA) for a Systems Interaction analysis performed on the Safety Injection System of the Tennessee Valley Authority Watts Bar Nuclear Power Plant. An overview of DMA is provided along with a brief description of the computer codes used in DMA

  8. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Receiving Basin for Offsite Fuel (Supplement 3)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P M

    1983-09-01

    Analysis of the Savannah River Plant RBOF and RRF included an evaluation of the reliability of process equipment and controls, administrative controls, and engineered safety features. The evaluation also identified potential scenarios and radiological consequences. Risks were calculated in terms of 50-year population dose commitment per year (man-rem/year) to the onsite and offsite population within an 80 Km radius of RBOF and RRF, and to an individual at the plant boundary. The total 50-year onsite and offsite population radiological risks of operating the RBOF and RRF were estimated to be 1.0 man-rem/year. These risks are significantly less than the population dose of 54,000 man/rem/yr for natural background radiation in a 50-mile radius. The 50-year maximum offsite individual risk from operating the facility was estimated to be 2.1 {times} 10{sup 5} rem/yr. These risks are significantly lower than 93 mrem/yr an individual is expected to receive from natural background radiation in this area. The analysis shows. that the RBOF and RRF can be operated without undue risk to onsite personnel or to the general public.

  9. Joint IAEA/NEA workshop proceedings on regulatory review of plant safety analysis - Abstracts, Summary and Conclusions

    International Nuclear Information System (INIS)

    Lacey, Derek; Drozd, Andrzej; Husarcek, Jan; Modro, Mike

    1999-01-01

    -operation was given as an example that even a 'common' approach may result in different 'specific' requirements. However, the assistance of countries with a longer tradition of regulatory development appears to be very important and very much needed for the countries that are building and/or modifying their regulatory structure. The international organisations may serve as a helpful facilitator and/or moderator in this area. One generic 'good practice' recommendation made was not to rely on a single analysis. Various approaches should be applied and various possible solutions should always be discussed. When an issue cannot be solved analytically, e.g., BWR strainers clogging, then it has to be 'treated' differently. Frequency of periodic licensing reviews. There were no clear indications which of the existing models should be recommended, e.g., in the US a plant gets a license for life with required updates of the FSAR to reflect every modification made. In Belgium there is a 10-year review schedule (license renewal), during which all the main points must be checked; and in Canada there is a 2-year licence renewal cycle with periodic safety reviews for which a 10-year cycle is being considered. The presented approaches to safety evaluations are based on (a) analyses review by various experts (Belgium); (b) deterministic approach used to evaluate 'safety margins' (Canada); (c) independent experts' judgement (e.g., Bulgaria); (d) deterministic analyses supported by a probabilistic evaluation (Finland), and (e) non-prescriptive guidelines for safety review (e.g., Ukraine). The relationship between the regulators and the industry is an important element of the safety culture. As there are many cultural differences, a 'proper' regulator/industry interface has to reflect the legal tradition of a given country. The codes are validated through 'various' means and international projects have often been extremely useful in this regard. The final result has to be a building of confidence

  10. INTEG INSPEC, Accident Frequencies and Safety Analysis for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Arnett, L.M.

    1976-01-01

    1 - Description of problem or function: These programs analyze the characteristics of a general model developed to represent the safety aspects of an operating nuclear reactor. These characteristics are the frequencies of incidents that are departures from the expected behavior of the reactor. Each incident is assumed to be preceded by a sequence of events starting at some initiating event. At each member in this sequence there may be functions such as safety circuits, and personnel operations that stop the sequence at that member. When mechanical devices fail they are assumed to remain inoperative until repaired. The model accounts for scheduled inspection and maintenance of all equipment in the system. 2 - Method of solution: In INTEG, the discontinuous density function is integrated by the trapezoidal rule from time equals zero to time equals t. INSPEC is based on the simulation of reactor operation as a Markov process. A vector of probabilities is successively multiplied by a transition matrix. 3 - Restrictions on the complexity of the problem: INSPEC is limited to subsystems with no more than 7 safety circuits. The transition matrix can be made up as desired so that any intercorrelations between failures of circuits can be accommodated. In INTEG, failure rates of safety circuits are restricted to independence

  11. The safety of the new reprocessing plants of La Hague

    International Nuclear Information System (INIS)

    Devillers, C.; Dubois, G.

    1987-09-01

    In this document the authors show the main guiding lines on which is based the safety of the new reprocessing plant of La Hague. They are: - the objectives: to limit the impacts on workers and environment - the methods: safety analysis based on the checking and evaluation of significant risks. - the means: to make a safety plant by the use of quality assurance in the conception and in the plant construction [fr

  12. System analysis for HTTR-GT/H2 plant. Safety analysis of HTTR for coupling helium gas turbine and H2 plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Yan, Xing L.; Ohashi, Hirofumi

    2017-08-01

    High Temperature Gas-cooled Reactor (HTGR) is expected to extend the use of nuclear heat to a wider spectrum of industrial applications because of the high temperature heat supply capability and inherently safe characteristics. Japan Atomic Energy Agency initiated a nuclear cogeneration demonstration project with helium gas turbine power generation and thermochemical hydrogen production utilizing the High Temperature engineering Test Reactor (HTTR), the first HTGR in Japan. This study carries out safety evaluation for the HTTR gas turbine hydrogen cogeneration test plant (HTTR-GT/H 2 plant). The evaluation was conducted for the events newly identified corresponding to the coupling of helium gas turbine and hydrogen production plant to the HTTR. The results showed that loss of load event does not have impact on temperature of fuel and reactor coolant pressure boundary. In addition, reactor coolant pressure does not exceed the evaluation criteria. Furthermore, it was shown that reactor operation can be maintained against temperature transients induced by abnormal events in hydrogen production plant. (author)

  13. Safety assessment, safety performance indicators at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Baji, C.; Vamos, G.; Toth, J.

    2001-01-01

    The Paks Nuclear Power Plant has been using different methods of safety assessment (event analysis, self-assessment, probabilistic safety analysis), including performance indicators characterizing both operational and safety performance since the early years of operation of the plant. Regarding the safety performance, the indicators include safety system performance, number of scrams, release of radioactive materials, number of safety significant events, industrial safety indicator, etc. The Paks NPP also reports a set of ten indicators to WANO Performance Indicator Programme which, among others, include safety related indicators as well. However, a more systematic approach to structuring and trending safety indicators is needed so that they can contribute to the enhancement of the operational safety. A more comprehensive set of indicators and a systematic evaluation process was introduced in 1996. The performance indicators framework proposed by the IAEA was adapted to Paks in this year to further improve the process. Safety culture assessment and characterizing safety culture is part of the assessment process. (author)

  14. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-18

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  15. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  18. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  19. Systematic safety evaluation of old nuclear power plants

    International Nuclear Information System (INIS)

    Dredemis, G.; Fourest, B.

    1984-01-01

    The French safety authorities have undertaken a systematic evaluation of the safety of old nuclear power plants. Apart from a complete revision of safety documents (safety analysis report, general operating rules, incident and accident procedures, internal emergency plan, quality organisation manual), this examination consisted of analysing the operating experience of systems frequently challenged and a systematic examination of the safety-related systems. This paper is based on an exercise at the Ardennes Nuclear Power Plant which has been in operation for 15 years. This paper also summarizes the main surveys and modifications relating to this power plant. (orig.)

  20. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  1. Nuclear power plant safety and reliability improvements derived from operational experience analysis

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Rosen, S.L.

    1983-01-01

    The frequency and distribution of significant events at operating nuclear power plants can be used as one of several indices to obtain a preliminary indication of unit and/or utility performance in the development and implementation of improvements aimed at reducing the probability or consequences of troublesome events. Initial data of this type are presented along with qualifications on the validity of such indicators. Planned further steps to improve this as a performance indicator are noted

  2. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  3. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  4. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  5. Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Haapalehto, T.

    1995-01-01

    The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)

  6. Reliability analysis for the safety injection (SI) system of the Doel I - II power plant in case of a LOCA

    International Nuclear Information System (INIS)

    Meester, P. de; Poucet, A.

    1978-01-01

    An assement is made for the failure probability of the safety injection system of the Doel power plant. The SI system is composed of three subsystems: high pressure, low pressure and accumulator system. For each subsystem a fault tree is constructed and these fault trees are evaluated by a computer code which calculates the mean system failure probability and the error bounds. (author)

  7. Reliability analysis of safety systems of nuclear power plant and utility experience with reliability safeguarding of systems during specified normal operation

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1989-01-01

    The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de

  8. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  9. EDITORIAL: Safety aspects of fusion power plants

    Science.gov (United States)

    Kolbasov, B. N.

    2007-07-01

    importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S

  10. Assessment of possibility of primary water stress corrosion cracking occurrence based on residual stress analysis in pressurizer safety nozzle of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun

    2012-01-01

    Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is required to generate PWSCC or what causes such high tensile stress. This study was performed to predict the magnitude of weld residual stress and operating stress and compare it with previous experimental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by numerical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up analysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mockup. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

  11. A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events

    International Nuclear Information System (INIS)

    Zio, E.; Ferrario, E.

    2013-01-01

    We consider a critical plant exposed to risk from external events. We propose an original framework of analysis, which extends the boundaries of the study to the interdependent infrastructures which support the plant. For the purpose of clearly illustrating the conceptual framework of system-of-systems analysis, we work out a case study of seismic risk for a nuclear power plant embedded in the connected power and water distribution, and transportation networks which support its operation. The technical details of the systems considered (including the nuclear power plant) are highly simplified, in order to preserve the purpose of illustrating the conceptual, methodological framework of analysis. Yet, as an example of the approaches that can be used to perform the analysis within the proposed framework, we consider the Muir Web as system analysis tool to build the system-of-systems model and Monte Carlo simulation for the quantitative evaluation of the model. The numerical exercise, albeit performed on a simplified case study, serves the purpose of showing the opportunity of accounting for the contribution of the interdependent infrastructure systems to the safety of a critical plant. This is relevant as it can lead to considerations with respect to the decision making related to safety critical-issues. -- Highlights: ► We consider a critical plant exposed to risk from external events. ► We consider also the interdependent infrastructures that support the plant. ► We use Muir Web as system analysis tool to build the system-of-systems model. ► We use Monte Carlo simulation for the quantitative evaluation of the model. ► We find that the interdependent infrastructures should be considered as they can be a support for the critical plant safety

  12. Periodic safety reviews of nuclear power plants

    International Nuclear Information System (INIS)

    Toth, Csilla

    2009-01-01

    Operational nuclear power plants (NPPs) are generally subject to routine reviews of plant operation and special safety reviews following operational events. In addition, many Member States of the International Atomic Energy Agency (IAEA) have initiated systematic safety reassessment, termed periodic safety review (PSR), to assess the cumulative effects of plant ageing and plant modifications, operating experience, technical developments, site specific, organizational and human aspects. These reviews include assessments of plant design and operation against current safety standards and practices. PSRs are considered an effective way of obtaining an overall view of actual plant safety, to determine reasonable and practical modifications that should be made in order to maintain a high level of safety throughout the plant's operating lifetime. PSRs can be used as a means to identify time limiting features of the plant. The trend is to use PSR as a condition for deciding whether to continue operation of the plant beyond the originally established design lifetime and for assessing the status of the plant for long term operation. To assist Member States in the implementation of PSR, the IAEA develops safety standards, technical documents and provides different services: training courses, workshops, technical meetings and safety review missions for the independent assessment of the PSR at NPPs, including the requirements for PSR, the review process and the PSR final reports. This paper describes the PSR's objectives, scopes, methods and the relationship of PSR with other plant safety related activities and recent experiences of Member States in implementation of PSRs at NPPs. (author)

  13. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  14. Using probabilistic safety analysis for evaluation and optimisation of Technichal Specifications of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Baeckstroem, Ola; Haeggstroem, Anna; Knochenhauer, Michael

    2010-01-01

    Studies on risk-informed methods have been a part of NKS activities since late 1980's, but at that time the industry was not ready for the use of these methods. The common understanding right now is that the industry and authorities are ready for adoption of risk-informed strategies. It shall be noted that Finland has developed the use of risk-informed analyses, whereas this area has been less focused in Sweden. The use of risk informed methods in daily operation at the Nuclear Power Plants as well as for long term evaluation and definition of rules and regulations is increasing. Risk informed methods have been applied on a case by case basis during the past few years, but it is expected that these methods will be applied in a quite different manner in the coming years. (orig.)

  15. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  16. Discussion of important safety requirements for new nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Lin; Jia Xiang; Yan Tianwen; Li Wenhong; Li Chun

    2014-01-01

    This paper presents the analysis of several important safety requirements and improvement direction. Technical view of security goals on site safety evaluation, internal and external events fortification, serious accident prevention and mitigation, as well as the core, containment system and instrument control system design and engineering optimization, and etc are indicated. It will be useful for new plant design, construction and safety improvement. (authors)

  17. Application of disturbance analysis methodology to safety related transients in the electrical systems of a nuclear power plant. Report UCLA-ENG-8056

    International Nuclear Information System (INIS)

    Guarro, S.; Okrent, D.

    1981-08-01

    The present study tries to address the question of whether or not the computerized on-line procedures known under the name of DAS (Disturbance Analysis System) can be usefully and successfully applied to provide timely diagnostics and operational suggestions during the occurrence of a major electrical transient in the auxiliary systems of a nuclear power plant. The perspective of the study is from the plant-safety point of view. A short definition of DAS methodology features and capabilities is presented. A discussion of some of the problems of a general nature that are encountered in DAS safety-oriented applications are also included. The event insufficient power on both emergency buses, with reference to a particular plant dsign (San Onofre 1), is presented. Some transients that have recently occurred in the power supply systems of operating plants are examined. Whether or not a DAS could have successfully dealt with such occurrences is considered

  18. Application of disturbance analysis methodology to safety related transients in the electrical systems of a nuclear power plant. Report UCLA-ENG-8056

    Energy Technology Data Exchange (ETDEWEB)

    Guarro, S.; Okrent, D.

    1981-08-01

    The present study tries to address the question of whether or not the computerized on-line procedures known under the name of DAS (Disturbance Analysis System) can be usefully and successfully applied to provide timely diagnostics and operational suggestions during the occurrence of a major electrical transient in the auxiliary systems of a nuclear power plant. The perspective of the study is from the plant-safety point of view. A short definition of DAS methodology features and capabilities is presented. A discussion of some of the problems of a general nature that are encountered in DAS safety-oriented applications are also included. The event insufficient power on both emergency buses, with reference to a particular plant dsign (San Onofre 1), is presented. Some transients that have recently occurred in the power supply systems of operating plants are examined. Whether or not a DAS could have successfully dealt with such occurrences is considered.

  19. Systems Thinking Safety Analysis: Nuclear Security Assessment of Physical Protection System in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Tae Ho Woo

    2013-01-01

    Full Text Available The dynamical assessment has been performed in the aspect of the nuclear power plants (NPPs security. The physical protection system (PPS is constructed by the cyber security evaluation tool (CSET for the nuclear security assessment. The systems thinking algorithm is used for the quantifications by the Vensim software package. There is a period of 60 years which is the life time of NPPs' operation. The maximum possibility happens as 3.59 in the 30th year. The minimum value is done as 1.26 in the 55th year. The difference is about 2.85 times. The results of the case with time delay have shown that the maximum possibility of terror or sabotage incident happens as 447.42 in the 58th year and the minimum value happens as 89.77 in the 51st year. The difference is about 4.98 times. Hence, if the sabotage happens, the worst case is that the intruder can attack the target of the nuclear material in about one and a half hours. The general NPPs are modeled in the study and controlled by the systematic procedures.

  20. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  1. Development of a graphical user interface for the TRAC plant/safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-09-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness.

  2. Development of a graphical user interface for the TRAC plant/safety analysis code

    International Nuclear Information System (INIS)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-01-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness

  3. Preliminary safety analysis report for project 89-GEB-610 Plutonium Finishing Plant instrumentation upgrade. Revision 1

    International Nuclear Information System (INIS)

    Huber, T.E.

    1995-01-01

    This document consists of an analysis of the MICON system upgrade. This project shall install a Micon Co. distributed process monitor and control system with Sparc Sun workstation operator interfaces. The Sparc workstations are housed in consoles custom designed to human factors specifications. The distributed control system (DCS) shall have the installed capacity to monitor and control all related instruments and equipment presently connected to the panels in the PFP Power Control Room 321A as listed in the input/output list. This also includes all devices monitored and controlled by the 2736-ZB Allen Bradley programmable logic controller. The system has since assumed the control and monitoring responsibilities for Projects B- 680H ''Low Level Waste Treatment Facility'' and C-031H ''PFP Liquid Effluent Facilities''. Part of the new en's change area in Building 234-5ZA, Room 712, has been remodeled to house two consoles and one supervisor console. Local control units containing the microprocontrollers and the input/output interface circuit boards shall be wired to the instrumentation and controlled equipment. These units communicate with the Sparc workstations via a redundant data communications highway and shall be strategic, throughout the PFP facility. The DCS has already been purchased from Micon Co., located in Houston Texas, presently on site

  4. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  5. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  6. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  7. The German nuclear power plant safety study

    International Nuclear Information System (INIS)

    1979-01-01

    With this study a new approach has been chosen, taking nuclear power plants as an example to assess and to describe the risks arising from the use of modern technology, including those hazards emanating from the rather hypothetical possibility of occurrence of very serious accidents. Following the definition of basic concepts and methods to be applied in risk assessment studied, as well as a brief account of the design and operating mode of nuclear power plants with PWRs', accidents and failures to be considered in a safety study are described. Using the course-of-event and fault tree analysis, the probability of fission product release as a consequence of failures in safety systems or of core meltdown is evaluated. Subsequently, the theoretical model for assessment of reactor accident consequences is presented, discussing such aspects as the dispersion of radioactivity in the atmosphere, the radiation dose model, safety and countermeasures, the model for the evaluation of health hazards as well as methods and calculations for estimating the reliability of risk assessments together with the remaining uncertainties. In an appendix to this study, the analyses presented in the study are discussed in the light of the TMI-2 event. This safety study showing the possibilities of detecting, keeping in check and minimizing harmful effects, can be regarded as a contribution to a better understanding of our modern, highly industrialised society, and eventually to an improvement of the quality of life. (GL) 891 GL/GL 892 MB [de

  8. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  9. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  10. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  11. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  12. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  13. Safety philosophy for nuclear power plants in egypt

    International Nuclear Information System (INIS)

    Mervat, S.A.; Hammad, F.H.

