WorldWideScience

Sample records for plant residue decomposition

  1. Assessing plant residue decomposition in soil using DRIFT spectroscopy

    Science.gov (United States)

    Ouellette, Lance; Van Eerd, Laura; Voroney, Paul

    2016-04-01

    Assessment of the decomposition of plant residues typically involves the use of tracer techniques combined with measurements of soil respiration. This laboratory study evaluated use of Diffuse Reflectance Fourier Transform (DRIFT) spectroscopy for its potential to assess plant residue decomposition in soil. A sandy loam soil (Orthic Humic Gleysol) obtained from a field research plot was passed through a 4.75 mm sieve moist (~70% of field capacity) to remove larger crop residues. The experimental design consisted of a randomized complete block with four replicates of ten above-ground cover crop residue-corn stover combinations, where sampling time was blocked. Two incubations were set up for 1) Drift analysis: field moist soil (250 g ODW) was placed in 500 mL glass jars, and 2) CO2 evolution: 100 g (ODW) was placed in 2 L jars. Soils were amended with the plant residues (oven-dried at 60°C and ground to polysaccharides at 1106 and 1036 cm-1. Evolved CO2 was measured by the alkali trap method (1 M NaOH); the amount of plant residue-C remaining in soil was calculated from the difference in the quantity of plant residue C added and the additional CO2-C evolved from the amended soil. First-order model parameters of the change in polysaccharide peak area over the incubation were related to those generated from the plant residue C decay curves obtained from respiration measurements. The DRIFT method demonstrated that spectral areas consistent with labile aliphatic-C bands (2930 cm-1) can also be used to describe residue C decomposition. This is the first study to demonstrate the usefulness of DRIFT spectroscopy to characterize plant decomposition in soil.

  2. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2012-12-01

    Full Text Available Insight of nutrient release patterns associated with the decomposition of plant residues is important for their effective use as a green manure in food production systems. Thus, this study aimed to evaluate the ability of the Century, APSIM and NDICEA simulation models for predicting the decomposition and N mineralization of crop residues in the tropical Atlantic forest biome, Brazil. The simulation models were calibrated based on actual decomposition and N mineralization rates of three types of crop residues with different chemical and biochemical composition. The models were also validated for different pedo-climatic conditions and crop residues conditions. In general, the accuracy of decomposition and N mineralization improved after calibration. Overall RMSE values for the decomposition and N mineralization of the crop materials varied from 7.4 to 64.6% before models calibration compared to 3.7 to 16.3 % after calibration. Therefore, adequate calibration of the models is indispensable for use them under humid tropical conditions. The NDICEA model generally outperformed the other models. However, the decomposition and N mineralization was not very accurate during the first 30 days of incubation, especially for easily decomposable crop residues. An additional model variable may be required to capture initial microbiological growth as affected by the moisture dynamics of the residues, as is the case in surface residues decomposition models.

  3. Decomposition of residue currents

    OpenAIRE

    Andersson, Mats; Wulcan, Elizabeth

    2007-01-01

    Given a submodule $J\\subset \\mathcal O_0^{\\oplus r}$ and a free resolution of $J$ one can define a certain vector valued residue current whose annihilator is $J$. We make a decomposition of the current with respect to Ass$(J)$ that correspond to a primary decomposition of $J$. As a tool we introduce a class of currents that includes usual residue and principal value currents; in particular these currents admit a certain type of restriction to analytic varieties and more generally to construct...

  4. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria.

    Science.gov (United States)

    Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C

  5. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics

    NARCIS (Netherlands)

    Nascimento, do A.F.; Mendona, E.D.; Leite, L.F.C.; Scholberg, J.M.S.; Neves, J.C.L.

    2012-01-01

    Insight of nutrient release patterns associated with the decomposition of plant residues is important for their effective use as a green manure in food production systems. Thus, this study aimed to evaluate the ability of the Century, APSIM and NDICEA simulation models for predicting the decompositi

  6. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics

    NARCIS (Netherlands)

    Nascimento, do A.F.; Mendona, E.D.; Leite, L.F.C.; Scholberg, J.M.S.; Neves, J.C.L.

    2012-01-01

    Insight of nutrient release patterns associated with the decomposition of plant residues is important for their effective use as a green manure in food production systems. Thus, this study aimed to evaluate the ability of the Century, APSIM and NDICEA simulation models for predicting the

  7. Optimal Thermolysis Conditions for Soil Carbon Storage on Plant Residue Burning: Modeling the Trade-Off between Thermal Decomposition and Subsequent Biodegradation.

    Science.gov (United States)

    Kajiura, Masako; Wagai, Rota; Hayashi, Kentaro

    2015-01-01

    Field burning of plant biomass is a widespread practice that provides charred materials to soils. Its impact on soil C sequestration remains unclear due to the heterogeneity of burning products and difficulty in monitoring the material's biodegradation in fields. Basic information is needed on the relationship between burning conditions and the resulting quantity/quality of residue-derived C altered by thermal decomposition and biodegradation. In this study, we thermolyzed residues (rice straw and husk) at different temperatures (200-600°C) under two oxygen availability conditions and measured thermal mass loss, C compositional change by solid-state C NMR spectroscopy, and biodegradability of the thermally altered residues by laboratory aerobic incubation. A trade-off existed between thermal and microbial decomposition: when burned at higher temperatures, residues experience a greater mass loss but become more recalcitrant via carbonization. When an empirical model accounting for the observed trade-off was projected over 10 to 10 yr, we identified the threshold temperature range (330-400°C) above and below which remaining residue C is strongly reduced. This temperature range corresponded to the major loss of O-alkyl C and increase in aromatic C. The O/C molar ratios of the resultant residues decreased to 0.2 to 0.4, comparable to those of chars in fire-prone field soils reported previously. Although the negative impacts of biomass burning need to be accounted for, the observed relationship may help to assess the long-term fate of burning-derived C and to enhance soil C sequestration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Impact of diverse soil microbial communities on crop residues decomposition

    Science.gov (United States)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N

  9. Factors Affccting Change of Microbial Community During Plant Residue Decomposition: A Review%植物残体分解过程中微生物群落变化影响因素研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓玥; 孙波

    2012-01-01

    Plant residues are an important source of soil organic matter. An increasing attention has been paid on the succession^ pattern of microbial community structure during decomposition of plant residues. In this article, it is reviewed factors that have significant influence on the microbial community structure and function. These factors mainly include properties of plant residue, soil and climate factors and agricultural practices, which affect diversity of microbial community through influences on both activities of microbe and chemical composition changes of plant residue during its decomposition process. The impacts of these factors are not isolated, but interrelated and conditioned. In addition, microbial communities have shown obvious patterns with decomposition of residues. Furthermore, profoundly researches, especially under field conditions, are needed on successional pattern of key microbial community as well as interaction mechanism of different factors.%植物残体是土壤有机质的重要来源,研究分解植物残体的微生物群落结构及其演替规律日益受到重视.本文综述了影响植物残体分解过程中微生物群落结构和功能变化的3个主要因素;植物残体的性质、土壤和气候环境因素、农艺措施,这些因素通过影响微生物本身的活性和植物残体分解过程中化学组成的变化从而导致微生物群落的变化,同时植物残体腐解过程中微生物群落存在明显的演替现象.以上因素的影响并不是孤立的,而是相互联系和制约的.未来针对野外田问条件下植物残体的分解过程,仍需深入研究关键微生物群落的演替规律以及不同影响因素的交互作用机制.

  10. Crop residue decomposition in Minnesota biochar amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  11. Decomposition of sugar cane crop residues under different nitrogen rates

    Directory of Open Access Journals (Sweden)

    Douglas Costa Potrich

    2014-09-01

    Full Text Available The deposition of organic residues through mechanical harvesting of cane sugar is a growing practice in sugarcane production system. The maintenance of these residues on the soil surface depends mainly on environmental conditions. Nitrogen fertilization on dry residues tend to retard decomposition of these, providing benefits such as increased SOM. Thus, the object of this research was to evaluate the effect of different doses of nitrogen on sugar cane crop residues, as its decomposition and contribution to carbon sequestration in soil. The experiment was conducted in Dourados-MS and consisted of a randomized complete block design. Dried residues were placed in litter bags and the treatments were arranged in a split plot, being the four nitrogen rates (0, 50, 100 and 150 kg ha-1 N the plots, and the seven sampling times (0, 30, 60, 90, 120, 150 and 180 the spit plots. Decomposition rates of residues, total organic carbon and labile carbon on soil were analysed. The application of increasing N doses resulted in an increase in their decomposition rates. Despite this, note also the mineral N application as a strategy to get higher levels of labile carbon in soil.

  12. [Effects of aquatic plants during their decay and decomposition on water quality].

    Science.gov (United States)

    Tang, Jin-Yan; Cao, Pei-Pei; Xu, Chi; Liu, Mao-Song

    2013-01-01

    Taking 6 aquatic plant species as test objects, a 64-day decomposition experiment was conducted to study the temporal variation patterns of nutrient concentration in water body during the process of the aquatic plant decomposition. There existed greater differences in the decomposition rates between the 6 species. Floating-leaved plants had the highest decomposition rate, followed by submerged plants, and emerged plants. The effects of the aquatic plant species during their decomposition on water quality differed, which was related to the plant biomass density. During the decomposition of Phragmites australis, water body had the lowest concentrations of chemical oxygen demand, total nitrogen, and total phosphorus. In the late decomposition period of Zizania latifolia, the concentrations of water body chemical oxygen demand and total nitrogen increased, resulting in the deterioration of water quality. In the decomposition processes of Nymphoides peltatum and Nelumbo nucifera, the concentrations of water body chemical oxygen demand and total nitrogen were higher than those during the decomposition of other test plants. In contrast, during the decomposition of Potamogeton crispus and Myriophyllum verticillatum, water body had the highest concentrations of ammonium, nitrate, and total phosphorus. For a given plant species, the main water quality indices had the similar variation trends under different biomass densities. It was suggested that the existence of moderate plant residues could effectively promote the nitrogen and phosphorus cycles in water body, reduce its nitrate concentration to some extent, and decrease the water body nitrogen load.

  13. Decomposition of aquatic plants in lakes

    Energy Technology Data Exchange (ETDEWEB)

    Godshalk, G.L.

    1977-01-01

    This study was carried out to systematically determine the effects of temperature and oxygen concentration, two environmental parameters crucial to lake metabolism in general, on decomposition of five species of aquatic vascular plants of three growth forms in a Michigan lake. Samples of dried plant material were decomposed in flasks in the laboratory under three different oxygen regimes, aerobic-to-anaerobic, strict anaerobic, and aerated, each at 10/sup 0/C and 25/sup 0/C. In addition, in situ decomposition of the same species was monitored using the litter bag technique under four conditions.

  14. Effects of Tillage Management Systems on Residue Cover and Decomposition

    Institute of Scientific and Technical Information of China (English)

    ZHANGZHIGUO; XUQI; 等

    1998-01-01

    The effects of tillage methods on percent surface residue cover remaining and decomposition rates of crop residues were evaluated in this study.The line transect method was used to measure residue cover percentage on continuumous corn(Zea mays L.) plots under no tillage (NT),Conventional tillage(CT),chisel plow(CH),and disk tillage (DT).Samples of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) were used for residue decompostion study,Results showed that the percentage of residue cover remaining was significantly higher for NT than for CH and DT and that for CT was the lowest(<10%),For the same tillage system ,the percent residue cover remaining was significantly higher in the higher fertilizer N rate treatments relative to the lower fertilizer N treatments.weight losses of rye and vetch residues followed a similar pattern under CT and DT ,and they were significantly faster in CT and DT than in NT system ,Alo ,the amounts of residue N remaining during the first 16 weeks were alway higher under NT than under CT and DT.

  15. Nematode succession and microfauna-microorganism interactions during root residue decomposition

    DEFF Research Database (Denmark)

    Georgieva, Slavka; Christensen, Søren; Andersen, Karen Stevnbak

    2005-01-01

    The quality of plant material affects the vigor of the decomposition process and composition of the decomposer biota. Root residues from hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and vetch+rye, packed in litterbags were placed in pots of soil at 15 C and the content of the bags...... in rye. At week 12 no species dominated the nematode assemblages that were similar between the resources. The differences between nematode assemblages among plant resources at 2 week were similar to the results of a field study sampled after 6 weeks with the same soil and plant resources. This lends...

  16. Decomposition of Plant Debris by the Nematophagous Fungus ARF.

    Science.gov (United States)

    Wang, Kening; Riggs, R D; Crippen, Devany

    2004-09-01

    In the study of the biological control of plant-parasitic nematodes, knowledge of the saprophytic ability of a nematophagous fungus is necessary to understand its establishment and survival in the soil. The objectives of this study were (i) to determine if the nematophagous fungus ARF (Arkansas Fungus) shows differential use of plant residues; and (ii) to determine if ARF still existed in the soil of a field in which ARF was found originally and in which the population level of Heterodera glycines had remained very low, despite 15 years of continuous, susceptible soybean. Laboratory studies of the decomposition of wheat straw or soybean root by ARF were conducted in two separate experiments, using a CO collection apparatus, where CO-free air was passed through sterilized cotton to remove the microorganisms in the air and then was passed over the samples, and evolved CO was trapped by KOH. Milligrams of C as CO was used to calculate the percentage decomposition of the plant debris by ARF. Data indicated ARF decomposed 11.7% of total organic carbon of the wheat straw and 20.1% of the soybean roots in 6 weeks. In the field soil study, 21 soil samples were taken randomly from the field. Only 3 months after the infestation of the soil with H. glycines, the percentage of parasitized eggs of H. glycines reached 64 +/- 19%, and ARF was isolated from most parasitized eggs of H. glycines. Research results indicated ARF could use plant residues to survive.

  17. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  18. Biomass decomposition and nutrient release from black oat and hairy vetch residues deposited in a vineyard

    Directory of Open Access Journals (Sweden)

    Paulo Ademar Avelar Ferreira

    2014-10-01

    Full Text Available A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa and hairy vetch (Vicia villosa residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS, in vines rows with plastic shelter (VPRS, and in the between-row areas (BR. We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the

  19. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  20. Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover

    Directory of Open Access Journals (Sweden)

    Earle Raymond Hunt Jr.

    2010-01-01

    Full Text Available Remotely sensed estimates of crop residue cover (fR are required to assess the extent of conservation tillage over large areas; the impact of decay processes on estimates of residue cover is unknown. Changes in wheat straw composition and spectral reflectance were measured during the decay process and their impact on estimates of fR were assessed. Proportions of cellulose and hemicellulose declined, while lignin increased. Spectral features associated with cellulose diminished during decomposition. Narrow-band spectral residue indices robustly estimated fR, while broad-band indices were inconsistent. Advanced multi-spectral sensors or hyperspectral sensors are required to assess fR reliably over diverse agricultural landscapes.

  1. Plant identity influences decomposition through more than one mechanism.

    Directory of Open Access Journals (Sweden)

    Jennie R McLaren

    Full Text Available Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss.

  2. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Science.gov (United States)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  3. Plant diversity effects on root decomposition in grasslands

    Science.gov (United States)

    Chen, Hongmei; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Gessler, Arthur; Scherer-Lorenzen, Michael; Wirth, Christian; Weigelt, Alexandra

    2016-04-01

    Loss of plant diversity impairs ecosystem functioning. Compared to other well-studied processes, we know little about whether and how plant diversity affects root decomposition, which is limiting our knowledge on biodiversity-carbon cycling relationships in the soil. Plant diversity potentially affects root decomposition via two non-exclusive mechanisms: by providing roots of different substrate quality and/or by altering the soil decomposition environment. To disentangle these two mechanisms, three decomposition experiments using a litter-bag approach were conducted on experimental grassland plots differing in plant species richness, functional group richness and functional group composition (e.g. presence/absence of grasses, legumes, small herbs and tall herbs, the Jena Experiment). We studied: 1) root substrate quality effects by decomposing roots collected from the different experimental plant communities in one common plot; 2) soil decomposition environment effects by decomposing standard roots in all experimental plots; and 3) the overall plant diversity effects by decomposing community roots in their 'home' plots. Litter bags were installed in April 2014 and retrieved after 1, 2 and 4 months to determine the mass loss. We found that mass loss decreased with increasing plant species richness, but not with functional group richness in the three experiments. However, functional group presence significantly affected mass loss with primarily negative effects of the presence of grasses and positive effects of the presence of legumes and small herbs. Our results thus provide clear evidence that species richness has a strong negative effect on root decomposition via effects on both root substrate quality and soil decomposition environment. This negative plant diversity-root decomposition relationship may partly account for the positive effect of plant diversity on soil C stocks by reducing C loss in addition to increasing primary root productivity. However, to fully

  4. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis

    Science.gov (United States)

    Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yuzhu Chen; Feng Li

    2017-01-01

    The thermal decomposition characteristics of microwave liquefied rape straw residues with respect to liquefaction condition and pyrolysis conversion were investigated using a thermogravimetric (TG) analyzer at the heating rates of 5, 20, 50

  5. Nuclear power plant sensor fault detection using singular value decomposition-based method

    Indian Academy of Sciences (India)

    SHYAMAPADA MANDAL; N SAIRAM; S SRIDHAR; P SWAMINATHAN

    2017-09-01

    In a nuclear power plant, periodic sensor calibration is necessary to ensure the correctness of measurements. Those sensors which have gone out of calibration can lead to malfunction of the plant, possibly causing a loss in revenue or damage to equipment. Continuous sensor status monitoring is desirable to assure smooth running of the plant and reduce maintenance costs associated with unnecessary manual sensor calibrations.In this paper, a method is proposed to detect and identify any degradation of sensor performance. The validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual and evaluate the fault on the residual space, respectively. This paper claims that SVD-based fault detection method isbetter than the well-known principal component analysis-based method. The method is validated using data from fast breeder test reactor.

  6. The effect of elevated CO2 and N on decomposition of wheat straw and alfalfa residues in calcareous and non calcareous soils

    Directory of Open Access Journals (Sweden)

    S. Razavi Darbar

    2016-04-01

    Full Text Available Incorporation of plant residue in soils is considered as an important agricultural practice for maintaining soil fertility in sustainable agricultural system. CO2 levels, nitrogen fertilization and plant residues are factors which highly affect decomposition of added organic matter to soil. In this research controlled chambers were used to investigate the effects of elevated atmospheric CO2 concentrations (350 vs. 760 CO2 ppm under two N fertilization levels (0 vs. 500 kg N ha-1 and two replicates on decomposition of wheat and alfalfa residues in two calcareous (32.66 % CaCO3 and non calcareous soils (3.4 % CaCO3 at 6 times (0, 10, 20, 40, 60 and 90 under laboratory condition. Soil moistures were adjusted at 70% of field capacity. The results showed that elevated CO2 significantly increased decomposition of residues in both calcareous and non calcareous soils. In the samples that received N fertilizer, decomposition of wheat straw and alfalfa residues increased in both soils. From the obtained results, we concluded that in all treatments the amount of decomposition of wheat straw and alfalfa residues in calcareous soil were higher than non calcareous soils.

  7. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions.

    Science.gov (United States)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Heim, Alexander; Schmidt, Michael W I

    2014-01-01

    Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal- and bacterial-derived microbial residues in soil. We made use of a 4-year combined CO2 enrichment and N deposition experiment in model forest ecosystems, providing a distinct (13) C signal for 'new' and 'old' C in soil organic matter and microbial residues measured in density and particle-size fractions of soils. Our hypothesis was that N deposition decreases the amount of fungal residues in soils, with the new microbial residues being more strongly affected than old residues. The soil fractionation showed that organic matter and microbial residues are mainly stabilized by association with soil minerals in the heavy and fine fractions. Moreover, the bacterial residues are relatively enriched at mineral surfaces compared to fungal residues. The (13) C tracing indicated a greater formation of fungal residues compared to bacterial residues after 4 years of experiment. In contradiction to our hypotheses, N deposition significantly increased the amount of new fungal residues in bulk soil and decreased the decomposition of old microbial residues associated with soil minerals. The preservation of old microbial residues could be due to decreased N limitation of microorganisms and therefore a reduced dependence on organic N sources. This mechanism might be especially important in fine heavy fractions with low C/N ratios, where microbial residues are effectively protected from decomposition by association with soil minerals.

  8. Nuclear driven water decomposition plant for hydrogen production

    Science.gov (United States)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  9. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography

    Science.gov (United States)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark

    2014-05-01

    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of

  10. Unexpected high decomposition of legume residues in dry season soils from tropical coffee plantations and crop lands

    OpenAIRE

    Abera, Girma; Wolde-Meskel, Endalkachew; Bakken, Lars

    2014-01-01

    International audience; Crop residues are essential fertilizer source of low-input farming systems in Sub-Saharan Africa. However, crop residues provide nutrients only if they decompose in the soil. Decomposition is assumed to be very low during the dry season due to the scarcity of water, but there are few quantitative knowledge on decomposition under such conditions. Therefore, we studied the decomposition of legume residues, haricot bean (Phaseolus vulgaris L.), and pigeon pea (Cajanus caj...

  11. Thermal decomposition dynamics and severity of microalgae residues in torrefaction.

    Science.gov (United States)

    Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen

    2014-10-01

    To figure out the torrefaction characteristics and weight loss dynamics of microalgae residues, the thermogravimetric analyses of two microalgae (Chlamydomonas sp. JSC4 and Chlorella sorokiniana CY1) residues are carried out. A parameter of torrefaction severity index (TSI) in the range of 0-1, in terms of weight loss ratio between a certain operation and a reference operation, is defined to indicate the degree of biomass thermal degradation due to torrefaction. The TSI profiles of the two residues are similar to each other; therefore, the parameter may be used to describe the torrefaction extents of various biomass materials. The curvature of TSI profile along light torrefaction is slight, elucidating its slight impact on biomass thermal degradation. The sharp curvature along severe torrefaction in the initial pretreatment period reveals that biomass upgraded with high temperature and short duration is more effective than using low temperature with long duration.

  12. Depth Effects on Plant Residue Decay in Diverse Soils

    Science.gov (United States)

    Gregorich, Edward; Ellert, Benjamin; Janzen, Henry; Helgason, Bobbi; Beare, Michael; Curtin, Denis

    2017-04-01

    Decay of plant residues is tied to many ecosystem functions, affecting atmospheric CO2, plant-available nutrients, microbial diversity, soil organic matter quality, among others. The rate of decay, in turn, is governed by soil type and management, location in the soil profile, and environmental variables, some of which may be changing in coming decades. Our objective in this study was to elucidate the decomposition dynamics of plant-derived C and N at different soil depths. To describe mathematically the importance of these variables across a broad scale, we established a long-term study at two sites in Canada and one site in New Zealand. At each site, labelled barley straw (13C = 10.2 atom%, 15N = 8.3 atom %; C = 37.9%; N = 0.95%; C:N = 40) was installed at 3 depths (5-10, 20-25 and 40-45 cm). Soil temperature was logged at each depth. Samples were collected at different times over 5-6 year after application of the residues. Data on recovery and kinetics of residue C and N over the experimental period will be discussed as well as 13C- PLFA results.

  13. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    Science.gov (United States)

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  14. DECOMPOSITION OF BT COTTON AND NON BT COTTON RESIDUES UNDER VARIED SOIL TYPES

    Directory of Open Access Journals (Sweden)

    Sujata Kumari

    2014-04-01

    Full Text Available Use of the insecticidal cry proteins from the bacterium, Bacillus thuringiensis (Bt in cotton has raised a number of concerns, including the ecological impact on soil ecosystems.Greenhouse study was conducted during the 2011 wet season (March to August at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil orders that includedentisol, inceptisol and alfisol. Bt cotton (var.NCS-138 and its non-transgenic isoline (var.NCS-138 were grown until maturity. A no crop pot was maintained for all the three soil orders. The highest rate of decomposition was found in alluvial soil compared to black and red soils in 50 days after incorporation (DAI. Thereafter the rate of decomposition was slowed downby100 DAI and the constant rate of decomposition was found in 150 DAI. The rate of decomposition was higher in non Bt than Bt crop residues.

  15. Quantification of the effects of management factors on maize(Zea mays L. ) and cotton (Gossypium hirsutum L. ) residues decomposition rate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Efforts to quantify management effects on decomposition rate of added substrates to the soil is important especially where such information is to be used for prediction in mathematical or simulation models. Using data from a short-term (60 days) greenhouse simulation study, a procedure for quantdying effects of management on SOM and substrate decomposition is presented. Using microbial growth rate u ( q ),microbial efficiency in substrate utilization e (q), specific decomposition rates for added plant residues to two contrasting soils, red earth (Ferrasol) and black earth (Acrisol) were estimated. The treatments included straw addition + buried, (T1); straw addition + mineral N (T2); and straw addition + tillage, (T3). Sampling was done every 15 days. Straw decomposition rate was affected by external mineral N sources (Urea 46% N). Addition of an external N source significantly increased decomposition rates. The study could not, however, fully account for the effect of tillage on residues because of the limited effect of the tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags. It is concluded that using few decomposer parameters, decomposition rates and consequently SOM trends in a soil system can be monitored and quantification of the influence of perturbations on decomposition rate of added substrates possible.

  16. Gas emission from anaerobic decomposition of plant resources

    Directory of Open Access Journals (Sweden)

    Marcela Bianchessi da Cunha-Santino

    Full Text Available Abstract: Aim The aim of this study was to quantify the emission rates of gases resulting from the anaerobic decomposition of different plant resources under conditions usually found in sediments of tropical aquatic systems and drained organic soils. Methods Incubations were prepared with green leaves, bark, twigs, plant litter, sugarcane stalks and leaves, soybean leaves, grasses, forest leaves and an aquatic macrophyte (Typha domingensis. Over 10 months, the daily volume of gas evolved from decay was measured and a kinetic model was used to describe the anaerobic mineralization. Results Using the mathematical model, it can be observed that the composition of the plant resources is heterogeneous. The temporal variation of the gas rates indicated that the mineralization of the labile fractions of detritus varied, on a carbon basis, from 16.2 (bark to 100% (samples composed of leaves, grasses and sugar cane stalks. High gas emissions were observed during the mineralization of grasses, sugar cane stalks, leaves and plant litter, while low volumes of gases were measured during the mineralization of bark, twigs, forest leaves and T. domingensis, which are the most fibrous and recalcitrant resources (carbon content: 83.8, 78.2, 64.8 and 53.4%, respectively. The mineralization of labile carbon presented half-life values, which varied from 41 (twigs to 295 days (grasses. Conclusions Considering the high amount of remaining recalcitrant fraction, the anaerobic decomposition of these plant resources showed a strong trend towards accumulating organic matter in flooded soils. Despite the higher temperatures found in the tropical environment, these environments represent a sink of particulate detritus due to its slow decomposition.

  17. Decomposition of Plant Debris by the Nematophagous Fungus ARF

    OpenAIRE

    Wang, Kening; Riggs, R. D.; Crippen, Devany

    2004-01-01

    In the study of the biological control of plant-parasitic nematodes, knowledge of the saprophytic ability of a nematophagous fungus is necessary to understand its establishment and survival in the soil. The objectives of this study were (i) to determine if the nematophagous fungus ARF (Arkansas Fungus) shows differential use of plant residues; and (ii) to determine if ARF still existed in the soil of a field in which ARF was found originally and in which the population level of Heterodera gly...

  18. Decomposition dynamic of higher plant pigments by HPLC analysis

    Institute of Scientific and Technical Information of China (English)

    LUO Yi; ZHANG Ting-zhou; ZHOU Qi-xing; MAO Da-qing; WAN Dong-mei

    2004-01-01

    The fate of the litter of dominant vegetation(willows and reeds) is one of the aspects studied in the frame of the project "Onderzoek Milieu Effecten Sigmaplan". One of the questions to be considered is how long the litter stays within the estuary. In this paper, the time the leaf litter(Salix triandra and Phragmites australis) stayed in the Schelde estuary was studied by using plant pigment as biomarkers with HPLC application. After analyzing the original data from the incubation experiment described by Dubuison and Geers(1999), the decomposition dynamics patterns of pigments were analyzed and described, and these decomposition dynamics patterns were used as calibration patterns. By using Spearman Rank Order Correlation, the calibration patterns of the pigments which were significant(p<0.05) were grouped. In this way, several groups of the calibration patterns of pigment decomposition were achieved. The presence or absence of these groups of pigments (whether they can be detected or not from HPLC) was shown to be useful in determining the time the litter has stayed in the water. Combining data of DW and POC, more precise timing can be obtained.