    1988-01-01

    This work establishes the basic principles of a safety philosophy for nuclear power plants in egypt. A number of deterministic requirements stemming the multiple barriers and the defense-in-depth concept are emphasised. other requirements in the areas of siting, operational safety, safety analysis, special issues, and experience feedback are also identified. The role of international cooperation in nuclear safety technology-transfer and nuclear emergencies is highlighted. In addition probabilistic ally based guidelines are set for acceptable risk and dose limits

  14. Flood control construction of Shidao Bay nuclear power plant and safety analysis for hypothetical accident of HTR-PM

    International Nuclear Information System (INIS)

    Chen Yongrong; Zhang Keke; Zhu Li

    2014-01-01

    A series of events triggered by tsunami eventually led to the Fukushima nuclear accident. For drawing lessons from the nuclear accident and applying to Shidao Bay nuclear power plant flood control construction, we compare with the state laws and regulations, and prove the design of Shidao Bay nuclear power plant flood construction. Through introducing the history of domestic tsunamis and the national researches before and after the Fukushima nuclear accident, we expound the tsunami hazards of Shidao Bay nuclear power plant. In addition, in order to verify the safety of HTR-PM, we anticipate the contingent accidents after ''superposition event of earthquake and extreme flood'', and analyse the abilities and measures of HTR-PM to deal with these beyond design basis accidents (BDBA). (author)

  15. Safety Assessment for Inertial Fusion Energy Power Plants: Methodology and Application to the Analysis of the HYLIFE-II and SOMBRERO Conceptual Designs

    Science.gov (United States)

    Reyes, S.; Latkowski, J. F.; Sanz, J.; Gomez del Rio, J.

    2001-06-01

    Although the safety and environmental (S & E) characteristics of fusion energy have long been emphasized, these benefits are not automatically achieved. To maximize the potential S & E attractiveness of the inertial fusion energy (IFE), analyses must be performed early in the designs so that lessons can be learned and intelligent decisions made. In this work we have introduced for the first time heat transfer and thermal-hydraulics calculations as part of a state-of-the-art set of codes and libraries in order to establish an updated methodology for IFE safety analysis. We have focused our efforts primarily on two IFE power plant conceptual designs: HYLIFE-II and SOMBRERO. To some degree, these designs represent the extremes in IFE power plant designs. Also, a preliminary safety assessment has been performed for a generic target fabrication facility producing various types of targets and using various production techniques. Although this study cannot address all issues and hazards posed by an IFE power plant, it advances our understanding of radiological safety of such facilities. This will enable better comparisons between IFE designs and competing technologies from the safety point of view.

  16. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Guinn, W.M.; Porter, N.J.

    1981-01-01

    The operator's role in nuclear safety is outlined and the concept of ''safety functions'' introduced. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. The plant safety evaluation uses four inputs in predicting the results of an event: the event initiator, the plant design, the initial plant conditions and setup, and the operator actions. If any of these inputs are not as assumed in the evaluation, confidence that the consequences will be as predicted is reduced. Based on the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results: Maintain plant setup in readiness to properly respond. Operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events. Monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of safety functions introduces this systematic approach and presents a hierarchy of protection. If the operator has difficulty identifying an event for any reason, the systematic safety function approach allows accomplishing the overall path of mitigating consequences. Ten functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions are identified

  17. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  18. Organization and safety in nuclear power plants

    International Nuclear Information System (INIS)

    Marcus, A.A.; Nichols, M.L.; Bromiley, P.; Olson, J.; Osborn, R.N.; Scott, W.; Pelto, P.; Thurber, J.

    1990-05-01

    Perspectives from industry, academe, and the NRC are brought together in this report and used to develop a logical framework that links management and organization factors and safety in nuclear power plant performance. The framework focuses on intermediate outcomes which can be predicted by organizational and management factors, and which are subsequently linked to safety. The intermediate outcomes are efficiency, compliance, quality, and innovation. The organization and management factors can be classified in terms of environment, context, organizational governance, organizational design, and emergent processes. Initial empirical analyses were conducted on a limited set of hypotheses derived from the framework. One set of hypotheses concerned the relationships between one of the intermediate outcome variables, efficiency, as measured by critical hours and outage rate, and safety, as measured by 5 NRC indicators. Results of the analysis suggest that critical hours and outage rates and safety, as measured in this study, are not related to each other. Hypotheses were tested concerning the effects on safety and efficiency of utility financial resources and the lagged recognition and correction of problems that accompanies the reporting of major violations and licensee event reports. The analytical technique employed was regression using polynomial distributed lags. Results suggest that both financial resources and organizational problem solving/learning have significant effects on the outcome variables when time is properly taken into account. Conclusions are drawn which point to this being a promising direction to proceed, though with some care, due to the current limitations of the study. 138 refs., 36 figs., 9 tabs

  19. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  20. Safety of Nuclear Power Plants: Commissioning and Operation

    International Nuclear Information System (INIS)

    2011-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  1. Safety of Nuclear Power Plants: Commissioning and Operation (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  2. Safety of Nuclear Power Plants: Commissioning and Operation. Arabic Edition

    International Nuclear Information System (INIS)

    2011-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  3. Safety of Nuclear Power Plants: Commissioning and Operation (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  4. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prayoto.

    1979-01-01

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  5. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Yoshioka, T.; Toyota, M.; Hinoki, M.

    1977-01-01

    To develop nuclear power generation for the future, it is necessary to put further emphasis on safety assurance and to endeavour to devise measures to improve plant availability, based on the careful analysis of causes that reduce plant availability. The paper discusses the results of studies on the following items from such viewpoints: (1) Safety and operating experience of LWR nuclear power plants in Japan: operating experience with LWRs; improvements in LWR design during the past ten years; analysis of the factors affecting plant availability; (2) Assurance of safety and measures to increase availability: measures for safety and environmental protection; measures to reduce radiation exposure of employees; appropriateness of maintenance and inspection work; measures to increase plant availability; measures to improve reliability of equipment and components; (3) Future technical problems. (author)

  6. Criticality safety evaluation in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Shirai, Nobutoshi; Nakajima, Masayoshi; Takaya, Akikazu; Ohnuma, Hideyuki; Shirouzu, Hidetomo; Hayashi, Shinichiro; Yoshikawa, Koji; Suto, Toshiyuki

    2000-04-01

    Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 'Criticality safety of single unit' in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units. (author)

  7. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  8. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  9. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  10. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  11. Methodology of containment response analysis for the Probabilistic Safety Assessment -PSA of the CAREM-25 nuclear power plant

    International Nuclear Information System (INIS)

    Baron, Jorge

    1996-01-01

    This work is part of the Probabilistic Safety Assessment actually under development for the CAREM-25 Nuclear Power Station, and departs from the accident sequences already obtained and quantified by the Event Trees/Fault Trees techniques. At first, the potential containment failure modes for nuclear stations are listed, based on the experience. Then, the CAREM-25 design peculiarities are analyzed, on their possible influence on the containment behavior during, severe accidents. Then Plan Damage States are then defined. Furthermore, Containment Damage States are also defined, and Containment Event Trees are built for each Plant Damage State. Those sequences considered representative from the annual probability (those which exceed or equal a probability of 1E-09 per year, are used to quantify the combinations of Plant Damage States/Containment Damage States, based on the estimation of a Vulnerability Matrix. (author)

  12. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  13. Key asset - inherent safety of LMFBR Pool Plant

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Lancet, R.T.; Mills, J.C.

    1984-04-01

    The safety approach used in the design of the Large Pool Plant emphasizes use of the intrinsic characteristics of Liquid Metal Fast Breeder Reactors to incorporate a high degree of safety in the design and reduce cost by providing simpler (more reliable) dedicated safety systems. Correspondingly, a goal was not to require the action of active systems to prevent significant core damage and/or provide large grace periods for all anticipated transients. The key safety features of the plant are presented and the analysis of representative flow and power transients are presented to show that the design goal has been satisfied

  14. Key asset--Inherent safety of LFMBR pool plant

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Lancet, R.T.; Mills, J.C.; Sevy, R.H.

    1984-01-01

    The safety approach used in the design of the Large Pool Plant emphasizes use of the intrinsic characteristics of Liquid Metal Fast Breeder Reactors to incorporate a high degree of safety in the design and reduce cost by providing simpler (more reliable) dedicated safety systems. Correspondingly, a goal was not to require the action of active systems to prevent significant core damage and/or provide large grace periods for all anticipated transients. The key safety features of the plant are presented and the analysis of representative flow and power transients are presented to show that the design goal has been satisfied

  15. Safety characteristics analysis of nuclear power plants with PHWR PT; Analiza sigurnosnh karakteristika nuklearnih elektrana sa reaktorima PHWR-PT tipa

    Energy Technology Data Exchange (ETDEWEB)

    Stosic, Z [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1983-07-01

    The paper deals with analysis of basic safety characteristics of heavy water Candu reactor. Inherent safety characteristics, r/a material inventory, systematization of normal abnormal and transient conditions, safety systems and availability analysis are considered. (author)

  16. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  17. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  18. Procedures for analysis of accidents in shutdown modes for WWER nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Operational events occurring during shutdown conditions contribute significantly to the NPP risk due to the fact that both preventive and mitigatory capabilities of the plant are somehow degraded. The need for detailed information in the performance and review of accident analysis for WWER type NPPs was identified as a priority within IAEA Extrabudgetary Program on Safety of WWER and RBMK NPPs. The present guidelines were developed through two consultants meetings in 1995 and 1996. The guidelines establish a set of criteria for performing deterministic analysis of accidents, initiated by events occurring under shutdown conditions. This report is mostly relevant for licensing type calculations, and may to a certain extent, also used for development, improvement or justification of the plant limits and conditions, emergency operating procedures, operator training programs and probabilistic safety studies. The guidelines apply to all WWER plants in operation and/or under construction

  19. CNE (Embalse nuclear power plant): probabilistic safety study. Loss of service water. Probabilistic evaluation and analysis through events sequence

    International Nuclear Information System (INIS)

    Couto, A.J.; Perez, S.S.

    1987-01-01

    This work is part of a study on the service water systems of the Embalse nuclear power plant from a safety point of view. The faults of service water systems of high and low pressure that can lead to situations threatening the plant safety were analyzed in a previous report. The event 'total loss of low pressure service water' causes the largest number of such conditions. Such event is an operational incident that can lead to an accident situation due to faults in the required process systems or by omission of a procedure. The annual frequency of the event 'total loss of low pressure service water' is calculated. The main contribution comes from pump failure. The evaluation of the accident sequences shows that the most direct way to the liberation of fission products is the loss of steam generators as heat sink. The contributions to small and large LOCA and electric supply loss are analyzed. The sequence that leads to tritium release through boiling of moderator is also evaluated. (Author)

  20. Results of research into nuclear power plant safety

    International Nuclear Information System (INIS)

    Polak, V.; Hladky, E.; Moravek, J.; Suchomel, J.; Stehlik, J.

    1976-01-01

    A survey is given of computer programmes for the safety analysis of nuclear power plants with WWER type reactors and with fast breeder reactors. The programmes solve accidents in the core, the primary circuit and the containment. A comparison is made of Czechoslovak and foreign computer programmes and their agreement proved. Also studied is the problem of radiation safety of nuclear power plants with regard to the leakage of radioactive isotopes and their detection. (J.B.)

  1. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  2. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  3. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  4. Nuclear power plant safety under military threats

    International Nuclear Information System (INIS)

    Stritar, A.; Mavko, B.

    1993-01-01

    The Krsko nuclear power plant in Slovenia was probably the first in the world that found itself in the middle of a war region. A number of preventive measures performed during and immediately after the war in summer 1991 by the plant personnel as well as some of related activities of the Reactor Engineering Division of the 'Jozef Stefan' Institute are described. All efforts were aimed at the minimization of the possible public radiological consequences during a military attack. The critical safety functions in such conditions were checked. Concern was further devoted to maintenance of the core cooling in the core and to integrity of the spent fuel pit. The cold shutdown mode was found to be the most appropriate option. After selecting the cold shutdown mode as a most suitable operational state of the plant, further studies of the vulnerability were done. In addition to possible direct damage to structures, that would cause release of radioactivity, two important subjects were considered: AC and DC power supply and the ultimate heat sink. A quick analysis during the crisis has shown that the consequences of a military attack against the plant by jet fighters could be serious, but with the proper preventive measures and preparedness the environmental consequences could be minimized. (Z.S.) 1 fig., 1 ref

  5. Safety criteria of uranium enrichment plants

    International Nuclear Information System (INIS)

    Nardocci, A.C.; Oliveira Neto, J.M. de

    1994-01-01

    The applicability of nuclear reactor safety criteria applied to uranium enrichment plants is discussed, and a new criterion based on the soluble uranium compounds and hexafluoride chemical toxicities is presented. (L.C.J.A.). 21 refs, 4 tabs

  6. Safety culture of nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Beixin

    2008-01-01

    This paper is a summary on the basis of DNMC safety culture training material for managerial personnel. It intends to explain the basic contents of safety, design, management, enterprise culture, safety culture of nuclear power plant and the relationship among them. It explains especially the constituent elements of safety culture system, the basic requirements for the three levels of commitments: policy level, management level and employee level. It also makes some analyses and judgments for some typical safety culture cases, for example, transparent culture and habitual violation of procedure. (authors)

  7. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  8. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  9. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant; Resultados preliminares mas significativos del analysis probabilista de seguridad de la Central Nuclear de Juragua

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, Manuel [Instituto Superior de Ciencia y Tecnologia Nuclear (ISCTN), La Habana (Cuba)

    1995-12-31

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential `weak points` at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs.

  10. Barsebaeck power plant - safety and emergency measures

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Swedish-Danish Committee on safety at the Swedish nuclear power plant Barsebaeck was established in 1979 in order to evaluate the nuclear safety at Barsebaeck with a view to the reactor accident at the Three-Mile-Island nuclear power plant March 28, 1979. According to the committees mandate the investigations of the Kemeny Commission, the Rogouin investigation, investigations of the American Nuclear Regulatory Commission, and the Swedish report ''Safe nuclear power'' have been taken into consideration by the Committee. Furthermore, it has formed the basis for the Committees work that the authority responsibility for the safety at Barsebaeck lies with the Swedish authorities, and that these authorities have evaluated the safety aspects before the permissions for operation of the Barsebaeck power plant were given and hereafter currently in connection with the inspection of the power plant. The report prepared by the Commission treats aspects as: a) Nuclear safety at the Barsebaeck power plant, b) reactor safety and emergency provisions, c) common elements in the emergency provision situation in Sweden and Denmark, d) ongoing investigations on course of events during accidents and release limiting safety systems. (BP)

  11. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  12. Nuclear power plant's safety and risk (requirements of safety and reliability)

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1977-01-01

    Starting out from the given safety objectives as they have evolved during the past few years and from the present legal and regulatory provisions for the construction and operation of nuclear power plants, the hazards involved in regular operation, accidents and emergency situations are discussed. In compliance with the positive safety balance of nuclear power plants in the FRG, special attention is focused on the preventive safety analysis within the frame of the nuclear licensing procedure. Reference is made to the beginnings of a comprehensive hazard concept for an unbiased plant assessment. Emergency situations are discussed from the point of view of general hazard comparisons. (orig.) [de

  13. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  14. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  15. Probabilistic analysis of safety of a production plant of hydrogen using nuclear energy; Analisis probabilistico de seguridad de una planta de produccion de hidrogeno utilizando energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Flores F, A. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico); Nelson E, P.F.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: alain_fyf@yahoo.com

    2005-07-01

    The present work makes use of the Probabilistic Safety analysis to evaluate and to quantify the safety in a plant producer of hydrogen coupled to a nuclear reactor of high temperature, the one which is building in Japan. It is had the description of systems and devices of the HTTR, the pipe diagrams and instrumentation of the plant, as well as the rates of generic faults for the components of the plant. The first step was to carry out a HAZOP study (Hazard and Operability Study) with the purpose of obtaining the initiator events; once obtained these, it was developed a tree of events by each initiator event and for each system it was developed a fault tree; the data used for the quantification of the failure probability of the systems were obtained starting from several generic sources of information. In each tree of events different final states were obtained and it stops each one, their occurrence frequency. The construction and evaluation of the tree of events and of failures one carries out with the SAPHIRE program. The results show the safety of the shutdown system of the HTTR and they allow to suggest modifications to the auxiliary system of refrigeration and to the heat exchanger helium/water pressurized. (Author)

  16. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  17. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  18. Nitrogen-system safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy has primary responsibility for the safety of operations at DOE-owned nuclear facilities. The guidelines for the analysis of credible accidents are outlined in DOE Order 5481.1. DOE has requested that existing plant facilities and operations be reviewed for potential safety problems not covered by standard industrial safety procedures. This review is being conducted by investigating individual facilities and documenting the results in Safety Study Reports which will be compiled to form the Existing Plant Final Safety Analysis Report which is scheduled for completion in September, 1984. This Safety Study documents the review of the Plant Nitrogen System facilities and operations and consists of Section 4.0, Facility and Process Description, and Section 5.0, Accident Analysis, of the Final Safety Analysis Report format. The existing nitrogen system consists of a Superior Air Products Company Type D Nitrogen Plant, nitrogen storage facilities, vaporization facilities and a distribution system. The system is designed to generate and distribute nitrogen gas used in the cascade for seal feed, buffer systems, and for servicing equipment when exceptionally low dew points are required. Gaseous nitrogen is also distributed to various process auxiliary buildings. The average usage is approximately 130,000 standard cubic feet per day

  19. Comparison of methods for uncertainty analysis of nuclear-power-plant safety-system fault-tree models

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.; Campbell, K.; Whiteman, D.E.; Booker, J.M.

    1983-04-01

    A comparative evaluation is made of several methods for propagating uncertainties in actual coupled nuclear power plant safety system faults tree models. The methods considered are Monte Carlo simulation, the method of moments, a discrete distribution method, and a bootstrap method. The Monte Carlo method is found to be superior. The sensitivity of the system unavailability distribution to the choice of basic event unavailability distribution is also investigated. The system distribution is also investigated. The system distribution is especially sensitive to the choice of symmetric versus asymmetric basic event distributions. A quick-and dirty method for estimating percentiles of the system unavailability distribution is developed. The method identifies the appropriate basic event distribution percentiles that should be used in evaluating the Boolean system equivalent expression for a given fault tree model to arrive directly at the 5th, 10th, 50th, 90th, and 95th percentiles of the system unavailability distribution

  20. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  1. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  2. Standard Review Plan for the review of safety analysis reports for nuclear power plants, updates. Irregular repts

    International Nuclear Information System (INIS)

    1980-01-01

    The Standard Review Plan (SRP) is prepared for the guidance of staff reviewers in the Office of Nuclear Reactor Regulation in performing safety reviews of applications to construct or operate nuclear power plants. The principal purpose of the SRP is to assure the quality and uniformity of staff reviews, and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. It is also a purpose of the SRP to make information about regulatory matters widely available and to improve communication and understanding of the staff review process by interested members of the public and the nuclear power industry. The Standard Review Plan is written so as to cover a variety of site conditions and plant designs. Each section is written to provide the complete procedure and all acceptance criteria for all of the areas of review pertinent to that section. However, for any given application, the staff reviewers may select and emphasize particular aspects of each SRP section as is appropriate for the application

  3. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  4. A study on safety assessment methodology for a vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Choi, Y. C.; Kim, G. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2002-03-15

    In this study, the technical and regulatory status of radioactive waste vitrification technologies in foreign and domestic plants is investigated and analyzed, and then significant factors are suggested which must be contained in the final technical guideline or standard for the safety assessment of vitrification plants. Also, the methods to estimate the stability of vitrified waste forms are suggested with property analysis of them. The contents and scope of the study are summarized as follows : survey of the status on radioactive waste vitrification technologies in foreign and domestic plants, survey of the characterization methodology for radioactive waste form, analysis of stability for vitrified waste forms, survey and analysis of technical standards and regulations concerned with them in foreign and domestic plants, suggestion of significant factors for the safety assessment of vitrification plants, submission of regulated technical standard on radioactive waste vitrification plats.