  19. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  20. Decomposition of corn and soybean residues under field conditions and their role as inoculum source

    Directory of Open Access Journals (Sweden)

    E.M. Reis

    2011-03-01

    Full Text Available Necrotrophic parasites of above-ground plant parts survive saprophytically, between growing seasons in host crop residues. In an experiment conducted under field conditions, the time required in months for corn and soybean residues to be completely decomposed was quantified. Residues were laid on the soil surface to simulate no-till farming. Crop debris of the two plant species collected on the harvesting day cut into pieces of 5.0cm-long and a 200g mass was added to nylon mesh bags. At monthly intervals, bags were taken to the laboratory for weighing. Corn residues were decomposed within 37.0 months and those of soybean, within 34.5 months. Hw main necrotrophic fungi diagnosed in the corn residues were Colletotrichum gramicola, Diplodia spp. and Gibberella zeae, and those in soybeans residues were Cercospora kikuchii, Colletotrichum spp, Glomerella sp. and Phomopsis spp. Thus, those periods shoulb be observed in crop rotation aimed at to eliminating contaminated residues and, consequently, the inoculum from the cultivated area.

  1. Ammonium Removal from Landfill Leachate by Means of Multiple Recycling of Struvite Residues Obtained through Acid Decomposition

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-11-01

    Full Text Available The treatment of landfill leachate, due to its great polluting load, is a very difficult task. In particular, the abatement of high ammonium concentrations represents one of the main issues. Among the available techniques, struvite precipitation is an effective method for the removal and recovery of NH4+ load. However, due to the lack of phosphorus and magnesium amounts, the struvite formation results in an expensive process in the leachate treatment. To overcome this issue, in the present work, we developed a simple and suitable method for ammonium removal by the multiple recycling of struvite decomposition residues. In this regard, a procedure for acid dissolution of struvite, produced by using industrial grade reagents, was initially defined. The effect of pH, temperature, and acid type was investigated. The experimental results proved the effectiveness of both hydrochloric and acetic acid, which allow a high and selective release of ammonium at T = 50 °C and pH = 5.5. The multiple reuse of decomposition products, combined with the supplementation of a small quantity of phosphorus and magnesium at molar ratios of n(N:n(Mg:n(P = 1:0.05:0.05, guarantees stable NH4+ abatement of about 82%. The proposed process allows a cost saving of around to 74% and can be easily applied in industrial treatment plants.

  2. Glyphosate fate in soils when arriving in plant residues.

    Science.gov (United States)

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2016-07-01

    A significant fraction of pesticides sprayed on crops may be returned to soils via plant residues, but its fate has been little documented. The objective of this work was to study the fate of glyphosate associated to plants residues. Oilseed rape was used as model plant using two lines: a glyphosate-tolerant (GT) line and a non-GT one, considered as a crucifer weed. The effects of different fragmentation degrees and placements in soil of plant residues were tested. A control was set up by spraying glyphosate directly on the soil. The mineralization of glyphosate in soil was slower when incorporated into plant residues, and the amounts of extractable and non-extractable glyphosate residues increased. Glyphosate availability for mineralization increased when the size of plant residues decreased, and as the distribution of plant residues in soil was more homogeneous. After 80 days of soil incubation, extractable (14)C-residues mostly involved one metabolite of glyphosate (AMPA) but up to 2.6% of initial (14)C was still extracted from undecayed leaves as glyphosate. Thus, the trapping of herbicides in plant materials provided a protection against degradation, and crops residues returns may increase the persistence of glyphosate in soils. This pattern appeared more pronounced for GT crops, which accumulated more non-degraded glyphosate in their tissues.

  3. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper;

    2011-01-01

    communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated......The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus......, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...

  4. Can fruit seeds and undigested plant residuals cause acute appendicitis

    Institute of Scientific and Technical Information of China (English)

    Omer Engin; Mehmet Yildirim; Savas Yakan; Gulnihal Ay Coskun

    2011-01-01

    Objective:To investigate the relation between fruit seeds, plants residuals and appendicitis. Methods: Among cases that underwent appendectomy, the appendicitis cases having fruit seeds and undigested plant residuals in their etiology were examined retrospectively. Also, histopathological features, age, sex, and parameters of morbidity and mortality were used. Results: Fruit seed was found in one case(0.05%) with presence of pus in appendix lumen, undigested plant residuals in 7 cases(0.35%). It was determined that there were appendix inflammation in 2 of the plant residuals cases, while there were obstruction and lymphoid hyperplasia in the appendix lumen of5 cases. No mortality was observed.Conclusions: The ratio of acute appendicitis caused by plants is minimal among all appendectomised patients, but avoidence of eating undigested fruit seeds and chewing plants well may help to prevent appendicitis.

  5. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil

    NARCIS (Netherlands)

    Cong, Wen-Feng; van Ruijven, Jasper; van der Werf, Wopke; De Deyn, Gerlinde B.; Mommer, Liesje; Berendse, Frank; Hoffland, Ellis

    2015-01-01

    Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic m

  6. Separating stimulus-driven and response-related LRP components with Residue Iteration Decomposition (RIDE).

    Science.gov (United States)

    Stürmer, Birgit; Ouyang, Guang; Zhou, Changsong; Boldt, Annika; Sommer, Werner

    2013-01-01

    When the lateralized readiness potential (LRP) is recorded in stimulus-response compatibility (SRC) tasks, two processes may overlap in the LRP, stimulus-driven response priming and activation based on response selection rules. These overlapping processes are hard to disentangle with standard analytical tools. Here, we show that Residue Iteration Decomposition (RIDE), based on latency variability, separates the overlapping LRP components from a Simon task into stimulus-driven and response-related components. SRC affected LRP amplitudes only in the stimulus-driven component, whereas LRP onsets were affected only in the response-locked component. Importantly, the compatibility effect in reaction times was more similar to the effect in the onsets of the RIDE-derived response-locked LRP component than in the unseparated LRP. Thus, RIDE-separated LRP components are devoid of distortions inherent to standard LRPs.

  7. Dynamics of zoomicrobial complexes upon decomposition of plant litter in spruce forests of the southern taiga

    Science.gov (United States)

    Rakhleeva, A. A.; Semenova, T. A.; Striganova, B. R.; Terekhova, V. A.

    2011-01-01

    Comparative studies of the composition and abundance of soil-dwelling invertebrates (microarthropods, nematodes, and testate amoebas) and micromycetes in the course of leaf and needle litter decomposition were conducted in two types of spruce forests on white-podzolic and brown forest soils in a field experiment. The analysis of the destruction dynamics has revealed a correlation between the rate of the litter mass loss and the abundance of microarthropods and testate amoebas in the decomposing plant residues. The highest amplitude of the seasonal fluctuations in the number of invertebrates was found for the micromycetes and nematodes as compared to that for the testate amoebas and microarthropods. In the complexes of micromycetes and invertebrates, changes in the dominants were revealed at the different stages of the decomposition. The litter's composition was found to be the main factor affecting the composition and abundance of the zoomicrobial complex of the destroyers. The type of biogeocenosis less influenced the abundance of pedobionts, but it determined their taxonomic composition to a greater extent. A significant inverse correlation was revealed between the number of micromycetes and that of small soil invertebrates.

  8. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  9. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m(-2) ·yr(-1) ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem.

  10. Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors...

  11. Measuring dry plant residues in grasslands: A case study using AVIRIS

    Science.gov (United States)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  12. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    Science.gov (United States)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  13. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens.

    Directory of Open Access Journals (Sweden)

    Isabel E Moller

    Full Text Available The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.

  14. Sensitivity analysis of six soil organic matter models applied to the decomposition of animal manures and crop residues

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2016-09-01

    Full Text Available Two features distinguishing soil organic matter simulation models are the type of kinetics used to calculate pool decomposition rates, and the algorithm used to handle the effects of nitrogen (N shortage on carbon (C decomposition. Compared to widely used first-order kinetics, Monod kinetics more realistically represent organic matter decomposition, because they relate decomposition to both substrate and decomposer size. Most models impose a fixed C to N ratio for microbial biomass. When N required by microbial biomass to decompose a given amount of substrate-C is larger than soil available N, carbon decomposition rates are limited proportionally to N deficit (N inhibition hypothesis. Alternatively, C-overflow was proposed as a way of getting rid of excess C, by allocating it to a storage pool of polysaccharides. We built six models to compare the combinations of three decomposition kinetics (first-order, Monod, and reverse Monod, and two ways to simulate the effect of N shortage on C decomposition (N inhibition and C-overflow. We conducted sensitivity analysis to identify model parameters that mostly affected CO2 emissions and soil mineral N during a simulated 189-day laboratory incubation assuming constant water content and temperature. We evaluated model outputs sensitivity at different stages of organic matter decomposition in a soil amended with three inputs of increasing C to N ratio: liquid manure, solid manure, and low-N crop residue. Only few model parameters and their interactions were responsible for consistent variations of CO2 and soil mineral N. These parameters were mostly related to microbial biomass and to the partitioning of applied C among input pools, as well as their decomposition constants. In addition, in models with Monod kinetics, CO2 was also sensitive to a variation of the half-saturation constants. C-overflow enhanced pool decomposition compared to N inhibition hypothesis when N shortage occurred. Accumulated C in the

  15. Modelling the Influence of Ectomycorrhizal Decomposition on Plant Nutrition and Carbon Sequestartion in Boreal Forst Ecosystem

    Science.gov (United States)

    Baskaran, P.; Hyvönen, R.; Agren, G. I.; Clemmensen, K.; Lindahl, B.; Manzoni, S.

    2016-12-01

    Tree growth in boreal forests is limited by nitrogen availability (N). Most boreal forest trees form symbiotic association with ectomycorrhizal (ECM) fungi, that improve uptake of inorganic N and also have the capacity to decompose soil organic matter and to mobilize organic N (`ECM decomposition'). To mechanistically understand the effect of `ECM decomposition' on ecosystem C and N balances, we formulated a model of C and N flows to and from plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. Our predictions indicate that the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, depends strongly on the partitioning of soil organic matter decomposition between ECM fungi and saprotrophs. At high relative ECM decomposition and low N availability, optimal C allocation was estimated to 15% of NPP. The model also predicts a negative correlation between plant production and soil C sequestration, as increased plant belowground C allocation increases ECM mining of organic N which promotes tree growth but decreases soil C storage. In conclusion, our model provides a tool for studying ecosystem productivity and C storage, where ECM decomposition acts as a potential driver of both decomposition of soil organic matter and plant N uptake.

  16. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient.

    Science.gov (United States)

    Makkonen, Marika; Berg, Matty P; Handa, I Tanya; Hättenschwiler, Stephan; van Ruijven, Jasper; van Bodegom, Peter M; Aerts, Rien

    2012-09-01

    Plant litter decomposition is a key process in terrestrial carbon cycling, yet the relative importance of various control factors remains ambiguous at a global scale. A full reciprocal litter transplant study with 16 litter species that varied widely in traits and originated from four forest sites covering a large latitudinal gradient (subarctic to tropics) showed a consistent interspecific ranking of decomposition rates. At a global scale, variation in decomposition was driven by a small subset of litter traits (water saturation capacity and concentrations of magnesium and condensed tannins). These consistent findings, that were largely independent of the varying local decomposer communities, suggest that decomposer communities show little specialisation and high metabolic flexibility in processing plant litter, irrespective of litter origin. Our results provide strong support for using trait-based approaches in modelling the global decomposition component of biosphere-atmosphere carbon fluxes. © 2012 Blackwell Publishing Ltd/CNRS.

  17. Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth.

    Science.gov (United States)

    Schaller, Jörg

    2013-03-01

    Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition.

  18. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  19. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  20. Biogas and mineral fertiliser production from plant residues of phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Thi Thu Ha

    2011-07-01

    The former uranium mining site in Ronneburg, Thuringia, Germany was known as a big source of uranium with more than 113,000 tons of uranium mined from 1946 to 1990. This area has been remediated since the nineties of the last century. However, nowadays the site in Ronneburg is still specially considered because of the heterogeneous contamination by many heavy metals and the vegetation can be affected. Three plant species including Indian mustard - Brassica juncea L., triticale - x. Triticosecale Wittmaek and sunflower - Helianthus annuus L. were seeded as accumulators of heavy metals and radionuclides in the phytoremediation process in 2009 and 2010 in Ronneburg. The subsequent utilization of the plant residues after phytoremediation is of special consideration. Batch fermentation of harvested plant materials under the mesophilic condition showed that all of the investigated plant materials had much higher biogas production than liquid cow manure except triticale root, of which biogas yield per volatile solid was not significantly higher than the one of sludge. The highest biogas yields (311 L{sub N}/kg FM and 807 L{sub N}/kg VS) were achieved from the spica of triticale after 42 days of retention of anaerobic digestion. Triticale shoot residues generated higher biogas and methane yields than the previously reported triticale materials that were harvested from the uncontaminated soil Triticale was considered as the highest potential species in biogas production, beside the best growth ability on the acidic soil at the test field site with highest biomass production. Biogas yield of Indian mustard shoot was also high but dramatically varied from 2009 to 2010. Digestates after anaerobic digestion of plant residues contained various macronutrients such as nitrogen, potassium, phosphorus and sulphur, and various micronutrients such as iron, manganes, zinc, etc. The accumulation levels of heavy metals in the investigated plant materials were not the hindrance factors

  1. Biomassa, decomposição e cobertura do solo ocasionada por resíduos culturais de três espécies vegetais na região centro-oeste do Brasil Biomass, decomposition and soil cover by residues of three plant species in central- western Brazil

    Directory of Open Access Journals (Sweden)

    Carlo Adriano Boer

    2008-04-01

    about cover crops for straw production is necessary. The objective of this study was to evaluate the green and dry biomass production, the percentage of soil cover, as well as the dynamics of residues decomposition of three cover crop species, in the second growing season of the cropping year: amaranth (Amaranthus cruentus L. BRS Alegria, pearl millet (Pennisetum glaucum L. var. ADR500 and finger millet [Eleusine coracana (L. Gaertn.]. The experiment was conducted on a clay texture Dusky Red Latosol (Oxisol. The experimental design consisted of randomized blocks in a split-plot design, with four replications.. The cover crop species were allocated in the main plots and the nine evaluation periods (0, 30, 60, 90, 120, 150, 180, 210, and 240 days were allocated to the split-plots. Proportional samples of dry matter of each cover crop species were packed in litter bags and distributed across the plot surfaces. Samples were were collected every 30 days and weighed in order to evaluated the dynamics of decomposition after cover crop. Fresh and dry biomass yields, and soil surface cover were greater for pearl millet ADR500 and finger millet, whereas dry matter decomposition rates were lower, with no differences between the two species. The C/N ratio was higher in pearl millet ADR500, followed by finger millet and amaranth. The decreasing exponential and sigmoidal models were adjusted, respectively, for residue decomposition and soil surface cover along the time. The decomposition rate and soil surface cover for pearl millet ADR500 and finger millet were similar, and they did not differ based on values estimated through the adjusted models.

  2. Overcoming limitations of the ERP method with Residue Iteration Decomposition (RIDE): a demonstration in go/no-go experiments.

    Science.gov (United States)

    Ouyang, Guang; Schacht, Annekathrin; Zhou, Changsong; Sommer, Werner

    2013-03-01

    The usefulness of the event-related potential (ERP) method can be compromised by violations of the underlying assumptions, for example, confounding variations of latency and amplitude of ERP components within and between conditions. Here we show how the ERP subtraction method might yield misleading information due to latency variability of ERP components. We propose a solution to this problem by correcting for latency variability using Residue Iteration Decomposition (RIDE), demonstrated with data from representative go/no-go experiments. The overlap of N2 and P3 components in go/no-go data gives rise to spurious topographical localization of the no-go-N2 component. RIDE decomposes N2 and P3 based on their latency variability. The decomposition restored the N2 topography by removing the contamination from latency-variable late components. The RIDE-derived N2 and P3 give a clearer insight about their functional relevance in the go/no-go paradigm.

  3. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient

    NARCIS (Netherlands)

    Makkonen, M.; Berg, M.P.; Handa, I.T.; Hättenschwiler, S.; Ruijven, van J.; Bodegom, van P.M.; Aerts, M.A.P.A.

    2012-01-01

    Plant litter decomposition is a key process in terrestrial carbon cycling, yet the relative importance of various control factors remains ambiguous at a global scale. A full reciprocal litter transplant study with 16 litter species that varied widely in traits and originated from four forest sites c

  4. Prolonged elevated atmospheric CO(2)does not affect decomposition of plant material

    NARCIS (Netherlands)

    Graaff, de M.A.; Six, J.; Blum, H.; Kessel, van C.

    2006-01-01

    Prolonged elevated atmospheric CO2 might alter decomposition. In a 90-day incubation study, we determined the long-term (9 years) impact of elevated CO2 on N mineralization of Lolium perenne and Trifolium repens plant material grown at ambient and elevated CO2 and low- and high-N-15 fertilizer

  5. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition.

    Science.gov (United States)

    Chiang, Hung-Lung; Wu, Trong-Neng; Ho, Yung-Shou; Zeng, Li-Xuan

    2014-07-15

    Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  6. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  7. DECOMPOSITION OF SUB-ARCTIC PLANTS WITH DIFFERING NITROGEN ECONOMIES: A FUNCTIONAL ROLE FOR HEMIPARASITES

    DEFF Research Database (Denmark)

    Quested, H.M.; Cornelissen, J.H.C.; Press, M.C.;

    2003-01-01

    Although hemiparasitic plants have a number of roles in shaping the structure and composition of plant communities, the impact of this group on ecosystem processes, such as decomposition and nutrient cycling, has been poorly studied. In order to better understand the potential role of hemiparasit...... the potential to greatly enhance the availability of nutrients within patches where they are abundant, with possible consequent effects on small-scale biodiversity....

  8. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China); Wu, Trong-Neng [Department of Public Health, China Medical University, Taichung 40402, Taiwan (China); Ho, Yung-Shou [Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung 831, Taiwan (China); Zeng, Li-Xuan [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China)

    2014-07-15

    Highlights: • Acetylene was decomposed on SBA-15 and Ni-SBA-15 at 650–850 °C. • Carbon spheres and filaments were formed after acetylene decomposition. • PAHs were determined in tar and residues. • Exhaust constituents include CO{sub 2}, H{sub 2}, NO{sub x} and hydrocarbon species. - Abstract: Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650–850 °C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850 °C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650–850 °C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp{sup 2} structure) cm{sup −1}. Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H{sub 2}, and C{sub 2}H{sub 2} were 3.9–2.6/2.7–1.5, 1.4–2.8/2.6–4.3, 4.2–2.4/3.2–1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850 °C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104 ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850 °C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  9. A QR DECOMPOSITION BASED SOLVER FOR THE LEAST SQUARES PROBLEMS FROM THE MINIMAL RESIDUAL METHOD FOR THE SYLVESTER EQUATION

    Institute of Scientific and Technical Information of China (English)

    Zhongxiao Jia; Yuquan Sun

    2007-01-01

    Based on the generalized minimal residual(GMRES)principle,Hu and Reichel proposed a minimal residual algorithm for the Sylvester equation.The algorithm requires the solution of a structured least squares problem.They form the normal equations of the least squares problem and then solve it by a direct solver,so it is susceptible to instability.In this paper,by exploiting the special structure of the least squares problem and working on the problem directly,a numerically stable QR decomposition based algorithm is presented for the problem.The new algorithm is more stable than the normal equations algorithm of Hu and Reichel.Numerical experiments are reported to confirm the superior stability of the new algorithm.

  10. Succession change of microorganisms on plant waste decomposition in simulation modelling field experiment

    Science.gov (United States)

    Vinogradova, Julia; Perminova, Evgenia; Khabibullina, Fluza; Kovaleva, Vera; Lapteva, Elena

    2016-04-01

    Plant waste decomposition processes are closely associated with living activity of soil microbiota in aboveground ecosystems. Functional activity of microorganisms and soil invertebrates determines plant material transformation rate whereby changes in plant material chemical composition during destruction - succession change of soil biota. The purpose of the work was revealing the mechanism of microorganisms succession change during plant waste decomposition in middle-taiga green-moss spruce forests and coniferous-deciduous secondary stands formed after earlier cut bilberry spruce forests. The study materials were undisturbed bilberry spruce forest (Sample Plot 1 - SP1) and coniferous-deciduous secondary stands which were formed after tree cutting activities of 2001-2002 (SP2) and 1969 and 1970 (SP3). Plant material decomposition intensity was determined in microcosms isolated into kapron bags with cell size of 1 mm. At SP1 and SP2, test material was living mosses and at SP3 - fallen birch and aspen leaves. Every test material was exposed for 2 years. Destruction rate was calculated as a weight loss for a particular time period. Composition of micromycetes which participated in plant material decomposition was assessed by the method of inoculation of soil extract to Getchinson's medium and acidified Czapek's medium (pH=4.5). Microbe number and biomass was analyzed by the method of luminescent microscopy. Chemical analysis of plant material was done in the certified Ecoanalytical Laboratory of the Institute of Biology Komi SC UrD RAS. Finally, plant material destruction intensity was similar for study plots and comprised 40-44 % weight loss for 2 years. The strongest differences in plant material decomposition rate between undisturbed spruce forests and secondary after-cut stands were observed at first stages of destruction process. In the first exposition year, mineralizing processes were most active in undisturbed spruce forest. Decomposition rate in cuts at that

  11. Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition

    Science.gov (United States)

    Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.

    2016-05-01

    Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.

  12. Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition.

    Science.gov (United States)

    Lemons, Alisha; Clay, Keith; Rudgers, Jennifer A

    2005-10-01

    Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant-microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant-endophyte mutualisms on ecosystem processes under field

  13. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    Science.gov (United States)

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  14. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  15. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  16. The effect of soil temperature and moisture on organic matter decomposition and plant growth.

    Science.gov (United States)

    Hood, R C

    2001-01-01

    The effect of soil temperature and moisture on plant growth and mineralisation of organic residues was investigated using 15N-labelled soybean residues and temperature-controlled tanks in the glasshouse. Treatments were arranged in a factorial design with: three soil temperatures (20, 26 and 30 degrees C), two soil moisture regimes (8% (-800 Kpa) or 12% (-100 Kpa)), soybean residues added (enriched at 1.82 atom % 15N excess) or no residues; and either sown with ryegrass or not sown. Pots were sampled six weeks after planting and 15N-enrichment and delta13C of the plant and soil fractions were determined. Soil inorganic N was also periodically measured. Available inorganic N increased significantly with addition of residues and generally decreased with increasing temperature. Plant dry matter decreased significantly with increase in soil temperature and increased with increasing moisture. Root-to-shoot ratio declined with increased temperature and moisture. Percentage nitrogen derived from residues (%Ndfr) increased linearly with increased temperature and moisture. Delta13C decreased linearly with increasing temperature and decreasing moisture status. There was a significant correlation between transpiration and dry matter production, but there was no correlation between water use efficiency and delta13C. The results suggest that C: N ratio of the root material effects the root turnover and in turn the water supply capacity of the root system.

  17. Effects of bioreactor retention time on aerobic microbial decomposition of CELSS crop residues

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO_2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  18. Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing

    OpenAIRE

    Protásio,Thiago de Paula; Melo,Isabel Cristina Nogueira Alves de; Guimarães Junior,Mario; Mendes,Rafael Farinassi; Trugilho, Paulo Fernando

    2013-01-01

    The use of biomass has been recognized as a potential renewable energy and an alternative substitute that contributes to the decrease of fossil fuels consumption. Therefore, this research aimed to analyze the thermal behavior of briquettes made of residues from coffee grain processing in different conditions: in natura, torrefied and carbonized. Eucalyptus sawdust was used for comparison. The briquettes were carbonized considering final temperature of 450° C (kept for 30 min). The brique...

  19. Reconciling Phylogeny and Function During Plant Litter Decomposition by High-Throughput Functional Metagenomics

    Science.gov (United States)

    Nyyssonen, M.; Weihe, C.; Goulden, M.; Treseder, K. K.; Martiny, J.; Martiny, A.; Allison, S. D.; Brodie, E. L.

    2012-12-01

    Integrating information on microbial diversity and functionality with ecosystem processes may be critical to predicting how ecosystems respond to environmental change. While theoretical models can be used to link microbial processes to environmental responses and rates, accurate predictions of ecosystem functioning would benefit from detailed information on microbial community composition and function. In this study, our aim was to identify functional traits involved in plant litter decomposition, a model process for carbon cycling, from decomposing plant litter. The overall goal is then to link these traits with individual microbial taxa and use this information to build predictive trait-based models of ecosystem responses to global change. In order to identify activities involved in plant litter decomposition we used automated high-throughput assays for functional screening of metagenomic fosmid libraries prepared from decomposing plant litter. Litter was collected over 15 month period from a global change field experiment undergoing rainfall and nitrogen manipulations. We identified over 600 cellulose, hemicellulose, chitin and starch hydrolyzing clones following screening of over 300,000 clones. The frequency of positive clones was ten times lower during dry season but no significant differences in hit rates were observed between different treatments. The positive clones were shotgun sequenced on the Illumina sequencing platform and the identified hydrolytic genes were shown to represent variety bacterial taxonomic groups including Proteobacteria and Bacteroidetes.

  20. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    Science.gov (United States)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  1. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition.

    Science.gov (United States)

    Han, Wei; He, Ming

    2010-05-01

    The effects of exogenous cellulase application on straw decomposition, soil fertility, and plant growth were investigated with nylon bag and pot experiments. Cellulase application promoted straw decomposition, and the decomposition rates of rice and wheat straw increased by 6.3-26.0% and 6.8-28.0%, respectively, in the nylon bag experiments. In pot experiments soil-available N and P contents, soil cellulase activity, and growth of rice seedlings increased. Soil respiration rate and microbial population were unaffected. Seventy Ug(-1) was the optimal cellulase concentration for plant growth. The exogenous cellulase persisted in soil for more than 100days. Although the data show that exogenous cellulase application can enhance soil fertility and plant growth in the short-term due to the acceleration of straw decomposition and has the potential to be an environment-friendly approach to manage straw, cellulase application to soil seems currently not economical.

  2. Measurement and decomposition kinetics of residual hydrogen peroxide in the presence of commonly used excipients and preservatives.

    Science.gov (United States)

    Towne, Victoria; Oswald, C Brent; Mogg, Robin; Antonello, Joseph; Will, Mark; Gimenez, Juan; Washabaugh, Michael; Sitrin, Robert; Zhao, Qinjian

    2009-11-01

    Quantitation of residual hydrogen peroxide (H(2)O(2)) and evaluation of the impact on product stability is necessary as unwanted H(2)O(2) can potentially be introduced during the manufacturing of pharmaceuticals, biologics, and vaccines. A sensitive and convenient microplate-based method with fluorescence detection for H(2)O(2) quantitation was recently reported (Towne et al., 2004, Anal Biochem 334: 290-296). This method was found to be highly robust and reproducible, with a level of detection of 0.015 ppm and a level of quantitation of 0.025 ppm (in water). The relatively small sample requirements and amenability for automation make this assay an attractive tool for detecting residual H(2)O(2) levels. Without additional manipulation, the assay can be conducted on heterogeneous solutions with significant degree of turbidity, such as the presence of suspensions or aluminum-containing adjuvants. The quantitation of H(2)O(2) and its decomposition kinetics was also studied in presence of two common vaccine preservatives (thimerosal and phenol) and eight commonly used excipients (polyols). Over time, there is a distinct, temperature dependent decrease in H(2)O(2) recovered in thimerosal and phenol containing samples versus non-preservative containing controls. Based on the half-life of spiked H(2)O(2), the decay rates in eight polyols tested were found to be: ribose > sucrose > (glycerol, glucose, lactose, mannitol, sorbitol, and xylose).

  3. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions.

    Science.gov (United States)

    Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu

    2017-03-24

    Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10(-6) Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.

  4. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE).

    Science.gov (United States)

    Ouyang, Guang; Sommer, Werner; Zhou, Changsong

    2015-06-01

    Trial-to-trial latency variability pervades cognitive EEG responses and may mix and smear ERP components but is usually ignored in conventional ERP averaging. Existing attempts to decompose temporally overlapping and latency-variable ERP components show major limitations. Here, we propose a theoretical framework and model of ERPs consisting of temporally overlapping components locked to different external events or varying in latency from trial to trial. Based on this model, a new ERP decomposition and reconstruction method was developed: residue iteration decomposition (RIDE). Here, we describe an update of the method and compare it to other decomposition methods in simulated and real datasets. The updated RIDE method solves the divergence problem inherent to previous latency-based decomposition methods. By implementing the model of ERPs as consisting of time-variable and invariable single-trial component clusters, RIDE obtains latency-corrected ERP waveforms and topographies of the components, and yields dynamic information about single trials.

  5. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    Science.gov (United States)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  6. Study of Methanogenesis while Bioutilisation of Plant Residuals

    Science.gov (United States)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.