  5. Research on the improvement of nuclear safety -The development of LOCA analysis codes for nuclear power plant-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Pyo; Jung, Yung Jong; Kim, Kyung Doo; Jung, Jae Joon; Kim, Won Suk; Han, Doh Heui; Hah, Kooi Suk; Jung, Bub Dong; Lee, Yung Jin; Hwang, Tae Suk; Lee, Sang Yong; Park, Chan Uk; Choi, Han Rim; Lee, Sang Jong; Choi, Jong Hoh; Ban, Chang Hwan; Bae, Kyoo Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The present research aims at development of both a best estimate methodology on LOCA analysis and, as an application, performance analyses of safety systems. SBLOCA analyses have been continued to examine the capacity reduction effect of ECCS since the second project year. As a results, core uncovery, which is requirement of URD has not been occurred in 6`` cold leg break. Although core uncovery has been predicted when DVI line has been broken for DVI+4-Train HPIS, the calculated PCT has lied well within the criterion. The effect of safety injection position and SIT characteristics are also analyzed for LBLOCA. The results show that cold leg injection is the most effective way and the adaption of advanced SIT could lead to elimination of LPSI pump from the safety system. On the other hand, the quantified uncertainties obtained from THTF and FLECHT/SEASET which represents blowdown and reflood phenomena, respectively, have been confirmed using IET(LOFT test). The application uncertainty for Kori unit 3 has been analyzed. Finally, application of the best estimate methodology using the uncertainties concerned with the code, the bais, and the application, leads to overall uncertainty of about 200K for Kori unit 3. 244 figs, 22 tabs, 92 refs. (Author).

  6. Research on the improvement of nuclear safety -The development of LOCA analysis codes for nuclear power plant-

    International Nuclear Information System (INIS)

    Jang, Won Pyo; Jung, Yung Jong; Kim, Kyung Doo; Jung, Jae Joon; Kim, Won Suk; Han, Doh Heui; Hah, Kooi Suk; Jung, Bub Dong; Lee, Yung Jin; Hwang, Tae Suk; Lee, Sang Yong; Park, Chan Uk; Choi, Han Rim; Lee, Sang Jong; Choi, Jong Hoh; Ban, Chang Hwan; Bae, Kyoo Hwan

    1995-07-01

    The present research aims at development of both a best estimate methodology on LOCA analysis and, as an application, performance analyses of safety systems. SBLOCA analyses have been continued to examine the capacity reduction effect of ECCS since the second project year. As a results, core uncovery, which is requirement of URD has not been occurred in 6'' cold leg break. Although core uncovery has been predicted when DVI line has been broken for DVI+4-Train HPIS, the calculated PCT has lied well within the criterion. The effect of safety injection position and SIT characteristics are also analyzed for LBLOCA. The results show that cold leg injection is the most effective way and the adaption of advanced SIT could lead to elimination of LPSI pump from the safety system. On the other hand, the quantified uncertainties obtained from THTF and FLECHT/SEASET which represents blowdown and reflood phenomena, respectively, have been confirmed using IET(LOFT test). The application uncertainty for Kori unit 3 has been analyzed. Finally, application of the best estimate methodology using the uncertainties concerned with the code, the bais, and the application, leads to overall uncertainty of about 200K for Kori unit 3. 244 figs, 22 tabs, 92 refs. (Author)

  7. Problems of nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Suchomel, J.

    1977-01-01

    Nuclear power plant safety is discussed with regard to external effects on the containment and to the human factor. As for external effects, attention is focused on shock waves which may be due to explosions or accidents in flammable material transport and storage, to missiles, and to earthquake effects. The criteria for evaluating nuclear power plant safety in different countries are shown. Factors are discussed affecting the reliability of man with regard to his behaviour in a loss-of-coolant accident in the power plant. Different types of PWR containments and their functions are analyzed, mainly in case of accident. Views are discussed on the role of destructive accidents in the overall evaluation of fast reactor safety. Experiences are summed up gained with the operation of WWER reactors with respect to the environmental impact of the nuclear power plants. (Z.M.)

  8. The importance of human cognitive models in the safety analysis report of nuclear power plants - a comparative review

    International Nuclear Information System (INIS)

    Alvarenga, Marco A.B.; Araujo Goes, Alexandre G. de

    1997-01-01

    The chapter 18 of the Brazilian NPPs Safety Analysis Report (SAR) deals with Human Factor Engineering (HFE). The chapter evaluation is distributed among ten topics. One of them, the HRA (Human Reliability Analysis) becomes the central subject of the whole analysis, generating information to the other topics, as for example, high risk operational critical sequences. The HRA methods used in the past concerned the approach of modeling the human being as a component (hardware), based in a failure or success bivalent logic. In the last ten years, several human cognitive models were developed to be used in the nuclear field as well as in the conventional industry, mainly in the military aviation. In this paper, we describe their main features, comparing some models to each other, with the main purpose of determining the minimal characteristics acceptable for NPPs licensing, being part of these cognitive models, to be used mainly in the evaluation of HRAs from SARs in the NPPs. (author). 10 refs

  9. Safety culture in nuclear power plants. Proceedings

    International Nuclear Information System (INIS)

    1994-12-01

    As a consequence of the INSAG-4 report on 'safety culture', published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of 'safety culture', with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs

  10. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  11. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  12. Operational safety of nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    The operational safety of nuclear power plants has become an important safety issue since the Chernobyl accident. A description is given of the various aspects of operational safety, including the importance of human factors, responsibility, the role and training of the operator, the operator-machine interface, commissioning and operating procedures, experience feedback, and maintenance. The lessons to be learnt from Chernobyl are considered with respect to operator errors and the management of severe accidents. Training of personnel, operating experience feedback, actions to be taken in case of severe accidents, and international cooperation in the field of operational safety, are also discussed. (U.K.)

  13. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  14. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Porter, N.J.; Cross, M.T.; Guinn, W.M.

    1981-01-01

    The paper outlines the operator's role in nuclear safety and introduces the concept of ''safety functions''. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. ''An accident identical to that at Three Mile Island is not going to happen again'', said the Rogovin investigators. The concepts put forward in this paper are intended to help the operator avoid serious consequence from the next unexpected threat. On the basis of the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results. These three operator roles are: first, maintain plant setup in readiness to properly respond; second, operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events; third, the operator needs to monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of ''safety function'' introduces that systematic approach and prevents a hierarchy of protection. If the operator has difficulty in identifying an event for any reason, the systematic safety function approach allows ones to accomplish the overall path of mitigating consequences. There are ten identified functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions. The paper describes in detail the operator's role and the safety functions, and provides many examples of the use of alternative success paths to accomplish the safety function

  15. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  16. Fire hazard analysis for WWER nuclear power plants. Report of the IAEA extrabudgetary programme on the safety of WWER nuclear power plants

    International Nuclear Information System (INIS)

    1994-12-01

    This status report presents an overview of the different techniques available to carry out a fire hazard analysis, from qualitative criteria to quantitative methodologies of different purposes and basis; and then, it details a simplified methodology based on a screening approach which could be used in former Soviet designed nuclear power plants. The methodology presented in this report is an adequate means to identify fire related plant specific vulnerabilities to severe accidents, and it provides a useful tool for ranking the various plant fires according to their significances, as well as technical basis for prioritizing the implementation of plant improvements. The applicability of the methodology proposed to the former Soviet Union designed reactors has been evaluated. Its usefulness to the purpose defined above is conclusive. However, some aspects need further consideration, among others data sources and screening criteria. Computer codes for studying fire effects and fire spread in plant locations are also dealt with. Some computer codes are shortly described, from simplified models to more complex ones which allow more accurate modelling of geometries and accounting for additional phenomena. 10 refs, 5 tabs

  17. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  18. Seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Gurpinar, A.; Godoy, A.

    1995-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in WWER type nuclear power plants during the past five years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on B enchmark study for the seismic analysis and testing of WWER type nuclear power plants . These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  19. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  20. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Hinoki, M.

    1977-01-01

    From the outset of nuclear power development in Japan, major emphasis has been placed on the safety of the nuclear power plants. There are now twelve nuclear power plants in operation with a total output of 6600 MWe. Their operating records were generally satisfactory, but in the 1974 to 1975 period, they experienced somewhat declined availability due to the repair work under the specific circumstances. After investigation of causes of troubles and the countermeasures thereof were made to ensure safety, they are now keeping good performance. In Japan, nuclear power plants are strictly subject to sufficient and careful inspection in compliance with the safety regulation, and are placed under stringent radiation control of employees. Under the various circumstances, however, the period of annual inspection tends to be prolonged more than originally planned, and this consequently is considered to be one of the causes of reduced availability. In order to develop nuclear power generation for the future, it is necessary to put further emphasis on the assurance of safety and to endeavor to devise measures to improve availability of the plants, based on the careful analysis of causes which reduce plant availability. This paper discusses the results of studies made for the following items from such viewpoints: (1) Safety and Operating Experience of LWR Nuclear Power Plants in Japan; a) Operating experience with light water reactors b) Improvements in design of light water reactors during the past ten years c) Analysis of the factors which affect plant availability; 2) Assurance of Safety and Measures to Increase Availability a) Measures for safety and environmental protection b) Measures to reduce radiation exposure of employees c) Appropriateness of maintenance and inspection work d) Measures to increase plant availability e) Measures to improve reliability of equipments and components; and 3) Future Technical Problems

  1. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  2. Safety aspects of nuclear power plant ageing

    International Nuclear Information System (INIS)

    1990-01-01

    The nuclear community is facing new challenges as commercial nuclear power plants (NPPs) of the first generation get older. At present, some of the plants are approaching or have even exceeded the end of their nominal design life. Experience with fossil fired power plants and in other industries shows that reliability of NPP components, and consequently general plant safety and reliability, may decline in the middle and later years of plant life. Thus, the task of maintaining operational safety and reliability during the entire plant life and especially, in its later years, is of growing importance. Recognizing the potential impact of ageing on plant safety, the IAEA convened a Working Group in 1985 to draft a report to stimulate relevant activities in the Member States. This report provided the basis for the preparation of the present document, which included a review in 1986 by a Technical Committee and the incorporation of relevant results presented at the 1987 IAEA Symposium on the Safety Aspects of the Ageing and Maintenance of NPPs and in available literature. The purpose of the present document is to increase awareness and understanding of the potential impact of ageing on plant safety; of ageing processes; and of the approach and actions needed to manage the ageing of NPP components effectively. Despite the continuing growth in knowledge on the subject during the preparation of this report it nevertheless contains much that will be of interest to a wide technical and managerial audience. Furthermore, more specific technical publications on the evaluation and management of NPP ageing and service life are being developed under the Agency's programme, which is based on the recommendations of its 1988 Advisory Group on NPP ageing. Refs, figs and tabs

  3. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  4. Statistical analysis of the behaviour of the mechanical equipment of EDFs power plants - evaluation of the availability and safety of thermal and nuclear units

    International Nuclear Information System (INIS)

    Procaccia, H.; Brillon, A.; Cravero, M.; Lucenet, G.

    1975-01-01

    The investigation and research directorate of EDF has undertaken a statistical analysis of the behaviour of large mechanical equipment at conventional power stations during the ten years following the operating reports of these stations. It has thus been possible to determine the intrinsic reliability, the failure rate, the mean repair time, and the mean good operating time of feed water reheating points, power turbines, pumps and boilers of the various EDF plants (125 and 250 MW) leading to a consideration of the feasibility of an extrapolation to present and future plants. Based on these elementary investigation two methods of calculation have been developed. One is used to assess the overall availability of a thermal or nuclear power station based on the knowledge of the failure rates of the equipment, each piece of equipment being associated with an idea of its technical importance in the functioning of the equipment. A numerical application is given for 125 and 250 MW conventional plants. The purpose of the other method is to estimate the operational safety of the safety equipment of nuclear power stations, based on the development of tree diagrams for faults in basic equipment. A numerical example is given for the cooling systems for Phenix and for one of the Super Phenix versions. (author)

  5. Safety upgrading at PAKS Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bajsz, J.; Elter, J.

    2000-01-01

    The operation of Paks NPP has reached its half time. Until this time the plant fulfilled expectations raised before its construction: the four units have produced safely and reliably more than 200 TWh electricity. The production of the plant has been at the stable level since its construction and has provided 43-38 % of electricity consumed in Hungary. The annual production is around 14 TWh, which means a load factor higher than 85 %. Safety upgrading activities [1] at Paks had started in the late eighties, when the commissioning work of units 3 and 4 were carried out. That time the main emphases were put to lessons learned of the TMI and Chernobyl accidents. The international reviews hosted by our plant widened our review's scope. To systematize our approach a complete safety review, the AGNES (Advanced General Safety and New Evaluation of Safety) project was started in 1991. The goal of the project was to evaluate to what extent Paks NPP satisfied the current international safety expectations and to help in determining the priorities for safety enhancement and upgrading measures. The project completed in 1994 ranked our safety upgrading measures by safety significance, which became a basis for technical design work and financial scheduling. The other important outcome of the AGNES project was the introduction the Periodical Safety Review regime by our nuclear authority. These periodical reviews held after 10 years of operation offer the possibility - and obligation for the licensee - to perform a comprehensive assessment of the safety of the plant, to evaluate the integral effects of changes of circumstances happened during the review period. The goal of these reviews is to deal with cumulative effects of NPP ageing, modifications, operating experience and technical developments aimed at ensuring a high level of safety throughout plant service life. The execution of our safety-upgrading program is well advancing. For the whole program from 1996 to 2002 250

  6. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S M [Karachi Nuclear Power Plant (KANUPP), Karachi (Pakistan)

    1997-12-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis.

  7. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    International Nuclear Information System (INIS)

    Hasan, S.M.

    1997-01-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis

  8. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition); Analisis determinista de seguridad para centrales nucleares. Guia de Seguridad Especifica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  9. Development of specific data of plant for a safety probabilistic analysis; Desarrollo de datos especificos de planta para un analisis probabilistico de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, M. [Emersis S.A. de C.V., Tabachines 9-bis, 62589 Temixco, Morelos (Mexico); Nelson E, P. [LAIRN, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: cuesta@emersis.com

    2004-07-01

    In this work the development of specific data of plant is described for the Safety Probabilistic Analysis (APS) of the Laguna Verde Central. The description of those used methods concentrate on the obtention of rates of failure of the equipment and frequencies of initiator events modeled in the APS, making mention to other types of data that also appeal to specific sources of the plant. The method to obtain the rates of failure of the equipment takes advantage the information of failures of components and unavailability of systems obtained entreaty in execution with the Maintenance Rule (1OCFR50.65). The method to develop the frequencies of initiators take in account the registered operational experience as reportable events. In both cases the own experience is combined with published generic data using Bayesian realized techniques. Details are provided about the gathering of information, the confirmations of consistency and adjustment necessities, presenting examples of the obtained results. (Author)

  10. Horizon Expansion of Thermal-Hydraulic Activities into HTGR Safety Analysis Including Gas-Turbine Cycle and Hydrogen Plant

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Kim, Seung Jun; Lee, Byeng Jin; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2009-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the through flow calculation with a Newton- Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data

  11. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  12. Safety prediction technique for nuclear power plants

    International Nuclear Information System (INIS)

    Henry, C.D. III; Anderson, R.T.

    1985-01-01

    This paper presents a safety prediction technique (SPT) developed by Reliability Technology Associates (RTA) for nuclear power plants. It is based on a technique applied by RTA to assess the flight safety of US Air Force aircraft. The purpose of SPT is to provide a computerized technique for objective measurement of the effect on nuclear plant safety of component failure or procedural, software, or human error. A quantification is determined, called criticality, which is proportional to the probability that a given component or procedural-human action will cause the plant to operate in a hazardous mode. A hazardous mode is characterized by the fact that there has been a failure/error and the plant, its operating crew, and the public are exposed to danger. Whether the event results in an accident, an incident, or merely the exposure to danger is dependent on the skill and reaction of the operating crew as well as external influences. There are three major uses of SPT: (a) to predict unsafe situations so that corrective action can be taken before accidents occur, (b) to quantify the impact of equipment malfunction or procedural, software, or human error on safety and thereby establish priorities for proposed modifications, and (c) to provide a means of evaluating proposed changes for their impact on safety prior to implementation and to provide a method of tracking implemented changes

  13. Operating experience and systems analysis at Trillo NPP: A program intended for systematic review of plant safety systems to assess design basis requirements compliance

    International Nuclear Information System (INIS)

    Vega, R. de la

    1996-01-01

    The program was defined to apply to all plant safety systems and/or systems included in plant Technical Specifications. The goal of the program was to ensure, by systematic design, construction, and commissioning review, the adequacy of safety systems, structures and components to fulfill their safety functions. Also, as a result of the program, it was established that a complete, unambiguous, systematic, design basis definition shall take place. And finally, a complete documental review of the plant design shall result from the program execution

  14. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  15. Nuclear power plant with a safety enclosure

    International Nuclear Information System (INIS)

    Keller, W.; Krueger, J.; Ropers, J.; Schabert, H.P.

    1976-01-01

    A nuclear power plant has a safety enclosure for a nuclear reactor. A fuel element storage basin is also located in this safety enclosure and a fuel element lock extends through the enclosure, with a cross-sectional size proportioned for the endwise passage of fuel elements, the lock including internal and external valves so that a fuel element may be locked endwise safely through the lock. The lock, including its valves, being of small size, does not materially affect the pressure resistance of the safety enclosure, and it is more easily operated than a lock large enough to pass people and fuel element transport vessels

  16. Safety related terms for advanced nuclear plants

    International Nuclear Information System (INIS)

    1995-12-01

    The terms considered in this document are in widespread current use without a universal consensus as to their meaning. Other safety related terms are already defined in national or international codes and standards as well as in IAEA's Nuclear Safety Standards Series. Most of the terms in those codes and standards have been defined and used for regulatory purposes, generally for application to present reactor designs. There is no intention to duplicate the description of such regulatory terms here, but only to clarify the terms used for advanced nuclear plants. The following terms are described in this paper: Inherent safety characteristics, passive component, active component, passive systems, active system, fail-safe, grace period, foolproof, fault-/error-tolerant, simplified safety system, transparent safety

  17. Safety related terms for advanced nuclear plants

    International Nuclear Information System (INIS)

    1991-09-01

    The terms considered in this document are in widespread current use without a universal consensus as to their meaning. Other safety related terms are already defined in national or international codes and standards as well as in IAEA's Nuclear Safety Standards Series. Most of the terms in those codes and standards have been defined and used for regulatory purposes, generally for application to present reactor designs. There is no intention to duplicate the description of such regulatory terms here, but only to clarify the terms used for advanced nuclear plants. The following terms are described in this paper: Inherent safety characteristics, passive component, active component, passive systems, active system, fail-safe, grace period, foolproof, fault-/error-tolerant, simplified safety system, transparent safety

  18. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  19. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  20. A study on safety climate at nuclear power plants

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Yoshiyama, Naohiro

    2001-01-01

    factors as the rating scales of the safety climate. In order to study the characteristics of the safety climate at nuclear power plants, we used a causal model with safety confirmation/report' as the result and other factors as forecasting factors. As a result of the covariance structure analysis using the causal model, it was found that 'safety confirmation/report' is an action based on confidence in knowledge and skill', and is supported by 'attitude of supervisors' and 'clarity of tasks.' The analytical results also indicate that 'safety education in workplace' plays an important role in promoting the sharing of information as a medium factor. As described, 'attitude of supervisors,' 'clarity of tasks' and 'safety education in workplace,' all of which are organizational environment factors, are important forecasting factors that influence individuals' safety actions and hence considered as constituents of the safety climate. (author)

  1. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L.

    2009-10-01

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  2. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  3. Safety assessment of plant food supplements (PFS)

    NARCIS (Netherlands)

    Berg, van den S.J.P.L.; Serra-Majem, L.; Coppens, P.; Rietjens, I.

    2011-01-01

    Botanicals and botanical preparations, including plant food supplements (PFS), are widely used in Western diets. The growing use of PFS is accompanied by an increasing concern because the safety of these PFS is not generally assessed before they enter the market. Regulatory bodies have become more

  4. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Park, Gee-Yong; Kim, Jang-Yeol; Lee, Jang-Soo

    2013-01-01

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  5. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  6. Safety aspects of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Donoghue, J.K.; Charlesworth, F.R.; Fairbairn, A.

    1977-01-01

    The establishment of the basic process must include the determination of the sensitivity of the process to operational errors or plant failures. The probability, and consequences of escapes of activity must be evaluated and emergency procedures set up to deal with accidents which might lead to such escapes. The administrative arrangements for safety should include a safety evaluation and advisory service independent of line management. A quality assurance strategy for the construction and commissioning stages is important. The design and construction of the plant must include: (i) Attention to plant reliability. Maintenance and inspection procedures to maintain reliability must be adopted and the design should include measures to facilitate in-service inspection of highly-active plant. (ii) Suitable and sufficient means of detection and prevention of malfunction, including criticality, bearing in mind both the timescale of development of the fault and its consequences. (iii) Measures for containment of activity. Penetrations from active into operating areas should be eliminated or minimised and maintenance should be separated from operational areas. Secondary containment beyond that provided for operations of a significant magnitude. A ventilation system with appropriate gas clean-up, monitoring and discharge facilities is required. (iv) Adequate shielding, with particular attention paid to multiple activities in a single operational area which might lead to an operator being exposed to radiation from operations which are beyond his control. (v) Means of accounting for active materials and for their recovery, transfer and disposal in the event of a forced shut down. (vi) Suitable methods for segregation and control of wastes within the plant and for their discharge. Solid or liquid wastes should be subject to delay and monitoring procedures before release. Facilities for storage of waste must be subject to the same safety principles as the plant itself. (vii) Final

  7. The safety of nuclear power plants

    International Nuclear Information System (INIS)

    Berg, J.O.

    1980-01-01

    A general presentation is given of reactor safety philosophy and risk analysis. The Rasmussen report (WASH-1400) is discussed and also the Lewis Commission's evaluation of that report. The future developments in reactor safety technology are outlined with emphasis on quality assurance. (JIW)

  8. Procedures for conducting probabilistic safety assessments of nuclear power plants (level 2). Accident progression, containment analysis and estimation of accident source terms

    International Nuclear Information System (INIS)

    1995-01-01

    The present publication on Level 2 PSA is based on a compilation and review of practices in various Member States. It complements Safety Series No. 50-P-4, issued in 1992, on Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 1). Refs, figs and tabs

  9. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  10. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  11. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  12. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  13. Basic safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power plant safety requires a continuing quest for excellence. All individuals concerned should constantly be alert to opportunities to reduce risks to the lowest practicable level. The quest, however, is most likely to be fruitful if it is based on an understanding of the underlying objectives and principles of nuclear safety, and the way in which its aspects are interrelated. This report is an attempt to provide a logical framework for such an understanding. The proposed objectives and principles of nuclear safety are interconnected and must be taken as a whole; they do not constitute a menu from which selection can be made. The report takes account of current issues and developments. It includes the concept of safety objectives and the use of probabilistic safety assessment. Reliability targets for safety systems are discussed. The concept of a 'safety culture' is crucial. Attention has been paid to the need for planning for accident management. The report contains objectives and principles. The objectives state what is to be achieved; the principles state how to achieve it. In each case, the basic principle is stated as briefly as possible. The accompanying discussion comments on the reasons for the principle and its importance, as well as exceptions, the extent of coverage and any necessary clarification. The discussion is as important as the principle it augments. 4 figs

  14. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper Refs, figs, tabs

  15. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper

  16. Plant safety review from mass criticality accident

    International Nuclear Information System (INIS)

    Susanto, B.G.

    2000-01-01

    The review has been done to understand the resent status of the plant in facing postulated mass criticality accident. From the design concept of the plant all the components in the system including functional groups have been designed based on favorable mass/geometry safety principle. The criticality safety for each component is guaranteed because all the dimensions relevant to criticality of the components are smaller than dimensions of 'favorable mass/geometry'. The procedures covering all aspects affecting quality including the safety related are developed and adhered to at all times. Staff are indoctrinated periodically in short training session to warn the important of the safety in process of production. The plant is fully equipped with 6 (six) criticality detectors in strategic places to alert employees whenever the postulated mass criticality accident occur. In the event of Nuclear Emergency Preparedness, PT BATAN TEKNOLOGI has also proposed the organization structure how promptly to report the crisis to Nuclear Energy Control Board (BAPETEN) Indonesia. (author)

  17. Assessment of IAEA safety series no. 75-INSAG-3 - ''basic safety principles for nuclear power plants''

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency Safety Series No. 75-INSAG--3, 'Basic Safety Principles for Nuclear Power Plants' is reviewed in the light of the Advisory Committee on Nuclear Safety reports ACNS--2, 'Safety Objectives for Nuclear Activities in Canada', and ACNS--4, 'Recommended General Safety Requirements for Nuclear Power Plants'. The INSAG safety objectives are consistent with the safety objectives stated in ACNS--2 but are less general, applying only to nuclear power plants. The INSAG safety principles are, in general, consistent with the requirements stated in ACNS--4 but put more emphasis on 'safety culture'. They give little attention to reactor plant effluents, waste management, or decommissioning. (fig., 5 refs.)

  18. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry

    2014-01-01

    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  19. Bohunice Nuclear Power Plant Safety Upgrading Program

    International Nuclear Information System (INIS)

    Toth, A.; Fagula, L.

    1996-01-01

    Bohunice nuclear Power Plant generation represents almost 50% of the Slovak republic electric power production. Due to such high level of commitment to nuclear power in the power generation system, a special attention is given to safe and reliable operation of NPPs. Safety upgrading and operational reliability improvement of Bohunice V-1 NPP was carried out by the Bohunice staff continuously since the plant commissioning. In the 1990 - 1993 period extensive projects were realised. As a result of 'Small Reconstruction of the Bohunice V-1 NPP', the standards of both the nuclear safety and operational reliability have been significantly improved. The implementation of another modifications that will take place gradually during extended refuelling outages and overhauls in the course of 1996 through 1999, is referred to as the Gradual Reconstruction of the Bohunice V-1 Plant. The general goal of the V-1 NPP safety upgrading is the achievement of internationally acceptable level of nuclear safety. Extensive and financially demanding modification process of Bohunice V-2 NPP is likely to be implemented after a completion of the Gradual Reconstruction of the Bohunice V-1 NPP, since the year 1999. With this in mind, a first draft of the strategy of the Bohunice V-2 NPP upgrading program based on Probabilistic Safety assessment consideration was developed. A number of actions with a general effect on Bohunice site safety is evident. All these activities are aimed at reaching the essential objective of Bohunice NPP Management - to ensure a safe, reliable and effective electric energy and heat generation at the Bohunice site. (author)

  20. A procedure for the analysis of errors of commission in a Probabilistic Safety Assessment of a nuclear power plant at full power

    International Nuclear Information System (INIS)

    Julius, J.; Jorgenson, E.; Parry, G.W.; Mosleh, A.M.

    1995-01-01

    This paper describes an analytical procedure that has been developed to facilitate the identification of errors of commission for inclusion in a Probabilistic Safety Assessment (PSA) of a nuclear power plant operating at full power. The procedure first identifies the opportunities for error by determining when operators are required to intervene to bring the plant to a safe condition following a transient, and then identifying under what conditions this is likely to occur using a model of the causes of error. In order to make the analysis practicable, a successive screening approach is used to identify those errors with the highest potential of occurrence. The procedure has been applied as part of a PSA study, and the results of that application are summarized. For the particular plant to which the procedure was applied, the conclusion was that, because of the nature of the procedures, the high degree of redundancy in the instrumentation, the operating practices, and the control board layouts, the potential for significant errors of commission is low

  1. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  2. Organizational processes and nuclear power plant safety

    International Nuclear Information System (INIS)

    Landy, F.J.; Jacobs, R.R.; Mathieu, J.

    1991-01-01

    The paper describes the effects organizational factors have on the risk associated with the operation of nuclear power plants. The described research project addresses three methods for identifying the organizational factors that impact safety. The first method consists of an elaborate theory-based protocol dealing with decision making procedures, interdepartmental coordination of activities, and communications. The second, known as goals/means/measures protocol, deals with identifying safey related goals. The third method is known as behaviorally anchored rating scale development. The paper discusses the importance of the convergence of these three methods to identify organizational factors essential to reactor safety

  3. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  4. Adapting a reactor safety assessment system for specific plants

    International Nuclear Information System (INIS)

    Ballard, T.L.; Cordes, G.A.

    1991-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system being developed by the Idaho National Engineering Laboratory, the University of Maryland (UofM) and US Nuclear Regulatory Commission (NRC) for use in the NRC Operations center. RSAS is designed to help the Reactor Safety Team monitor and project core status during an emergency at a licensed nuclear power plant. Analysis uses a hierarchical plant model based on equipment availability and automatically input parametric plant information. There are 3 families of designs of pressurized water reactors and 75 plants using modified versions of the basic design. In order to make an RSAS model for each power plant, a generic model for a given plant type is used with differences being specified by plant specific files. Graphical displays of this knowledge are flexible enough to handle any plant configuration. A variety of tools have been implemented to make it easy to modify a design to fit a given plant while minimizing chance for error. 3 refs., 4 figs

  5. Code on the safety of nuclear power plants: Siting

    International Nuclear Information System (INIS)

    1988-01-01

    This Code provides criteria and procedures that are recommended for safety in nuclear power plant siting. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants

  6. Development of a New Safety Culture Assessment Method for Nuclear Power Plants (NPPs) (A study to suggest a new safety culture assessment method in nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    This study is conducted to suggest a new safety culture assessment method in nuclear power plants. Criteria with various existing safety culture analysis methods are united, and reliability analysis methods are applied. The concept of the most representative methods, Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA), are adopted to assess safety culture. Through this application, it is expected that the suggested method will bring results with convenience and objectiveness.

  7. Development of a New Safety Culture Assessment Method for Nuclear Power Plants (NPPs) (A study to suggest a new safety culture assessment method in nuclear power plants)

    International Nuclear Information System (INIS)

    Han, Sang Min; Seong, Poong Hyun

    2014-01-01

    This study is conducted to suggest a new safety culture assessment method in nuclear power plants. Criteria with various existing safety culture analysis methods are united, and reliability analysis methods are applied. The concept of the most representative methods, Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA), are adopted to assess safety culture. Through this application, it is expected that the suggested method will bring results with convenience and objectiveness

  8. A PIP chart for nuclear plant safety

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Yamaoka, Taiji

    1992-01-01

    While it is known that social and political aspects of nuclear safety issues are important, little study has been done on identifying the breadth of stakeholders whose policies have important influences over nuclear plant safety in a comprehensive way. The objectives of this study are to develop a chart that visually identifies important stakeholders and their policies and illustrates these influences in a hierarchical representation so that the relationship between stakeholders and nuclear safety will be better understood. This study is based on a series of extensive interviews with major stakeholders, such as nuclear plant managers, corporate planning vice presidents, state regulators, news media, and public interest groups, and focuses on one US nuclear power plant. Based on the interview results, the authors developed a conceptual policy influence paths (PIP) chart. The PIP chart illustrates the hierarchy of influence among stakeholders. The PIP chart is also useful in identifying possible stakeholders who can be easily overlooked without the PIP chart. In addition, it shows that influence flow is circular rather than linear in one direction

  9. Safety and licensing of nuclear heating plants

    International Nuclear Information System (INIS)

    Snell, V.G.; Hilborn, J.W.; Lynch, G.F.; McAuley, S.J.

    1989-09-01

    World attention continues to focus on nuclear district heating, a low-cost energy from a non-polluting fuel. It offers long-term security for countries currently dependent on fossil fuels, and can reduce the burden of fossil fuel transportation on railways and roads. Current initiatives encompass large, centralized heating plants and small plants supplying individual institutions. The former are variants of their power reactor cousins but with enhanced safety features. The latter face the safety and licensing challenges of urban siting and remotely monitored operation, through use of intrinsic safety features such as passive decay heat removal, low stored energy and limited reactivity speed and depth in the control systems. Small heating reactor designs are compared, and the features of the SLOWPOKE Energy System, in the forefront of these designs, are summarized. The challenge of public perception must be met by clearly presenting the characteristics of small heating reactors in terms of scale and transparent safety in design and operation, and by explaining the local benefits

  10. 46. The goals of safety engineering department of the plant

    International Nuclear Information System (INIS)

    Ivanov, A.V.

    1993-01-01

    The goals of safety engineering department of the plant, including elaboration of instructions on safety engineering on all specialities, safety engineering training of all labours working on the plant and control for abidance by the instructions on safety engineering were discussed.

  11. A proposed approach for enhancing design safety assurance of future plants

    International Nuclear Information System (INIS)

    Oh, Kyu Myeng; Ahn, Sang Kyu; Lee, Chang Ju; Kim, Inn Seock

    2010-01-01

    This paper provides various insights from a detailed review of deterministic approaches typically applied to ensure design safety of nuclear power plants (NPPs) and risk-informed approaches proposed to evaluate safety of advanced reactors such as Generation IV reactors. Also considered herein are the risk-informed safety analysis (RISA) methodology suggested by Westinghouse as a means to improve the conventional accident analysis, together with the Technology Neutral Framework recently suggested by the U.S. NRC for safety evaluation of future plants. These insights from the comparative review of deterministic and risk-informed approaches could be used in further enhancing the methodology for design safety assurance of future plants

  12. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  13. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  14. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  15. Safety criteria for nuclear chemical plants

    International Nuclear Information System (INIS)

    Ball, P.W.; Curtis, L.M.

    1983-01-01

    Safety measures have always been required to limit the hazards due to accidental release of radioactive substances from nuclear power plants and chemical plants. The risk associated with the discharge of radioactive substances during normal operation has also to be kept acceptably low. BNFL (British Nuclear Fuels Ltd.) are developing risk criteria as targets for safe plant design and operation. The numerical values derived are compared with these criteria to see if plants are 'acceptably safe'. However, the criteria are not mandatory and may be exceeded if this can be justified. The risk assessments are subject to independent review and audit. The Nuclear Installations Inspectorate also has to pass the plants as safe. The assessment principles it uses are stated. The development of risk criteria for a multiplant site (nuclear chemical plants tend to be sited with many others which are related functionally) is discussed. This covers individual members of the general public, societal risks, risks to the workforce and external hazards. (U.K.)

  16. Safety improvement of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Vamos, G.

    1999-01-01

    Safety upgrading completed in the early nineties at the Paks NPP include: replacement of steam generator safety valves and control valves; reliability improvement of the electrical supply system; modification of protection logic; enhancement of the fire protection; construction of full scope Training Simulator. Design safety upgrading measures achieved in recent years were concerned with: relocation of steam generator emergency feed-water supply; emergency gas removal from the primary coolant system; hydrogen management in the containment; protection against sumps; preventing of emergency core cooling system tanks from refilling. Increasing seismic resistance, containment assessment, refurbishment of reactor protection system, improving reliability of emergency electrical supply, analysis of internal hazards are now being implemented. Safety upgrading measures which are being prepared include: bleed and feed procedures; reactor over-pressurisation protection in cold state; treatment of steam generator primary to secondary leak accidents. Operational safety improvements are dealing with safety culture, training measures and facilities; symptom based emergency operating procedures; in-service inspection; fire protection. The significance of international cooperation is emphasised in view of achieving nuclear safety standards recognised in EU

  17. Organizational factors and nuclear power plant safety

    International Nuclear Information System (INIS)

    Haber, S.B.