  7. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications

    Science.gov (United States)

    Opsahl, Stephen; Benner, Ronald

    1995-12-01

    Long-term subaqueous decomposition patterns of five different vascular plant tissues including mangrove leaves and wood ( Avicennia germinans), cypress needles and wood ( Taxodium distichum) and smooth cordgrass ( Spartina alternifora) were followed for a period of 4.0 years, representing the longest litter bag decomposition study to date. All tissues decomposed under identical conditions and final mass losses were 97, 68, 86, 39, and 93%, respectively. Analysis of the lignin component of herbaceous tissues using alkaline CuO oxidation was complicated by the presence of a substantial ester-bound phenol component composed primarily of cinnamyl phenols. To overcome this problem, we introduce a new parameter to represent lignin, Λ6. Λ6 is comprised only of the six syringyl and vanillyl phenols and was found to be much less sensitive to diagenetic variation than the commonly used parameter Λ, which includes the cinnamyl phenols. Patterns of change in lignin content were strongly dependent on tissue type, ranging from 77% enrichment in smooth cordgrass to 6% depletion in cypress needles. In contrast, depletion of cutin was extensive (65-99%) in all herbaceous tissues. Despite these differences in the overall reactivity of lignin and cutin, both macromolecules were extensively degraded during the decomposition period. The long-term decomposition series also provided very useful information about the compositional parameters which are derived from the specific oxidation products of both lignin and cutin. The relative lability of ester-bound cinnamyl phenols compromised their use in parameters to distinguish woody from herbaceous plant debris. The dimer to monomer ratios of lignin-derived phenols indicated that most intermonomeric linkages in lignin degraded at similar rates. Acid to aldehyde ratios of vanillyl and syringyl phenols became elevated, particularly during the latter stages of decomposition supporting the use of these parameters as indicators of diagenetic

  8. Plant residues: short term effect on sulphate, borate, zinc and copper adsorption by an acid oxisol

    Directory of Open Access Journals (Sweden)

    Dias Ana Cristi Basile

    2003-01-01

    Full Text Available Laboratory experiments were carried out to examine the effects of plant residues on Cu, Zn, B and S adsorption by an acidic oxisol. The plant residues were: black oats (Avena strigosa, oil seed radish(Raphanus sativus, velvet beans (Stizolobium cinereum, and pigeon pea (Cajanus cajan collected at flowering stage. Plant residues increased Cu and Zn adsorptions and decreased B and S adsorptions. The results indicated that for short term effect plant residues decreased the availabilities of Cu and Zn through metal organic complex reactions and increased availabilities of S and B through competition with organic anions by the adsorption sites on soil.

  9. The Presence of Plants Alters the Effect of Soil Moisture on Soil C Decomposition in Two Different Soil Types

    Science.gov (United States)

    Dijkstra, F. A.; Cheng, W.

    2005-12-01

    While it is well known that soil moisture directly affects microbial activity and soil C decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on soil C decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45 and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils with on average a greater priming effect in the high soil moisture treatment (60% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (37% increase). Greater plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher after correcting for plant biomass. Possibly, root exudation of labile C may have increased more than plant biomass and may have become more effective in stimulating microbial decomposition in the higher soil moisture treatment. Our results indicate that changing soil moisture conditions can significantly alter rhizosphere effects on soil C decomposition.

  10. Biological effects of plant residues with contrasting chemical compositions on plant and soil under humid tropical conditions.

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the performance o

  11. Surface Spins Pinning Effect on the Magnetic Properties in Co3O4 Nanocrystallites Covered with Polymer Decomposition Residues

    Institute of Scientific and Technical Information of China (English)

    李山东; 毕红; 方江邻; 钟伟; 都有为

    2004-01-01

    We prepare two kinds of Co3O4 antiferromagnetic nanocrystallite systems with different surface structures: one grain surface is covered by polymer decomposition residues (PDRs) (referred to as CS) and the other is naked (NS). It has been found that the magnetic properties of the CS sample deviate greatly from those of the NS sample. For example, the CS sample exhibits an open loop up to 8 T at 4.2K, while the two branches of the hysteresis loop for the NS sample superpose together when the field is in excess of 3 T. The average permanent magnetic moments per Co3O4 cell for the CS sample are about three times larger than that of the NS sample.The coercivity and loop shift for the CS sample are enhanced remarkably in comparison with the NS sample,i.e., from 73.8 and 11.0 kA/m for the NS sample to 116.5 and 25.5 kA/m for the CS sample, respectively. The anomalous magnetic properties and their enhancements for the CS sample are attributed to the surface spin pinning effect by PDRs.

  12. Study of methanogenesis during bioutilization of plant residuals

    Science.gov (United States)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    2005-02-01

    The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms. The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 103 to 105 colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 102 to 10 4 CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.

  13. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition

    Science.gov (United States)

    Pausch, Johanna; Zhu, Biao; Cheng, Weixin

    2015-04-01

    Living roots and their rhizodeposits can stimulate microbial activity and soil organic matter (SOM) decomposition up to several folds. This so-called rhizosphere priming effect (RPE) varies widely among plant species possibly due to species-specific differences in the quality and quantity of rhizodeposits and other root functions. However, whether the RPE is influenced by plant inter-species interactions remains largely unexplored, even though these interactions can fundamentally shape plant functions such as carbon allocation and nutrient uptake. In a 60-day greenhouse experiment, we continuously labeled monocultures and mixtures of sunflower, soybean and wheat with 13C-depleted CO2 and partitioned total CO2 efflux released from soil at two stages of plant development for SOM- and root-derived CO2. The RPE was calculated as the difference in SOM-derived CO2 between the planted and the unplanted soil, and was compared among the monocultures and mixtures. We found that the RPE was positive under all plants, ranging from 43% to 136% increase above the unplanted control. There were no significant differences in RPE at the vegetative stage. At the flowering stage however, the RPE in the soybean-wheat mixture was significantly higher than those in the sunflower monoculture, the sunflower-wheat mixture, and the sunflower-soybean mixture. These results indicated that the influence of plant inter-specific interactions on the RPE is case-specific and phenology-dependent. To evaluate the intensity of inter-specific effects on priming, we calculated an expected RPE for the mixtures based on the RPE of the monocultures weighted by their root biomass and compared it to the measured RPE under mixtures. At flowering, the measured RPE was significantly lower for the sunflower-wheat mixture than what can be expected from their monocultures, suggesting that RPE was significantly reduced by the inter-species effects of sunflower and wheat. In summary, our results clearly demonstrated

  14. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A.; Cherry, Julia A.; McKee, Karen L.

    2016-02-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2%). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2 concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise through vertical

  15. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China

    Institute of Scientific and Technical Information of China (English)

    GUO Xuelian; LU Xianguo; TONG Shouzheng; DAI Guohua

    2008-01-01

    The litterbag method was used to study the decomposition of wetland plant root in three wetlands along a water level gradient in the Sanjiang Plain, Northeast China. These wetlands are Calamagrostis angustifolia ( C.aa), Carex meyeriana (C.ma) and Carex lasiocarpa (C.la). The objective of our study is to evaluate the influence of environment and substrate quality on decomposition rates in the three wetlands. Calico material was used as a standard substrate to evaluate environmental influences. Roots native to each wetland were used to evaluate decomposition dynamics and substrate quality influences. Calico mass loss was statistically different among the three wetlands in the upper soil profile (0-10 cm) and in the lower depth range (10-20 cm). Hydrology, temperature and pH all influence calico decomposition rates in different ways at different depths of the soil profiles. The decomposition rates of native roots declined differentially with the increase of depth in the soil profiles. The mass loss of native roots showed a statistical decrease among the three wetlands in the upper soil profile (0-10 cm) and in the lower depth range (10-20 cm) as C.ma wetland C.aa wetland C.la wetland. Both the C:P ratio and N:P ratio were positively interrelated with decomposition rates. Decomposition rates were negatively related to initial P concentration in all three wetlands, indicating that P concentration seems to be an important factor controlling the fitter loss.

  16. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    Science.gov (United States)

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-05

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue.

  17. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    Science.gov (United States)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  18. Complementary symbiont contributions to plant decomposition in a fungus-farming termite

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Hu, Haofu; Li, Cai

    2014-01-01

    Termites normally rely on gut symbionts to decompose organic matter but the Macrotermitinae domesticated Termitomyces fungi to produce their own food. This transition was accompanied by a shift in the composition of the gut microbiota, but the complementary roles of these bacteria in the symbiosis...... in the symbiosis, that Termitomyces has the genomic capacity to handle complex carbohydrates, and that worker gut microbes primarily contribute enzymes for final digestion of oligosaccharides. This apparent division of labor is consistent with the Macrotermes gut microbes being most important during the second...... appears to be mainly accomplished by complementary cooperation between a domesticated fungal monoculture and a specialized bacterial community. In sharp contrast, the gut microbiota of the queen had highly reduced plant decomposition potential, suggesting that mature reproductives digest fungal material...

  19. Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015

    Science.gov (United States)

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors related to climate change (temperature, inundation) and vegetation composition on rates of litter decay in seven tidal marsh sites along the Pacific coast. In 2014 we conducted manipulative experiments to test inundation effects on litter decay at Siletz Bay, OR and Petaluma marsh, CA. In 2015 we studied decay of litter in high and low elevation marshes at seven Pacific coast sites.These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6

  20. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Honglu Zhu

    2015-12-01

    Full Text Available The power prediction for photovoltaic (PV power plants has significant importance for their grid connection. Due to PV power’s periodicity and non-stationary characteristics, traditional power prediction methods based on linear or time series models are no longer applicable. This paper presents a method combining the advantages of the wavelet decomposition (WD and artificial neural network (ANN to solve this problem. With the ability of ANN to address nonlinear relationships, theoretical solar irradiance and meteorological variables are chosen as the input of the hybrid model based on WD and ANN. The output power of the PV plant is decomposed using WD to separated useful information from disturbances. The ANNs are used to build the models of the decomposed PV output power. Finally, the outputs of the ANN models are reconstructed into the forecasted PV plant power. The presented method is compared with the traditional forecasting method based on ANN. The results shows that the method described in this paper needs less calculation time and has better forecasting precision.

  1. Effect of biotic lignin decomposition on the fate of radiocesium-contaminated plant litter

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Shin-nosuke; Yoshihara, Toshihiro [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko-shi, Chiba (Japan)

    2014-07-01

    Fungi are the most important components in the fate of radionuclides deposited in forests following the Fukushima nuclear accident. Pruned woody parts and litter contain a considerable amount of radiocesium. Studies that focused on the migration of radiocesium have demonstrated that its ecological half-life is lower in the humus layer than in the deeper soil zone, suggesting a substantial contribution of litter decomposition on the mobilization of radiocesium. Furthermore, white-rot fungi appear to play a key role in the mobilization of radiocesium because they are the primary source of enzymes necessary to degrade the litter organic matter. Cell walls are the primary component of plant litter; they are composed of cellulose, hemi-cellulose, and lignin. Although cellulose is the most abundant organic compound in litter, the strength of the cell wall is limited by rigid hemi-cellulose complexes that protect the surrounding cellulose microfibrils. In the cell wall, lignin fills the spaces between cellulose and hemi-cellulose; thus, the biotic degradation of lignin could be considered a primary step in litter decomposition. The contribution of the amount of lignin on the fate of radiocesium has not been identified, which limits the possibility of predicting the effect of the bacterial community structure that determines the biodegradation activity of lignin on the vertical migration of radiocesium. Here, we directly addressed the role of lignin as controller of the distribution of radiocesium in soil-ecosystems. Radiocesium-contaminated litter samples were collected with traps set under the target stands, i.e., Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) and Japanese cedars (Cryptomeria japonica) at Abiko (Laboratory of Environmental Science, CRIEPI) located approximately 200 km SSW from the Fukushima Daiichi Nuclear Power Plant in 2011. The litter samples were inoculated with white-rot fungi having ligno-celluloses-degrading activity, i

  2. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1997-01-01

    The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using N-15-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during...

  3. Can fruit seeds and undigested plant residuals cause acute appendicitis

    Directory of Open Access Journals (Sweden)

    Omer Engin

    2011-04-01

    Conclusions: The ratio of acute appendicitis caused by plants is minimal among all appendectomised patients, but avoidence of eating undigested fruit seeds and chewing plants well may help to prevent appendicitis.

  4. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Science.gov (United States)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  5. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  6. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper;

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus......, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...... material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial...

  7. Plant Food Residues as a Source of Nutraceuticals and Functional Foods

    OpenAIRE

    Theodoros Varzakas; George Zakynthinos; Francis Verpoort

    2016-01-01

    This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.

  8. Dynamics of pear-pathogenic Stemphylium vesicarium in necrotic plant residues in Dutch pear orchards

    NARCIS (Netherlands)

    Köhl, J.; Jong, de P.F.; Kastelein, P.; Groenenboom-de Haas, de B.H.; Anbergen, R.H.N.; Balkhoven, H.; Wubben, J.P.

    2013-01-01

    Brown spot disease on pear caused by Stemphylium vesicarium may affect leaves and fruits. Inoculum sources present on orchard floors play an important role in the epidemiology of pear brown spot. The pathogen can overwinter on plant residues and multiply and spread on the residues during the growing

  9. Physical engineering of rhizosphere by plant exudates varies with species, origin and microbial decomposition

    Science.gov (United States)

    Naveed, Muhammad; Brown, Lawrie; Raffan, Annette; George, Timothy; Bengough, Glyn; Roose, Tiina; Sinclair, Ian; Koebernick, Nicolai; Cooper, Laura; Hallett, Paul

    2017-04-01

    Rhizosphere physical conditions are continually modified by the release of plant root exudates and microbial metabolites. Separate studies have shown that model root exudates influence surface tension, contact angle, water retention and soil stability, but an integrated assessment of these properties for different real root exudates is absent. We hypothesise that influence of root exudates on soil physical properties depends on the physico-chemical characteristics of the exudates itself. The first part of this study examines the physico-chemical characteristics of barley root exudate, maize root exudate, and chia seed exudate. The second part of the study has shown the influence of these root exudates on micromechanics (dispersion and aggregation), water retention, hysteresis and shrinkage-swelling of soils. Highest amount of amino acids and organic acids were observed for barley root exudate followed by maize root and chia seed, respectively. Conversely, the reverse is true for sugars i.e. chia seed exudate > maize root exudate > barley root exudate. We found that barley root exudates have the capacity to weaken soil followed by strengthening after biological decomposition. The initial weakening of soil by barley root exudation may ease root penetration through soil and help in releasing nutrients from soil that were initially not accessible. Maize root exudates and chia seed exudates, on the other hand, strengthen soil from the onset, with biological decomposition decreasing strength that was still significantly higher compared to that of control soil. This strengthening of soil by maize root and chia seed exudation could drive more stable soil structure near roots. Under drying conditions both maize root and chia seed exudates were acted as a gel that retained more water but also enhanced hysteresis during rewetting. On the other hand barely root exudate more acted as a surfactant that decreased soil water retention as well as hysteresis compared to the control

  10. Compared cycling in a soil-plant system of pea and barley residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil......Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from N-15-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed...... in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During...

  11. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savanna?

    Science.gov (United States)

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio; Silva, Igor Aurélio; Cianciaruso, Marcus Vinicius; Petchey, Owen L

    2014-07-01

    Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.

  12. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  13. Characterization of residues from plant biomass for use in energy generation

    Directory of Open Access Journals (Sweden)

    Luana Elis de Ramos e Paula

    2011-06-01

    Full Text Available The use of plant residues for energy purposes is already a reality, yet in order to ensure suitability and recommend a given material as being a good energy generator, it is necessary to characterize the material through chemical analysis and determine its calorific value. This research aimed to analyze different residues from plant biomass, characterizing them as potential sources for energy production. For the accomplishment of this study, the following residues were used: wood processing residue (sawdust and planer shavings; coffee bean parchment and coffee plant stem; bean stem and pod; soybean stem and pod; rice husk; corn leaf, stem, straw and cob; and sugar cane straw and bagasse. For residue characterization the following analyses were done: chemical analysis, immediate chemical analysis, calorific value and elemental analysis. All procedures were conducted at the Laboratory of Forest Biomass Energy of the Federal University of Lavras. In general, all residues showed potential for energetic use. Rice husk was found to have higher lignin content, which is an interesting attribute as far as energy production is concerned. Its high ash content, however, led to a reduction in calorific value and fixed carbon. The remaining residues were found to have similar energetic characteristics, with corn cob showing greater calorific value, followed by coffee plant stem, both also containing higher levels of carbon and fixed carbon. A high correlation was found of higher calorific value with volatile materials, carbon and hydrogen contents.

  14. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2012-10-01

    Full Text Available In initial ecosystems concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degraders' food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this regions' dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, mainly the amount of N stored in the litter material and its bioavailability for the degradation process and the development of microbial communities in the detritusphere and bulk soil. Whereas the degradation process of the L. corniculatus litter which had a low C/N ratio was fast and most pronounced changes in the microbial community structure were observed 1–4 weeks after litter addition, the degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred at between 4 and 30 weeks after litter addition to the soil. However for both litter materials a clear indication for the importance of fungi for the degradation process was observed both on the abundance level as well as on the level of 13C incorporation (activity.

  15. Detection of antibacterial substances in some plant residues and their effect on certain micro-organisms.

    Science.gov (United States)

    Abdel-Nasser, M; Safwat, M S; Ali, M Z

    1983-01-01

    The effect of dry residues from several plants, belonging to different families on certain microorganisms in vitro and in vivo, was studied. Dry residues of paprica leaves, tomato tops, egg plant leaves, guava leaves, onion peels, garlic tops, wheat straw, sugar cane leaves, cotton leaves, Egyptian clover tops, field bean tops or pea tops were examined for the presence of antibacterial substances, using successive extractions with hexane, ethyl ether, ethanol, and water, respectively, for each plant residue. On culture media, the antibacterial effect, expressed as width of inhibition zones, differed according to the type of plant, type of micro-organism, and extraction medium, used for each plant. Water extract from each of the studied plants showed no effect on any of the studied micro-organisms, while the other extracts indicated the presence of antibacterial substances in all the used plants. In most cases, ether extract showed the highest incidence of antimicrobial activities against the majority of test micro-organisms. In general, the antibacterial substances seemed to be more inhibitory to Gram-positive bacteria than to Gram-negative ones. Ethyl-ether extract of the residues of most of these plants markedly affected the growth of more than one of the different Rhizobium species when grown on culture medium, as indicated by the presence of wide zones of inhibition.

  16. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types

    NARCIS (Netherlands)

    Bakker, M.A.; Carreño Rocabado, G.; Poorter, L.

    2011-01-01

    1. Decomposition is a key ecosystem process that determines nutrient and carbon cycling. Individual leaf and litter characteristics are good predictors of decomposition rates within biomes worldwide, but knowledge of which traits are the best predictors for tropical species remains scarce. Also, the

  17. Microbial Biomass Changes during Decomposition of Plant Residues in a Lixisol

    Directory of Open Access Journals (Sweden)

    Kachaka, SK.

    2003-01-01

    Full Text Available A lixisol was amended with four different alley cropping species: Senna siamea, Leucaena leucocephala, Dactyladenia barteri and Flemingia macrophylla. Soil samples were incubated for 140 days at 25 °C and the soil microbial biomass was determined by the ninhydrin extraction method along the incubation period. The soil microbial biomass values ranged between 80 and 600 mg.kg-1 and followed, in all cases, the decreasing order: Leucaena> Senna> Flemingia> Dactyladenia.

  18. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  19. Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    Cam Van, Do Thi

    2013-08-01

    Compost and residues from biogas plant have been increasingly recognized as potting substrates in horticulture. To investigate the suitability of both materials to grow salt tolerant plants in 2010 a pot experiment was conducted in the greenhouse of INRES-Plant nutrition, University of Bonn. Ryegrass (Lolium perenne L.), rape (Brassica napus) and sunflower (Helianthus annuus) were chosen as experimental plants. To reduce the high salt content compost and residues from biogas plant were leached. To improve physical characteristics of raw materials, additives including Perlite, Styromull, Hygromull, Lecaton, Peat, Cocofiber were incorporated into compost or residues from biogas plant with the volumetric ratio of 4:1. Plant growth (DM) and nutrient uptake (N, P, K, Mg, Ca, Na and S) of the experimental plants grown in compost-based or residue-based substrates with and without additives and standard soil as a control were determined. Preliminary results reveal that origin compost and residues from biogas plant without leaching are suitable potting substrates for those plants. For compost leaching may not be recommended while for residues from biogas plant the effect of leaching was not distinct and needs further investigations. The incorporation of additives into the basic materials partially resulted in higher plant dry matter yield and nutrient uptake. However, differences between the additives on both parameters were mainly insignificant. Incorporation of Hygromull or Peat, especially into residues from biogas plant favored plant growth and enhanced total nutrient uptake. In 2011, pot experiments were continued with the salt-sensitive ornamental plants, Pelargonium (Pelargonium zonale Toro) and Salvia (Salvia splendens). Two separate experiments were carried out for the mixtures of compost and additives (SPS standard soil type 73 based on Peat, Hygromull or Cocofiber) with different volumetric ratios (4:1, 1:1, 1:4) and the mixtures of Peat incorporated with small

  20. Recycling a hydrogen rich residual stream to the power and steam plant

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250 Buenos Aires, Ciudad Autonoma de Buenos Aires (Argentina); Eliceche, A.M. [Chemical Engineering Department, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga Km 7 (8000) Bahia Blanca (Argentina)

    2010-06-15

    The benefits of using a residual hydrogen rich stream as a clean combustion fuel in order to reduce Carbon dioxide emissions and cost is quantified. A residual stream containing 86% of hydrogen, coming from the top of the demethanizer column of the cryogenic separation sector of an ethylene plant, is recycled to be mixed with natural gas and burned in the boilers of the utility plant to generate high pressure steam and power. The main advantage is due to the fact that the hydrogen rich residual gas has a higher heating value and less CO{sub 2} combustion emissions than the natural gas. The residual gas flowrate to be recycled is selected optimally together with other continuous and binary operating variables. A Mixed Integer Non Linear Programming problem is formulated in GAMS to select the operating conditions to minimize life cycle CO{sub 2} emissions. (author)

  1. Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling

    NARCIS (Netherlands)

    Graaff, de M.A.; Six, J.; Harris, D.; Blums, H.; Kessel, van C.

    2004-01-01

    Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover,

  2. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  3. Deciphering the mechanism behind the varied binding activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies.

    Science.gov (United States)

    Chaudhary, Neha; Aparoy, Polamarasetty

    2017-03-01

    COX-2 is a well-known drug target in inflammatory disorders. COX-1/COX-2 selectivity of NSAIDs is crucial in assessing the gastrointestinal side effects associated with COX-1 inhibition. Celecoxib, rofecoxib, and valdecoxib are well-known specific COX-2 inhibiting drugs. Recently, polmacoxib, a COX-2/CA-II dual inhibitor has been approved by the Korean FDA. These COXIBs have similar structure with diverse activity range. Present study focuses on unraveling the mechanism behind the 10-fold difference in the activities of these sulfonamide-containing COXIBs. In order to obtain insights into their binding with COX-2 at molecular level, molecular dynamics simulations studies, and MM-PBSA approaches were employed. Further, per-residue decomposition of these energies led to the identification of crucial amino acids and interactions contributing to the differential binding of COXIBs. The results clearly indicated that Leu338, Ser339, Arg499, Ile503, Phe504, Val509, and Ser516 (Leu352, Ser353, Arg513, Ile517, Phe518, Val523, and Ser530 in PGHS-1 numbering) were imperative in determining the activity of these COXIBs. The binding energies and energy contribution of various residues were similar in all the three simulations. The results suggest that hydrogen bond interaction between the hydroxyl group of Ser516 and five-membered ring of diarylheterocycles augments the affinity in COXIBs. The SAR of the inhibitors studied and the per-residue energy decomposition values suggested the importance of Ser516. Additionally, the positive binding energy obtained with Arg106 explains the binding of COXIBs in hydrophobic channel deep in the COX-2 active site. The findings of the present work would aid in the development of potent COX-2 inhibitors.

  4. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-01-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  5. Identifying Plant Part Composition of Forest Logging Residue Using Infrared Spectral Data and Linear Discriminant Analysis.

    Science.gov (United States)

    Acquah, Gifty E; Via, Brian K; Billor, Nedret; Fasina, Oladiran O; Eckhardt, Lori G

    2016-08-27

    As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest

  6. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  7. Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center

    DEFF Research Database (Denmark)

    Hejgaard, Jørn

    2005-01-01

    Serpins appear to be ubiquitous in eukaryotes, except fungi, and are also present in some bacteria, archaea and viruses. Inhibitory serpins with a glutamine as the reactive-center P1 residue have been identified exclusively in a few plant species. Unique serpins with a reactive center sequence...

  8. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson , G.P. (UAF Pakistan); (UC); (Hubei); (MSU)

    2017-06-05

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  9. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Science.gov (United States)

    Kravchenko, A. N.; Toosi, E. R.; Guber, A. K.; Ostrom, N. E.; Yu, J.; Azeem, K.; Rivers, M. L.; Robertson, G. P.

    2017-07-01

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4-10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (∅ >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  10. Plant Food Residues as a Source of Nutraceuticals and Functional Foods

    Directory of Open Access Journals (Sweden)

    Theodoros Varzakas

    2016-12-01

    Full Text Available This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.

  11. Effects of plant species, age and part on the disappearance of sevin, nuvacron and malathion residues.

    Science.gov (United States)

    Rawash, I A; Gaaboub, I A; El-Gayar, F M; El-Shazli, A Y

    1975-05-01

    Residues as determined by bioassay using Daphnia or mosquito larvae were in agreement with each other in most cases except sevin residues at 1 h and 8 days after treatment of mallow. The mosquito larvae failed to record nuvacron, sevin and malathion on 45-day-old plants on the 8th, 12th and 24th day, respectively, whereas residues on younger plants continued to affect mosquitoes up to the 12th day and disappeared only on the 24th day. Daphnia continued to show toxicity up to the 24th day on younger and older plants. Insecticide residues of nuvacron, malathion and sevin, found on the leaves 30- and 45-day-old plants of cotton, Jew's mallow and kidney beans after 1 h, 1, 4, 8, 12 and 24 days were estimated biologically by C. pipiens larvae and D. magna. Residues of insecticides disappeared more readily on bean pods than on bean leaves. Residues of sevin, malathion and nuvacron found on the pods 12 days after treatment as indicated by Daphnia were 0.189, 0.055 and 0.059 ppm respectively. They are far less than the corresponding residues on bean leaves. The 1-hour residue was higher on younger bean leaves than on mallow and cotton with very few exceptions (nuvacron, malathion and sevin: 2.125, 11.75 and 95 ppm on cotton leaves; 2.25 and 145 ppm on Jew's mallow and 3.750, 32.500 and 250 ppm on common bean leaves, respectively). These data were obtained with C. pipiens larvae. The picture was completely reversed on 45-day-old plants. 1-h deposits of malathion were higher on mallow than on cotton or beans (nuvacron, malathion and sevin; 2.3, 200 and 140 ppm on cotton leaves, 1.90, 191.15 and 92.86 ppm on mallow leaves, 2.25, 21.5 and 137.5 ppm on common bean leaves, respectively). These data were obtained with C. pipiens larvae. Nuvacron residues on 45-day-old mallow were less on mallow than on cotton or beans. Sevin was higher in 1-h residues on cotton and beans than on mallow. Mallow did not retain insecticides as long as did cotton and beans. The initial concentration

  12. Evaluation of the photo-fenton reaction in the decomposition of tick residues; Avaliacao da reacao foto-fenton na decomposicao de residuos de carrapaticida

    Energy Technology Data Exchange (ETDEWEB)

    Gromboni, Caio Fernando; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica; Kamogawa, Marcos Yassuo [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Nogueira, Ana Rita de Araujo [Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)]. E-mail: anarita@cppse.embrapa.br

    2007-03-15

    Experimental procedures based on factorial design and surface response methodology were applied to establish experimental conditions for the decomposition of a 1:400 (v/v) Supocade (chlorfenvinphos 13.8% and cypermethrin 2.6%) solution, used to control cattle ticks. Experiments exploring photo-oxidative reactions were performed with and without UV radiation, fixing exposition time and pesticide volume, and varying the oxidant mixture. The use of 3.6 mmol L{sup -1} Fe{sup 2+} plus 1.9 mol L-1 H{sub 2}O{sub 2} plus UV radiation provided destruction of 94% of the original carbon content and reduction of aromatic, aliphatic and carbinolic compounds, evaluated by determination of residual carbon content by ICP OES and NMR analysis. (author)

  13. Survival of Colletotrichum acutatum in plant residue

    DEFF Research Database (Denmark)

    Parikka, Päivi; Lemmetty, A.; Sundelin, Thomas

    2016-01-01

    started in Finland in October 2008, in Norway and Denmark in October 2009, and lasted for three years. Artificially infected strawberry plant parts were placed on the soil surface and at 7-9 cm depth, and survival of the material was checked during the trial years in spring and autumn, using bait tests...... growing on the trial sites in Finland. The study showed that C. acutatum can survive in soil or on the soil surface in plant residue in Nordic conditions for nearly 3 years. Weeds can have infections of infested plant debris. In disease management, weed control and crop rotation for three years...

  14. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    Science.gov (United States)

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter

  15. Effects of crop residue on soil and plant water evaporation in a dryland cotton system

    Science.gov (United States)

    Lascano, R. J.; Baumhardt, R. L.

    1996-03-01

    Dryland agricultural cropping systems emphasize sustaining crop yields with limited use of fertilizer while conserving both rain water and the soil. Conservation of these resources may be achieved with management systems that retain residues at the soil surface simultaneously modifying both its energy and water balance. A conservation practice used with cotton grown on erodible soils of the Texas High Plains is to plant cotton into chemically terminated wheat residues. In this study, the partitioning of daily and seasonal evapotranspiration ( E t) into soil and plant water evaporation was compared for a conventional and a terminated-wheat cotton crop using the numerical model ENWATBAL. The model was configured to account for the effects of residue on the radiative fluxes and by introducing an additional resistance to latent and sensible heat fluxes derived from measurements of wind speed and vapor conductance from a soil covered with wheat-stubble. Our results showed that seasonal E t was similar in both systems and that cumulative soil water evaporation was 50% of E t in conventional cotton and 31% of E t in the wheat-stubble cotton. Calculated values of E t were in agreement with measured values. The main benefit of the wheat residues was to suppress soil water evaporation by intercepting irradiance early in the growing season when the crop leaf area index (LAI) was low. In semiarid regions LAI of dryland cotton seldom exceeds 2 and residues can improve water conservation. Measured soil temperatures showed that early in the season residues reduced temperature at 0.1 m depth by as much as 5°C and that differences between systems diminished with depth and over time. Residues increased lint yield per unit of E t while not modifying seasonal E t and reducing cumulative soil water evaporation.

  16. Use of plant residues on growth of mycorrhizal seedlings of neem (Azadirachta indica A. Juss.).

    Science.gov (United States)

    Monte Júnior, Inácio P; Maia, Leonor C; Silva, Fábio S B; Cavalcante, Uided M T

    2012-02-01

    Owing to its multiple uses in veterinary medicine, biofertilizers, pest control, etc., the commercial cultivation of neem (Azadirachta indica) has been increasing in various countries. The use of arbuscular mycorrhizal fungi (AMF) and plant by-products (composted leaves and residues of neem and sugarcane) for the propagation of seedlings can be an efficient alternative to stimulate plant growth, reducing the propagation time and conferring increased tolerance of plants to biotic and abiotic stresses. Therefore this study aimed to evaluate the effect of plant substrates and inoculation with AMF on the production of neem seedlings. Beneficial effects of the application of neem by-products to neem seedlings were observed on most of the variables analysed. However, the treatment with sugarcane cake did not improve the growth of neem seedlings. In general, the inoculation treatments using Glomus etunicatum in the composted neem substrates improved seedling growth. Neem by-products benefit the growth of seedlings of this plant under greenhouse conditions. Inoculation with G. etunicatum enhances plants growth mainly in substrates with residues of neem leaves, providing an alternative for the production of seedlings of this crop under nursery conditions, which can reduce the need for chemical fertilizers that impact the environment. Copyright © 2011 Society of Chemical Industry.

  17. Residual recovery and yield performance of nitrogen fertilizer applied at sugarcane planting

    Directory of Open Access Journals (Sweden)

    Henrique Coutinho Junqueira Franco

    2015-12-01

    Full Text Available ABSTRACTThe low effectiveness of nitrogen fertilizer (N is a substantial concern that threatens global sugarcane production. The aim of the research reported in this paper was to assess the residual effect of N-fertilizer applied at sugarcane planting over four crop seasons in relation to sugarcane crop yield. Toward this end three field experiments were established in the state of São Paulo, Brazil, during February of 2005 and July of 2009, in a randomized block design with four treatments: 0, 40, 80 and 120 kg ha−1 of N applied as urea during sugarcane planting. Within each plot, a microplot was established to which 15N-labeled urea was applied. The application of N at planting increased plant cane yield in two of the three sites and sucrose content at the other, whereas the only residual effect was higher sucrose content in one of the following ratoons. The combined effect was an increase in sugar yield for three of the 11 crop seasons evaluated. Over the crop cycle of a plant cane and three ratoon crops, only 35 % of the applied N was recovered, split 75, 13, 7 and 5 % in the plant cane, first, second and third ratoons, respectively. These findings document the low efficiency of N recovery by sugarcane, which increases the risk that excessive N fertilization will reduce profitability and have an adverse effect on the environment.

  18. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents.

    Science.gov (United States)

    Cele, Favourite N; Ramesh, Muthusamy; Soliman, Mahmoud Es

    2016-01-01

    A novel virtual screening approach is implemented herein, which is a further improvement of our previously published "target-bound pharmacophore modeling approach". The generated pharmacophore library is based only on highly contributing amino acid residues, instead of arbitrary pharmacophores, which are most commonly used in the conventional approaches in literature. Highly contributing amino acid residues were distinguished based on free binding energy contributions obtained from calculation from molecular dynamic (MD) simulations. To the best of our knowledge; this is the first attempt in the literature using such an approach; previous approaches have relied on the docking score to generate energy-based pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present a model for a per-residue energy decomposition, constructed from MD simulation ensembles generating a more trustworthy pharmacophore model, which can be applied in drug discovery workflow. This work is aimed at introducing a more rational approach to the field of drug design, rather than comparing the validity of this approach against those previously reported. We recommend additional computational and experimental work to further validate this approach. This approach was used to screen for potential reverse transcriptase inhibitors using the pharmacophoric features of compound GSK952. The complex was subjected to docking, thereafter, MD simulation confirmed the stability of the system. Experimentally determined inhibitors with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. Two potential hits (ZINC46849657 and ZINC54359621) showed a significant potential with regard to free binding energy. Reported results obtained from this work confirm that this new approach is favorable in the future of the drug design industry.

  19. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants.

    Science.gov (United States)

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J

    2014-12-05

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.

  20. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  1. Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials.

    Science.gov (United States)

    Ouyang, Guang; Herzmann, Grit; Zhou, Changsong; Sommer, Werner

    2011-12-01

    Event-related brain potentials (ERPs) are important research tools because they provide insights into mental processing at high temporal resolution. Their usefulness, however, is limited by the need to average over a large number of trials, sacrificing information about the trial-by-trial variability of latencies or amplitudes of specific ERP components. Here we propose a novel method based on an iteration strategy of the residues of averaged ERPs (RIDE) to separate latency-variable component clusters. The separated component clusters can then serve as templates to estimate latencies in single trials with high precision. By applying RIDE to data from a face-priming experiment, we separate priming effects and show that they are robust against latency shifts and within-condition variability. RIDE is useful for a variety of data sets that show different degrees of variability and temporal overlap between ERP components.

  2. Green process to recover magnesium chloride from residue solution of potassium chloride production plant

    Institute of Scientific and Technical Information of China (English)

    Lin WANG; Yunliang HE; Yanfei WANG; Ying BAO; Jingkang WANG

    2008-01-01

    The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant, which comes from the leach solution of a potash mine in Laos, is designed and optimized. The res-idue solution contains magnesium chloride above 25 wt-%, potassium chloride and sodium chloride together below 5 wt-% and a few other ions such as Br-, SO2-4and Ca2+. The recovery process contains two steps: the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride. The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt. The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production. The produced magnesium chloride is up to industrial criteria.

  3. Nitrogen mineralization and denitrification as influenced by crop residue particle size

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.

    1997-01-01

    for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue. We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long...

  4. A Dantzig-Wolfe Decomposition Algorithm for Linear Economic MPC of a Power Plant Portfolio

    DEFF Research Database (Denmark)

    2012-01-01

    Recently, the interest in renewable energy sources is increasing. In the short future, their penetration in the power systems will be signicantly higher than today. Denmark is working on achieving its goal by 2020 of having 30% of the energy production provided by renewable sources. 50% of the to...... a sample period, Dantzig-Wolfe decomposition is used for solution of the resulting linear program describing the Economic MPC of such systems. The controller obtained has been tested by simulations of a power portfolio system....

  5. Identifying Plant Part Composition of Forest Logging Residue Using Infrared Spectral Data and Linear Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Gifty E. Acquah

    2016-08-01

    Full Text Available As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS and Fourier transform infrared spectroscopy (FTIRS together with linear discriminant analysis (LDA. Forest logging residue harvested from several Pinus taeda (loblolly pine plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage. Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability

  6. Evaluating the fate of metals in air pollution control residues from coal-fired power plants.

    Science.gov (United States)

    Thorneloe, Susan A; Kosson, David S; Sanchez, Florence; Garrabrants, Andrew C; Helms, Gregory

    2010-10-01

    Changes in emissions control at U.S. coal-fired power plants will shift metals content from the flue gas to the air pollution control (APC) residues. To determine the potential fate of metals that are captured through use of enhanced APC practices, the leaching behavior of 73 APC residues was characterized following the approach of the Leaching Environmental Assessment Framework. Materials were tested over pH conditions and liquid-solid ratios expected during management via land disposal or beneficial use. Leachate concentrations for most metals were highly variable over a range of coal rank, facility configurations, and APC residue types. Liquid-solid partitioning (equilibrium) as a function of pH showed significantly different leaching behavior for similar residue types and facility configurations. Within a facility, the leaching behavior of blended residues was shown to follow one of four characteristic patterns. Variability in metals leaching was greater than the variability in totals concentrations by several orders of magnitude, inferring that total content is not predictive of leaching behavior. The complex leaching behavior and lack of correlation to total contents indicates that release evaluation under likely field conditions is a better descriptor of environmental performance than totals content or linear partitioning approaches.

  7. Effects of Plant Age and Rock Phosphate on Quality and Nutrient Release of Legume Residue

    Institute of Scientific and Technical Information of China (English)

    I. ABARCHI; ZHANG Zhan-Yu; B. VANLAUWE; GUO Xiang-Ping; WANG Wei-Mu; B. T. I. ONG'OR; D. TIMBELY

    2009-01-01

    An incubation experiment was carried out on plateau and slope fields to investigate the effect of plant age and rock phosphate (RP) on the organic resource (OR) quality and available N and P release of the legume residues, including standing biomass and surface litter. The legumes, Mueuna pruriens (L.) and Lablab purpureus (L.), were treated with or without Togn rock phosphate (RP) and were sampled at 12, 18, 24 and 30 weeks after planting. Results showed that the application of RP significantly affected the P content of the legume residues on the plateau field for the first 18 weeks, but not the other OR quality parameters, nor their N mineralization, or P release parameters. Although application of RPled to higher P contents in both legumes on the plateau field, the P contents were still far below those observed on the slope field. For both species, the biomass age appeared to have a major impact on their N, P, and polyphenol contents, but not on the lignin content. At 24 weeks, both legume N and P contents dropped to about half their values at 12 weeks of age. Residue age also significantly affected N mineralization both with and without RP addition and the net Olsen-P with RP addition. The younger residues generally led to higher N mineralization and net Olsen-P content than the older residues. The best immediate responses to herbaceous legume addition were expected from younger materials, but often at the cost of the total biomass produced and the possibility to produce seeds. The production of seeds, however, could be potentially implemented on a small area of legumes, thus invariably allowing for maturity and seed production.

  8. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  9. Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, J.M., E-mail: lguti@us.es [Centro Nacional de Aceleradores (CNA), c/Thomas Alva Edison n Degree-Sign 7, 41092 Sevilla (Spain); University of Sevilla, Departamento de Fisica Aplicada I, c/Virgen de Africa, n Degree-Sign 7, 41011 Sevilla (Spain); Gomez-Guzman, J.M.; Chamizo, E.; Peruchena, J.I. [Centro Nacional de Aceleradores (CNA), c/Thomas Alva Edison n Degree-Sign 7, 41092 Sevilla (Spain); Garcia-Leon, M. [University of Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Apdo. 1065, 41080 Sevilla (Spain)

    2013-01-15

    Radioactive residues, in order to be classified as Low-Level Waste (LLW), need to fulfil certain conditions; the limitation of the maximum activity from long-lived radionuclides is one of these requirements. In order to verify compliance to this limitation, the abundance of these radionuclides in the residue must be determined. However, performing this determination through radiometric methods constitutes a laborious task. In this work, {sup 129}I concentrations, {sup 239+240}Pu activities, and {sup 240}Pu/{sup 239}Pu ratios are determined in low-level radioactive residues, including resins and dry sludge, from nuclear power plants in Spain. The use of Accelerator Mass Spectrometry (AMS) enables high sensitivities to be achieved, and hence these magnitudes can be re determined with good precision. Results present a high dispersion between the {sup 129}I and {sup 239+240}Pu activities found in various aliquots of the same sample, which suggests the existence of a mixture of resins with a variety of histories in the same container. As a conclusion, it is shown that activities and isotopic ratios can provide information on the processes that occur in power plants throughout the history of the residues. Furthermore, wipes from the monitoring of surface contamination of the Jose Cabrera decommissioning process have been analyzed for {sup 129}I determination. The wide range of measured activities indicates an effective dispersal of {sup 129}I throughout the various locations within a nuclear power plant. Not only could these measurements be employed in the contamination monitoring of the decommissioning process, but also in the modelling of the presence of other iodine isotopes.

  10. Reconstructing ERP amplitude effects after compensating for trial-to-trial latency jitter: A solution based on a novel application of residue iteration decomposition.

    Science.gov (United States)

    Ouyang, Guang; Sommer, Werner; Zhou, Changsong

    2016-11-01

    Stimulus-locked averaged event-related potentials (ERPs) are among the most frequently used signals in Cognitive Neuroscience. However, the late, cognitive or endogenous ERP components are often variable in latency from trial to trial in a component-specific way, compromising the stability assumption underlying the averaging scheme. Here we show that trial-to-trial latency variability of ERP components not only blurs the average ERP waveforms, but may also attenuate existing or artificially induce condition effects in amplitude. Hitherto this problem has not been well investigated. To tackle this problem, a method to measure and compensate component-specific trial-to-trial latency variability is required. Here we first systematically analyze the problem of single trial latency variability for condition effects based on simulation. Then, we introduce a solution by applying residue iteration decomposition (RIDE) to experimental data. RIDE separates different clusters of ERP components according to their time-locking to stimulus onsets, response times, or neither, based on an algorithm of iterative subtraction. We suggest to reconstruct ERPs by re-aligning the component clusters to their most probable single trial latencies. We demonstrate that RIDE-reconstructed ERPs may recover amplitude effects that are diminished or exaggerated in conventional averages by trial-to-trial latency jitter. Hence, RIDE-corrected ERPs may be a valuable tool in conditions where ERP effects may be compromised by latency variability.

  11. Study of the thermal decomposition of petrochemical sludge in a pilot plant reactor

    OpenAIRE

    Conesa Ferrer, Juan Antonio; Moltó Berenguer, Julia; Ariza, José; Ariza, María; García Barneto, Agustín

    2014-01-01

    The pyrolysis of a sludge produced in the waste water treatment plant of an oil refinery was studied in a pilot plant reactor provided with a system for condensation of semivolatile matter. The study comprises experiments at 350, 400, 470 and 530 °C in nitrogen atmosphere. Analysis of all the products obtained (gases, liquids and chars) are presented, with a thermogravimetric study of the char produced and analysis of main components of the liquid. In the temperature range studied, the compos...

  12. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  13. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: tanius@cdtn.br, E-mail: dhbs@cdtn.br, E-mail: tanius@cdtn.br, E-mail: raphaelmecanica@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Souto, Joao P.R.S.; Carvalho Junior, Ideir T., E-mail: joprocha@yahoo.com.br, E-mail: ideir_engenharia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    2013-07-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  14. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  15. Effect of Land Use Pattern on Mineralization of Residual C and N from Plant Materials Decomposing Under Field Conditions

    Institute of Scientific and Technical Information of China (English)

    CHENGLILI; WENQIXIAO

    1998-01-01

    Four kinds of plant materials(astragalus,azolla,rice straw and water hyacinth) were allowed to decom-pose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions.Greater amounts of C and N from azolla were retained in soils throughout the 10-year experi-mental period compared to those from the other plant materials.The residual C of all the plant materials in the two soils under upland conditions mineralized at rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for those under submerge conditions were between 6.5-13.1 years,Minera-liztion of residual organic N followed the same pattern as residual C.Compared to residual C,however,the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N retained in soils were higher.More N from plant materials was retained in the yellow-brown soil than in the red soil,but no consistent differences in the amounts of C from plant materials and in the mineraliztion rates of both residual C and residual organic N between the wto soils could be folund.

  16. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  17. Decomposition of Organic Compounds in Coke Plant Wastewater by Ultrasonic Irradiation and Its Combined Process

    Institute of Scientific and Technical Information of China (English)

    XU Jin-qiu; JIA Jin-ping; WANG Jing-wei

    2004-01-01

    The paper deals with the degradation of the organic compounds in the coke plant wastewater by the combined process of ultrasonic irradiation and activated sludge. The influence factors of the ultrasonic degradation effect such as air atmosphere, initial concentration, ultrasonic power density and the category and consumption of catalyst were investigated. A water quality model was used to explain the degradation of different kinds of organic compounds in the coke plant wastewater by ultrasonic irradiation. After the wastewater was treated by the combined process of ultrasonic irradiation and activated sludge, the COD degradation efficiency was 95. 74 %, which is 63. 49% higher than that by the process of activated sludge alone.

  18. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    Science.gov (United States)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  19. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    Science.gov (United States)

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.

  20. A Dantzig-Wolfe Decomposition Algorithm for Linear Economic MPC of a Power Plant Portfolio

    DEFF Research Database (Denmark)

    Standardi, Laura; Edlund, Kristian; Poulsen, Niels Kjølstad

    2012-01-01

    Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In t...

  1. Oxidative decomposition properties of cationic exchange resins producing SO4(2-) in power plants.

    Science.gov (United States)

    Zhu, Zhiping; Dai, Chenlin; Liu, Sen; Tian, Ye

    2015-01-01

    The sulphate content of a system increases when strong-acid cationic exchange resins leak into a system or when sulphonic acid groups on the resin organic chain detach. To solve this problem, a dynamic cycle method was used in dissolution experiments of several resins under H2O2 or residual chlorine conditions. Results show that after performing dynamic cycle experiments for 120 hours under oxidizing environments, the SO4(2-) and total organic carbon (TOC) released by four kinds of resins increased with time, contrary to their release velocity. The quantity of released SO4(2-) increased as the oxidizing ability of oxidants was enhanced. Results showed that the quantity and velocity of released SO4(2-) under residual chlorine condition were larger than those under H2O2 condition. Data analysis of SO4(2-) and TOC released from the four kinds of resins by the dynamic cycle experiment revealed that the strength of oxidation resistance of the four resins were as follows: 650C>1500H>S200>SP112H.

  2. Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas Biomass and decomposition of cover crop residues in monoculture and intercropping

    Directory of Open Access Journals (Sweden)

    Alexandre Doneda

    2012-12-01

    for cover crop species in consortium. The experiment was conducted in Não-Me-Toque, RS, on an Oxisol, evaluating nine treatments of four cover crops in monoculture [rye (Secale cereale L., oat (Avena strigosa Schreb, pea (Pisum sativum subsp. arvense, and wild radish (Raphanus sativus L. var. oleiferus Metzg] and five in intercropping [(rye + pea, radish + rye, oat + radish, rye + vetch (Vicia sativa L. and oat + vetch]. The decomposition dynamics of cover crop residues was evaluated in litter bags which were distributed on the soil surface and collected after seven, 14, 21, 28, 57, 117, and 164 days. Leguminous and cruciferous intercropped with Gramineae species resulted in greater biomass production compared to cultivation in monoculture. The nitrogen (N accumulated in the pea and wild radish plants intercropped with rye and oat was similar to the N in the leguminous and cruciferous monocultures and exceeded the N values observed for the Gramineae species in monoculture by 220.4 %. By intercropping cover crops it was possible to reduce the decomposition rate of crop residues compared to the monoculture of leguminous and cruciferous species.

  3. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  4. The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens

    OpenAIRE

    Moller, Isabel E.; De Fine Licht, Henrik H; Jesper Harholt; Willats, William G. T; Boomsma, Jacobus J.

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently establish...

  5. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil

    Institute of Scientific and Technical Information of China (English)

    NOURBAKHSH Farshid; SHEIKH-HOSSEINI Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co)was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation.

  6. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  7. Re-examination of Chinese semantic processing and syntactic processing: evidence from conventional ERPs and reconstructed ERPs by residue iteration decomposition (RIDE).

    Science.gov (United States)

    Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping

    2015-01-01

    A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.

  8. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE).

    Science.gov (United States)

    Verleger, Rolf; Metzner, Marvin F; Ouyang, Guang; Śmigasiewicz, Kamila; Zhou, Changsong

    2014-10-15

    It has been proposed that the P3b component of event-related potentials (ERPs) reflects linking of responses to target stimuli. This proposal was tested by disconnecting the temporal link between target stimuli and responses, and by applying residue iteration decomposition (RIDE) for separating the ERP components into stimulus-locked, response-locked, and "intermediate" clusters. Left or right keys had to be pressed in response to frequent (80%) and rare (20%) target letters, but responses had to wait for "go" signals (appearing in 90% of trials). Between blocks, stimulus-onset asynchronies (SOAs) from targets to go-signals varied from 0 ms to 800 ms. Rare targets with their rare responses were expected to evoke large P3bs ("oddball effect"). If related to stimulus processing only, this effect will be equally large across all SOAs and will be modeled by RIDE's stimulus-cluster. If related to response initiation only, the oddball effect will be evoked by go-signals rather than by targets and will be modeled by RIDE's response-cluster. If indicating integration of rare stimuli with their rare responses, the oddball effect will be evoked by targets but will be reduced and stretched in time across SOAs and will be modeled by RIDE's intermediate cluster. RIDE analysis confirmed this latter view, for the most part. SOA effects matched best, though not perfectly, predictions made by the stimulus-response-link view. These results call for a refined account of the oddball effect on P3b in terms of stimulus-response coupling.

  9. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  10. Role of plant residues in determining temporal patterns of the activity, size, and structure of nitrate reducer communities in soil.

    Science.gov (United States)

    Chèneby, D; Bru, D; Pascault, N; Maron, P A; Ranjard, L; Philippot, L

    2010-11-01

    The incorporation of plant residues into soil not only represents an opportunity to limit soil organic matter depletion resulting from cultivation but also provides a valuable source of nutrients such as nitrogen. However, the consequences of plant residue addition on soil microbial communities involved in biochemical cycles other than the carbon cycle are poorly understood. In this study, we investigated the responses of one N-cycling microbial community, the nitrate reducers, to wheat, rape, and alfalfa residues for 11 months after incorporation into soil in a field experiment. A 20- to 27-fold increase in potential nitrate reduction activity was observed for residue-amended plots compared to the nonamended plots during the first week. This stimulating effect of residues on the activity of the nitrate-reducing community rapidly decreased but remained significant over 11 months. During this period, our results suggest that the potential nitrate reduction activity was regulated by both carbon availability and temperature. The presence of residues also had a significant effect on the abundance of nitrate reducers estimated by quantitative PCR of the narG and napA genes, encoding the membrane-bound and periplasmic nitrate reductases, respectively. In contrast, the incorporation of the plant residues into soil had little impact on the structure of the narG and napA nitrate-reducing community determined by PCR-restriction fragment length polymorphism (RFLP) fingerprinting. Overall, our results revealed that the addition of plant residues can lead to important long-term changes in the activity and size of a microbial community involved in N cycling but with limited effects of the type of plant residue itself.

  11. Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area.

    Science.gov (United States)

    Kovacs, Helga; Szemmelveisz, Katalin; Palotas, Arpad Bence

    2013-11-01

    Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.

  12. Enhanced dissipation of polycyclic aromatic hydrocarbons in the presence of fresh plant residues and their extracts.

    Science.gov (United States)

    Chen, Baoliang; Yuan, Miaoxin

    2012-02-01

    The feasibility of using fresh plant residues and their extracts to stimulate the bio-dissipation of polycyclic aromatic hydrocarbons (PAHs) were highlighted. Wood chip, bamboo leave, orange peel and their water-extractable organic matter (WEOM) were chosen as amendment materials. Effect of WEOM on bio-dissipation (bioaccumulation and biodegradation) of phenanthrene and pyrene from water by two bacteria were investigated. Orange peel extract demonstrated the highest efficiency for stimulating PAHs removal by bacterium B1 (Pseudomonas putida), while bamboo leave extract was the best one to enhance PAHs bio-dissipation by bacterium B2 (unidentified bacterium isolated from PAHs-contaminated soil). Amended the actual contaminated soil with 1% plant residues, PAHs dissipation were increased by 15-20%, 20-39%, 14-24%, 12-23% and 17-26%, respectively, for 2-, 3-, 4-, 5- and 6-ring PAHs via stimulating indigenous microbial degradation activity. Bamboo leave exhibited the most effective one to stimulate dissipation of PAHs in contaminated soil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vetor regression

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Young Do; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-06-15

    Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

  14. Spatial and temporal distribution of 13C labelled plant residues in soil aggregates and Lumbricus terrestris surface casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14

  15. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

  16. Extending a Single Residue Switch for Abbreviating Catalysis in Plant ent-Kaurene Synthases

    Directory of Open Access Journals (Sweden)

    Meirong Jia

    2016-11-01

    Full Text Available Production of ent-kaurene as a precursor for important signaling molecules such as the gibberellins seems to have arisen early in plant evolution, with corresponding cyclase(s present in all land plants (i.e., embryophyta. The relevant enzymes seem to represent fusion of the class II diterpene cyclase that produces the intermediate ent-copalyl diphosphate (ent-CPP and the subsequently acting class I diterpene synthase that produces ent-kaurene, although the bifunctionality of the ancestral gene is only retained in certain early diverging plants, with gene duplication and sub-functionalization leading to distinct ent-CPP synthases (CPSs and ent-kaurene synthases (KSs generally observed. This evolutionary scenario implies that plant KSs should have conserved structural features uniquely required for production of ent-kaurene relative to related enzymes that have alternative function. Notably, substitution of threonine for a conserved isoleucine has been shown to short-circuit the complex bicyclization and rearrangement reaction catalyzed by KSs after initial cyclization, leading to predominant production of ent-pimaradiene, at least in KSs from angiosperms. Here this effect is shown to extend to KSs from earlier diverging plants (i.e., bryophytes, including a bifunctional CPS/KS. In addition, attribution of the dramatic effect of this single residue switch on product outcome to electrostatic stabilization of the ent-pimarenyl carbocation intermediate formed upon initial cyclization by the hydroxyl introduced by threonine substitution has been called into question by the observation of similar effects from substitution of alanine. Here further mutational analysis and detailed product analysis is reported that supports the importance of electrostatic stabilization by a hydroxyl or water.

  17. 有机物料在植烟土壤中的腐解及活性有机碳氮含量的变化%Decomposition of Different Organic Materials and Variation of Active Organic Carbon and Nitrogen Contents in Tobacco-planted Soil

    Institute of Scientific and Technical Information of China (English)

    鲁耀; 郑波; 段宗颜; 李祖红; 解燕; 邱学礼; 王建新

    2015-01-01

    The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship between active or-ganic C and N contents and decomposition rate were investigated. The results showed the decomposition rates of different organic materials were al high in the early period and then low in the late period. Among the organic materials, the de-composition rates ranked as oilseed cake > vetch > wheat straw and rapeseed straw > corn straw. The decomposition rate was positively related to total N content (P苕子>小麦秸秆和油菜秸秆>玉米秸秆,腐解速率与全 N含量呈极其显著直线正相关,与活性有机 C/N比值呈极其显著负相关,而与活性有机 C含量之间没有相关性。随着腐解时间推移,油菜、苕子、小麦、玉米等秸秆中活性有机 C含量、全 N含量呈增加趋势,活性有机 C/N比值呈下降趋势,而油籽饼则相反。

  18. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  19. Non-Additive effects on decomposition from mixing litter of the invasive Mikania micrantha H.B.K. with native plants.

    Directory of Open Access Journals (Sweden)

    Bao-Ming Chen

    Full Text Available A common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.B.K., a non-native vine, with high litter N content, has invaded many forested ecosystems. We were specifically interested in whether this invader accelerated decomposition and how the strength of the litter mixing effect changes with the degree of invasion and over time during litter decomposition. Using litterbags, we evaluated the effect of mixing litter of M. micrantha with the litter of 7 native resident plants, at 3 ratios: M1 (1∶4, = exotic:native litter, M2 (1∶1 and M3 (4∶1, = exotic:native litter over three incubation periods. We compared mixed litter with unmixed litter of the native species to identify if a non-additive effect of mixing litter existed. We found that there were positive significant non-additive effects of litter mixing on both mass loss and nutrient release. These effects changed with native species identity, mixture ratio and decay times. Overall the greatest accelerations of mixture decay and N release tended to be in the highest degree of invasion (mix ratio M3 and during the middle and final measured stages of decomposition. Contrary to expectations, the initial difference in litter N did not explain species differences in the effect of mixing but overall it appears that invasion by M. micrantha is accelerating the decomposition of native species litter. This effect on a fundamental ecosystem process could contribute to higher rates of nutrient turnover in invaded ecosystems.