    1995-01-01

    There are many organizations in our society that depend on human performance to avoid incidents involving significant adverse consequences. As our culture and technology have become more sophisticated, the management of risk on a broad basis has become more and more critical. The safe operation of military facilities, chemical plants, airlines, and mass transit, to name a few, are substantially dependent on the performance of the organizations that operate those facilities. The nuclear power industry has, within the past 15 years, increased the attention given to the influence of human performance in the safe operation of nuclear power plants (NPP). While NPPs have been designed through engineering disciplines to intercept and mitigate events that could cause adverse consequences, it has been clear from various safety-related incidents that human performance also plays a dominant role in preventing accidents. Initial efforts following the 1979 Three Mile Island incident focused primarily on ergonomic factors (e.g., the best design of control rooms for maximum performance). Greater attention was subsequently directed towards cognitive processes involved in the use of NPP decision support systems and decision making in general, personnel functions such as selection systems, and the influence of work scheduling and planning on employees' performance. Although each of these approaches has contributed to increasing the safety of NPPS, during the last few years, there has been a growing awareness that particular attention must be paid to how organizational processes affect NPP personnel performance, and thus, plant safety. The direct importance of organizational factors on safety performance in the NPP has been well-documented in the reports on the Three Mile Island and Chernobyl accidents as well as numerous other events, especially as evaluated by the U.S. Nuclear Regulatory Commission (NRC)

  18. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  19. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  20. Safety classification of items in Tianwan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sun Yongbin

    2005-01-01

    The principle of integrality, moderation and equilibrium should be considered in the safety classification of items in nuclear power plant. The basic ways for safety classification of items is to classify the safety function based on the effect of the outside enclosure damage of the items (parts) on the safety. Tianwan Nuclear Power Plant adopts Russian VVER-1000/428 type reactor, it safety classification mainly refers to Russian Guidelines and standards. The safety classification of the electric equipment refers to IEEE-308(80) standard, including 1E and Non 1E classification. The safety classification of the instrumentation and control equipment refers to GB/T 15474-1995 standard, including safety 1E, safety-related SR and NC non-safety classification. The safety classification of Tianwan Nuclear Power Plant has to be approved by NNSA and satisfy Chinese Nuclear Safety Guidelines. (authors)

  1. Software safety analysis application in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Yih, S.; Wang, L. H.; Liao, B. C.; Lin, J. M.; Kao, T. M.

    2010-01-01

    This work performed a software safety analysis (SSA) in the installation phase of the Lungmen nuclear power plant (LMNPP) in Taiwan, under the cooperation of INER and TPC. The US Nuclear Regulatory Commission (USNRC) requests licensee to perform software safety analysis (SSA) and software verification and validation (SV and V) in each phase of software development life cycle with Branch Technical Position (BTP) 7-14. In this work, 37 safety grade digital instrumentation and control (I and C) systems were analyzed by Failure Mode and Effects Analysis (FMEA), which is suggested by IEEE Standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The FMEA showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (authors)

  2. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    1983-05-01

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  3. Probabilistic safety assessment of nuclear power plants: a monograph

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, Mahendra

    2007-11-01

    This monograph on probabilistic safety assessment (PSA) is addressed to the wide community of professionals engaged in the nuclear industry and concerned with the safety issues of nuclear power plants (NPPs). While the monograph describes PSA of NPPs, the principles described in this monograph can be extended to other facilities like spent fuel storage, fuel reprocessing plants and non-nuclear facilities like chemical plants, refineries etc. as applicable. The methodology for risk assessment in chemical plants or refineries is generally known as quantitative risk analysis (QRA). The fundamental difference between NPP and chemical plant is that in NPPs the hazardous material (fuel and fission products) are contained at a single location (i.e. inside containment), whereas in a chemical plant and reprocessing plants, the hazardous material is present simultaneously at many places, like pipelines, reaction towers, storage tanks, etc. Also unlike PSA, QRA does not deal with levels; it uses an integrated approach combining all the levels. The monograph covers the areas of broad interest in the field of PSA such as historical perspective, fundamentals of PSA, strengths and weaknesses of PSA, applications of PSA, role of PSA in the regulatory decision making and issues for advancement of PSA

  4. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.Y.

    1996-01-01

    The development of a good safety culture within the organisation and for the individual poses a sine qua non condition for the operator in the cause of the functioning of his plant. This task must be understood as a linking of the human into a daily management of the safety and quality. Everyone has his role to play at the level of his accountability and his field of responsibility in routine operations and in crisis situations. However, success depends on how management has understood, on the one hand, to convince the staff of the importance of the efforts and the usefulness of the measures taken within the organisation and, on the other hand, to keep this same staff applied to the carrying out of these measures and thus to take account of the anxieties and proposals in the spirit of responsibility and transparency. (author)

  5. Selecting safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    Today, many thousands of documents are available describing the requirements, guidelines, and industrial standards which can be used as bases for a nuclear power plant programme. Many of these documents relate to nuclear safety which is currently the focus of world-wide attention. The multitude of documents available on the subject, and their varying status and emphasis, make the processes of selection and implementation very important. Because nuclear power plants are technically intricate and advanced, particularly in relation to the technological status of many developing countries, these processes are also complicated. These matters were the subject of a seminar held at the Agency's headquarters in Vienna last December. The IAEA Nuclear Safety Standards (NUSS) programme was outlined and explained at the Seminar. The five areas of the NUSS programme for nuclear power plants cover, governmental organization, siting, design; operation; quality assurance. In each area the Agency has issued Codes of Practice and is developing Safety Guides. These provide regulatory agencies with a framework for safety. The Seminar recognized that the NUSS programme should enable developing countries to identify priorities in their work, particularly the implementation of safety standards. The ISO activities in the nuclear field are carried out in the framework of its Technical Committee 85 (ISO/TC85). The work is distributed in sub-committees. Seminar on selection and implementation of safety standards for nuclear power plants, jointly organized by the IAEA and the International Organization for Standardization (ISO), and held in Vienna from 15 to 18 December 1980 concerned with: terminology, definitions, units and symbols (SC-1), radiation protection (SC-2), power reactor technology (SC-3), nuclear fuel technology (SC-5). There was general agreement that the ISO standards are complementary to the NUSS codes and guides. ISO has had close relations with the IAEA for several years

  6. Safety and security aspects in design of digital safety I and C in nuclear power plants

    International Nuclear Information System (INIS)

    Ding, Yongjian; Waedt, Karl

    2016-01-01

    The paper describes a safety objective oriented systematic design approach of digital (computerized) safety I and C in modern nuclear power plants which considers the plant safety requirements as well as cybersecurity needs. The defence in depth philosophy is applied by using different defence lines in the I and C architecture and protection zones in the plant IT environment.

  7. Safety and security aspects in design of digital safety I and C in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yongjian [University of Applied Sciences Magdeburg-Stendal, Magdeburg (Germany). Inst. of Electrical Engineering; Waedt, Karl [Areva GmbH, Erlangen (Germany). PEAS-G

    2016-05-15

    The paper describes a safety objective oriented systematic design approach of digital (computerized) safety I and C in modern nuclear power plants which considers the plant safety requirements as well as cybersecurity needs. The defence in depth philosophy is applied by using different defence lines in the I and C architecture and protection zones in the plant IT environment.

  8. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  9. Nuclear-criticality safety analysis of the Oak Ridge Y-12 plant birdcage-type containers for intraplant storage and transportation

    International Nuclear Information System (INIS)

    Stachowiak, R.V.

    1983-01-01

    The Oak Ridge Y-12 Plant birdcage-type containers include a family of cubic (20-, 24-, and 30-inch) open-framed containers used for the in-house storage and transfer of unirradiated enriched uranium metal. This paper provides insight into the nuclear criticality safety analysis for birdcage usage. All credible contingencies (abnormal events) were analyzed and proven safe (subcritical) in accordance with the requirements and procedures of nuclear criticality safety standards. Examples of the contingencies considered in the analysis include, but are not limited to, full water reflection of any single uranium mass loading, double batching of a loading, water moderation, and misuse of the birdcage. These and other applicable contingencies determine the maximum uranium mass for the 20- and 24-inch birdcages, which is 20 and 28 kilograms, respectively. The maximum number of birdcages stored at one location and the storage array configuration are also determined by the credible contingencies. Stacking restrictions for birdcage storage are three high for the 20-inch birdcage and two high for the 24-inch birdcage. A maximum size for square-based arrays is ten feet by ten feet. Any number of these arrays may be used provided a twelve-foot separation is maintained between each array. Such a storage arrangement results in a floor utilization of 0.42 birdcages per square foot. Better floor utilization, i.e., more birdcages per square foot, is possible with other array configurations that are not square-based. Physical as well as administrative controls, procedures, training, and audits are used to ensure these basic criteria are observed. 1 table

  10. Defense-in-depth for common cause failure of nuclear power plant safety system software

    International Nuclear Information System (INIS)

    Tian Lu

    2012-01-01

    This paper briefly describes the development of digital I and C system in nuclear power plant, and analyses the viewpoints of NRC and other nuclear safety authorities on Software Common Cause Failure (SWCCF). In view of the SWCCF issue introduced by the digitized platform adopted in nuclear power plant safety system, this paper illustrated a diversified defence strategy for computer software and hardware. A diversified defence-in-depth solution is provided for digital safety system of nuclear power plant. Meanwhile, analysis on problems may be faced during application of nuclear safety license are analyzed, and direction of future nuclear safety I and C system development are put forward. (author)

  11. The effect of management and organizational structure on nuclear power plant safety

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1986-01-01

    Many informed observers have proposed that utility management is a key element underlying the safe operation of nuclear power plants (NPP). One way that management likely influences plant safety performance is through the organizational structures it consciously creates or allows to exist. This paper describes an empirical analysis of the relationships between some important dimensions of plant organizational structure and measures of plant safety performance

  12. Safety in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Cederqvist, H.

    1992-01-01

    Safety-related facilities and equipment are continuously backfitted in Swiss nuclear power plants. In the Beznau-1 and -2 nuclear generating units, the measures taken under the heading of 'Backfitting of Emergency Systems' included provisions to enhance the protection against earthquakes, airplane crash, and fire; in addition, the emergency power system was upgraded. In Muehleberg, the stack exhaust air monitoring system was optimized. The containment pressure suppression system of the plant has been designed to withstand a hypothetical accident exceeding the design basis. The BKM-Crud computer simulation model simulates steps taken to reduce radiation exposure. The power of Swiss nuclear power stations will be raised by 4% to 15% within the 'Energy 2000' action program. (orig.) [de

  13. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Oh, Kyemin; Kang, Myoung-suk; Heo, Gyunyoung; Kim, Hyoung-chan

    2014-01-01

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  14. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Kang, Myoung-suk [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Hyoung-chan [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of)

    2014-10-15

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  15. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  16. The safety of RBMK nuclear power plants

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1993-01-01

    The accident at Chernobyl coincided with the beginning of the era of ''perestroika'' and ''glasnost'' in the USSR. The accident provoked unprecedented openness between the USSR and the West, with Britain playing a large part in the exchanges because of its experience, albeit in separate reactor types, of large on-load fuelled graphite moderated reactor systems and pressure tube technologies. The Research and Development Institute of Power Engineering (RDIPE) had always been responsible for the design, development and safety analysis of the RBMK reactors. Since the accident it has therefore played the leading role in investigations of what went wrong and in developing the programme of RBMK safety improvements. (author)

  17. Reactor safety study applied to the Forsmark 3 Power Plant

    International Nuclear Information System (INIS)

    Ericsson, G.; Tiren, L.I.

    1978-01-01

    A reactor safety study of the Forsmark 3 BWR power plant has been carried out for the purpose of calculating core melt probabilities using WASH-1400 methods. A sensitivity analysis shows that the calculated core melt probability is changed by approximately a factor of 10 depending on assumptions made with respect to the probability of human error. The importance of the availability of off-site power and the influence of common cause failure is also discussed. (author)

  18. Plant control impact on IFR power plant passive safety response

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1993-01-01

    A method is described for optimizing the closed-loop plant control strategy with respect to safety margins sustained in the unprotected upset response of a liquid metal reactor. The optimization is performed subject to the normal requirements for reactor startup, load change and compensation for reactivity changes over the cycle. The method provides a formal approach to the process of exploiting the innate self-regulating property of a metal fueled reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error

  19. Case Study on Influence Factor Trend Analysis of the Accidents and Events of Nuclear Power Plants by applying Nuclear Safety Culture Framework

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Park, Y. W.; Park, H.G. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    This study 1) established the standard based on frameworks of safety culture principles that show safety culture promotion goals, 2) analyzed the linkages with the frameworks that were established by analyzing each incident cause and weak point from selected 268 cases(rating over INES grade 1) among 4,088 cases (as of April 1, 2015). The 4,088 cases were selected as a result of database analysis from 702 accidents recorded in accident and rating evaluation reports that were published in the National Nuclear Safety Commission and overseas IRS (International Reporting System for operating Experience), and 3) finally conducted a trend analysis studies with these comprehensive results. From the investigations, followings were concluded. 1) In order to analyze the safety culture, analysis methodology is required. 2) Analytical methodology for building sustainable safety culture promoting a virtuous cycle system was developed 3) Among variety of process input data, 970 domestic and overseas incidents were selected as targets and 502 accidents were classified as safety culture related events by utilizing screen filter of IAEA GS-G-3.5 Appendix I and Framework (Nuclear Safety Culture Base Frame) developed by BEES, Inc. for safety culture analysis method. 4) As a result, complex safety culture influence factors for the one reason which was difficult to separate by conventional methods was able to be analyzed. 5) The cumulative data through the system was results of virtuous trend analysis rather than temporary results. Thus, it could be unique cultural factors of the domestic industry and could derive trend differences for domestic safety culture factors accordingly.

  20. Case Study on Influence Factor Trend Analysis of the Accidents and Events of Nuclear Power Plants by applying Nuclear Safety Culture Framework

    International Nuclear Information System (INIS)

    Park, J. Y.; Park, Y. W.; Park, H.G.

    2016-01-01

    This study 1) established the standard based on frameworks of safety culture principles that show safety culture promotion goals, 2) analyzed the linkages with the frameworks that were established by analyzing each incident cause and weak point from selected 268 cases(rating over INES grade 1) among 4,088 cases (as of April 1, 2015). The 4,088 cases were selected as a result of database analysis from 702 accidents recorded in accident and rating evaluation reports that were published in the National Nuclear Safety Commission and overseas IRS (International Reporting System for operating Experience), and 3) finally conducted a trend analysis studies with these comprehensive results. From the investigations, followings were concluded. 1) In order to analyze the safety culture, analysis methodology is required. 2) Analytical methodology for building sustainable safety culture promoting a virtuous cycle system was developed 3) Among variety of process input data, 970 domestic and overseas incidents were selected as targets and 502 accidents were classified as safety culture related events by utilizing screen filter of IAEA GS-G-3.5 Appendix I and Framework (Nuclear Safety Culture Base Frame) developed by BEES, Inc. for safety culture analysis method. 4) As a result, complex safety culture influence factors for the one reason which was difficult to separate by conventional methods was able to be analyzed. 5) The cumulative data through the system was results of virtuous trend analysis rather than temporary results. Thus, it could be unique cultural factors of the domestic industry and could derive trend differences for domestic safety culture factors accordingly

  1. Technical Safety Appraisal of the Pinellas Plant

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents the Technical Safety Appraisal (TSA) of the Pinellas Plant in Pinellas County, Florida. The plant is owned and controlled by the US Department of Energy and operated by General Electric Neutron Devices (GEND). The TSA was performed during the period January 15--31, 1989, in support of a Tiger Team Assessment which occurred during the period January 15 to February 2, 1989. The TSA provided the Safety and Health Subteam input to the Tiger Team Assessment. The completion of the assessment process includes: (1) submission of the Team's preliminary findings and concerns, in a Draft Report, to the Manager, Albuquerque Operations Office and to the site contractors at the conclusion of the onsite assessment; (2) review of the Draft Report for technical and factual accuracy; incorporation of the appropriate review comments, suggested changes, and modifications, as well as input from all interested Program Secretarial Offices; preparation of a draft Action Plan by the Albuquerque Operations Office to address the Concerns, and submittal of that Action Plan through the Program Office to ES ampersand H for their review and comment. The Secretary approved the final Action Plan on December 16, 1990, and directed its implementation. The comments and suggestions of the Program Secretarial Offices, the Operations Office, and the site contractor have been incorporated, as appropriate, in this report prior to its publication

  2. A study on safety climate at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Yoshida, Michio; Yoshiyama, Naohiro [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2001-09-01

    education in workplace' and 'clarity of tasks.' Hence, we have decided to use these three organizational environment factors as the rating scales of the safety climate. In order to study the characteristics of the safety climate at nuclear power plants, we used a causal model with safety confirmation/report' as the result and other factors as forecasting factors. As a result of the covariance structure analysis using the causal model, it was found that 'safety confirmation/report' is an action based on confidence in knowledge and skill', and is supported by 'attitude of supervisors' and 'clarity of tasks.' The analytical results also indicate that 'safety education in workplace' plays an important role in promoting the sharing of information as a medium factor. As described, 'attitude of supervisors,' 'clarity of tasks' and 'safety education in workplace,' all of which are organizational environment factors, are important forecasting factors that influence individuals' safety actions and hence considered as constituents of the safety climate. (author)

  3. Safety Second: the NRC and America's nuclear power plants

    International Nuclear Information System (INIS)

    Adato, M.; MacKenzie, J.; Pollard, R.; Weiss, E.

    1987-01-01

    In 1975, Congress created the Nuclear Regulatory Commission (NRC). Its primary responsibility was to be the regulation of the nuclear power industry in order to maintain public health and safety. On March 28, 1979, in the worst commercial nuclear accident in US history, the plant at Three Mile Island began to leak radioactive material. How was Three Mile Island possible? Where was the NRC? This analysis by the Union of Concerned Scientists (UCS) of the NRC's first decade, points specifically to the factors that contributed to the accident at Three Mile Island. The NRC, created as a watchdog of the nuclear power industry, suffers from problems of mindset, says the UCS. The commission's problems are political, not technical; it repeatedly ranks special interests above the interest of public safety. This book critiques the NRC's performance in four specific areas. It charges that the agency has avoided tackling the most pervasive safety issues; has limited public participation in decision making and power plant licensing; has failed to enforce safety standards or conduct adequate regulation investigations; and, finally, has maintained a fraternal relationship with the industry it was created to regulate, serving as its advocate rather than it adversary. The final chapter offers recommendations for agency improvement that must be met if the NRC is to fulfill its responsibility for safety first

  4. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  5. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  6. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  7. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  8. [Storage of plant protection products in farms: minimum safety requirements].

    Science.gov (United States)

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  9. Safety principles and design management of Chashma Nuclear Power Plant

    International Nuclear Information System (INIS)

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  10. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  11. The safety of future nuclear power plants in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1988-10-01

    The present paper concerns certain personal thoughts on the safety of future French power plants, which will come into operation at the beginning of the next century. These reflections, which are made on the author's own behalf and, under no circumstances, implicate at this stage the official views of the French safety authorities, are aimed at defining some directions for the improvement of safety in these future plants as compared with that of plants presently in operation or under construction

  12. Code on the safety of nuclear power plants: Design

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is a compilation of nuclear safety principles aimed at defining the essential requirements necessary to ensure nuclear safety. These requirements are applicable to structures, systems and components, and procedures important to safety in nuclear power plants embodying thermal neutron reactors, with emphasis on what safety requirements shall be met rather than on specifying how these requirements can be met. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants. The document should be used by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies

  13. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  15. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  16. Nuclear safety at the Paks Plant

    International Nuclear Information System (INIS)

    Bajsz, Jozsef; Vamos, Gabor

    1991-01-01

    The Paks Nuclear Power Plant is located on the Danube river 114 km south of Budapest. It consists of four PWR units of the Soviet VVER-440 design. These are of the second generation design VVER 440 (model 213) with safety features as of 1975. It should be emphasized that these are two different generations of VVER 440 units. This is not always clear, not only to the general public, but sometimes even to people working in the nuclear industry. The widespread criticism of the first generation type 230 reactors is often extended to model 213 reactors, as the differences between the two models are often not sufficiently emphasized. In this situation it is very important to provide balanced information about the advantages and disadvantages of this reactor type. This paper attempts to do that. (author)

  17. Safety of WWER type nuclear power plants - viewing from Hungary

    International Nuclear Information System (INIS)

    Voeroess, L.

    1991-01-01

    An evaluation of WWER type nuclear power plants operating in Hungary is given, relative to the safety requirements accepted internationally; how safe can they be regarded and what can be done to assure a high level of safety in all case. After an overview of general safety criteria, an overall description of WWER-440 type nuclear reactors is presented. Design safety, operational safety issues are treated in detail. Safety inspection and safety-related research and development is discussed. Regarding the future, five different issues associated with nuclear reactor safety should be considered. (R.P.) 20 refs.; 12 figs.; 3 tabs

  18. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  19. Safety guide on fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the Safety Guide is to give specific design and operational guidance for protection from fire and explosion in nuclear power plants, based on the general guidance given in the relevant sections of the 'Safety Code of Practice - Design' and the 'Safety Code of Practice - Operation' of the International Atomic Energy Agency. The guide will confine itself to fire protection of safety systems and items important to safety, leaving the non-safety matters of fire protection in nuclear power plants to be decided upon the basis of the various available national and international practices and regulations. (HP) [de

  20. Improving plant state information for better operational safety

    International Nuclear Information System (INIS)

    Girard, C.; Olivier, E.; Grimaldi, X.

    1994-01-01

    Nuclear Power Plant (NPP) safety is strongly dependent on components' reliability and particularly on plant state information reliability. This information, used by the plant operators in order to produce appropriate actions, have to be of a high degree of confidence, especially in accidental conditions where safety is threatened. In this perspective, FRAMATOME, EDF and CEA have started a joint research program to prospect different solutions aiming at a better reliability for critical information needed to safety operate the plant. This paper gives the main results of this program and describes the developments that have been made in order to assess reliability of different information systems used in a Nuclear Power Plant. (Author)

  1. Evaluation of fire probabilistic safety assessment for a PWR plant

    International Nuclear Information System (INIS)

    Wu, C.H.; Lin, T.J.; Kao, T.M.

    2001-01-01

    The internal fire analysis of the level 1 power operation probability safety assessment (PSA) for Maanshan (PWR) Nuclear Power Plant (MNPP) was updated. The fire analysis adopted a scenario-based PSA approach to systematically evaluate fire and smoke hazards and their associated risk impact to MNPP. The result shows that the core damage frequency (CDF) due to fire is about six times lower than the previous one analyzed by the Atomic Energy Council (AEC), Republic of China in 1987. The plant model was modified to reflect the impact of human events and recovery actions during fire. Many tabulated EXCEL spread-sheets were used for evaluation of the fire risk. The fire-induced CDF for MNPP is found to be 2.1 E-6 per year in this study. The relative results of the fire analysis will provide the bases for further risk-informed fire protection evaluation in the near future. (author)

  2. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  3. Nuclear power plants: a unique challenge to fire safety

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1992-01-01

    The evaluation of fire safety in a nuclear power plant must include the consideration of the impact of a fire on the operability of plant safety equipment and systems. This issue is not typical of the life safety and property protection issues which dominate traditional fire safety concerns. This paper provides a general discussion of the issue of nuclear power plant fire safety as it currently exists in the USA. Included is a discussion of the past history of nuclear power plant fire events, the development of nuclear industry specific fire safety guidelines, the adverse experience associated with the inadvertent operation of fire suppression systems, and the anticipated direction of fire safety requirements for future reactor designs in the USA. (Author)

  4. Safety problems in decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  5. German (GRS) approach to accident analysis (part I). German licensing basis for accident analyses. Applicants accident analyses in second part license for Konvoi-plants. Appendix 1. Assessor accident analyses in second part license for Konvoi-plants. Appendix 2. Reference list of DBA to be considered in the safety status analysis of a PSR. Appendix 3a. Reference list of special very rare and BDB plant conditions to be considered in the safety status analysis of a PSE. Appendix 3b

    International Nuclear Information System (INIS)

    Velkov, K.

    2002-01-01

    Appendix 1: The Safety Analysis Report (S.A.R.) is presented from 3 Handbooks - ECC Handbook (LOCA), Plant Dynamics Handbook (Transients incl. ATWS), and Core Design Handbook. The first one Conceived as Living handbook, Basis for design, catalogue of transients, specifications and licensing. Handbook contains LOCA in primary system, it contains also core damage analysis, and description of codes, description of essential plant data and code input data. The second one consists of Basis for design, commissioning, operation, and catalogue of transients, specifications and licensing, as well as specified operation, disturbed operation, incidents, non-LOCA, SS-procedures and Code description. The third book consists of Reactivity balance and reactivity coefficients, efficiency of shutdown systems. Calculation of burn up cycle, power density distribution, and critical boron concentration. Also Codes used, as SAV79A standard analysis methodology including FASER for nuclear data generation, MEDIUM and PANBOX for static and transient core calculations. Appendix 2: The three TUEV (Technical Inspection Agencies) responsible for the three individual plants of type KONVOI: TUEV Bayern for ISAR-2, TUV-Hanover for KKE, TUEV-Stuttgart for GKN-2 and GRS performed the safety assessment. TUV-Bayern for disturbance and failure of secondary heat sink without loss of coolant (failure of main heat sink, erroneous operation of valves in MS and in FW system, failure of MFW supply), long term LONOP, performance of selected SBLOCA analyses. TUV Hanover for disturbances due to failure of MCPs, short term LONOP, damages of SG tubes incl. SGTR, performance of selected LOCA analyses (blowdown phase of LBLOCA). TUV-Stuttgart for breaks and leaks in MS and FW system with and without leaks in SG tubes. GRS for ATWS, sub-cooling transients due to disturbances on secondary side, initial and boundary conditions for transients with opening of pressurizer valves with and without stuck-open, most of the

  6. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  7. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  8. Study on safety subsidiary objective of nuclear power plant in USA

    International Nuclear Information System (INIS)

    Chen Yan; Zhang Chunming; Fu Zhiwei; Song Wei; Li Chaojun; Wang Zhe; Zuo Jiaxu

    2013-01-01

    This paper reviewed the development of the quantitative safety objective and subsidiary objective in USA. The expressions of CDF and LERF were obtained according to NUREG-1150. The relationship between the subsidiary objective and the quantitative safety objective was derived. The method was compared with that used in NUREG-1860. The requirements of safety objective for the future nuclear power plant and the development of probabilistic safety analysis (PSA) technology in USA were studied and can be used as reference in China. (authors)

  9. Safety assessment for the passive system of the nuclear power plants (NPPs) using safety margin estimation

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2010-01-01

    The probabilistic safety assessment (PSA) for gas-cooled nuclear power plants has been investigated where the operational data are deficient, because there is not any commercial gas-cooled nuclear power plant. Therefore, it is necessary to use the statistical data for the basic event constructions. Several estimations for the safety margin are introduced for the quantification of the failure frequency in the basic event, which is made by the concept of the impact and affordability. Trend of probability of failure (TPF) and fuzzy converter (FC) are introduced using the safety margin, which shows the simplified and easy configurations for the event characteristics. The mass flow rate in the natural circulation is studied for the modeling. The potential energy in the gravity, the temperature and pressure in the heat conduction, and the heat transfer rate in the internal stored energy are also investigated. The values in the probability set are compared with those of the fuzzy set modeling. Non-linearity of the safety margin is expressed by the fuzziness of the membership function. This artificial intelligence analysis of the fuzzy set could enhance the reliability of the system comparing to the probabilistic analysis.

  10. RATU - Nuclear power plant structural safety research programme

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-07-01

    Studies on the structural materials in nuclear power plants create the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research is carried out by developing experimental fracture mechanics methods including statistical analysis methods of materials property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for measurement of loading and water chemistry parameters have been developed. The monitoring data obtained in real power plants has been used to simulate more precisely the real environment during laboratory tests. The research on structural analysis has focused on extending and verifying the analysis capabilities for structural assessments of nuclear power plants. A widely applicable system including various computational fracture assessment methods has been created with which different structural problems can be solved reliably and effectively. Research on reliability assessment of maintenance in nuclear power plants is directed to practical case studies on components and structures of safety importance, and to the development of models for maintenance related decision support. A systematic analysis of motor-operated valve has been performed

  11. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  12. Safety criteria for design of nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    In Finland the general safety requirements for nuclear power plants are presented in the Council of State Decision (395/91). In this guide, safety principles which supplement the Council of State Decision and which are to be used in the design of nuclear power plants are defined

  13. Code on the safety of nuclear power plants: Governmental organization

    International Nuclear Information System (INIS)

    1988-01-01

    This Code recommends requirements for a regulatory body responsible for regulating the siting, design, construction, commissioning, operation and decommissioning of nuclear power plants for safety. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants

  14. IAEA Operational Safety Team Reviews Cattenom Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    , transport and storage of the source; Redundant and diversified telecommunication means are deployed in the various on-site emergency response facilities; and In the event of a severe accident, the support which can be provided to plant staff through a wide range of expertise and analytical tools is commendable. The team has made recommendations and suggestions related to areas where operational safety of Cattenom NPP could be improved. Examples include: Ensuring that all management information, directives and expectations are clearly communicated to all staff and fully implemented; Enhancing the organization of the training programme in the areas of assessment, objectives and competencies; Improving the control of the plant surveillance test programme regarding scheduling and acceptance criteria; and Improving the effectiveness of the plant's Root Cause Analysis process. Cattenom management expressed a determination to address all the areas identified for improvement and requested the IAEA to schedule a follow-up mission in approximately 18 months' time. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at IAEA headquarters including any comments from Cattenom NPP and the French Safety Authority (ASN). The final report will be submitted to the Government of France within three months. This was the 166th mission of the OSART programme, which began in 1982, and the 23rd such mission in France. General information about OSART missions can be found on the IAEA website OSART Missions. Background An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational

  15. Operating procedure automation to enhance safety of nuclear power plants

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.; Adams, S.K.; Rodriguez, R.J.; Packer, D.; Holmes, J.W.

    1989-01-01

    Use of logic statements and computer assist are explored as means for automation and improvement on design of operating procedures including those employed in abnormal and emergency situations. Operating procedures for downpower and loss of forced circulation are used for demonstration. Human-factors analysis is performed on generic emergency operating procedures for three strategies of control; manual, semi-automatic and automatic, using standard emergency operating procedures. Such preliminary analysis shows that automation of procedures is feasible provided that fault-tolerant software and hardware become available for design of the controllers. Recommendations are provided for tests to substantiate the promise of enhancement of plant safety. Adequate design of operating procedures through automation may alleviate several major operational problems of nuclear power plants. Also, automation of procedures is necessary for partial or overall automatic control of plants. Fully automatic operations are needed for space applications while supervised automation of land-based and offshore plants may become the thrust of new generation of nulcear power plants. (orig.)

  16. Safety evaluation of nuclear power plant against the virtual tsunami

    International Nuclear Information System (INIS)

    Chin, S. B.; Imamura, Fumihiko

    2004-01-01

    The main scope of this study is the numerical analysis of virtual tsunami event near the Ulchin Nuclear Power Plants. In the numerical analysis, the maximum run-up height and draw-down are estimated at the Ulchin Nuclear Power Plants. The computer program developed in this study describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. It can be used to check the safety of a nuclear power plant against tsunami attacks. The program can also be used to calculate run-up height of wave and provide proper design criteria for coastal facilities and structures. A maximum inundation zone along the coastline can be developed by using the moving boundary condition. As a result, it is predicted that the Ulchin Nuclear Power Plants might be safe against the virtual tsunami event. Although the Ulchin Nuclear Power Plants are safe against the virtual tsunami event, the occurrence of a huge tsunami in the seismic gap should be investigated in detail. Furthermore, the possibility of nearshore tsunamis around the Korean Peninsula should also be studied and monitored continuously

  17. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    improvement of nuclear safety in the participating host organization and host member countries. To achieve this goal, the EM is to establish a process of discussion and comparison of gap findings, which will lead to sharing of information, experience, strengths and weaknesses among the participants, and foster regional cooperation to improve the weaknesses and improve safety generally. The pilot mission was conducted from 28 October to 1 November for one week at the National Nuclear Agency (BATAN) in Indonesia by the mission team formulated with 6 international experts who have considerable knowledge and experience in the field of safety analysis such as the deterministic safety analysis (DSA) and probabilistic safety analysis (PSA). Some comments and recommendations were given to BATAN management to support the establishment and maintenance of safety analysis capability and human resource, organizational and training aspects. Those aspects are important as a measure of the progress being made and an indicator of areas in SATG within the framework of the Extra-budgetary Programme on the Safety of Nuclear Installations in Southeast Asia, the Pacific, and Far East Countries (the EBP-Asia) or other cooperation programme, such as the IAEA Technical Cooperation programme. Provided in 2013 the Review of Gap Analysis for BATAN (Indonesian Nuclear Safety Regulatory Body) could be good reference for all other newcomer countries which started or plans nuclear power plant installation. (authors)

  18. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  19. Method of safety evaluation in nuclear power plants

    International Nuclear Information System (INIS)

    Kuraszkiewicz, P.; Zahn, P.

    1988-01-01

    A novel quantitative technique for evaluating safety of subsystems of nuclear power plants based on expert estimations is presented. It includes methods of mathematical psychology recognizing the effect of subjective factors in the expert estimates and, consequently, contributes to further objectification of evaluation. It may be applied to complementing probabilistic safety assessment. As a result of such evaluations a characteristic 'safety of nuclear power plants' is obtained. (author)

  20. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  1. Probabilistic safety assessment in nuclear power plant management

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1989-06-01

    Probabilistic Safety Assessment (PSA) techniques have been widely used over the past few years to assist in understanding how engineered systems respond to abnormal conditions, particularly during a severe accident. The use of PSAs in the design and operation of such systems thus contributes to the safety of nuclear power plants. Probabilistic safety assessments can be maintained to provide a continuous up-to-date assessment (Living PSA), supporting the management of plant operations and modifications

  2. Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.

  3. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. It supplements Safety Standards Series No. NS-R-1: Safety of Nuclear Power Plants: Design (the Requirements for Design), which establishes the design requirements for ensuring the safety of nuclear power plants. This Safety Guide describes how the requirements should be met for instrumentation and control (I and C) systems important to safety. This publication is a revision and combination of two previous Safety Guides: Safety Series Nos 50-SG-D3 and 50-SG-D8, which are superseded by this new Safety Guide. The revision takes account of developments in I and C systems important to safety since the earlier Safety Guides were published in 1980 and 1984, respectively. The objective of this Safety Guide is to provide guidance on the design of I and C systems important to safety in nuclear power plants, including all I and C components, from the sensors allocated to the mechanical systems to the actuated equipment, operator interfaces and auxiliary equipment. This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety. It expands on paragraphs of Ref in the area of I and C systems important to safety. This publication is intended for use primarily by designers of nuclear power plants and also by owners and/or operators and regulators of nuclear power plants. This Safety Guide provides general guidance on I and C systems important to safety which is broadly applicable to many nuclear power plants. More detailed requirements and limitations for safe operation specific to a particular plant type should be established as part of the design process. The present guidance is focused on the design principles for systems important to safety that warrant particular attention, and should be applied to both the design of new I and C systems and the modernization of existing systems. Guidance is provided on how design

  4. Questions concerning safety and risk after the nuclear accidents in Japan. Deepened accident analysis for the Fukushima Daiichi power plant; Sicherheits- und Risikofragen im Nachgang zu den nuklearen Stoer- und Unfaellen in Japan. Vertiefte Ereignisanalyse zur Anlage Fukushima-Daini

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Darmstadt (Germany)

    2015-02-25

    The study questions concerning safety and risk in Japanese power plants following the disastrous nuclear accident covers the following issues: the nuclear facility Fukushima Daiichi, site characterization, important technical equipment, important electro-technical equipment, personal; description of the accident progression in the Fukushima nuclear power plant: impact of the earthquake, impact of the tsunami, short-term measures of the operating personnel, pressure and temperature situation in the containments, restoration of the after-heat cooling system in the units 1/2 and 4, fuel element storage pool, summarized parameters during the accident progress; comparative analysis of the accident progression at the Fukushima Daiichi site.

  5. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  6. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  7. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  8. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  9. Domestic Regulation for Periodic Safety Review of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Daesik; Ahn, Seunghoon; Auh, Geunsun; Lee, Jonghyeok

    2015-01-01

    The so-called Periodic Safety Review (PSR) has been carried out such safety assessment throughout its life, on a periodic basis. In January 2001, the Atomic Energy Act and related regulations were amended to adopt the PSR institutional scheme from IAEA Nuclear Safety Guide 50-SG-O12. At that time the safety assessment was made to review the plant safety on 10 safety factors, such as aging management and emergency planning, where the safety factor indicates the important aspects of safety of an operating NPP to be addressed in the PSR. According to this legislation, the domestic utility, the KHNP has conducted the PSR for the operating NPP of 10 years coming up from operating license date, starting since May 2000. Some revisions in the PSR rule were made to include the additional safety factors last year. This paper introduces the current status of the PSR review and regulation, in particular new safety factors and updated technical regulation. Comprehensive safety assessment for Korea Nuclear Power Plants have performed a reflecting design and procedure changes and considering the latest technology every 10 years. This paper also examined the PSR system changes in Korea. As of July 2015, reviews for PSR of 18 units have been completed, with 229 nuclear safety improvement items. And implementation have been completed for 165 of them. PSR system has been confirmed that it has contributed to improvement of plant safety. In addition, this paper examined the PSR system change in Korea

  10. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety

  11. Planning and evaluation of plant under safety aspects

    International Nuclear Information System (INIS)

    Strnad, H.

    1985-01-01

    Plant denotes a technical product characterized as being structured, complex, comprising the use of energy, and that of measuring, automatic control and monitoring systems to keep track of present, control and monitor processes. Particular attention is paid to methods of developing plant concepts, measures to exclude or detect risks, integration of safety engineering into the course of planning, safety concept and ergonomics in plant design. (DG) [de

  12. A study on methodologies for assessing safety critical network's risk impact on Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Lee, H. J.; Park, S. K.; Seo, S. J.