  20. Combining mechanical-biological residual waste treatment plants with grate firing; Kombination MBA mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, E. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1998-09-01

    The promulgation of the Technical Code on Household Waste obliges the local authorities responsible for waste disposal to review existing and prepare new waste management plans. Given the present state of the art the Code`s limit value for loss due to burning of 5% makes thermal treatment of the residual waste practically compulsory. In preparation of these developments and in order to lower costs in general and be able respond flexibly to customer demands ABB is currently undertaking great efforts to provide thermal residual waste treatment plants with a modular design. [Deutsch] Mit Veroeffentlichung der TASi wurden die entsorgungspflichtigen Gebietskoerperschaften gezwungen, bereits vorhandene Abfall-Wirtschaftsplaene zu ueberarbeiten bzw. neue zu erstellen. Technisch laeuft nach derzeitigem Wissensstand der in der TASi vorgegebene maximale Gluehverlust von 5% darauf hinaus, dass eine thermische Behandlung des Restabfalls zwingend vorgegeben ist. Um hierfuer geruestet zu sein, aber auch um generell Kosten zu senken unf flexibel auf Kundenwuensche eingehen zu koennen, unternimmt ABB grosse Abstrengungen, den Aufbau von Anlagen zur thermischen Restabfallbehandlung modular zu gestalten. (orig./SR)

  1. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient.

    Directory of Open Access Journals (Sweden)

    Jianxiao Zhu

    Full Text Available Relationships between abiotic (soil temperature and number of freeze-thaw cycles or biotic factors (chemical elements, microbial biomass, extracellular enzymes, and decomposer communities in litter and litter decomposition rates were investigated over two years in subalpine forests close to the Qinghai-Tibet Plateau in China. Litterbags with senescent birch, fir, and spruce leaves were placed on the forest floor at 2,704 m, 3,023 m, 3,298 m, and 3,582 m elevation. Results showed that the decomposition rate positively correlated with soil mean temperature during the plant growing season, and with the number of soil freeze-thaw cycles during the winter. Concentrations of soluble nitrogen (N, phosphorus (P and potassium (K had positive effects but C:N and lignin:N ratios had negative effects on the decomposition rate (k, especially during the winter. Meanwhile, microbial biomass carbon (MBC, N (MBN, and P (MBP were positively correlated with k values during the first growing season. These biotic factors accounted for 60.0% and 56.4% of the variation in decomposition rate during the winter and the growing season in the first year, respectively. Specifically, litter chemistry (C, N, P, K, lignin, C:N and lignin:N ratio independently explained 29.6% and 13.3%, and the microbe-related factors (MBC, MBN, MBP, bacterial and fungal biomass, sucrase and ACP activity explained 22.9% and 34.9% during the first winter and the first growing season, respectively. We conclude that frequent freeze-thaw cycles and litter chemical properties determine the winter decomposition while microbe-related factors play more important roles in determining decomposition in the subsequent growing season.

  2. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling.

    Science.gov (United States)

    Stark, Sari; Julkunen-Tiitto, Riitta; Kumpula, Jouko

    2007-03-01

    Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.

  3. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.

    Science.gov (United States)

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2012-07-01

    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.

  4. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    Science.gov (United States)

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process.

  5. 14CO2 in combination with root-exclusion can be used to estimate plant-induced decomposition of soil organic matter

    Science.gov (United States)

    Heinonsalo, Jussi; Kulmala, Liisa; Mäkelä, Annikki; Oinonen, Markku; Fontaine, Sebastien; Palonen, Vesa; Pumpanen, Jukka

    2017-04-01

    In ecosystem models, the decomposition of soil organic matter (SOM) is estimated using temperature and moisture as main controlling parameters. However, there is increasing evidence that the decomposition is significantly affected by easily available carbohydrates. The C assimilation by the boreal forest trees will increase in the future due to climate change. As trees allocate large part of assimilated C to roots and soil microorganisms, particularly to ectomycorrhizal fungi, the rhizosphere priming effect (RPE) is assumed to increase. The aim of the experiment was to identify and quantify RPE in the field conditions. We established a three-year long trenching experiment in a boreal Scots pine forest where the belowground C flow from standing pine forest was controlled using root-exclusion with mesh fabrics. The mesh size of 1 μm excluded both tree roots and fungal hyphae and served as priming controls with decreased C supply. The unaltered C input entered the non-trenched field plots. Soil CO2 flux and 14C concentrations were measured. We were able to quantify the RPE in field conditions and show that plant-derived C flow into the soil increases SOM decomposition. Quantification of RPE allows more detailed estimation of soil organic matter decomposition in future changing climate.

  6. Herbicide residues in leaves of Erythroxylum coca var. coca plants treated with soil-applied tebuthiuron and hexazinone.

    Science.gov (United States)

    Lydon, J; Darlington, L

    1998-09-01

    The herbicide residue levels in leaves of Erythroxylum coca var. coca Lam. plants treated with soil applications of tebuthiuron and hexazinone at 3.36 and 6.72 kg a.i. ha-1 were determined in order to estimate the potential for human exposure to these residues from consuming the leaves or cocaine produced from them. Field-grown plants were treated with a commercial formulation of tebuthiuron or hexazinone and leaves were harvested at the first indication of herbicide injury (i.e. chlorosis and/or necrosis) and at the onset of leaf abscission. Herbicide residues were detected by HPLC in leaf samples from both harvests of all plants treated with tebuthiuron or hexazinone. At 3.36 kg ha-1, herbicide residues in the leaves were less than 2 micrograms g-1 dry wt. for both harvests of both experiments. The highest residue levels detected were 5.90 micrograms g-1 dry wt. for tebuthiuron and 7.17 micrograms g-1 dry wt. for hexazinone in leaves from plants treated with the herbicide at the rate of 6.72 kg ha-1 and harvested at the onset of leaf drop. Based on published toxicity data and estimates of leaf consumption, the herbicide residues in leaves of E. coca var. coca plants treated with tebuthiuron or hexazinone at twice the recommended control rates or less would have a negligible contribution to the health risks of individuals who chew coca leaves. Furthermore, based on the most conservative estimates of cocaine yield and herbicide carry over, death by cocaine overdose would occur long before the NOEL for either herbicide was reached.

  7. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs).

    Science.gov (United States)

    Fodor-Dunai, Csilla; Fricke, Inka; Potocký, Martin; Dorjgotov, Dulguun; Domoki, Mónika; Jurca, Manuela E; Otvös, Krisztina; Zárský, Viktor; Berken, Antje; Fehér, Attila

    2011-05-01

    Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  8. [Effect of CO2 fertilization on residual concentration of cypermethrin in rhizosphere of C3 and C4 plant].

    Science.gov (United States)

    Mu, Nan; Diao, Xiao-Jun; Wang, Shu-Guang; Wang, Peng-Teng; Li, Pan-Feng

    2012-06-01

    In order to achieve sustainable economic and environmental development in China, CO2-emission reduction and phytoremediation of polluted soil must be resolved. According to the effect of biological carbon sequestration on rhizosphere microenvironment, we propose that phytoremediation of polluted soil can be enhanced by CO2 fertilization, and hope to provide information for resolving dilemma of CO2-emission reduction and phytoremediation technology. In this study, effects of CO2 fertilization on cypermethrin reduction in rhizosphere of C3-plant (bush bean) and C4-plant (maize) were investigated. Results showed that dry weight of shoot and root of bush bean (C3 plant) was increased by CO2 fertilization. Relative to ambient CO2, dry weight of root was increased by 54.3%, 31.9% and 30.0% in soil added with 0, 20 and 40 mg x kg(-1) cypermethrin respectively. Microbial biomass was increased by CO2 fertilization in rhizosphere soil added with 0 mg x kg(-1) cypermethrin, but negative effect was found in rhizosphere soil added with 20 and 40 mg x kg(-1) cypermethrin. CO2 fertilization slightly affected residual concentration of cypermethrin in rhizosphere soil added with 0 mg x kg(-1) cypermethrin, but significantly decreased residual concentration of cypermethrin as 24.0% and 16.9% in soil added with 20 and 40 mg x kg(-1) relative to ambient CO2. In maize plant, however, plant growth, microbial biomass and residual cypermethrin concentration in rhizosphere was slightly affected by CO2 fertilization, and even negative effect was observed. This study indicated that CO2 fertilization decreases the residual concentration of cypermethrin in rhizosphere of C3-plant, and it is possible to enhance phytoremediation of organic-polluted soil by C3-plant through CO2 fertilization. However, further study is needed for C4-plant.

  9. Systemic Nicotinoid Toxicity against the Predatory Mirid Pilophorus typicus : Residual Side Effect and Evidence for Plant Sucking

    OpenAIRE

    Nakahira, Kengo; Kashitani, Ryoya; Tomoda, Masafumi; Kodama, Rika; Ito, Katsura; Yamanaka, Satoshi; Momoshita, Mitsutoshi; Arakawa, Ryo; Takagi, Masami

    2011-01-01

    The predatory mirid Pilophorus typicus (Heteroptera: Miridae) is a potential biological control agent against Bemisia tabaci (Hemiptera: Aleyrodidae), but the sucking for host plant is unknown. To investigate collaboration use of P. typicus and nicotinoid granules and to confirm the sucking for pepper plant, residual harmful toxicity of 4 nicotinoids: acetamiprid; imidacloprid; nitempyram; and thiamethoxam on P. typicus adult were investigated at 7, 14 21, 28 and 35 d after treatment of the n...

  10. Growth and Productivity of Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    Directory of Open Access Journals (Sweden)

    Dr. Amanullah

    2016-10-01

    Full Text Available The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha-1 each on the productivity profitability of small land rice (Oryza sativa L. grower under different levels of phosphorus (0, 30, 60 and 90 kg P ha-1 fertilization. Two separate field experiments were conducted. In experiment (1, impact of three animal manures sources (cattle, sheep & poultry manures and P levels was studied along with one control plot (no animal manure and P applied as check was investigated. In experiment (2, three plant residues sources (peach leaves, garlic residues & wheat straw and P levels was studied along with one control plot (no plant residues and P applied as check. Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan during summer 2015. The results revealed that in both experiments the control plot had significantly (p≤0.05 less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues had resulted in higher rice productivity (90 = 60 > 30 > 0 kg P ha-1. In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures. In the experiment under plant residues, application of peach leaves or garlic resides had higher rice productivity over wheat straw (peach leaves = garlic residues > wheat straw. On the average, the rice grown under animal manures produced about 20% higher grain yield than the rice grown under crop residues. We concluded from this study that application of 90 kg P ha-1 along with combined application of animal manures especially poultry manure could increase rice productivity. We conclude from this study that application of 90 kg P ha-1 along with combined application of animal

  11. Influence of biochar and plant growth on organic matter dynamics in a reclaimed mine residue

    Science.gov (United States)

    Moreno-Barriga, Fabián; Díaz, Vicente; Alberto, Jose; Faz, Ángel; Zornoza, Raúl

    2016-04-01

    This study aims at assessing the impact of biochar and marble waste amendment and the development of vegetation in acidic mine wastes on organic matter dynamics. For this purpose, a mine residue was collected in a tailing pond from the Sierra Minera of Cartagena-La Unión (SE Spain), and a greenhouse experiment was established for 120 days. Marble waste (MW) was added in a rate of 200 g kg-1 as a source of calcium carbonate to increase the pH from 3 to 7.5-8 (average pH in the native soils of the area). We added biochar as a source of organic carbon and nutrients, in two different rates, 50 g kg-1 (BC1) and 100 g kg-1 (BC2). To assess the influence of vegetation growth on the creation of a technosoil from mine residues and its impact on organic matter dynamics, the plant species Piptatherum miliaceum (PM) was planted in half the pots with the different amendments. Thus, five treatments were established: unamended and unplanted control (CT), BC1, BC2, BC1+PM and BC2+PM. Results showed that the different treatments had no significant effect on aggregates stability, microbial biomass carbon and the emission of N2O and CH4. So, it seems that longer periods are needed to increase the stability of aggregates and microbial populations, since even the combined use of biochar, marble waste and vegetation was not enough to increase these properties in 120 days. Nonetheless, it was positive that the addition of biochar and the release of root exudates did not trigger the emission of greenhouse gases. Organic carbon significantly increased with the addition of biochar, with values similar to the dose applied, indicating high stability and low mineralization of the amendment. The addition of amendments significantly increased arylesterase activity, while the growth of the plant was needed to significantly increase β-glucosidase activity. The soluble carbon significantly decreased in BC1 and BC2 with regards to CT, while no significant differences were observed among CT and

  12. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Bartmiński, Piotr; Różyło, Krzysztof; Dębicki, Ryszard; Oleszczuk, Patryk

    2015-11-15

    Residues from biogas production (RBP) are a relatively new materials, which may be an interesting resource for the improvement of soil fertility. Nevertheless, in spite of the potential benefits from the agricultural utilization of RBP, there is a need of comprehensive estimation of their toxicity. This information is needed to exclude potential negative environmental impacts arising from the use of RBP. Samples of RBP obtained from six biogas production plants with varied biogas production methods were analysed. The samples with and without separation on solid and liquid phases were investigated. The physicochemical properties of the RBP, heavy metals content (Cr, Cu, Ni, Cd, Pb i Zn) and toxicity on bacteria (Vibrio fischeri, MARA test - 11 different strains), collembolans (Folsomia candida) and two plant species (Lepidium sativum and Sinapis alba) was investigated. Toxicity of RBP was examined using Phytotoxkit F (root growth inhibition), collembolan test (mortality, inhibition of reproduction), Microtox® (inhibition of the luminescence of V. fischeri) and MARA test (growth of microorganisms). An especially negative effect on the tested organisms whereas was noted for the liquid phase after separation. In many cases, RBP without separation also showed unfavourable effects on the tested organisms. Liquid phase after separation and non-separated materials caused inhibition of root growth of L. sativum and S. alba at the level of 17.42-100% and 30.5-100%, respectively, as well as the inhibition of reproduction of F. candida with the range from 68.89 to 100%. In most cases, no ecotoxicological effect was observed for solid phase after separation for tested organisms. The solid phase after separation presented the most favorable properties between all investigated RBP. Therefore, it can be a potential material for the improvement of soil properties and for later use in agriculture.

  13. Catalytic production of liquid fuels from organic residues of rendering plants

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, A.; Frank, A.; Stadlbauer, E.A. [Fachhochschule Giessen-Friedberg, Labor fuer Entsorgungstechnik (MNI), Giessen (Germany); Schilling, G. [Universitaet Heidelberg, Heidelberg (Germany); Bojanowski, S.

    2007-12-15

    Anaerobic low temperature conversion (LTC) converts organic residues such as animal meal or meat and bone meal (MBM) to bio-crude, a solid product, containing carbon and phosphorus, reaction water and non-condensable gases. The yield of bio-crude increases with the content of volatile solids. The efficiency of the conversion as well as the calorific value of the liquid fuel produced are favorably affected by the partial recycling of inorganic constituents, high amounts of volatile solids and a low percentage of heteroatoms present in the feeding material. Heating values are 32.3 MJ/kg for bio-crude from animal meal and 19.5 MJ/kg for bio-crude from MBM. Both bio-crude and animal fat produced were effectively converted in a vertical reactor construction with a fixed bed of aluminosilicates of the zeolite family or acidic clays, respectively. Products are bio-fuels of varying chemical qualities. Depending on the reaction temperature and the catalyst type, aliphatic hydrocarbons (T = 400 C, {proportional_to}97 %) or alkylbenzenes (T = 550 C) are the main products. The calorific values of these bio-fuels are in a range from 40.1 to 41.9 MJ/kg and the kinematic viscosities are between 0.9 and 2.29 mm{sup 2}/s. The solid products of LTC from different biomass (sludge, animal meal, MBM) contain a significant amount of phosphorus. In the case of the solid product from MBM it was as high as 242 mg P{sub 2}O{sub 5}/g. Solubility in citric acid showed that in the case of MBM, 98.8 % of total phosphorus is potentially available to plants. Pot experiments demonstrated a similar plant growth as with other organic fertilizers. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.

    Science.gov (United States)

    Matsuo, Kouki; Kagaya, Uiko; Itchoda, Noriko; Tabayashi, Noriko; Matsumura, Takeshi

    2014-10-01

    Production of pharmaceutical glycoproteins, such as therapeutic antibodies and cytokines, in plants has many advantages in safety and reduced costs. However, plant-made glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a)) epitope, Galβ(1-3)[Fucα(1-4)]GlcNAc. Because it is likely that these sugar residues and glycan structures are immunogenic, many attempts have been made to delete them. Previously, we reported the simultaneous deletion of the plant-specific core α-1,3-fucose and α-1,4-fucose residues in Le(a) epitopes by repressing the GDP-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants (rGMD plants, renamed to ΔGMD plants) (Matsuo and Matsumura, Plant Biotechnol. J., 9, 264-281, 2011). In the present study, we generated a core β-1,2-xylose residue-repressed transgenic N. benthamiana plant by co-suppression of β-1,2-xylosyltransferase (ΔXylT plant). By crossing ΔGMD and ΔXylT plants, we successfully generated plants in which plant-specific sugar residues were repressed (ΔGMDΔXylT plants). The proportion of N-glycans with deleted plant-specific sugar residues found in total soluble protein from ΔGMDΔXylT plants increased by 82.41%. Recombinant mouse granulocyte/macrophage-colony stimulating factor (mGM-CSF) and human monoclonal immunoglobulin G (hIgG) harboring N-glycans with deleted plant-specific sugar residues were successfully produced in ΔGMDΔXylT plants. Simultaneous repression of the GMD and XylT genes in N. benthamiana is thus very useful for deleting plant-specific sugar residues.

  15. Pesticide residues in food of plant origin from Southeast Asia – A Nordic project

    DEFF Research Database (Denmark)

    Skretteberg, L. G.; Lyrån, B.; Holen, B.;

    2015-01-01

    . The reason for the increased control for certain food products from Southeast Asia was that the official control had revealed many products with too high levels of pesticide residues. In 60% of the samples we did not find any residues, while 28% had residues below or at the MRLs. Results above the MRLs were...

  16. Improvement of sweet potato yield using mixtures of ground fish bone and plant residues

    Directory of Open Access Journals (Sweden)

    A C Novianantya

    2017-01-01

    Full Text Available The Indonesian government begins to promote food diversification program. The government expects the Indonesian people can consume food crops other than rice, such as wheat, potatoes and sweet potatoes. While, the level of production of sweet potato production decreased in the period of 2012-2015 with total production of only 2,218,992 t/ha. In an effort to increase the production of sweet potato, improvements are needed through application of organic fertilizers like composts. The purpose of this study was to explore the effect of composted manure with ground fish bone, legume residues, and Tithonia on soil chemical properties and sweet potato production includes tuber weight and levels of starch sweet potato crops.The results showedthat application of 5 t compost/ha and 35 kg Trichoderma biofertilizer/ha increased pH, water content, organic carbon, total N, available P, total Kl, CEC,exchangeable Ca, plant height, tuber weight and levels of sweet potato starc

  17. Solid residues from combustion plants. Pt. 1; Feste Rueckstaende aus Verbrennungsanlagen. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberger, H.P.; Quicker, P.; Mocker, M.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Gleis, M. [Umweltbundesamt, Dessau-Rosslau (Germany)

    2008-08-15

    The following publication deals with solid combustion residues, which results in Germany from the thermal treatment of municipal waste, coal, sewage sludge and biomass. The intention is, to give an overview about the current situation. The first part of the article shows the annual quantities of combustible substances thermal treated and which kind of residues and which quantities of residues are resulting from the thermal treatment. Furthermore the properties of different residues are observed and together compared. The second part describes the quantities of residues feeded to the relevant ways of recycling or disposal. References to orders and legislations are given. (orig.)

  18. Solid residues from combustion plants. Pt. 2; Feste Rueckstaende aus Verbrennungsanlagen. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberger, H.P.; Quicker, P.; Mocker, M.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Gleis, M. [Umweltbundesamt, Dessau-Rosslau (Germany)

    2008-09-15

    The following publication deals with solid combustion residues, which results in Germany from the thermal treatment of municipal waste, coal, sewage sludge and biomass. The intention is, to give an overview about the current situation. The first part of the article shows the annual quantities of combustible substances thermal treated and which kind of residues and which quantities of residues are resulting from the thermal treatment. Furthermore the properties of different residues are observed and together compared. The second part describes the quantities of residues feeded to the relevant ways of recycling or disposal. References to orders and legislations are given. (orig.)

  19. Combined incineration of industrial wastes with in-plant residues in fluidized-bed utility boilers--decision relevant factors.

    Science.gov (United States)

    Ragossnig, Arne M; Lorber, Karl E

    2005-10-01

    In Austria more than 50% of the high-calorific industrial residues and wastes generated are utilized for energy recovery in industrial utility boilers. This study investigated full-scale trials of combined incineration of in-plant residues with various industrial wastes. These trials were carried out in order to learn how the alternatively used fuel influences the incineration process itself as well as the quantity and quality of the various incineration products. The currently used fuel, which consisted of in-plant residues as well as externally acquired waste wood and the refuse-derived fuel (RDF) mixtures used during the full-scale trials are characterized in terms of material composition as well as chemical and physical parameters. An input-output mass balance for the incineration plant (two fluidized bed combustion units, 20 and 30 MW, respectively) has been established, based on the data collected during the full-scale incineration trials. Furthermore, pollutant concentrations in the off-gas as well as the solid incineration residue are reported. It is not only the pollutant content but also a variety of other internal as well as external factors that have to be considered if a company is to decide whether or not to thermally utilize specific waste types. Therefore a strengths and weaknesses profile for several types of waste and the specific industrial boiler is also presented.

  20. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  1. Bound xenobiotic residues in food commodities of plant and animal origin: IUPAC Reports on Pesticides (40)

    OpenAIRE

    1998-01-01

    In order to assess the dietary risk resulting from the use of pesticides or veterinary drugs the nature of the chemical residues on food commodities needs to be determined. Elucidation of the nature of the chemical residue is carried out using radiolabelled studies where the radiolabelled xenobiotic is applied or dosed in a manner which reflects use conditions. Food commodities are exhaustively extracted to remove the individual components of the residue. Once extracted the identity and toxic...

  2. [Characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant].

    Science.gov (United States)

    Wang, Chang-Hui; Pei, Yuan-Sheng

    2011-08-01

    Batch tests have been used to investigate the characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant. ICP, SEM and XRD analyses confirm that the FARs enriched in Fe and Al elements and presented amorphism structure. Orthophosphate sorption by the FARs can be described by the pseudo-second-order kinetics equation. Fine adsorption effects of the FARs were found under lower pH values, particularly a 40.13% drop of the adsorptive capacity from pH 4.6 to pH 7.6. The FARs with grain sizes of 0.6-0.9 mm had the highest adsorption capacity of orthophosphate. Experimental data could be better fitted by the isotherm models of Langmuir (R2 = 0.9736) and Freundlich (R2 = 0.9916). The maximal adsorptive capacity reached 45.45 mg x g(-1) estimated from Langmuir isotherm model. Compared with other natural and industrial materials, FARs has relatively higher adsorption capacity. Under similar testing conditions, it was found that only about 10% orthophosphate could be desorbed from the FARs. Further study demonstrated that the mean energy of orthophosphate sorption on the FARs was 13.36 kJ x mol(-1) and the deltaH0 > 0, deltaS0 > 0 and deltaG0 < 0, which indicated that orthophosphate sorption on the FARs was a spontaneously endothermic chemical reaction. It can be therefore highly valued that the FARs may be applied to phosphate removal from wastewater and surface water.

  3. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects

    NARCIS (Netherlands)

    Veen, G.F.; Sundqvist, Maja K.; Wardle, David A.

    2015-01-01

    The ‘home-field advantage’ (HFA) hypothesis predicts that plant litter is decomposed faster than expected underneath the plant from which it originates (‘home’) than underneath other plants (‘away’), because decomposer communities are specialized to break down litter from the plants they associate w

  4. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  5. Determination of Effective Criteria for location Selection of WPC Plants from agricultural residues in Iran by AHP Technique

    Directory of Open Access Journals (Sweden)

    hasan alizadeh

    2017-02-01

    Full Text Available This study was aimed at determining the effective criteria for location selection of WPC Plants from agricultural residues in Iran. For this purpose, after review and studies papers and books, Six criteria" products and materials, regulations, technical and human, economic, infrastructure and environmental and also 30 sub-criteria were identified. The priority rates of these criteria and sub-criteria were evaluated by AHP technique. The results indicated that among 30 effective sub-criteria in location selection of the WPC plants from agricultural residues, amount of wastes supply (0.087, continuity of wastes supply, cost of wastes supply, amount of sales and export, granted facilities and less Hazards for the environment and forest had the highest priorities, which were rated as 0.071, 0.067, 0.065, 0.064 and 0.062 respectively.

  6. Mass Losses and Nitrogen and Phosphorous Dynamics during the Decomposition of Different Organic Residues of Triploid Populus tomentosa%三倍体毛白杨不同有机残体分解及氮磷释放特征

    Institute of Scientific and Technical Information of China (English)

    宋曰钦; 谢宗强; 翟明普; 贾黎明

    2014-01-01

    采用网袋法研究三倍体毛白杨落叶、小枝(直径小于0.5 cm)、细根(直径小于2mm)和皮的分解速率以及 N,P动态。结果表明:4种有机残体在357天中分解速率存在显著性差异,到试验结束时(2008年11月)细根的分解率最大(42.5%),其次是落叶(30.5%)和皮(26.0%),小枝的分解率最低(20.9%); Olson指数方程对4种有机残体的分解拟合效果较好,相关系数 R2为0.96~0.98,由此计算得到4种有机残体的年分解率分别为42.88%,31.74%,26.25%和20.54%;不同有机残体分解初期存在 N,P元素富集现象,但富集程度与富集持续的时间存在差异,细根、叶、皮、小枝中 N 的富集度分别为11.6%,127.2%,122.6%和126.7%,P 的富集度分别为105.9%,172.9%,123.0%和163.9%,因此N,P的富集度均以叶最高,以细根最低;从富集持续的时间来看,细根、叶、皮、小枝中的 N富集持续时间分别为205,239,297和265天,以皮持续的时间最长,P 富集持续的时间分别是205,205,265和239天,以小枝持续的时间最长;从不同有机残体释放的N,P量来看,细根释放量最多,其次是叶,皮和小枝释放量较少。三倍体毛白杨纸浆林中不同有机残体在养分归还上存在不同特点,尤其是皮和小枝分解率低,养分富集持续时间长,今后应采取针对性措施加快其分解,以不断提高林地生产力。%In order to understand the decomposition rate and nutrient dynamic of different organic residues of triploid Populus tomentoza,and to find out feasible ways for maintaining and improving long - term soil productivity,litterbag method was used to investigate the decomposition rate and macro nutrients( N,P) release of leaf litter,fine branch litter (≤5 mm) ,fine root litter(≤2 mm) and bark litter for 357 days. By the end of experiment,decomposition rates of fine root litter,leaf litter,bark litter and fine branch

  7. Estonian waterworks treatment plants: clearance of residues, discharge of effluents and efficiency of removal of radium from drinking water.

    Science.gov (United States)

    Trotti, F; Caldognetto, E; Forte, M; Nuccetelli, C; Risica, S; Rusconi, R

    2013-12-01

    Considerable levels of radium were detected in a certain fraction of the Estonian drinking water supply network. Some of these waterworks have treatment systems for the removal of (mainly) iron and manganese from drinking water. Three of these waterworks and another one equipped with a radium removal pilot plant were examined, and a specific study was conducted in order to assess the environmental compatibility of effluents and residues produced in the plants. (226)Ra and (228)Ra activity concentrations were analysed in both liquid (backwash water) and solid (sand filter and sediment) materials to evaluate their compliance, from the radiological point of view, with current Estonian legislation and international technical documents that propose reference levels for radium in effluents and residues. Also with regard to water treatment by-products, a preliminary analysis was done of possible consequences of the transposition of the European Basic Safety Standards Draft into Estonian law. Radium removal efficiency was also tested in the same plants. Iron and manganese treatment plants turned out to be scarcely effective, whilst the radium mitigation pilot plant showed a promising performance.

  8. Biogeochemistry of Decomposition and Detrital Processing

    Science.gov (United States)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant external input (1

  9. Saprobe fungi decreased the sensitivity to the toxic effect of dry olive mill residue on arbuscular mycorrhizal plants.