    2006-08-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for Nuclear Power Plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of the first year study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  13. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  14. Safety of Nuclear Power Plants: Commissioning and Operation

    International Nuclear Information System (INIS)

    2011-01-01

    The safety of a nuclear power plant is ensured by means of proper site selection, design, construction and commissioning, and the evaluation of these, followed by proper management, operation and maintenance of the plant. In a later phase, a proper transition to decommissioning is required. The organization and management of plant operations ensures that a high level of safety is achieved through the effective management and control of operational activities. This publication is a revision of the Safety Requirements publication Safety of Nuclear Power Plants: Operation, which was issued in 2000 as IAEA Safety Standards Series No. NS-R-2. The purpose of this revision was to restructure Safety Standards Series No. NS-R-2 in the light of new operating experience and new trends in the nuclear industry; to introduce new requirements that were not included in Safety Standards Series No. NS-R-2 on the operation of nuclear power plants; and to reflect current practices, new concepts and technical developments. This update also reflects feedback on the use of the standards, both from Member States and from the IAEA's safety related activities. The publication is presented in the new format for Safety Requirements publications. The present publication reflects the safety principles of the Fundamental Safety Principles. It has been harmonized with IAEA Safety Standards Series No. GS-R-3 on The Management System for Facilities and Activities. Guidance on the fulfilment of the safety requirements is provided in supporting Safety Guides. The terminology used in this publication is defined and explained in the IAEA Safety Glossary. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the safety objective and safety principles that are established in the Fundamental Safety Principles. This

  15. Good safety culture maintenance at Leningrad nuclear power plant

    International Nuclear Information System (INIS)

    Ardanov, A.

    1996-01-01

    The evidence in favour of the Leningrad NPP commitment to safety tasks, as the case is in the international practice, is The Safety Policy Statement document where safety is declared to be more significant than the power generation related issues, with the entire responsibility for the safety provision taken over by the operating utility. To avoid the situation when the stated safety tasks and policy remain only a declaration, the organizational structure of the operating utility was expanded to include The Safety Control Department and The Quality Control Department whose tasks encompass the control of the achieved safety level, development of recommendations, measures and actions aimed at the safety culture improvement, assessment and revision of the criteria and requirements to the personnel and management. Each individual at LNPP whose activity affects the plant safety has been familiarized with The Safety Policy Statement document

  16. Good safety culture maintenance at Leningrad nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ardanov, A [Safety Control Dept., Leningrad Nuclear Power Plant, Leningrad (Russian Federation)

    1997-12-31

    The evidence in favour of the Leningrad NPP commitment to safety tasks, as the case is in the international practice, is The Safety Policy Statement document where safety is declared to be more significant than the power generation related issues, with the entire responsibility for the safety provision taken over by the operating utility. To avoid the situation when the stated safety tasks and policy remain only a declaration, the organizational structure of the operating utility was expanded to include The Safety Control Department and The Quality Control Department whose tasks encompass the control of the achieved safety level, development of recommendations, measures and actions aimed at the safety culture improvement, assessment and revision of the criteria and requirements to the personnel and management. Each individual at LNPP whose activity affects the plant safety has been familiarized with The Safety Policy Statement document.

  17. Safety culture in the maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    Safety culture is the complexity of beliefs, shared values and behaviour reflected in making decisions and performing work in a nuclear power plant or nuclear facility. The definition of safety culture and the related concepts presented in the IAEA literature are widely known to experts. Since the publication of Safety Culture, issued by the IAEA as INSAG-4 in 1991, the IAEA has produced a number of publications on strengthening the safety culture in organizations that operate nuclear power plants and nuclear facilities. However, until now the focus has been primarily on the area of operations. Apart from operations, maintenance in plants and nuclear facilities is an aspect that deserves special attention, as maintenance activities can have both a direct and an indirect effect on equipment reliability. Adverse safety effects can arise, depending upon the level of skill of the personnel involved, safety awareness and the complexity of the work process. Any delayed effects resulting from challenges to maintenance can cause interruptions in operation, and hence affect the safety of a plant or facility. Building upon earlier IAEA publications on this topic, this Safety Report reviews how challenges to the maintenance of nuclear power plants can affect safety culture. It also highlights indications of a weakening safety culture. The challenges described are in areas such as maintenance management; human resources management; plant condition assessment and the business environment. The steps that some Member States have taken to address safety culture aspects are detailed and singled out as good practices, with a view to disseminating and exchanging experiences and lessons learned. Although this report is primarily directed at plant maintenance organizations, the subject matter is applicable to a wider audience, including plant contracting organizations and regulatory authorities

  18. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  19. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  20. Thermophysics of safety of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Sharaevskij, I.G.; Fialko, N.M.; Zimin, L.B.; Sharaevskij, G.I.

    2010-01-01

    This monograph presents the basic critical analysis of the vapor phase generation process and the heat exchange crisis with respect to conditions of involuntary movement of heat carrier in the steam generating core channels of the nuclear powerful reactors, as well as modern understanding on the most important current heat hydraulic peculiarities under these conditions the two-phase flows. It was suggested the series of original methods, physics mathematical models and algorithms for enhancement of thermohydraulic computation codes - the component of great importance for operational safety providing system of nuclear power units, and for giving the possibility of automatic identification for these systems in real time of nominal and pre-emergency modes of vapor-water flows current.

  1. Forum for fire protection and safety in power plants[Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference contains 16 presentations on topics in the fields of fire protection and safety in plants in Western Norway, reorganization and reconstruction of power systems and plants in Norway, various aspects of risk and vulnerability analysis, technological aspects of plant management and construction and problems and risks with particularly transformers. Some views on challenges of the fire departments and the new Norwegian regulations for electrical power supply systems are included. One presentation deals with challenges for Icelandic power production plants.

  2. Failure analysis and success analysis: roles in plant aging assessments

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1985-06-01

    Component aging investigations are an important element in NRC's Nuclear Plant Aging Research (NPAR) strategy. Potential sources of components include plants in decommissioning and commercial plant, both for in situ tests and for examination of equipment removed from service. Nuclear utilities currently have voluntary programs addressing aspects of equipment reliability, such as root cause analysis for safety-related equipment that malfunctions, and trending analysis to follow the course of both successful and abnormal equipment performance. Properly coordinated, the NPAR and utility programs offer an important approach to establish the data base necessary for life extension of nuclear electrical generating plants

  3. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  4. T Plant Overpack Tiedown Analysis

    International Nuclear Information System (INIS)

    RILEY, D.L.

    2000-01-01

    This tiedown evaluation meets the requirement imposed by HNF-6550, ''Safety Evaluation for Packaging (Onsite) T Plant Canyon Items,'' (O'Brien 2000). O'Brien (2000) requires that any items prepared for shipment from T Plant to the burial grounds

  5. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  6. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  7. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-01-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur

  8. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-07-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur. 2 refs

  9. Standardized safety management of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Li Xingwen; Cao Zhiqiang; Cong Jiuyuan

    2011-01-01

    In 2002, China published and implemented the Law of the People's Republic of China on Work Safety and promulgated a series of guidelines and policies, which strengthened the safety management supervision. Standardization of safety, as another important step on safety supervision, comes after safety assesment and safety production licensing system, is also a permanent solution. Standardization of safety is a strategic, long term and fundamental work, which is also the basic access to achieving scientific safety management and increasing the inherent safety of an enterprise. Haiyang AP1000 nuclear power plant, adopting the modularized, 'open-top' and parallel construction means, overturned the traditional construction theory of installation work comes after the civil work and greatly shorten the construction period. At the same time, the notable increase of oversize module transportation and lifting and parallel construction raises higher demands for safety management. This article combines the characteristics and difficulties of safety management for Haiyang AP1000 nuclear power plant, puts forward ideas and methods for standardized safety management, and could also serve as reference to the safety management for other AP1000 projects. (authors)

  10. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  11. Plant assessment system and safety culture

    International Nuclear Information System (INIS)

    Chun, Chuyoung

    1996-01-01

    The government, upon these events, keenly felt the necessity for developing the safety culture which was already forwarded in nuclear industries and started taking actions to propagate it to all parts of society. The government established a social safety director position under the Prime Minister's jurisdiction and also established a Safety Culture Promotion Headquarters in which 7 ministries and other organizations, such as Korea Economic Council, Federation of Korea Trade Union and Women's Federation Council were participating. In accordance with the government's strong will to enhance the safety consciousness of people, safety campaigns are being developed voluntarily in the private sector. The formation of non-governmental organizations, such as People's Central Council of Safety Culture Promotion, shows a good example of such movement

  12. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  13. Nuclear Power Plant (NPP) safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The multidisciplinary aspects of the activities involved in the nuclear power plant (NPP) licensing, are presented. The activities of CNEN's technical staff in the licensing of Angra-1 and Angra-2 power plants are shown. (E.G.) [pt

  14. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  15. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  16. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper contains an overview of the results concerning the following activities: investigation of methods, regulations and techniques for reassessment of seismic safety of operating NPPs and upgrading of safety; investigation of earthquake hazards; development of concept for creation of the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept and preliminary evaluation of the seismic safety. It is limited on investigation of dynamic features of building structures, the building dynamical experiments and experimental investigation of the equipment

  17. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  18. An approach to safety problems relating to ageing of nuclear power plant components

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.; Le Meur, M.

    1989-10-01

    The safety of nuclear power plants, in France, is discussed. The attention is focused on the ageing phenomena, as a potential cause of the degradation of the systems functional capabilities. The allowance for ageing in design and its importance on safety, are analyzed. The understanding of phenomena relating to ageing and the components surveillance, are considered. As the effective ageing on the components of nuclear power plants is not fully understood, technical improvements and more accurate analysis are required

  19. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  20. B plant mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  1. Plant safety and performance indicators for regulatory use

    International Nuclear Information System (INIS)

    Ferjancic, M.; Nemec, T.; Cimesa, S.

    2004-01-01

    Slovenian Nuclear Safety Administration (SNSA) supervises nuclear and radiological safety of Krsko NPP. This SNSA supervision is performed through inspections, safety evaluations of plant modifications and event analyses as well as with the safety and performance indicators (SPI) which are a valuable data source for plant safety monitoring. In the past SNSA relied on the SPI provided by Krsko NPP and did not have a set of SPI which would be more appropriate for regulatory use. In 2003 SNSA started with preparation of a new set of SPI which would be more suitable for performing the regulatory oversight of the plant. New internal SNSA procedure which is under preparation will define use and evaluation of SPI and will include definitions for the proposed set of SPI. According to the evaluation of SPI values in comparison with the limiting values and/or trending, the procedure will define SNSA response and actions. (author)

  2. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  3. Seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Halbritter, A.L.

    1984-01-01

    Nuclear Power Plants require exceptional safety guarantees which are reflected in a rigorous control of the employed materials, advanced construction technology, sophisticated methods of analysis and consideration of non conventional load cases such as the earthquake loading. In this paper, the current procedures used in the seismic analysis of Nuclear Power Plants are presented. The seismic analysis of the structures has two objectives: the determination of forces in the structure in order to design it against earthquakes and the generation of floor response spectra to be used in the design of mechanical and electrical components and piping systems. (Author) [pt

  4. Safety upgrading of the PAKS Nuclear Plant

    International Nuclear Information System (INIS)

    Vamos, G.; Vigassy, J.

    1993-01-01

    In the last several years the net electricity from the Paks NPP represents almost half of the Hungarian total. The 4 units of Paks belong to the latest generation of the VVER-440 units, the small-sized Russian designed PWRs. Reviewing the main design features of them, the safety merits and safety concerns are summarized. Due to the conservative design and the extensive operating experience the safety merits appear to be more significant than generally believed. The VVER-440 type has two models, the 230 and 213, which have a large number of distinctive safety features. These are highlighted in the section comparisons. A quality assurance program was initiated in Paks very early. A long-term safety upgrading program was also initiated, originating from vendor recommendations, regulatory decisions, in-house operating experience and safety concerns, and independent reviews. The main areas and some examples of the measures are described. This program, like all other activities related to nuclear safety, has been under regulatory control. The specific features of the Hungarian regulatory system are described. For advanced, general and new evaluation of the safety of the units in Paks in accordance with the internationally recommended criteria of the 90's, the project AGNES has been launched with international participation. The scope of this project is summarized. International efforts as the IAEA Regional Project on safety assessment of VVER-440/213 and VVER-440/230 units are underway. Since safety is not only a question of design, but it can be significantly influenced by operations and maintenance practices, the Paks NPP has invited LAEA's OSART and ASSET missions, WANO's Pilot Peer Review

  5. Development of safety review advisory system for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, M. W.; Lee, H. C.; Park, S. O.; Park, W. J.; Lee, J. I.; Hur, K. Y.; Choi, S. S.; Lee, S. J.; Kang, C. M.

    2001-01-01

    For the development of an expert system supporting the safety review of nuclear power plants, the application program was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they were investigated by the safety review experts at KINS. Safety Review Advisory System (SRAS), the windows application on client-server environment was developed according to the above specifications. Reviewers can do their safety reviewing regardless of speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into three groups, administrator, project manager, and reviewer. Each user group has appropriate access capability. The function and some screen shots of SRAS are described in this paper

  6. Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach

    International Nuclear Information System (INIS)

    Ferrario, E.; Zio, E.

    2014-01-01

    We adopt a ‘system-of-systems’ framework of analysis, previously presented by the authors, to include the interdependent infrastructures which support a critical plant in the study of its safety with respect to the occurrence of an earthquake. We extend the framework to consider the recovery of the system of systems in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power and water distribution, and transportation networks which support its operation. The Seismic Probabilistic Risk Assessment of such system of systems is carried out by Hierarchical modeling and Monte Carlo simulation. First, we perform a top-down analysis through a hierarchical model to identify the elements that at each level have most influence in restoring safety, adopting the criticality importance measure as a quantitative indicator. Then, we evaluate by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe state and the time needed to recover its safety. The results obtained allow the identification of those elements most critical for the safety and recovery of the nuclear power plant; this is relevant for determining improvements of their structural/functional responses and supporting the decision-making process on safety critical-issues. On the test system considered, under the given assumptions, the components of the external and internal water systems (i.e., pumps and pool) turn out to be the most critical for the safety and recovery of the plant. - Highlights: • We adopt a system-of-system framework to analyze the safety of a critical plant exposed to risk from external events, considering also the interdependent infrastructures that support the plant. • We develop a hierarchical modeling framework to represent the system of systems, accounting also for its recovery. • Monte Carlo simulation is used for the quantitative evaluation of the

  7. Safety criteria for siting a nuclear power plant

    International Nuclear Information System (INIS)

    2001-01-01

    The guide sets forth requirements for safety of the population and the environment in nuclear power plant siting. It also sets out the general basis for procedures employed by other competent authorities when they issue regulations or grant licences. On request STUK (Radiation and Nuclear Safety Authority of Finland) issues case-specific statements about matters relating to planning and about other matters relating to land use in the environment of nuclear power plants

  8. General view about reactor safety nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Gasparian, A.E.; Silva, D.E.; Salvatore, J.E.L.; Lima, J.M. de

    1991-01-01

    In this paper the authors describe the principles and goals that have guided, as well as the methods that have been used by the National Commission of Nuclear Energy (CNEN) to set forth measures aiming at providing safety to the Brazilian nuclear power plants. The status of the licensing process of these power plants is shown. The performance and the results obtained so far in relation to the nuclear safety are also described. (author)

  9. Trends in safety objectives for nuclear district heating plants

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R [Paul Scherrer Inst., Villigen (Switzerland)

    1997-09-01

    Safety objectives for dedicated nuclear heating plants are strongly influenced on the one hand by what is accepted for electricity nuclear stations, and on the other hand by the requirement that for economical reasons heating reactors have to be located close to population centers. The paper discusses the related trends and comes to the conclusion that on account of the specific technical characteristics of nuclear heating plants adequate safety can be provided even for highly populated sites. (author). 8 refs.

  10. The LaSalle probabilistic safety analysis

    International Nuclear Information System (INIS)

    Frederick, L.G.; Massin, H.L.; Crane, G.R.

    1987-01-01

    A probabilistic safety analysis has been performed for LaSalle County Station, a twin-unit General Electric BWR5 Mark II nuclear power plant. A primary objective of this PSA is to provide engineers with a useful and useable tool for making design decisions, performing technical specification optimization, evaluating proposed regulatory changes to equipment and procedures, and as an aid in operator training. Other objectives are to identify the hypothetical accident sequences that would contribute to core damage frequency, and to provide assurance that the total expected frequency of core-damaging accidents is below 10 -4 per reactor-year in response to suggested goals. (orig./HSCH)

  11. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  12. 324 building safety analysis report supplement

    International Nuclear Information System (INIS)

    Dodd, A.O.; Wittenbrock, N.G.