    Science.gov (United States)

    Sampedro, I; Aranda, E; Díaz, R; García-Sanchez, M; Ocampo, J A; García-Romera, I

    2008-02-01

    We studied the influence of olive mill dry residue (DOR) treated with saprobe fungi on growth of tomato and alfalfa colonized by Glomus deserticola. The application of 25g kg(-1) of dry DOR to soil decreased the shoot and root dry weight of tomato and alfalfa. Plants were more sensitive to the toxicity of DOR when colonized with the arbuscular mycorrhizal (AM) fungi. The sensitivity of both plants to the toxicity of DOR differed according to whether they were colonized by G. deserticola or by indigenous AM fungi. The phytotoxicity of DOR towards tomato and alfalfa was decreased by incubation the residue before planting with saprobe fungi for 20wk. The beneficial effects of AM fungi on plant growth added with DOR incubated with saprobe fungi depend of the type of the plant and AM fungi. The contribution of AM fungi to the beneficial effect of DOR incubated with saprobe fungi varied according to the type of the plant and AM fungi. G. deserticola increased the shoot and root dry weight of plants when they were grown in the presence of DOR incubated with saprobe fungi for 20wk. The beneficial effect of saprobe fungi on the dry weight and the level of AM mycorrhization of plants seem to be related to the decrease caused by these fungi in the phenol concentration in DOR. However, the toxicity of DOR due to substances other than phenols can not be ignored. The use of certain saprobe and AM fungi allows the possibility of using DOR as an organic fertilizer.

  10. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.

    Science.gov (United States)

    Xi, Zemin; Chen, Baoliang

    2014-04-01

    Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of

  11. Bound xenobiotic residues in food commodities of plant and animal origin: IUPAC Reports on Pesticides (40)

    NARCIS (Netherlands)

    Skidmore, M.W.; Paulson, G.D.; Kuiper, H.A.; Ohlin, B.

    1998-01-01

    In order to assess the dietary risk resulting from the use of pesticides or veterinary drugs the nature of the chemical residues on food commodities needs to be determined. Elucidation of the nature of the chemical residue is carried out using radiolabelled studies where the radiolabelled xenobiotic

  12. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica and a poplar (Populus × xiaozhuanica plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.

  13. Logging residue fuel production based on comminution at the power plant; Hakkuutaehteen kaeyttoepaikkamurskaukseen perustuva tuotantomenetelmae - PUUY04

    Energy Technology Data Exchange (ETDEWEB)

    Paananen, S. [UPM-Kymmene Oyj Metsae, Valkeakoski (Finland); Rinne, S. [YTY-Konsultointi, Jyvaeskylae (Finland)

    2001-07-01

    UPM-Kymmene is increasing its logging residue fuel use in its power plants at the mills. In this case logging residues are hauled to the mill as they are or as bundles. In this project new production equipment is constructed and tested. The logging residue load of the purpose-built rig has been increased from 24 m{sup 3} solid to 28.5 m{sup 3} solid by using heavy 200 kNm crane. Furthermore, loading and unloading with heavy loader is some 40% faster than with normal crane. As total, when heavy crane is used, the road transportation cost of logging residue is about 20 % lower than with normal crane. There are now three Timberjack 370 logging residue bundling machines in commercial use in Finland. The bundler produces some 20 bales per hour. One bundle has a volume of about 0.5 m{sup 3} solid. A middle-sized forwarder without special equipment can take 12 bales at one load and an ordinary timber rig can take on the average 63 bales at one load. (orig.)

  14. Effects of Two Composted Plant Pesticide Residues,Incorporated with Trichoderma viride,on Root-Knot Nematode in Balloonflower

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuang-xi; ZHANG Xing

    2009-01-01

    Plant pesticide residues,such as chinaberry(Melia toosendan)residue and sand cypress(Sabina vulgaris)residue,are pesticidal plant materials discarded after the bioactive ingredient has been extracted with organic solvents.The only option for botanical pesticide residue utilization has been as landfill.Chinaberry residue(CBR)and sand cypress residue(SCR)were collected and composted in Yangling,Shaanxi Province,China.We studied the effects of chinaberry residue compost(CBRC),CBRC incorporated with Trichoderma viride(CBRCT),sand cypress residue compost(SCRC),and SCRC incorporated with T.viride(SCRCT)on the root-knot nematode,Meloidogyne incognita,infesting the balloonflower(Platycodon grandiflorum).Bioassay results indicated that stock solutions of the CBRCT and SCRCT extracts significantly inhibited egg hatching and caused high larval mortality,followed in degree by the CBRC and SCRC extracts.The CBR and SCR extracts caused very low inhibition of eggs and larvae.Supplementing potting mixtures with these four composts reduced the severity of root galling and increased the proportion of marketable roots.The severity of root galling decreased and the average weight of the marketable roots increased with an increase in all the composts when supplemented at rates from 5 to 30%.CBR- and SCR-supplemented pot soils also inhibited the nematodes,but CBR and SCR applied to the soil had a phytotoxic effect and inhibited balloonflower growth.Supplementing field soil with the composts reduced the severity of root galling and the populations of southern root-knot nematodes in the soil.CBRCT and SCRCT clearly enhanced the average weight of the marketable roots by 30.45 and 26.64%,respectively.Continuous supplementation with CBRCT or SCRCT in the same field significantly enhanced the control of the root-knot nematode,and the populations of nematodes continued to decrease with second inoculations.The populations of total Trichoderma spp.were distinctly enhanced and were maintained at

  15. PLANT PROTECTION PRODUCT RESIDUES IN APPLES, CAULIFLOWER, CEREALS, GRAPE, LETTUCE, PEAS, PEPPERS, POTATOES AND STRAWBERRIES OF THE SLOVENE ORIGIN IN 2006

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2010-02-01

    Full Text Available In the year 2006, 181 apple, cauliflower, cereal, grape, lettuce, pea, pepper, potato and strawberry samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 86 different active compounds using four analytical methods. In nine samples (5.0 % exceeded maximum residue levels (MRLs were determined which is comparable with the results of the monitoring of plant protection product residues in products of plant origin in the European union, Norway, Iceland and Liechtenstein in 2005 (4.9 %.

  16. Viimsi water treatment plant for Ra removal: NORM residue/waste generation, radiation safety issues, and regulatory response

    Energy Technology Data Exchange (ETDEWEB)

    Kiisk, M.; Suursoo, S.; Realo, E.; Jantsikene, A.; Lumiste, L.; Vaeaer, K.; Isakar, K.; Koch, R. [University of Tartu (Estonia)

    2014-07-01

    In early 2012, the first large-scale water treatment plant, specifically designed to remove Ra-isotopes from groundwater, was commissioned in Viimsi parish, North-Estonia. The plant serves approximately 15 000 consumers with maximum production capacity of 6000 m{sup 3}/d. The chosen water treatment technology is chemical free and is based on co-precipitation and adsorption with Fe(OH){sub 3} and MnO{sub 2} flocks, and adsorption of residual Ra onto zeolite sand. The chosen technology is a complex approach and is designed to reduce high Fe and Mn concentrations as well as dissolved gases along with Ra isotopes. It is proved to be well adapted with hydro-chemical conditions of the groundwater feeding the plant. As the novel technology has been applied for the first time on a large scale, the plant was taken under long-term investigation when commissioned. The latter focuses on three areas: Ra removal efficiency and its dynamics, build-up of radioactive waste, and radiation safety. The average Ra-226 and Ra-228 activity concentrations in raw water feeding the plant are approximately 0.5 Bq/L and 0.6 Bq/L, respectively, resulting in total indicative dose of 0.4 mSv/y. Operating conditions of the plant are restricted by the established indicative value of 0.1 mSv/y for drinking water, i.e. a minimum 75% removal efficiency for Ra is required. Results of the studies show that the plant operates at Ra-removal efficiency of 98% or higher without the need of regeneration or replacement of filtering materials within the first two years. Measurements confirm that ∼90% of Ra accumulates in the solid filter media, 8-9% is washed out by backwash system as liquid effluent and 1-2% is fed on to the consumer distribution network. It has been calculated that at the level of current production capacity (below 3000 m{sup 3}/d) the yearly accumulation rate in the plant is approximately 300 and 400 MBq/y for Ra-226 and Ra-228, respectively. These values strongly exceed the exemption

  17. Avaliação da reação foto-fenton na decomposição de resíduos de carrapaticida Evaluation of the photo-fenton reaction in the decomposition of tick residues

    Directory of Open Access Journals (Sweden)

    Caio Fernando Gromboni

    2007-04-01

    Full Text Available Experimental procedures based on factorial design and surface response methodology were applied to establishe experimental conditions for the decomposition of a 1:400 (v/v Supocade® (chlorfenvinphos 13.8% and cypermethrin 2.6% solution, used to control cattle ticks. Experiments exploring photo-oxidative reactions were performed with and without UV radiation, fixing exposition time and pesticide volume, and varying the oxidant mixture. The use of 3.6 mmol L-1 Fe2+ plus 1.9 mol L-1 H2O2 plus UV radiation provided destruction of 94% of the original carbon content and reduction of aromatic, aliphatic and carbinolic compounds, evaluated by determination of residual carbon content by ICP OES and NMR analysis.

  18. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  19. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  20. Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues.

    Science.gov (United States)

    de Siqueira, Félix Gonçalves; de Siqueira, Aline Gonçalves; de Siqueira, Eliane Gonçalves; Carvalho, Marly Azevedo; Peretti, Beatriz Magalhães Pinto; Jaramillo, Paula Marcela Duque; Teixeira, Ricardo Sposina Sobral; Dias, Eustáquio Souza; Félix, Carlos Roberto; Filho, Edivaldo Ximenes Ferreira

    2010-09-01

    Agaricus brasiliensis CS1, Pleurotus ostreatus H1 and Aspergillus flavus produced holocellulases when grown in solid and submerged liquid cultures containing agro-industrial residues, including sugar cane bagasse and dirty cotton residue, as substrates. These isolates proved to be efficient producers of holocellulases under the conditions used in this screening. Bromatological analysis of agro-industrial residues showed differences in protein, fiber, hemicellulose, cellulose and lignin content. Maximal holocellulase activity (hemicellulase, cellulase and pectinase) was obtained using solid-state cultivation with 10% substrate concentration. In this case, remarkably high levels of xylanase and polygalacturonase activity (4,008 and 4,548 IU/l, respectively) were produced by A. flavus when grown in media containing corn residue, followed by P. ostreatus H1 with IU/l values of 1,900 and 3,965 when cultivated on 5% and 10% sugar cane bagasse, respectively. A. brasiliensis CS1 showed the highest reducing sugar yield (11.640 mg/ml) when grown on medium containing sugar cane bagasse. A. brasiliensis was also the most efficient producer of protein, except when cultivated on dirty cotton residue, which induced maximal production in A. flavus. Comparison of enzymatic hydrolysis of sugar cane bagasse and dirty cotton residue by crude extracts of A. brasiliensis CS1, P. ostreatus H1 and A. flavus showed that the best reducing sugar yield was achieved using sugar cane bagasse as a substrate.

  1. Organic Matter and Barium Absorption by Plant Species Grown in an Area Polluted with Scrap Metal Residue

    Directory of Open Access Journals (Sweden)

    Cleide Aparecida Abreu

    2012-01-01

    Full Text Available The effect of organic matter addition on Ba availability to Helianthus annuus L., Raphanus sativus L., and Ricinus communis L. grown on a Neossolo Litólico Chernossólico fragmentário (pH 7.5, contaminated with scrap residue was evaluated. Four rates (0, 20, 40, and 80 Mg ha−1, organic carbon basis of peat or sugar cane filter, with three replicates, were tested. Plant species were grown until the flowering stage. No effect of organic matter addition to soil on dry matter yield of oilseed radish shoots was observed, but there was an increase in sunflower and castor oil plant shoots when sugar cane filter cake was used. The average Ba transferred from roots to shoots was more than 89% for oilseed radish, 71% for castor oil plants, and 59% for sunflowers. Organic matter treatments were not efficient in reducing Ba availability due to soil liming.

  2. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.

    Science.gov (United States)

    Rocchetti, Laura; Vegliò, Francesco; Kopacek, Bernd; Beolchini, Francesca

    2013-02-05

    Life cycle assessment (LCA) was applied to hydrometallurgical treatments carried out using a new portable prototype plant for the recovery of valuable metals from waste electrical and electronic equipment (WEEE). The plant was fed with the WEEE residues from physical processes for the recycling of fluorescent lamps, cathode ray tubes (CRTs), Li-ion accumulators and printed circuit boards (PCBs). Leaching with sulfuric acid was carried out, followed by metal recovery by selective precipitation. A final step of wastewater treatment with lime was performed. The recovered metals included yttrium, zinc, cobalt, lithium, copper, gold, and silver. The category of global warming potential was the most critical one considering the specifications for southern European territories, with 13.3 kg CO(2)/kg recovered metal from the powders/residues from fluorescent lamps, 19.2 kg CO(2)/kg from CRTs, 27.0 kg CO(2)/kg from Li-ion accumulators and 25.9 kg CO(2)/kg from PCBs. Data also show that metal extraction steps have the highest load for the environment. In general, these processes appear beneficial for the environment in terms of CO(2) emissions, especially for metal recovery from WEEE residues from fluorescent lamps and CRTs.

  3. Pesticide residues in heterogeneous plant populations, a model-based approach applied to nematicides in banana (Musa spp.).

    Science.gov (United States)

    Tixier, Philippe; Chabrier, Christian; Malézieux, Eric

    2007-03-21

    Nematicides are widely used to control plant-parasitic nematodes in intensive export banana (Musa spp.) cropping systems. Data show that the concentration of fosthiazate in banana fruits varies from zero to 0.035 g kg-1, under the maximal residue limit (MRL=0.05 mg kg-1). The fosthiazate concentration in fruit is described by a Gaussian envelope curve function of the interval between pesticide application and fruit harvest (preharvest interval). The heterogeneity of phenological stages in a banana population increases over time, and thus the preharvest interval of fruits harvested after a pesticide application varies over time. A phenological model was used to simulate the long-term harvest dynamics of banana at field scale. Simulations show that the mean fosthiazate concentration in fruits varies according to nematicide application program, climate (temperature), and planting date of the banana field. This method is used to assess the percentage of harvested bunches that exceed a residue threshold and to help farmers minimize fosthiazate residues in bananas.

  4. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  5. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Xue, Jiaying; Wang, Suli; You, Xiangwei; Dong, Jiannan; Han, Lijun; Liu, Fengmao

    2011-11-15

    A sensitive and rapid multi-residue analytical method for plant growth regulators (PGRs) (i.e., chlormequat, mepiquat, paclobutrazol, uniconazole, ethephon and flumetralin) in apples and tomatoes was developed using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). A homogenised sample was extracted with a mixture of methanol/water (90:10, v/v) and adjusted to pH <3 with formic acid. Primary secondary amine (PSA) adsorbent was used to clean up the sample. The determination was performed using electrospray ionisation (ESI) and a triple quadrupole (QqQ) analyser. Under the optimised method, the results showed that, except for ethephon, the recoveries were 81.8-98.1% in apples and tomatoes at the spiked concentrations of 0.005 to 2 mg/kg, with relative standard deviations (RSDs) of less than 11.7%. The limits of quantification (LOQs) were lower than their maximum residue limits (MRLs). The procedure was concluded as a practical method to determine the PGR residues in fruit and vegetables and is also suitable for the simultaneous analysis of the amounts of samples for routine monitoring. The analytical method described herein demonstrates a strong potential for its application in the field of PGR multi-residue analysis to help assure food safety.

  6. Response of Sorghum bicolor L. to Residual Phosphate on Two Contrasting Soils Previously Planted to Cowpea or Maize

    Directory of Open Access Journals (Sweden)

    Tola Omolayo Olasunkanmi

    2016-01-01

    Full Text Available Proper fertilizer nutrient management through adequate utilization of the residual value coupled with healthy crop rotation contributes significantly to sustainable crop production. This study was conducted to evaluate the direct and residual effects of two rock phosphate (RP materials on two contrasting soils previously planted with either the cereal crop or the leguminous crop. The effectiveness of the RP materials as substitute for the conventional P fertilizers was evaluated using single superphosphate as reference at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The experiments were 2 × 2 × 4 factorial in completely randomized design. The test crops in the first cropping performed better on the slightly acidic loamy sand than on the strongly acidic sandy clay loam. Performance of each crop was improved by P supply in the first and second cropping. Single superphosphate proved to be more efficient than the RPs in the first cropping but not as effective as MRP in the second cropping. In the second cropping, sorghum performed better on the soil previously cropped to cowpea while Morocco RP had the highest residual effect among the P-fertilizer sources. It is evident that rock phosphates are better substitutes to the conventional phosphorus fertilizers due to their long term residual effect in soils. The positive effects of healthy rotation of crops as well as the negative effects of low soil pH are also quite obvious.

  7. Assessment of residual bio-efficacy and persistence of Ipomoea cairica plant extract against Culex quinquefasciatus Say mosquito.

    Science.gov (United States)

    Thiagaletchumi, Maniam; Zuharah, Wan Fatma; Ahbi Rami, Rattanam; Fadzly, Nik; Dieng, Hamady; Ahmad, Abu Hassan; AbuBakar, Sazaly

    2014-09-01

    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.

  8. A Single Residue Switch for Mg2+-dependent Inhibition Characterizes Plant Class II Diterpene Cyclases from Primary and Secondary Metabolism*

    Science.gov (United States)

    Mann, Francis M.; Prisic, Sladjana; Davenport, Emily K.; Determan, Mara K.; Coates, Robert M.; Peters, Reuben J.

    2010-01-01

    Class II diterpene cyclases mediate the acid-initiated cycloisomerization reaction that serves as the committed step in biosynthesis of the large class of labdane-related diterpenoid natural products, which includes the important gibberellin plant hormones. Intriguingly, these enzymes are differentially susceptible to inhibition by their Mg2+ cofactor, with those involved in gibberellin biosynthesis being more sensitive to such inhibition than those devoted to secondary metabolism, which presumably limits flux toward the potent gibberellin phytohormones. Such inhibition has been suggested to arise from intrasteric Mg2+ binding to the DXDD motif that cooperatively acts as the catalytic acid, whose affinity must then be modulated in some fashion. While further investigating class II diterpene cyclase catalysis, we discovered a conserved basic residue that seems to act as a counter ion to the DXDD motif, enhancing the ability of aspartic acid to carry out the requisite energetically difficult protonation of a carbon-carbon double bond and also affecting inhibitory Mg2+ binding. Notably, this residue is conserved as a histidine in enzymes involved in gibberellin biosynthesis and as an arginine in those dedicated to secondary metabolism. Interchanging the identity of these residues is sufficient to switch the sensitivity of the parent enzyme to inhibition by Mg2+. These striking findings indicate that this is a single residue switch for Mg2+ inhibition, which not only supports the importance of this biochemical regulatory mechanism in limiting gibberellin biosynthesis, but the importance of its release, presumably to enable higher flux, into secondary metabolism. PMID:20430888

  9. Biological effects of native and exotic plant residues on plant growth, microbial biomass and N availability under controlled conditions

    OpenAIRE

    Diallo, Mariama-Dalanda; Duponnois, Robin; Guisse, A.; Sall, Saïdou; Chotte, Jean-Luc; Thioulouse, J.

    2006-01-01

    The leaf litter of six tropical tree species (Acacia holosericea, Acacia tortilis, Azadirachta indica, Casuarina equisetifolia, Cordyla pinnata and Faidherbia albida) frequently used in agroforestry plantations in Sahelian and Soudano-Sahelian areas were tested for their influence on soil nitrogen content, microbial biomass and plant growth under controlled greenhouse conditions. Half of the soil was planted with onion (Allium cepa L.) seedlings and the other half was not. Two herbaceous spec...

  10. Decomposition of different plant litters in Loess Plateau of Northwest China%黄土高原不同植物凋落物的分解特性

    Institute of Scientific and Technical Information of China (English)

    李云; 周建斌; 董燕捷; 夏志敏; 陈竹君

    2012-01-01

    Taking the litters of species Hippophae rhamnoides, Medicago sativa, Populus simonii, Robinia pseudoacaci, Salix psammophila, and Stipa bungeana in the Loess Plateau of Northeast China as test objects, and by using mesh bags, this paper studied the dynamic changes of the litters mass, carbon, and nitrogen during decomposition after buried in the field in semiarid region. The litters buried were from one, two, or three of the plant species, and mixed thoroughly with equal proportion of masses. During decomposition, the mass loss rate, total carbon and nitrogen release rates, and total soluble carbon and nitrogen contents of different litters were higher at the early than at the later decomposition stage. After 412 d decomposition, the average mass loss rate of the litters was in the order of mixed litters of three plant species > mixed litters of two plant species > one plant species litter. By the end of this experiment, the average release rates of the litter total carbon and nitrogen ranked as one plant species litter > mixed litters of two plant species > mixed litters of three plant species, the litter soluble organic carbon content was mixed litters of two plant species > mixed litters of three plant species > one plant species litter, while the litter soluble total nitrogen content was mixed litters of three plant species > mixed litters of two plant species > one plant species litter. Correlation analysis showed that the utter mass loss rate had definite correlation with the litter soluble organic matter, especially soluble organic carbon. From the viewpoint of mass loss rate, the mixture of the litters of P. simonii, H. rhamnoide, and M. sativa was the optimum. It was suggested that in the process of returning farmland into forestland and grassland in the gully and valley region of Loess Plateau, it would be required to rationally increase plant species diversity to improve soil fertility.%以黄土高原区典型植物刺槐、小叶杨、沙棘、沙柳

  11. Nitrógeno residual y lixiviado del fertilizante en el sistema suelo-planta-zeolitas Residual and leached nitrogen in soil plant zeolite systems

    Directory of Open Access Journals (Sweden)

    Gabriela Civeira

    2011-12-01

    mineralización de nitrógeno y la retención de humedad. El mayor nivel de N absorbido en NZ1 se correspondió con un descenso en el N residual significativamente inferior al tratamiento N mientras que el N lixiviado resultó similar. En cambio, cuando la dosis de zeolitas fue mayor (NZ2, el nivel de N absorbido por el maíz fue similar al del tratamiento N, mientras que el N lixiviado se incrementó significativamente respecto de los tratamientos N y NZ1 evidenciando una liberación más tardía del N a la solución del suelo. Estos resultados sugieren que la sincronización entre el patrón de liberación de N del sistema suelo-fertilizante-zeolita y el de absorción del maíz dependió de la dosis de zeolita que acompañó al fertilizante. Mientras que en NZ1 dicha sincronización mejoró la performance del fertilizante, en el tratamiento NZ2 el N retenido por las zeolitas no estuvo disponible para el maíz, siendo detectado como lixiviado al fin del experimento.The N use efficiency in agroecosystems is considered low mainly because of N losses by processes such as nitrate leaching. These losses could be mitigated by incorporating natural zeolites to the N fertilizer formulations. The main objective of this study was to evaluate the effect of natural zeolites additions to formulations with N fertilizers on the contents of residual N and leached N in a soil under maize crop. The hypothesis of this study was that zeolite addition to N fertilizer could reduce the residual and leached N levels but could also affect the plant N availability. A greenhouse experiment was conducted under controlled conditions from February to April 2009. Corn was planted (Zea mays L. in pots which were maintained at field capacity. Zeolite and nitrogen fertilizer (Urea [(NH22CO], solid granules, 46-0-0 were added together as a dry physical mixture, at the beginning of the experiment. The treatments were T: control, Z1: 120 kg ha-1 zeolite, Z2: 200 kg ha-1 zeolite, N: 200 kg N ha-1, NZ1: 120 kg ha

  12. Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process

    OpenAIRE

    Liao, Min; Shi, Yanhong; Cao, Haiqun; Hua, Rimao; Tang, Feng; Wu, Xiangwei; Tang, Jun

    2016-01-01

    The dissipation behavior of octachlorodipropyl ether (OCDPE) residues in fresh tea shoots and in tea prepared under field conditions was investigated, and the transfer of residues from brewed tea to tea infusion was determined. OCDPE levels in tea shoots, prepared tea, tea infusion, and spent tea leaves were determined using a sensitive and simple method. The dissipation of OCDPE is fairly slow in tea shoots and prepared tea, with half-life values of 5.10 and 5.46 days, respectively. The degr...

  13. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants.

    Science.gov (United States)

    Teerarak, Montinee; Laosinwattana, Chamroon; Charoenying, Patchanee

    2010-07-01

    Methanolic extracts prepared from dried leaves of Jasminum officinale f. var. grandiflorum (L.) Kob. (Spanish jasmine) inhibited seed germination and stunted both root and shoot length of the weeds Echinochloa crus-galli (L.) Beauv. and Phaseolus lathyroides L. The main active compound was isolated and determined by spectral data as a secoiridoid glucoside named oleuropein. In addition, a decrease in allelopathic efficacy appeared as the decomposition periods increased. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts and longer periods of treatment. Likewise, the mitotic phase index was altered in onion incubated with crude extract. Furthermore, crude extract produced mitotic abnormalities resulting from its action on chromatin organization and mitotic spindle. Copyright (c)2010 Elsevier Ltd. All rights reserved.

  14. Effect of plant species on P cycle-related microorganisms associated with litter decomposition and P soil availability: implications for agroforestry management

    Directory of Open Access Journals (Sweden)

    Correa E

    2016-04-01

    Full Text Available Cutting dry deciduous forest (preserved site for wood supply in semi-arid Brazil has led to invasion of a pioneer shrub vegetation called “Carrasco” (disturbed site, which inhibits the sprouting of native species. A land restoration project was undertaken in a cleared Carrasco area where a mixed plantation of native species and Eucalyptus spp. (experimental site was established to preserve the forest and ensure wood supply for the local population. We considered phosphorus as a limiting soil nutrient to plant growth, and we addressed the roles of litter decomposition and microbial activity on phosphorus release in the disturbed, preserved and experimental sites. The phosphorus released from leaf litter was affected by the vegetation type, which favored specific soil microbial populations during decomposition. The Carrasco vegetation predominantly favored arbuscular mycorrhizal fungi (AMF, as shown by root colonization in the litter bags; the Eucalyptus plants favored AMF and ectomycorrhizal fungi (EM, as well as phosphate solubilizing microorganisms (PSM, and the intercropping system favored AMF and PSM groups. In contrast, the preserved site favored the PSM population. High phosphatase activity was found in the preserved and experimental sites in contrast to the Carrasco soil. Principal component analysis showed that AMF root colonization and phosphatase activity were the main parameters influencing the increase in soil phosphorus. Based on the above results, rehabilitation appeared to be underway in the experimental site, since the samples were more similar to the preserved site than to the disturbed site. This effect was attributed to Eucalyptus camaldulensis that promote the establishment of all phosphorus cycle-related microorganisms (AMF, EM and PSF. E. camaldulensis associated with mycorrhizal fungi and PSM are recommended for inclusion in agroforestry systems.

  15. A case study in risk management : remediation of residual salt impacts at a closed sour gas processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.L.; Penny, S.; MacDonald, J.; Hamilton, A.; Oness, M. [WorleyParsons Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    This presentation described the post remediation management of residual salt impacts at a closed former sour gas processing plant. Generic guidelines were discussed along with guideline recalculation and ongoing risk management. Green remediation objectives that incorporate sustainable environmental practices into remediation of contaminated sites were also presented. A case study of the Okotoks Gas Plant was also provided. The case study discussed post shutdown activities; land blocks; escarpment feature; simplified hydrogeologic cross-section; the upper terrace remediation program; remedial excavations; groundwater remediation; risk management plan; vegetation surveys; soil stratification scheme; groundwater risk management; and geophysical monitoring. It was concluded that Alberta needs a risk management framework in order to promote site re-development, reduce contamination and control exposure and adopt principles of green and sustainable remediation.

  16. A Model to Predict Total Chlorine Residue in the Cooling Seawater of a Power Plant Using Iodine Colorimetric Method

    Directory of Open Access Journals (Sweden)

    Pei-Jie Meng

    2008-04-01

    Full Text Available A model experiment monitoring the fate of total residue oxidant (TRO in water at a constant temperature and salinity indicated that it decayed exponentially with time, and with TRO decaying faster in seawater than in distilled water. The reduction of TRO by temperature (°K was found to fit a curvilinear relationship in distilled water (r2 = 0.997 and a linear relationship in seawater (r2 = 0.996. Based on the decay rate, flow rate, and the length of cooling water flowing through at a given temperature, the TRO level in the cooling water of a power plant could be estimated using the equation developed in this study. This predictive model would provide a benchmark for power plant operators to adjust the addition of chlorine to levels necessary to control bio-fouling of cooling water intake pipelines, but without irritating ambient marine organisms.