    1977-01-01

    Process engineering designs, major equipment and plant facilities to be utilized in commercial nuclear waste preparation and vitrification in the 324 Radiochemical Engineering Building are reviewed with regard to accident potential and consequences. This Safety Analysis Report Supplement compares calculated environmental doses anticipated from the Commercial Nuclear Waste Vitrification Project (CNWVP) routine operations with the average doses from past waste management operations conducted at the Hanford Project and finds them to be significantly less. The calculated CNWVP environmental doses are found to be far below presently applicable ERDA standards and standards proposed by the EPA for nuclear power operations

  13. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    Government are part of the reason and will be a feature of the next ten-year period. Furthermore, in new regulations, SKI has introduced more stringent requirements on facility design and construction, based on the experience that has been accumulated since nuclear power was introduced in Sweden. At the same time, the power companies intend to implement power uprating at several of the reactors, which will require extensive safety reviews. Major power uprates require a large amount of analysis work and refurbishment at the facilities in order to take into account increased capacity requirements on safety systems and other factors. During the year, the work on the new regulations for physical protection intensified and a revised draft of regulations and general recommendations has been subjected to a formal review by licensees concerned. During the year, SKI initiated an investigation into how maintenance strategies have developed at Swedish nuclear power plants since the deregulation of the Swedish electricity market in the mid-nineties. The investigation shows that the rate of change over the past five-year period has been faster than during the previous five to ten-year period. Changes have occurred with respect to strategy and organization. Deregulation has been the most important driving force for internal improvements. One conclusion is that the changes have contributed to the learning and development of both individuals and organization. Furthermore, there is no sign of a negative impact on reactor safety. In SKI's opinion, the maintenance activity is extremely important to safety, and supervision will focus on work loads, responsibilities and roles, work satisfaction and motivation, maintenance procedures as well as the possible impact of the combination of financial pressure and a high rate of change. During the year, it was announced that Barsebaeck 2 would be closed down at the end of May 2005. SKI will continue to maintain intensified supervision, which means a

  14. The safety evaluation guide for laboratories and plants a tool for enhancing safety

    International Nuclear Information System (INIS)

    Lhomme, Veronique; Daubard, Jean-Paul

    2013-01-01

    The Institute for Radioprotection and Nuclear Safety (IRSN) acts as technical support for the French government Authorities competent in nuclear safety and radiation protection for civil and defence activities. In this frame, the Institute's performs safety assessments of the safety cases submitted by operators to these Authorities for each stage in the life cycle of a nuclear facility, including dismantling operations, which is subjected to a licensing procedure. In the fuel cycle field, this concerns a large variety of facilities. Very often, depending on facilities and on safety cases, safety assessment to be performed is multidisciplinary and involves the supervisor in charge of the facility and several safety experts, particularly to cover the whole set of risks (criticality, exposure to radiation, fire, handling, containment, human and organisational factors...) encountered during facility's operations. Taking these into account, and in order to formalize the assessment process of the fuel cycle facilities, laboratories, irradiators, particle accelerators, under-decommissioning reactors and radioactive waste management, the 'Plants, Laboratories, Transports and Waste Safety' Division of IRSN has developed an internal guide, as a tool: - To present the methodological framework, and possible specificities, for the assessment according to the 'Defence in Depth Concept' (Part 1); - To provide key questions associated to the necessary contradictory technical review of the safety cases (Part 2); - To capitalise on experience on the basis of technical examples (coming from incident reports, previous safety assessments...) demonstrating the questioning (Part 3). The guide is divided in chapters, each dedicated to a type of risk (dissemination of radioactive material, external or internal exposure from ionising radiation, criticality, radiolysis mechanisms, handling operations, earthquake, human or organisational factors...) or to a type

  15. Concept of system safety on operating nuclear power plant

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Yamaguchi, Akira; Demachi, Kazuyuki; Takata, Takashi; Arai, Shigeki; Sugiyama, Naoki

    2015-01-01

    The total system design on Nuclear Plant ensures 'Nuclear safety' with making practically achievable efforts to prevent and mitigate nuclear and radiological accidents. The performance based system design with 'Defence in depth (D-I-D)' has been laid out as the key means in 'preventing accidents', 'controlling escalation to serious consequences', and 'preventing harmful consequences to the public'. D-I-D is extended to the management of severe accidents, and is an approach intended to provide protection against the development of a wide variety of events by means of redundant, diverse and independent protective barriers. It is crucial to maintain plant integrity with mass quantity of radioactive material present in reactor core, against potential consequences (risk) on people and the environment caused by external hazards, particularly, earthquake and tsunami. The fundamental approach on D-I-D is to address uncertainties by means of successive measures, so that if one measure fails, other, or subsequent measure will be available to ensure safety. Risk analysis should be conducted to validate and enhance reliability of the defence barriers against consequences on people and the environment. (author)

  16. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  17. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  18. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  19. Definitive closure of nuclear power plants. Aspects concerning physical safety

    International Nuclear Information System (INIS)

    Rodriguez, C.; Puntarulo, L.; Canibano, J.

    1988-01-01

    This paper analyzes the various safety requirements that must be fulfilled by nuclear power plants for their operation without restrictions, such as safeguards, nuclear safety and physical protection. Physical protection, the subject most extensively dealt by the authors, is defined as safety measures aimed at providing protection against deliberate hostile deeds, such as robberies or non-authorized transport of radioactive materials or sabotage in nuclear facilities, performed either by individuals or by groups of individuals. (Author)

  20. An engineer-constructor's view of nuclear power plant safety

    International Nuclear Information System (INIS)

    Landis, J.W.; Jacobs, S.B.

    1984-01-01

    At SWEC we have been involved in the development of safety features of nuclear power plants ever since we served as the engineer-constructur for the first commerical nuclear power station at Shippingport, Pennsylvania, in the 1950s. Our personnel have pioneered a number of safety innovations and improvements. Among these innovations is the subatmospheric containment for pressurized water reactor (PWR) power plants. This type of containment is designed so that leakage will terminate within 1 to 2 hours of the worst postulated loss of coolant accident. Other notable contributions include first use of reinforced-concrete atmospheric containments for PWR power plants and of reinforced-concrete, vapor-suppression containments for boiling water reactor (BWR) power plants. Both concepts meet rigorous U.S. safety requirements. SWEC has performed a substantial amount of work on developing standardized plant designs and has developed standardized engineering and construction techniques and procedures. Standardization concepts are being developed in Canada, France, USSR, and Germany, as well as in the United States. The West German convoy concept, which involves developing a number of standardized plants in a common effort, has been quite successful. We believe standardization contributes to safety in a number of ways. Use of standardized designs, procedures, techniques, equipment, and methods increases efficiency and results in higher quality. Standardization also reduces the design variations with which plant operators, emergency teams, and regulatory personnel must be familiar, thus increasing operator capability, and permits specialized talents to be focused on important safety considerations. (orig./RW)

  1. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  2. Psychology in nuclear power plants: an integrative approach to safety - general statement

    International Nuclear Information System (INIS)

    Shikiar, R.

    1983-08-01

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals with the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety

  3. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  4. To improve nuclear plant safety by learning from accident's experience

    International Nuclear Information System (INIS)

    Matsumoto, Hidezo; Kida, Masanori; Kato, Hiroyuki; Hara, Shin-ichi

    1994-01-01

    The ultimate goal of this study is to produce an expert system that enables the experience (records and information) gained from accidents to be put to use towards improving nuclear plant safety. A number of examples have been investigated, both domestic and overseas, in which experience gained from accidents was utilized by utilities in managing and operating their nuclear power stations to improve safety. The result of investigation has been used to create a general 'basic flow' to make the best use of experience. The ultimate goal is achieved by carrying out this 'basic flow' with artificial intelligence (AI). To do this, it is necessary (1) to apply language analysis to process the source information (primary data base; domestic and overseas accident's reports) into the secondary data base, and (2) to establish an expert system for selecting (screening) significant events from the secondary data base. In the processing described in item (1), a multi-lingual thesaurus for nuclear-related terms become necessary because the source information (primary data bases) itself is multi-lingual. In the work described in item (2), the utilization of probabilistic safety assessment (PSA), for example, is a candidate method for judging the significance of events. Achieving the goal thus requires developing various new techniques. As the first step of the above long-term study project, this report proposes the 'basic flow' and presents the concept of how the nuclear-related AI can be used to carry out this 'basic flow'. (author)

  5. IAEA Completes Safety Review at Czech Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts, led by the International Atomic Energy Agency (IAEA), today completed a review of safety practices at Temelin Nuclear Power Station in the Czech Republic. The team highlighted the Power Plant's good practices and also recommended improvements to some safety measures. At the request of the Government of the Czech Republic, the IAEA assembled a team of nuclear installation safety experts to send an Operational Safety Review Team (OSART) to the Power Plant, and the mission was conducted from 5 to 22 November 2012. The team was comprised of experts from Brazil, Hungary, Slovakia, South Africa, Sweden, Ukraine and the United Kingdom. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the Plant's overall safety status. The team at Temelin conducted an in-depth review of the functions essential to the safe operation of the Power Plant, which are under the responsibility of the site's management. The review covered the areas of management, organization and administration; operations; maintenance; technical support; operating experience; radiation protection; chemistry; and severe accident management. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The OSART team has identified good plant practices, which will be shared with the rest of the nuclear industry for consideration of potential application elsewhere. Examples include the following: - The Power Plant has adopted effective computer software to improve the efficiency of the plant to prepare and isolate equipment for maintenance; - The Power Plant undertakes measures to control precisely the chemical parameters that limit corrosion in the reactor's coolant system, which in turn reduce radiation exposure to the workforce; and - The Temelin

  6. Study on 'Safety qualification of process computers used in safety systems of nuclear power plants'

    International Nuclear Information System (INIS)

    Bertsche, K.; Hoermann, E.

    1991-01-01

    The study aims at developing safety standards for hardware and software of computer systems which are increasingly used also for important safety systems in nuclear power plants. The survey of the present state-of-the-art of safety requirements and specifications for safety-relevant systems and, additionally, for process computer systems has been compiled from national and foreign rules. In the Federal Republic of Germany the KTA safety guides and the BMI/BMU safety criteria have to be observed. For the design of future computer-aided systems in nuclear power plants it will be necessary to apply the guidelines in [DIN-880] and [DKE-714] together with [DIN-192]. With the aid of a risk graph the various functions of a system, or of a subsystem, can be evaluated with regard to their significance for safety engineering. (orig./HP) [de

  7. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Appendix XI. Analysis of comments on the draft WASH-1400 report

    International Nuclear Information System (INIS)

    1975-10-01

    Information is presented concerning comments on reactor safety by governmental agencies and civilian organizations; reactor safety study methodology; consequence model; probability of accident sequences; and various accident conditions

  8. Applying artificial intelligence to safety and maintenance (in nuclear plants)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Under contract from the US DoE, Odetics Inc. is developing a prototype advisory expert system which may eventually be used for the maintenance and safety of a nuclear plant. The objective of the system will be to determine off-normal conditions and to help operations personnel through a course of action which would lead to a stable plant. (UK)

  9. Safety goals for nuclear power plants: a discussion paper

    International Nuclear Information System (INIS)

    1982-02-01

    This report includes a proposed policy statement on safety goals for nuclear power plants published by the Commission for public comment and a supporting discussion paper. Proposed qualitative goals and associated numerical guidelines for nuclear power-plant accident risks are presented. The significance of the goals and guidelines, their bases and rationale, and their proposed mode of implementation are discussed

  10. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  11. Safety-related occurrences at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Reponen, H.; Viitasaari, O.

    1985-04-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Report for this period, Operation of Finnish Nuclear Power Plants (STUK-B-YTO 7), which is supplemented by this report intended for experts. (author)

  12. Safety-related occurrences at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Viitasaari, O.; Rantavaara, A.

    1984-03-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Report for this period, Operation of Finnish Nuclear Power Plants (STL-B-RTO-83/7), which is supplemented by this report intended principally for experts. (author)

  13. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1985-01-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  14. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1986-03-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  15. Correct safety requirements during the life cycle of heating plants; Korrekta saekerhetskrav under vaermeanlaeggningars livscykel

    Energy Technology Data Exchange (ETDEWEB)

    Tegehall, Jan; Hedberg, Johan [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-10-15

    The safety of old steam boilers or hot water generators is in principle based on electromechanical components which are generally easy to understand. The use of safety-PLC is a new and flexible way to design a safe system. A programmable system offers more degrees of freedom and consequently new problems may arise. As a result, new standards which use the Safety Integrity Level (SIL) concept for the level of safety have been elaborated. The goal is to define a way of working to handle requirements on safety in control systems of heat and power plants. SIL-requirements are relatively new within the domain and there is a need for guidance to be able to follow the requirements. The target of this report is the people who work with safety questions during new construction, reconstruction, or modification of furnace plants. In the work, the Pressure Equipment Directive, 97/23/EC, as well as standards which use the SIL concept have been studied. Additionally, standards for water-tube boilers have been studied. The focus has been on the safety systems (safety functions) which are used in water-tube boilers for heat and power plants; other systems, which are parts of these boilers, have not been considered. Guidance has been given for the aforementioned standards as well as safety requirements specification and risk analysis. An old hot water generator and a relatively new steam boiler have been used as case studies. The design principles and safety functions of the furnaces have been described. During the risk analysis important hazards were identified. A method for performing a risk analysis has been described and the appropriate content of a safety requirements specification has been defined. If a heat or power plant is constructed, modified, or reconstructed, a safety life cycle shall be followed. The purpose of the safety life cycle is to plan, describe, document, perform, check, test, and validate that everything is correctly done. The components of the safety

  16. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  17. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Fire hazard has been identified as a major contributor to a plant's operational risk and the international nuclear power industry has been studying and developing tools for defending against this hazard. Considerable progress in design and regulatory requirements for fire safety, in fire protection technology and in related analytical techniques has been made in the past two decades. Substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new and existing nuclear power plants. To assist in these efforts, the IAEA initiated a programme on fire safety that was intended to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA programme aimed at the development of guidelines and good practices, the promotion of advanced fire safety assessment techniques, the exchange of state of the art information between practitioners and the provision of engineering safety advisory services and training in the implementation of internationally accepted practices. During the period 1993-1994, the IAEA activities related to fire safety concentrated on the development of guidelines and good practice documents related to fire safety and fire protection of operating plants. One of the first tasks was the development of a Safety Guide that formulates specific requirements with regard to the fire safety of operating nuclear power plants. Several documents, which provide advice on fire safety inspection, were developed to assist in its implementation. In the period 1995-1996, the programme focused on the preparation of guidelines for the systematic analysis of fire safety at nuclear power plants (NPPs). The IAEA programme on fire safety for 1997-1998 includes tasks aimed at promoting systematic assessment of fire safety related occurrences and dissemination of essential insights from this assessment. One of the topics addressed is the

  18. Social contention about safety of nuclear power plant

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1978-01-01

    In Japan, the contentions and arguments on the safety of nuclear power generation have been active since its first introduction, and these are greatly influenced by the nation's experiences of atomic bombs in Hiroshima, Nagasaki, and Bikini. As the result, the attitude of peoples toward the acceptance of nuclear power plants is significantly different from that in other countries. The situation in Japan of social contentions about nuclear power safety is explained in two aspects: acceptance of the safety, by peoples and Japanese pattern of safety contentions. In both upstream and downstream of nuclear power generation, not only the safety but also the right or wrong for nuclear power generation itself is discussed. The problem of nuclear power safety has gone into the region beyond the technological viewpoint. The pattern of safety contentions in Japan is the entanglement of three sectors; i.e. local people, labor unions and political parties, enterprises and administration, and intellectuals. (Mori, K.)

  19. Evolution of the future plants operation for a better safety

    International Nuclear Information System (INIS)

    Papin, B.; Malvache, P.

    1994-01-01

    This paper describes a coordinated research project of the french CEA, addressing to the evolutions in plant operation apt to bring perceptible and assessable improvement in the operational safety. This program has been scheduled for the 1992-1996 period, with a global 40 men/year effort. The present status of the two main parts of the project is presented: ESCRIME (program aiming at defining the optimal share of tasks between humans and computers in plant operation), IMAGIN (research in the domain of plant information management, in order to ensure the global coherence of the image of the plant, used by the different actors in plant operation). (authors). 3 refs., 4 figs

  20. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  1. Improving Chemical Plant Safety Training Using Virtual Reality

    OpenAIRE

    Nasios, Konstantinos

    2002-01-01

    The chemical engineering industry often requires people to work in hazardous environments and to operate complicated equipment which often limits the type of training that be carried out on site. The daily job of chemical plant operators is becoming more demanding due to the increasing plant complexity together with increasing requirements on plant safety, production capacity, product quality and cost effectiveness. The importance of designing systems and environments that are as safe as poss...

  2. Safety-related decision making at a nuclear power plant

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1998-01-01

    The decision making environment of an operating nuclear power plant is presented. The organizations involved, their roles and interactions as well as the main influencing factors and decision criteria are described. The focus is on safety-related decisions, and the framework is based on the situation at Loviisa power station. The role of probabilistic safety assessment (PSA) is illustrated with decisions concerning plant modifications, optimization, acceptance of temporary configurations and extended repair times. Suggestions are made for rational and flexible risk-based control of allowed times to operate the plant with some components out of service. (orig.)

  3. Safety and operation of the Stade nuclear power plant

    International Nuclear Information System (INIS)

    Salcher, H.

    1991-01-01

    The concept of PreussenElektra is to continuously increase the existing safety standard of the Stade nuclear power station using experience gained from faults and operation in nuclear power stations and the progressive state of the art. Modifications to achieve the most gentle operation of the plant have been completed and other are on-going. To do so instruments were attached to those components which are susceptible to fatigue to record the transients and extensive calculatory records were kept. Although the plant has almost 20 years successful operation behind it, it can still stand up well to comparisons with more recent plants as far as safety aspects are concerned. 6 figs

  4. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  5. Hydrogen Safety Analysis of the OPR1000 Nuclear Power Plant during a Severe Accident by a Small-Break Loss of Coolant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Park, Soo Yong; Ha, Kwang Soon; Hong, Seong Wan; Kim, Sang Baik

    2009-01-01

    A huge amount of hydrogen can be generated in a nuclear reactor and released into the reactor containment if a hypothetical severe accident happens. Even for the accident, the hydrogen concentrations must be safely controlled. In order to prove a nuclear power plant (NPP) safe from hydrogen, a simulation of hydrogen distributions in the containment are usually conducted by using a 1-dimensional thermo-hydraulic system code. If there exists a possibility of a hydrogen explosion in the containment, it is required to install a hydrogen mitigation system such as igniters or hydrogen recombiner. For a licensing of NPP construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. In Korea, two OPR1000 NPPs by the name of Shin-Wolsung 1 and 2 are under construction. The hydrogen safety and its control for the new NPPs will be evaluated in detail until a licensing of the operation. Until now, simulations of the hydrogen behaviors in the OPR1000 have been conducted by a lumped method for each compartment in the containment using CONTAIN or MAAP. This 1-dimensional method is very efficient for a long-term simulation of an accident because of its fast running time, and it is very effective for establishing the averaged hydrogen concentrations in each compartment. But a 3-dimensional flow structure developed by a discharged mass from a reactor vessel and local concentrations of hydrogen are difficult to be resolved by the lumped method. In this study, hydrogen distributions and characteristics of hydrogen mixture cloud such as a possibility of flame acceleration in each compartment of OPR1000 containment were evaluated by using GASFLOW code

  6. The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine

    International Nuclear Information System (INIS)

    Kot, C.

    1999-01-01

    Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Department of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments

  7. Improving the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs

  8. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  9. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  10. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  11. Floating nuclear power plant safety assurance principles

    International Nuclear Information System (INIS)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-01-01

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described

  12. Safety analysis report for packaging (Oak Ridge Y-12 Plant Model DT-14A package for enriched uranium), Y/DD-326 Supplement No. 1 (Rev. 0)

    International Nuclear Information System (INIS)

    Cadelli, G.; Kennedy, W.R. Jr.

    1986-01-01

    This Supplement to the Safety Analysis Report Y/DD-326 [1.4.1] was prepared in accordance with US NRC Regulatory Guide 7.9 to address the Naval Fuel contents to be shipped in the DT-14A packaging. New chapters were written for Shielding, Critcality and Quality Assurance. Independent reviews were obtained for each of these chapters and for a product leakage analysis referenced in Chapter 7.0 of this document. Other chapters invoke the Y/DD-326 SARP with minor changes or additions as indicated in the Supplement. All references to form or composition of the fuel are classified Confidential NNPI in the interest of national security

  13. Safety evaluation of the nuclear power plant at Cattenom

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This is a systematic compilation of the material which was dealt with at the level of the German-French Commission (on questions of the safety of nuclear installations) in this discussions about the nuclear power plant at Cattenom. As a supplement to the report published already in 1982, the Commission has officially released its deliberation results on the subjects constructive safety measures, radiological effects, and precautions in case of an emergency. The allegations according to which the installation is wanting in safety are countered by the joint statement of the chairmen of GPR (Permanent Group on Reactors) and RSK (German Commission on Reactor Safety) of August 29, 1986. (HSCH) [de

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  17. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  18. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  19. Transient analysis for Laguna Verde nuclear power plant