  17. A Model to Predict Total Chlorine Residue in the Cooling Seawater of a Power Plant Using Iodine Colorimetric Method

    Science.gov (United States)

    Wang, Jih-Terng; Chen, Ming-Hui; Lee, Hung-Jen; Chang, Wen-Been; Chen, Chung-Chi; Pai, Su-Cheng; Meng, Pei-Jie

    2008-01-01

    A model experiment monitoring the fate of total residue oxidant (TRO) in water at a constant temperature and salinity indicated that it decayed exponentially with time, and with TRO decaying faster in seawater than in distilled water. The reduction of TRO by temperature (°K) was found to fit a curvilinear relationship in distilled water (r2 = 0.997) and a linear relationship in seawater (r2 = 0.996). Based on the decay rate, flow rate, and the length of cooling water flowing through at a given temperature, the TRO level in the cooling water of a power plant could be estimated using the equation developed in this study. This predictive model would provide a benchmark for power plant operators to adjust the addition of chlorine to levels necessary to control bio-fouling of cooling water intake pipelines, but without irritating ambient marine organisms. PMID:19325768

  18. Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural.

    Science.gov (United States)

    Wang, Chao; Zhang, Liming; Zhou, Tian; Chen, Jiachuan; Xu, Feng

    2017-01-13

    5-hydroxymethylfurfural (HMF) is an important platform molecule in the synthesis of various chemicals and materials. Herein, we reported a simple and effective dehydration of glucose-based carbohydrates to HMF in a biphasic system containing cyclopentyl methyl ether as the organic phase and AlCl3 with minute amounts of HCl as co-catalysts. The results showed that the mixed catalysts had a positive synergistic catalytic effect on glucose conversion to HMF compared with single AlCl3 or HCl catalyst. For glucose, the highest HMF yield of 54.5% was achieved at 175 °C for 20 min. More importantly, the optimal catalytic system was so efficient that it achieved one of the highest reported yields of HMF (30.5%) directly from corncob acid hydrolysis residues. Thus, the catalytic system can become a promising route for effective utilization of biomass in future biorefineries.

  19. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

  20. Kinetics of Pb and Zn leaching from zinc plant residue by sodium hydroxide

    Directory of Open Access Journals (Sweden)

    Erdem M.

    2015-01-01

    Full Text Available In the hydrometallurgical zinc production processes, important amount of hazardous solid extraction residue containing unextractable Zn and Pb is generated. Due to increasing demand of metals and the depletion of high grade natural resources, these types of wastes are gaining great importance in the metallurgical industries. In this study, selective leaching and leaching kinetics of Pb and Zn from zinc extraction residue were investigated. For this purpose; the effects of NaOH concentration, contact time, stirring speed and temperature on the Pb and Zn recovery from the residue were studied. The shrinking core model was applied to the results of the experiments. Leaching results showed that 85.55% Pb and 21.3 % Zn could be leached under the optimized conditions. The leaching of Pb and Zn were found to fit well to shrinking core model with ash layer diffusion control. Activation energy values for Pb and Zn leaching were calculated to be 13.645 and 22.59 kJ/mol, respectively.

  1. Simulated acid rain alters litter decomposition and enhances the allelopathic potential of the invasive plant Wedelia trilobata (Creeping Daisy)

    Science.gov (United States)

    Invasive species and acid rain cause global environmental problems. Limited information exists, however, concerning the effects of acid rain on the invasiveness of these plants. For example, creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China where acid ra...

  2. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals - abstract

    Science.gov (United States)

    Phosphates adsorbed on calcium carbonate are environmental friendly, as they do not require further treatment for the phosphate species desorption due to its effectiveness as the plant fertilizer. In this study, an inexpensive calcium carbonate obtained as a waste material from d...

  3. Employing Solid Phase Microextraction as Extraction Tool for Pesticide Residues in Traditional Medicinal Plants

    Science.gov (United States)

    Gondo, Thamani T.; Mmualefe, Lesego C.; Okatch, Harriet

    2016-01-01

    HS-SPME was optimised using blank plant sample for analysis of organochlorine pesticides (OCPs) of varying polarities in selected medicinal plants obtained from northern part of Botswana, where OCPs such as DDT and endosulfan have been historically applied to control disease carrying vectors (mosquitos and tsetse fly). The optimised SPME parameters were used to isolate analytes from root samples of five medicinal plants obtained from Maun and Kasane, Botswana. The final analytes determination was done with a gas chromatograph equipped with GC-ECD and analyte was confirmed using electron ionisation mass spectrometer (GC-MS). Dieldrin was the only pesticide detected and confirmed with MS in the Terminalia sericea sample obtained from Kasane. The method was validated and the analyte recoveries ranged from 69.58 ± 7.20 to 113 ± 15.44%, with RSDs ranging from 1.19 to 17.97%. The method indicated good linearity (R2 > 0.9900) in the range of 2 to 100 ng g−1. The method also proved to be sensitive with low limits of detection (LODs) ranging from 0.48 ± 0.16 to 1.50 ± 0.50 ng g−1. It can be concluded that SPME was successfully utilized as a sampling and extraction tool for pesticides of diverse polarities in root samples of medicinal plants. PMID:27725893

  4. Employing Solid Phase Microextraction as Extraction Tool for Pesticide Residues in Traditional Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Thamani T. Gondo

    2016-01-01

    Full Text Available HS-SPME was optimised using blank plant sample for analysis of organochlorine pesticides (OCPs of varying polarities in selected medicinal plants obtained from northern part of Botswana, where OCPs such as DDT and endosulfan have been historically applied to control disease carrying vectors (mosquitos and tsetse fly. The optimised SPME parameters were used to isolate analytes from root samples of five medicinal plants obtained from Maun and Kasane, Botswana. The final analytes determination was done with a gas chromatograph equipped with GC-ECD and analyte was confirmed using electron ionisation mass spectrometer (GC-MS. Dieldrin was the only pesticide detected and confirmed with MS in the Terminalia sericea sample obtained from Kasane. The method was validated and the analyte recoveries ranged from 69.58±7.20 to 113±15.44%, with RSDs ranging from 1.19 to 17.97%. The method indicated good linearity (R2>0.9900 in the range of 2 to 100 ng g−1. The method also proved to be sensitive with low limits of detection (LODs ranging from 0.48±0.16 to 1.50±0.50 ng g−1. It can be concluded that SPME was successfully utilized as a sampling and extraction tool for pesticides of diverse polarities in root samples of medicinal plants.

  5. Dinâmica do potássio nos resíduos vegetais de plantas de cobertura no Cerrado Potassium dynamics in crop residues of cover plants in Cerrado

    Directory of Open Access Journals (Sweden)

    José Luiz Rodrigues Torres

    2008-08-01

    Full Text Available A produção de biomassa, a manutenção dos resíduos vegetais sobre o solo e sua posterior decomposição são fatores de grande importância no estudo da ciclagem de nutrientes. Este estudo foi desenvolvido na área experimental do CEFET-Uberaba-MG, onde foram avaliados oito tipos de coberturas vegetais: milheto (Pennisetum americanum sin. tiphoydes, braquiária (Brachiaria brizantha, sorgo-forrageiro (Sorghum bicolor L. Moench, guandu (Cajanus cajan (L. Mill sp., crotalária (Crotalarea juncea, aveia-preta (Avena strigosa Schreb, pousio e área em preparo convencional de solo (testemunha em área de Cerrado, na região do Triângulo Mineiro. Avaliaram-se a fitomassa seca (FS, a decomposição dos resíduos em bolsas de decomposição, e a liberação de K. Utilizou-se um modelo matemático para descrever a decomposição dos resíduos e a liberação de K, e calcularam-se a constante de decomposição (k e o tempo de meia-vida (T½. O milheto, o sorgo e a crotalária foram as coberturas que apresentaram maiores produções de matéria seca. O maior acúmulo de K ocorreu em gramíneas e a maior liberação de K ocorreu no milheto, aveia, braquiária e crotalária nos primeiros 42 dias após manejo, nos dois períodos avaliados. A braquiária apresentou o menor T½ vida e a maior taxa de liberação de K.Crop residue production, plant residue maintenance and their decomposition are important factors in the understanding of nutrient recycling process. To evaluate K accumulation and release a study with eight cover crops types was developed: pearl millet (Pennisetum americanum sin. tiphoydes, brachiaria grass (Brachiaria brizantha, sorghum (Sorghum bicolor L. Moench, pigeonpea (Cajanus cajan (L. Millsp, sunn hemp (Crotalarea juncea and black oats (Avena strigosa Schreb, fallow land and conventional culture (control in the experimental area of CEFET-Uberaba-MG, in a Cerrado area. The dry mass production, crop residue decomposition in litter bags

  6. Low—Molecular—Weight Aliphatic Acids in Soils Inculbated with Plant Residues Under Different Moisture Conditions

    Institute of Scientific and Technical Information of China (English)

    SHENALIN; LIXUEYUAN; 等

    1997-01-01

    Iucubation experiments were conducted to investigate the dynamics of low-molecular-weight aliphatic acids i two andosols with and without plant materials.Results showed that amount of low-molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content,ranging from 257-860μmol kg-1 soil,of which 19%-33% was in free state.Incorporation of plant matrials increased greatly both the amount and unmber of members of low-molecular-weight aliphatic acids,and also the proportion of low-molecular-weght aliphatic acids occurred in free state ,Generally,among these ,aliphatic acids detected,acetic,propionic,glyoxalic and formic acids were predominant.

  7. Trace Analysis of Pharmaceutical Residues in Wastewater Treatment Plants in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira

    2014-05-01

    Full Text Available The occurrence and fate of trace-level contamination of pharmaceuticals in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. The effluents of wastewater treatment plants, usually directly emitted to the environment, often contain the anti-inflammatory drug diclofenac. Diclofenac was chosen because it is of high consumption; by background literature indicate toxic effects on biota and the lack of profile in sewage removal provided by the city. For this purpose, a survey on the presence of diclofenac in urban wastewater of Rio de Janeiro was carried out. It were evaluated diclofenac concentration in the affluent and effluent from wastewater treatment plant (WWTP Penha and Ilha do Governador, Rio de Janeiro, Brazil. Samples were collected along the line of treatment of each WWTP, and for clean up the samples were solid phase extraction (SPE, analysed by high performance liquid chromatography (HPLC, assisted by diode array detector (DAD techniques. The removal efficiency of pharmaceuticals in the wastewater treatment plants was roughly evaluated. Diclofenac was detected in all samples analysed wastewater (treated and raw, which confirms the low removal efficiency of conventional treatment systems, aerobes and anaerobes.

  8. [C and N allocation patterns in planted forests and their release patterns during leaf litter decomposition in subalpine area of west Sichuan].

    Science.gov (United States)

    Liu, Zeng-wen; Duan, Er-jun; Pan, Kai-wen; Zhang, Li-ping; Du, Hong-xia

    2009-01-01

    With the planted forest ecosystems of Cercidiphyllum japonicum, Betula utilis, Pinus yunnansinsis, and Picea asperata in subalpine area of west Sichuan as test objects, their total biomass and the C and N contents in soils and tree organs were determined. The results showed that the allocation of C in tree organs had less correlation with the age of the organs, while that of N and C/N ratio had closer relationship with the age. The N content in young organs was higher than that in aged ones, whereas the C/N ratio was higher in aged organs than in young organs, and higher in the leaf litters of needle-leaved forests than in those of broad-leaved forests. There was an obvious enrichment of C and N in the topsoil of test forests. The accumulated amounts of C and N in the whole planted forest ecosystem, including tree, litter, and 0-40 cm soil layer, were 176.75-228.05 t x hm(-2) and 11.06-16.54 t x hm(-2), respectively, and the nutrients allocation ratio between soil-litter and tree was (1.9-3.3):1 for C and (15.6-41.5):1 for N. Needle-leaved forests functioned as a stronger "C-sink" than broad-leaved forests. The decomposition rate of the leaf litters in needle-leaved forests was larger than that in broad-leaved forests, with the turnover rate being 2.2-3.7 years and 3.9-4.2 years, respectively. During the decomposition of leaf litter, the C in all of the four forests released at super-speed, with the turnover rate being 1.9-3.4 years. As for N, it also released at super-speed in C. japonicum and B. utilis forests, with the turnover rate being 1.9-3.2 years, but released at low speed in P. yunnansinsis and P. asperata forests, with the turnover rate being 6.7-8.5 years.

  9. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

    Science.gov (United States)

    Chen, Ruirui; Senbayram, Mehmet; Blagodatsky, Sergey; Dittert, Klaus; Lin, Xiangui; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM

  10. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Jansson, S.

    2014-01-01

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed...... characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements...... of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. © 2014 Elsevier B.V....

  11. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    Science.gov (United States)

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.

  12. Studies of ultrasound disintegration of residual sludge and its energy consumption in water treatment of petrochemical plant

    Institute of Scientific and Technical Information of China (English)

    SHEN Jinfeng; YIN Xuan; GU Heping; L(U) Xiaoping

    2007-01-01

    To investigate the influence of ultrasound pretreatment on sludge anaerobic digestion,the ultrasound disintegration of residual sludge in water treatment of petrochemical plant was studied,and the mechanisms of ultrasound and medium were introduced.Experimental results indicate that ultrasound cavitation induces the rise of sludge temperature,which improves ultrasound disintegration on sludge.Ultrasound pretreatment can advance observably the quantity of chemical oxygen demand in sludge supernatant fluid (SCOD),which increases with ultrasound intensity and sonication time.The degree of ultrasound disintegration increases with the specific energy input.When the specific energy input is 10 000 kJ/kg of total dry solids,the degree of ultrasonic sludge disintegration reaches 40%.

  13. Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks.

    Science.gov (United States)

    Tewari, S; Jindal, R; Kho, Y L; Eo, S; Choi, K

    2013-04-01

    Pharmaceuticals have been frequently detected in aquatic environment worldwide and suspected for potential ecological consequences. However, occurrences, sources and potential risks of pharmaceutical residues have rarely been investigated in Bangkok, Thailand, one of most densely populated cities in the world. We collected water samples from five wastewater treatment plants (WWTPs), six canals, and in mainstream Chao Phraya River of Bangkok, in three sampling events representing different seasonal flow conditions, i.e., June and September 2011 and January 2012. Fourteen major pharmaceuticals including acetaminophen, acetylsalicylic acid, atenolol, caffeine, ciprofloxacin, diclofenac, ibuprofen, mefenamic acid, naproxen, roxithromycin, sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim were analyzed. Levels of pharmaceutical residues in WWTP influents on average were the highest for acetylsalicylic acid (4700 ng L(-1)), followed by caffeine (2250 ng L(-1)) and ibuprofen (702 ng L(-1)). In effluents, the concentration of caffeine was the highest (307 ng L(-1)), followed by acetylsalicylic acid (261 ng L(-1)) and mefenamic acid (251 ng L(-1)). In surface water, acetylsalicylic acid showed the highest levels (on average 1360 ng L(-1) in canals and 313 ng L(-1) in the river). Removal efficiencies of WWTPs for roxithromycin, sulfamethoxazole and sulfamethazine were determined negligible. For several compounds, the concentrations in ambient water were higher than those detected in the effluents, implying contribution of the WWTPs to be negligible. Hazard quotients estimated for acetylsalicylic acid, ciprofloxacin, diclofenac and mefenamic acid in most of the canals and that of ciprofloxacin in the river, were greater than or close to 1, suggesting potential ecological risks. Ecological implications of the pharmaceutical residues in Bangkok waterway warrant further investigation.

  14. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    Science.gov (United States)

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (Ppod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost of buying synthetic inorganic fertilizers and

  15. Determination of Indoxacarb Residue in Foodstuffs of Plant and Animal Origin by GC-ECD and LC-MS/MS

    Institute of Scientific and Technical Information of China (English)

    XU Dun-ming; YANG Fang; LU Sheng-yu; LAN Jin-chang; YU Kong-jie; CAI Chun-ping; LIU Xian-jin

    2008-01-01

    An effective method for the trace analysis of indoxacarb residue in foodstuffs of plant and animal origin [grapefruit, ginger, fresh soybean, bamboo shoot, qing-gen-cai (cruciferous vegetable), chicken, fish, and pork] was developed using gas chromatography (GC-ECD) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Samples were extracted using acetone and n-hexane mixed solvent (1:2, v/v) and then purified using solid-phase extraction (SPE) columns. The extracts were analyzed using GC-ECD and LC-MS/MS. The multiple reaction monitoring (MRM) scheme used involved transitions of the precursor ions to selected two product ions in which one pair for identification was m/z 529→293 and another pair for quantification was m/z 529→249. The detection limits (LODs) of the method were 0.0015 and 0.0006 mg kg-1, and the quantification limits (LOQs) were 0.005 and 0.002 mg kg-1 for GC-ECD and LC-MS/MS, respectively. The relative standard deviations (RSDs) of recovery for indoxacarb were lower than 15% in 10 types of agro-products. Ten repetitive determinations of recovery achieved good reproducibility for indoxacarb and the recovery ranged from 72.08 to 113.74%. The proposed procedure was applied to the analysis of several real samples of different origin from Fujian Province, China, and 299 samples were screened for indoxacarb residue, of which 5 positive samples were found.

  16. Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: Decomposition and priming effect

    Science.gov (United States)

    Zhu, Zhenke; Zeng, Guanjun; Ge, Tida; Hu, Yajun; Tong, Chengli; Shibistova, Olga; He, Xinhua; Wang, Juan; Guggenberger, Georg; Wu, Jinshui

    2016-08-01

    The input of recently photosynthesized C has significant implications on soil organic C sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-day incubation study with four different 13C-labelled substrates: rice shoots (shoot-C), rice roots (root-C), rice rhizodeposits (rhizo-C), and microbe-assimilated C (micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in shoot-C-, root-C-, rhizo-C-, and micro-C-treated soils rapidly increased at the beginning of the incubation and decreased gradually afterwards. The highest cumulative C mineralization was observed in root-C-treated soil (45.4 %), followed by shoot-C- (31.9 %), rhizo-C- (7.90 %), and micro-C-treated (7.70 %) soils, which corresponded with mean residence times of 39.5, 50.3, 66.2, and 195 days, respectively. Shoot and root addition increased C emission from native soil organic carbon (SOC), up to 11.4 and 2.3 times higher than that of the control soil by day 20, and decreased thereafter. Throughout the incubation period, the priming effect of shoot-C on CO2 and CH4 emission was strongly positive; however, root-C did not exhibit a significant positive priming effect. Although the total C contents of rhizo-C- (1.89 %) and micro-C-treated soils (1.90 %) were higher than those of untreated soil (1.81 %), no significant differences in cumulative C emissions were observed. Given that about 0.3 and 0.1 % of the cumulative C emission were derived from labelled rhizo-C and micro-C, we concluded that the soil organic C-derived emissions were lower in rhizo-C- and micro-C-treated soils than in untreated soil. This indicates that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native SOC and to effectively improve soil C sequestration. The contrasting behaviour of the different

  17. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  18. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  19. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.

    Science.gov (United States)

    Yan, X L; Lin, L Y; Liao, X Y; Zhang, W B; Wen, Y

    2013-10-01

    Panax notoginseng (Burk.) F.H. Chen, a rare traditional Chinese medicinal herb, is a widely used phytomedicine used all over the world. In recent years, the arsenic contamination of the herb and its relative products becomes a serious problem due to elevated soil As concentration. This study aimed to evaluate the effects of different types and dosages of amendments on As stabilization in soil and its uptake by P. notoginseng. Results showed that comparing to control treatment, the As concentrations of P. notoginseng declined by 49-63%, 43-61% and 52-66% in 0.25% zero-valent iron (Fe(0)), 0.5% bauxite residue, and 1% zeolite treatment, respectively; whereas the biomasses were elevated by 62-116%, 45-152% and 114-265%, respectively. The As(III) proportions of P. notoginseng increased by 8%, 9%, and 8%, and the transfer factors of As from root to shoot increased by 37%, 42% and 84% in the optimal treatments of Fe(0), bauxite residue, and zeolite. For soil As, all the three amendments could transform the non-specifically adsorbed As fraction to hydrous oxides Fe/Al fractions (by Fe(0) and red mud) or specifically adsorbed As fraction (by zeolite), therefore reduced the bioavailability of soil As. With a comprehensive consideration of stabilization efficiency, plant growth, environmental influence, and cost, Fe(0) appeared to be the best amendment, and zeolite could also be a good choice. In conclusion, this study was of significance in developing As contamination control in P. notoginseng planting areas, and even other areas for medicinal herb growing.

  20. A pilot plant for removing chromium from residual water of tanneries.

    Science.gov (United States)

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  1. Biochemical stability of organic matter in soils amended with organic slow N-release fertilizer derived from charred plant residues and ammonoxidized lignin

    Science.gov (United States)

    Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk

    2013-04-01

    As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results

  2. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime).

  3. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    Science.gov (United States)

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  4. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  5. Number of residual thermotolerant coliforms on plants and in soil when using reclaimed domestic wastewater for irrigation.

    Science.gov (United States)

    Khamkure, Sasirot; Cervantes, Edmundo Peña; Zermeño González, Alejandro; Cervantes, Rubén López; Melo, Prócoro Gamero; Ramírez, Homero

    2013-01-01

    The reclamation of domestic wastewater for irrigation is one alternative approach to solve the water scarcity crisis, but it is essential to control the microbiological quality of wastewater used for irrigation. The removal of thermotolerant coliforms, also known as faecal coliforms (FC), from treated domestic wastewater by intermittent media infiltration (IMI) in column was studied. The columns were filled with natural filter media (soil, soil/charcoal and zinc-modified zeolite, Zeo-Zn), and wastewater, IMI-treated wastewater and disinfected wastewater were compared. The numbers of residual FC on Swiss chard (Beta vulgaris) and in agricultural soil were determined over a 4-month period. The column using Zeo-Zn had a higher FC removal efficiency (2.98 log) than columns with other filter media and disinfection (1.87-2.57 log) due to the bactericidal properties of Zn(2+). The treatment of wastewater using Zeo-Zn and disinfection both decreased the accumulation of FC on plants and in soil to approximately 1-20 MPN/g dry matter. IMI-treated wastewater using the column with Zeo-Zn was suitable for unrestricted agricultural use, complied with Mexican regulations (as did disinfected wastewater) and had a low risk of FC contamination of plants and soil.

  6. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.

    Science.gov (United States)

    Wang, Xiaojuan; Tang, Caixian; Severi, Julia; Butterly, Clayton R; Baldock, Jeff A

    2016-08-01

    Effects of rhizosphere properties on the rhizosphere priming effect (RPE) are unknown. This study aimed to link species variation in RPE with plant traits and rhizosphere properties. Four C3 species (chickpea, Cicer arietinum; field pea, Pisum sativum; wheat, Triticum aestivum; and white lupin, Lupinus albus) differing in soil acidification and root exudation, were grown in a C4 soil. The CO2 released from soil was trapped using a newly developed NaOH-trapping system. White lupin and wheat showed greater positive RPEs, in contrast to the negative RPE produced by chickpea. The greatest RPE of white lupin was in line with its capacity to release root exudates, whereas the negative RPE of chickpea was attributed to its great ability to acidify rhizosphere soil. The enhanced RPE of field pea at maturity might result from high nitrogen deposition and release of structural root carbon components following root senescence. Root biomass and length played a minor role in the species variation in RPE. Rhizosphere acidification was shown to be an important factor affecting the magnitude and direction of RPE. Future studies on RPE modelling and mechanistic understanding of the processes that regulate RPE should consider the effect of rhizosphere pH.

  7. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Science.gov (United States)

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  8. Limestone, gypsum and residual effect of fertilizers in the biomass production and nutrient cycling of millet plants

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Santana Carvalho

    2014-09-01

    Full Text Available Cover crops can provide a higher nutrient cycling. This study aimed to determine the effect of annual applications of gypsum and lime to the soil surface and of fertilizer doses to the previous crop (soybean in the dry biomass production and nutrient accumulation by plants of pearl millet grown in succession, under no-tillage system. The experimental design was randomized blocks, in a 4x4 factorial scheme, with four replications. Treatments consisted of the combination of four types of soil conditioner (lime, lime + gypsum, gypsum and control, split in three parts (2 t ha-1 of lime and 1,0 t ha-1 of gypsum; 2 t ha-1 of lime and 1 t ha-1 of gypsum; and 1 t ha-1 of lime and 0.5 t ha-1 of gypsum, and four fertilizing rates with P (triple and simple superphosphate and K (potassium chloride (0%, 50%, 100% and 150% of the recommended fertilizing, applied at the sowing of the previous crop (soybean. Liming provided increments in the dry biomass production and in the accumulation of nutrients (N, P, K, Ca, Mg and S by millet plants. The application of gypsum did not increase the millet dry biomass yield. The use of increasing rates of fertilizers in the previous crop (soybean increased the biomass dry matter, density and accumulation of nutrients by millet plants. The intercropping of millet as a cover crop, with the residual effect of the fertilizer applied in the summer crop, provided a nutrient cycling that can be used by the following crops.

  9. Residues of plant protection products in grey partridge eggs in French cereal ecosystems.

    Science.gov (United States)

    Bro, Elisabeth; Devillers, James; Millot, Florian; Decors, Anouk

    2016-05-01

    The contamination of the eggs of farmland birds by currently used plant protection products (PPPs) is poorly documented despite a potential to adversely impact their breeding performance. In this context, 139 eggs of 52 grey partridge Perdix perdix clutches, collected on 12 intensively cultivated farmlands in France in 2010-2011, were analysed. Given the great diversity of PPPs applied on agricultural fields, we used exploratory GC/MS-MS and LC/MS-MS screenings measuring ca. 500 compounds. The limit of quantification was 0.01 mg/kg, a statutory reference. A total of 15 different compounds were detected in 24 clutches. Nine of them have been used by farmers to protect crops against fungi (difenoconazole, tebuconazole, cyproconazole, fenpropidin and prochloraz), insects (lambda-cyhalothrin and thiamethoxam/clothianidin) and weeds (bromoxynil and diflufenican). Some old PPPs were also detected (fipronil(+sulfone), HCH(α,β,δ isomers), diphenylamine, heptachlor(+epoxyde), DDT(Σisomers)), as well as PCBs(153, 180). Concentrations ranged between literature.

  10. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.

    Science.gov (United States)

    Lin, Chong; Zhang, Wanhui; Yuan, Mengyang; Feng, Chunhua; Ren, Yuan; Wei, Chaohai

    2014-09-01

    Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h(-1) and 25 ± 3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R (2) > 0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day(-1). The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m(-3). These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.

  11. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    Science.gov (United States)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  12. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    Science.gov (United States)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  13. Composition decomposition

    DEFF Research Database (Denmark)

    Dyson, Mark

    2003-01-01

    This PhD is based on constructing and resolving a set of modular problems. Each problem exists as a separate entity. Each has its own characteristics, yet when combined with other, related problems, provides a dimension to a story. The relationships and order between problems has priority over....... Not only have design tools changed character, but also the processes associated with them. Today, the composition of problems and their decomposition into parcels of information, calls for a new paradigm. This paradigm builds on the networking of agents and specialisations, and the paths of communication...... that are necessary to make sense out of any design situation. The hypothesis of this project, is that Design organisation, communication and CAD-information processes must be jointly reengineered to create the dynamic structures needed for the forward projection of design knowledge into this expanding Design network....

  14. Leaf Litter Decomposition of Different Species of Photosynthetic Functional Plant Groups in Karst Area of Central Guizhou%黔中喀斯特区不同光合功能群树种凋落叶分解特性研究

    Institute of Scientific and Technical Information of China (English)

    汪舒雅; 喻理飞; 黄宗胜

    2014-01-01

    通过2013年在黔中喀斯特区采用网袋法进行植物凋落叶的分解实验,比较不同光合功能群树种凋落叶的残留率、分解速率、有机碳释放速率的差异。结果表明,研究区广光耐荫功能群树种(I)、窄光耐荫功能群树种(II)、广光喜光功能群树种(III)、窄光喜光功能群树种(IV)4种功能群树种凋落物在1年的分解过程中,残留率变化趋势分第1~4月、第5~9月、第10~12月3阶段,呈快-慢-快的规律;各光合功能群树种凋落叶分解速率为 III>IV>I>II。有机碳释放速率为 IV>II>III>I。凋落叶分解过程残留率与其有机碳释放速率均呈极显著负相关关系。喜光树种比耐荫树种凋落叶更易分解。%In 2013 by using the litter-bag method,the researchers carried out the plant leaf litter decompo-sition experiment in central Guizhou Karst area,in order to compare differences between residual rates of different photosynthetic functional plant groups’littered leaves,the leaf litter decomposition rates and the organic carbon release rates.There were four species of photosynthetic functional plant groups analyzed in the study area,which were wide-light shade tolerant species (I), narrow-light shade tolerant species (II),wide-light bright light species (III),narrow-light bright light species (IV).Based on analysis of the leaf litter decomposition process in one year,the results showed that tendency of the residual rates presented the fast-slow-fast changes during different periods of time from January to April,May to Sep-tember,and October to December respectively.The leaf litter decomposition rate was III>IV>I>II. The organic carbon release rate was IV>II>III>I.There were negative correlation between the residual rates and the organic carbon release rates.The bright light species were more easier to be decomposed.

  15. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.

    Science.gov (United States)

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-07-15

    Zinc plant purification residue (ZPR), a typical Zn-hydrometallurgical waste, was collected from the Três Marias Zn plant (MG, Brazil). ZPR was characterized for its metal content and fractionation, mineralogy, toxicity and leachability. Toxicity characteristics leaching procedure (TCLP) and European Community Bureau of Reference (BCR) sequential extraction results revealed that this ZPR displays high percentages of metals (Cd, Cu, Zn and Pb) in the highly mobilizable fractions, increasing its hazardous potential. Bulk chemical analysis, pH dependent leaching and acid (H2SO4) leaching studies confirm that the ZPR is polymetallic, rich in Cd, Cu and Zn. The sulfuric acid concentration (1 M), agitation speed (450 rpm), temperature (40 °C) and pulp density (20 g L(-1)) were optimized to leach the maximum amount of heavy metals (Cd, Cu and Zn). Under optimum conditions, more than 50%, 70% and 60% of the total Cd, Cu and Zn present in the ZPR can be leached, respectively. The metals in the acid leachates were investigated for metal sulfide precipitation with an emphasis on selective Cu recovery. Metal sulfide precipitation process parameters such as initial pH and Cu to sulfide ratio were optimized as pH 1.5 and 1:0.5 (Cu:sulfide) mass ratio, respectively. Under optimum conditions, more than 95% of Cu can be selectively recovered from the polymetallic ZPR leachates. The Cu precipitates characterization studies reveal that they are approximately 0.1 μm in diameter and mainly consist of Cu and S. XRD analysis showed covellite (CuS), chalcanthite (CuSO4·5H2O) and natrochalcite (NaCu2(SO4)2(OH)·H2O) as the mineral phases. ZPRs can thus be considered as an alternative resource for copper production.

  16. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    Science.gov (United States)

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of genotype on chemical composition, ruminal degradability and in vitro fermentation characteristics of maize residual plants.

    Science.gov (United States)

    Zeller, F M E; Edmunds, B L; Schwarz, F J

    2014-10-01

    The objective of this study was to determine the changes to residual plant feeding value of early- and late-maturing maize varieties. The influence of the cell wall carbohydrate composition, in terms of neutral and acid detergent fibre (NDF and ADF) content, NDF and dry matter (DM) degradability, and in vitro organic matter digestibility and gas production on the feeding value of a range of maize genotypes, was measured. The different genotypes were allotted into two maturity groups (MG I--early to mid-early: S210-S240; MG II--mid-late to late: S 250-S280) and harvested at four different harvest dates (depending on the DM content of the kernels). The maize varieties of MG I had lower NDF and ADF contents and higher ruminal DM degradability, in vitro digestibility and gas production and thus a higher feeding value than MG II at the same stage of physiological maturity. A strong negative relationship between NDF content and the ruminal DM degradability (r = -0.81) was observed. The data indicate that the early-maturing varieties permit a larger flexibility in harvesting due to a longer period of starch inclusion into the kernel whilst simultaneously maintaining a good supply of rumen-available fibre. Conclusively, the higher feeding value of the early-maturing varieties, based on lower NDF and high DM digestibility, permits more flexibility in the harvesting period over the later-maturing varieties.

  18. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species

    Science.gov (United States)

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.

    2016-01-01

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461

  19. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    Directory of Open Access Journals (Sweden)

    Caroline Duc

    Full Text Available The cultivation of genetically modified (GM plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina, springtails (Isotomidae, annelids (Enchytraeidae and Diptera (Cecidomyiidae larvae. Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM

  20. Elicitin-Induced Distal Systemic Resistance in Plants is Mediated Through the Protein-Protein Interactions Influenced by Selected Lysine Residues.

    Science.gov (United States)

    Uhlíková, Hana; Obořil, Michal; Klempová, Jitka; Šedo, Ondrej; Zdráhal, Zbyněk; Kašparovský, Tomáš; Skládal, Petr; Lochman, Jan

    2016-01-01

    Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium sp. classified as oomycete PAMPs. Although α- and β-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, β-elicitins (possessing 6-7 lysine residues) are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the α-isoforms (with only 1-3 lysine residues). To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of β-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein's charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins' movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  1. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  2. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: Fate of elements and dioxins.

    Science.gov (United States)

    Bergfeldt, Brita; Jay, Klaus; Seifert, Helmuth; Vehlow, Jürgen; Christensen, Thomas H; Baun, Dorthe L; Mogensen, Erhardt P B

    2004-02-01

    Air pollution control (APC) residues from municipal solid waste incinerator plants that are treated by means of the Ferrox process can be more safely disposed of due to reduction of soluble salts and stabilization of heavy metals in an iron oxide matrix. Further stabilization can be obtained by thermal treatment inside a combustion chamber of a municipal solid waste incinerator. The influence of the Ferrox products on the combustion process, the quality of the residues, and the partitioning of heavy metals between the various solids and the gas have been investigated in the Karlsruhe TAM-ARA pilot plant for waste incineration. During the experiments only few parameters were influenced. An increase in the SO2 concentration in the raw gas and slightly lower temperatures in the fuel bed could be observed compared with reference tests. Higher contents of Fe and volatile heavy metals such as Zn, Cd, Pb and partly Hg in the Ferrox products lead to increased concentration of these elements in the solid residues of the co-feeding tests. Neither the burnout nor the PCDD/F formation was altered by the addition of the Ferrox products. Co-feeding of treated APC residues seems to be a feasible approach for obtaining a single solid residue from waste incineration.

  3. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    Science.gov (United States)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical

  4. Building flexibility into the design of a pilot plant for the immobilisation of Pu containing residues and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Scales, C R; Maddrell, E R [NNL, Havelock Rd, Workington, CA14 3YQ (United Kingdom); Hobbs, J; Stephen, R [Sellafield Ltd, Sellafield, CA20 1 PG (United Kingdom); Moricca, S; Stewart, M W A [ANSTO, New Illawara Road, Lucas Heights 2234 (Australia)

    2013-07-01

    NNL and ANSTO on behalf of Sellafield Ltd have developed a process for the immobilisation of a range of Pu containing wastes and residues. Following the inactive demonstration of the technology the project is now focusing on the design of an active pilot plant capable of validating the technology and ultimately immobilising a waste inventory containing around 100 kg plutonium. The diverse wastes from which it is uneconomic to recover Pu, require a flexible process with a wide product envelope capable of producing a wasteform suitable for disposal in a UK repository. Ceramics, glass ceramics and metal encapsulated waste-forms can be delivered by the process line which incorporates size reduction and heat treatment techniques with the aim of feeding a hot isostatic pressing process designed to deliver the highly durable waste-forms. Following a demonstration of feasibility, flowsheet development is progressing to support the design which has the aim of a fully flexible facility based in NNL's Central Laboratory on the Sellafield site. Optimisation of the size reduction, mixing and blending operations is being carried out using UO{sub 2} as a surrogate for PuO{sub 2}. This work is supporting the potential of using an enhanced glass ceramic formulation in place of the full ceramic with the aim of simplifying glove box operations. Heat treatment and subsequent HIPing strategies are being explored in order to eliminate any carbon from the feeds without increasing the valence state of the uranium present in some of the inventory which can result in an unwanted increase in wasteform volumes. The HIP and ancillary systems are being specifically designed to meet the requirements of the Sellafield site and within the constraints of the NNL Central Laboratory. The HIP is being configured to produce consolidated product cans consistent with the requirements of ongoing storage and disposal. With the aim of one cycle per day, the facility will deliver its mission of

  5. Study on Dynamic Status of Litter Decomposition and Nutrients of Typical Desert Plants%典型荒漠植物凋落物分解及养分动态研究

    Institute of Scientific and Technical Information of China (English)

    赵红梅; 黄刚; 马健; 李彦; 范连连; 周丽

    2012-01-01

    As one of the most important ecosystem processes, litter decomposition is closely related to plant nutri- ents, ecosystem productivity and carbon and nutrient cycling, particularly to soil organic carbon pool-size and its stabilization. During last decades, numerous studies on litter decomposition in moist environment was conducted However, there was few information about litter decomposition in arid area. Litter decomposition in arid area is dif- ferent from that in moist environment owing to severe natural climate, such as sporadic rainfall, intense solar radia- tion, long-term drought and serious water loss and soil erosion. In recent studies, it was found that there is a dis- crepancy between simulated decomposition rates and measured ones in arid area. It is considered that ephemeral plants are important for net primary productivity in some deserts, and particularly for soil carbon input. The aims of this study are to investigate the dynamic status of litter decomposition of three typical desert species. Litter bag method was used to investigate the decomposition rate and nutrient release of roots, stems and leaves of Eremurus inderiensis, Erodium oxyrrhynchum and Seriphidium santolinum. Mass loss curves of leaves, stems and roots of these species were well described by an exponential decay model. Mass loss rates of leaves and roots of E. inderien- sis, leaves, stems and roots of E. oxyrrhynchum, stems and roots of S. santolinum were 41.96% , 81.94% , 42.18% , 29.32%, 47.02% , 20.66% and 20.71% respectively. During the 364-day decomposition in field, the decomposition rates were different from different species litters, and they were in an order of roots 〉 leaves of E. inderiensis, roots 〉 leaves 〉 stems of E. oxyrrhynchum and roots 〉 stems of S. santolinum. N and P release was observed throughout the decomposition process, N and P contents in litters were negatively correlated with mass loss. In addition, decomposition rate was significantly different

  6. Decomposição e liberação de nutrientes de coquetéis vegetais para utilização no Semiárido brasileiro The decomposition and release of nutrients by plant mixtures in the Brazilian semi-arid regions

    Directory of Open Access Journals (Sweden)

    Vanderlise Giongo

    2011-09-01

    Full Text Available A decomposição e liberação de nutrientes de resíduos vegetais podem assumir importante papel no manejo da fertilidade dos solos da região semiárida. Portanto, o presente estudo teve por objetivo avaliar a taxa de decomposição da matéria seca (MS e liberação de carbono (C e nutrientes de coquetéis vegetais no Semiárido brasileiro. O experimento foi conduzido em casa de vegetação, no período de novembro de 2007 a junho de 2008, com coquetéis vegetais compostos por espécies de leguminosas (L (calopogônio, Crotalaria juncea, Crotalaria spectabilis, feijão de porco, guandu, lab-lab e não leguminosas (NL (gergelim, girassol, mamona, milheto e sorgo, combinados nos seguintes tratamentos: T1 - 100% NL; T2 - 100% L; T3 - 75% L e 25% NL; T 4 - 50% L e 50% NL; T5 - 25% L e 75% NL. As taxas de decomposição da MS e liberação dos nutrientes foram monitoradas por meio de coleta dos resíduos, realizadas aos 8; 15; 30; 60; 90; 120; 150; 180 e 210 dias após o início do experimento. Utilizou-se o delineamento experimental em blocos casualizados com três repetições. Os coquetéis apresentaram taxas de decomposição de MS e liberação de nutrientes semelhantes, exceto para Ca, Cu e Mn, em que os coquetéis compostos com predominância de espécies NL apresentaram liberação mais rápida. A partir da média dos valores de k para todos os coquetéis estabeleceu-se a seguinte ordem de liberação de macronutrientes: K > N > Ca > Mg > P e de micronutrientes: Fe > Mn > Cu > Zn > B.The decomposition and release of nutrients from plant residues can play an important role in the maintenance of soil fertility in semi-arid regions. Thus this study aimed to evaluate the rate of decomposition of dry matter (DM and the release of carbon (C and nutrients from plant mixtures used as green manure in the Brazilian Semi-arid regions. The experiment was carried out in a greenhouse, from November 2007 to July 2008, using plant mixtures made up of

  7. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    Science.gov (United States)

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  8. Study of the dynamics of Zn, Fe, and Cu in the soil-plant system during leaf litter decomposition using isotopic compositions

    Science.gov (United States)

    Pichat, S.; Fekiacova, Z.

    2013-12-01

    Litter decomposition is a key process in the cycle of the elements in the soil-plant system. We have investigated the dynamics of three essential micronutrients (Zn, Fe, and Cu) in the vegetal cover, litter, organic horizons, and upper soil horizon (0-2 and 5-10 cm) using both element concentrations and isotopic compositions. The study was conducted on the O3HP (Oak Observatory at the Haute-Provence Observatory) experimental field site in southern France. O3HP is located far from pollution sources. It has been a fallow land for 70 years with the tree cover represented mainly by oak trees (Quercus pubescens). The soil is a thin layer of Calcisol developed under Mediterranean climate. The area has been subdivided in four zones as a function of plant cover. The results for two of these zones, dominated by respectively Poaceae and Genista hispanica, are reported here. We found that the concentrations of the three elements increase from the Ol to the Of horizon. Copper concentration in the Of horizon is close to that of the soil, whereas it is lower for Fe and Zn. For isotopic compositions, the behavior of the three elements is, however, different, which suggests different processes of redistribution for these elements. An enrichment in light Fe isotopes was observed from the Ol to the Of horizon, the latter having an isotopic composition similar to that of the soil. Zinc isotopic compositions are also similar in the Of horizon and the soil but they are isotopically heavier than in the Ol horizon. For Cu, the O horizons are isotopically heavier than the soil, with Of being the heaviest horizon. In addition, for Cu and Zn, the profiles in the O-horizons in the Poaceae-dominated and Genista hispanica-dominated areas are similar but their values are offset, suggesting an influence of the vegetal cover. The increase in concentration for Cu, Zn and Fe with age/depth in the O horizons is in agreement with what is commonly observed in litter-bag experiments, e.g. 1,2. Two

  9. Effect of temperature on the decomposition of labile and recalcitrant organic matter in Chernozem

    Science.gov (United States)

    Larioinova, Alla; Kvitkina, Anna; Bykhovets, Sergey; Stulin, Alexandr; Blagodatskaya, Evgenia

    2017-04-01

    We tested the hypothesis that the recalcitrant pool of soil organic matter (SOM) is more temperature sensitive to decomposition than the labile one. The hypothesis was verified for Chernozem soil sampled from the control (unfertilized) and fertilized with NPK experimental plots of the 50 year field experiment with maize monoculture in Voronezh Region, Russia (51o41'N, 39o15'E). The labile and recalcitrant SOM pools at 2, 12, and 22°C in a long-term (430 d) incubation experiment were traced using the method of 13C natural abundance by C3-C4 transition. Based on decomposition rate constants, the SOM pools followed the order plant residues fertilized with NPK, the increased decomposition of C3 SOM was observed compared to the unfertilized control. The input of new C4 carbon decreased the rate of CO2 emission during the decomposition of the old C3 SOM, i.e. induced negative priming effect (PE). To the contrast, the fertilization increased the positive PE for the C3 SOM. Along with the SOM decomposition rate constants, the magnitude of PE was also temperature dependent. The maximal negative PE in control treatment was found at the lowest temperature of 2oC, while the highest positive PE in NPK fertilized soil was observed at the highest temperature of 22oC.

  10. Modelling decomposition of standard plant material along an altitudinal gradient: A re-analysis of data of Coûteaux et al.

    NARCIS (Netherlands)

    Braakhekke, W.G.; Bruijn, de A.M.G.

    2007-01-01

    We explored an alternative method to analyse data of Cou¿teaux et al. [2002, Soil Biology and Biochemistry 34, 69-78] on the decomposition of a standard organic material in six soils along an altitudinal gradient in the Venezuelan Andes (65-3968 m a.s.l.). Cou¿teaux et al., fitted separate

  11. Modelling decomposition of standard plant material along an altitudinal gradient: A re-analysis of data of Coûteaux et al.

    NARCIS (Netherlands)

    Braakhekke, W.G.; Bruijn, de A.M.G.

    2007-01-01

    We explored an alternative method to analyse data of Cou¿teaux et al. [2002, Soil Biology and Biochemistry 34, 69-78] on the decomposition of a standard organic material in six soils along an altitudinal gradient in the Venezuelan Andes (65-3968 m a.s.l.). Cou¿teaux et al., fitted separate two-compo

  12. Integration of sunflower (Helianthus annuus) residues with a pre-plant herbicide enhances weed suppression in broad bean (Vicia faba)

    OpenAIRE

    Alsaadawi,I.S; KHALIQ,A.; A.A Al-Temimi; Matloob,A

    2011-01-01

    Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba) fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin) at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was ...

  13. 芝麻、花生和田菁秸秆还田的化感效应研究%Allelopathic Effect of Returning Plant Residue to Field from Sesame, Peanut and Sesbania

    Institute of Scientific and Technical Information of China (English)

    秦俊豪; 贺鸿志; 黎华寿; 顾忱; 彭阳洋; 韩萌

    2012-01-01

    采用盆栽模拟实验研究了具化感作用的芝麻(Sesamum indicum)、花生(Arachis hypogaea)和田菁(Sesbania cannabina)秸秆全株还田对萝卜(Raphanus sativus)、黑麦草(Lolium multiforum)和黄瓜(Cucumis sativus)生长及土壤养分状况的影响,旨在评价秸秆还田释放养分与化感作用对后茬作物幼苗生长效应的综合影响.结果表明:秸秆还田能改善土壤养分状况,对后茬作物幼苗生长具有较好的促进作用.3种作物秸秆还田促进幼苗生长的大小顺序为花生秸秆>田菁秸秆>芝麻秸秆>对照,其中芝麻秸秆对土壤速效磷、速效钾含量提高最大,而花生和田蓍秸秆对土壤有机质、全氮的贡献值远远高于另两种处理.3种秸秆还田均对后茬作物幼苗生长和土壤养分具有促进作用,其释放的养分因子占主导作用,而化感作用并未明显表现出阻碍后茬作物幼苗生长.可能原因在于秸秆还田后导致较高pH和土壤养分利于植物生长,并影响了秸秆化感物质的活性和化感作用的发挥.%A pot experiment in greenhouse was conducted to study the effects of returning plant residue from sesame(Sesamum indicum), peanut(Arachis hypogaea) and sesbania(Sesbania cannabina) on subsequent seedlings growth and soil nutrient. After soil was amended with different crop straws, the biomass of radish(R.sativus ) ,ryegrass(L.multiforum) and cucumber(C.sativus ) increased significantly,and soil nutrients also increased significantly. The results showed that the order of the biomass of subsequent seedlings was peanut > sesbania > sesame > CK. The improvement of soil available P and K was better by returning the plant residue of sesame than the other two crops. The improvement of soil total nitrogen was better by returning the plant residue from peanut and sesbania than by sesame. Comparing with negative effect of allelopathic effect caused by the phylo-toxic substances produced in the initial phase of the

  14. Quantification of heavy metals from residual waste and ashes from the treatment plant of residual water Reciclagua and,effects for the health of those workers which manipulate those residuals; Cuantificacion de metales pesados de lodo residual y cenizas de la planta tratadora de aguas residuales Reciclagua y efectos a la salud de los trabajadores que manipulan los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero D, J.J

    2004-07-01

    In this work, the technique of leaching using thermostatted column in series is applied, the X-ray diffraction for the identification of the atomic and molecular structure of the toxic metals that are present in the residual muds of the water treatment plant located in the municipality of Lerma Estado de Mexico, named RECICLAGUA, likewise the technique is used of emission spectrometry for plasma and X-ray fluorescence for the qualitative analysis. Its were take samples of residual mud and of incinerated mud of the treatment plant of residual waters of the industrial corridor Toluca -Lerma RECICLAGUA, located in Lerma Estado de Mexico. For this study there were mixed 100 g of residual mud with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one pH at 2, 5, 7 and 10, it was added bisulfite, of 0.3-1.5 g of dodecyl sulfate sodium and 3.939 of DTPA (triple V) (Diethylene triamine pentaacetate). To this mud and ashes were extracted the toxic and valuable metals by means of the leaching technique using thermostatted columns placed in series that were designed by the Dr. Jaime Vite Torres; it is necessary to make mention that so much the process as the equipment with those that work it was patented by the same one. With the extraction of these metals benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much the use of those residuals, once the metals have been eliminated, as of those liquors where the metals were extracted. It was carried out a quantitative analysis using emission spectrometry by plasma in solids by this way to be able to know the content of the present metals in the sample before and later of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the X-ray diffraction analysis that provides an elementary content of the samples, identifying elements that are present in

  15. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Science.gov (United States)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  16. ITERATIVE REFINEMENT OF PARAMETER ESTIMATES AND RESIDUALS FROM A REGRESSION MODEL FITTED USING QR DECOMPOSITION METHODS%用QR分解拟合回归方程参数估计和剩余的迭代加细

    Institute of Scientific and Technical Information of China (English)

    吕纯濂

    2000-01-01

    Algorithms for iteratively refining the parameter estimates andresiduals from the fitting of a regression model using QR decompositionmethods are described. It is shown that if square root free algorithmsfor performing the QR decomposition are used the related iterativerefinement algorithms can also be square root free. Testing of thealgorithms is carried out and comments made about accuracies ofparameter estimates

  17. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    Science.gov (United States)

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  18. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    Science.gov (United States)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  19. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  20. Authorization and Toxicity of Veterinary Drugs and Plant Protection Products: Residues of the Active Ingredients in Food and Feed and Toxicity Problems Related to Adjuvants

    Directory of Open Access Journals (Sweden)

    Szandra Klátyik

    2017-09-01

    Full Text Available Chemical substances applied in animal husbandry or veterinary medicine and in crop protection represent substantial environmental loads, and their residues occur in food and feed products. Product approval is governed differently in these two sectors in the European Union (EU, and the occurrence of veterinary drug (VD and pesticide residues indicated by contamination notification cases in the Rapid Alert System for Food and Feed of the EU also show characteristic differences. While the initial high numbers of VD residues reported in 2002 were successfully suppressed to less than 100 cases annually by 2006 and on, the number of notification cases for pesticide residues showed a gradual increase from a low (approximately 50 cases annually initial level until 2005 to more than 250 cases annually after 2009, with a halt occurring only in 2016. Main notifiers of VD residues include Germany, Belgium, the UK, and Italy (63, 59, 42, and 31 notifications announced, respectively, and main consigning countries of non-compliances are Vietnam, India, China, and Brazil (88, 50, 34, and 23 notifications, respectively. Thus, countries of South and Southeast Asia are considered a vulnerable point with regard to VD residues entering the EU market. Unintended side effects of VDs and plant protection products may be caused not only by the active ingredients but also by various additives in these preparations. Adjuvants (e.g., surfactants and other co-formulants used in therapeutic agents and feed additives, as well as in pesticide formulations have long been considered as inactive ingredients in the aspects of the required main biological effect of the pharmaceutical or pesticide, and in turn, legal regulations of the approval and marketing of these additives specified significantly less stringent risk assessment requirements, than those specified for the active ingredients. However, numerous studies have shown additive, synergistic, or antagonistic side effects

  1. Authorization and Toxicity of Veterinary Drugs and Plant Protection Products: Residues of the Active Ingredients in Food and Feed and Toxicity Problems Related to Adjuvants

    Science.gov (United States)

    Klátyik, Szandra; Bohus, Péter; Darvas, Béla; Székács, András

    2017-01-01

    Chemical substances applied in animal husbandry or veterinary medicine and in crop protection represent substantial environmental loads, and their residues occur in food and feed products. Product approval is governed differently in these two sectors in the European Union (EU), and the occurrence of veterinary drug (VD) and pesticide residues indicated by contamination notification cases in the Rapid Alert System for Food and Feed of the EU also show characteristic differences. While the initial high numbers of VD residues reported in 2002 were successfully suppressed to less than 100 cases annually by 2006 and on, the number of notification cases for pesticide residues showed a gradual increase from a low (approximately 50 cases annually) initial level until 2005 to more than 250 cases annually after 2009, with a halt occurring only in 2016. Main notifiers of VD residues include Germany, Belgium, the UK, and Italy (63, 59, 42, and 31 notifications announced, respectively), and main consigning countries of non-compliances are Vietnam, India, China, and Brazil (88, 50, 34, and 23 notifications, respectively). Thus, countries of South and Southeast Asia are considered a vulnerable point with regard to VD residues entering the EU market. Unintended side effects of VDs and plant protection products may be caused not only by the active ingredients but also by various additives in these preparations. Adjuvants (e.g., surfactants) and other co-formulants used in therapeutic agents and feed additives, as well as in pesticide formulations have long been considered as inactive ingredients in the aspects of the required main biological effect of the pharmaceutical or pesticide, and in turn, legal regulations of the approval and marketing of these additives specified significantly less stringent risk assessment requirements, than those specified for the active ingredients. However, numerous studies have shown additive, synergistic, or antagonistic side effects between the

  2. Residues of chlormequat (CCC in fruits and other parts of tomato plants after treating the seedlings with 14C-CCC

    Directory of Open Access Journals (Sweden)

    Joanna Ostrzycka

    2013-12-01

    Full Text Available CCC remaining in tomato plants after treating the seedlings with a solution of 125 mg/l CCC to prevent their excessive growth has been studied in experiment conducted for two years. When seedling had been treated twice with CCC, the tomatoes of the first crop from these plants contained 0.09 mg CCC/kg fresh fruit. The amount of residual CCC decreased with each further crop. The last crop contained only 0.02 mg CCC/kg fresh fruit. The amount of CCC in the remains of leaves and stems at the end of the vegetation period was similar to that in the fruit of the first crop, however, the amount of CCC in the remains of the roots was several times larger than in the fruit. CCC which had been added directly to compost soil was quickly degraded.

  3. Decomposição, liberação e volatilização de nitrogênio em resíduos culturais de mucuna-cinza (Mucuna cinerea Decomposition, release and volatilization of nitrogen from velvet bean (Mucuna cinerea residues

    Directory of Open Access Journals (Sweden)

    Rodolfo Gustavo Teixeira Ribas

    2010-08-01

    Full Text Available As leguminosas possibilitam a incorporação biológica de nitrogênio aos sistemas de produção. Contudo, existe pouco conhecimento sobre a decomposição, liberação e volatilização de nitrogênioassociados à diferentes doses de seus resíduos. Objetivouse, neste trabalho avaliar a decomposição, a liberação e a volatilização de nitrogênio de diferentes doses de mucuna-cinza (Mucuna cinerea Piper & Tracy. O experimento constou de tratamentos com 12 (C12 ou 25 (C25 Mg ha-1 de composto orgânico: C12AV0 (sem leguminosa; C12AV4 (4 Mg ha-1 de resíduo; C12AV8 (8 Mg ha-1; C12AV12 (12 Mg ha-1; C25; AV12 (12 Mg ha-1 e testemunha absoluta. Adotou-se o delineamento de blocos casualizados e cinco repetições. Foram determinadas as taxas de decomposição do adubo verde e liberação de N, o teor de N-mineral no solo e a volatilização de N-NH3. A liberação de N (t½=28 dias foi mais rápida que a decomposição do resíduo (t½=38 dias. Essa liberação de N eleva rapidamente os teores de N-mineral do solo e resulta também em maior elevação da volatilização de N-NH3. O incremento das doses de 8 para 12 Mg ha-1 de mucuna resultou em aumento mais que proporcional da volatilização acumulada de N-NH3, atingindo 30 kg ha-1 após 30 dias.The use of leguminous species allows the biological incorporation of nitrogen into cropping systems. Nevertheless, there is little knowledge about the decomposition, release and volatilization of nitrogen associated with the decomposition of different quantities of residues. The objective of this study was to evaluate the decomposition of the biomass, the release and volatilization of nitrogen from different doses of velvet bean (Mucuna cinerea Piper & Tracy residues. The treatments were established either with 12 (C12 or 25 (C25 Mg ha-1 of organic compost: C12AV0 (without residue; C12AV4 (4 Mg ha-1 of residue; C12AV8 (8 Mg ha-1; C12AV12 (12 Mg ha-1; C25; AV12 (12 Mg ha-1 and a control. The randomized

  4. Modelling decomposition, intermolecular protection and physical aggregation based on organic matter quality assessed by 13C-CPMAS-NMR

    Science.gov (United States)

    Incerti, Guido; Bonanomi, Giuliano; Sarker, Tushar Chandra; Giannino, Francesco; Cartenì, Fabrizio; Peressotti, Alessandro; Spaccini, Riccardo; Piccolo, Alessandro; Mazzoleni, Stefano

    2017-04-01

    Modelling organic matter decomposition is fundamental to predict biogeochemical cycling in terrestrial ecosystems. Current models use C/N or Lignin/N ratios to describe susceptibility to decomposition, or implement separate C pools decaying with different rates, disregarding biomolecular transformations and interactions and their effect on decomposition dynamics. We present a new process-based model of decomposition that includes a description of biomolecular dynamics obtained by 13C-CPMAS NMR spectroscopy. Baseline decay rates for relevant molecular classes and intermolecular protection were calibrated by best fitting of experimental data from leaves of 20 plant species decomposing for 180 days in controlled optimal conditions. The model was validated against field data from leaves of 32 plant species decomposing for 1-year at four sites in Mediterranean ecosystems. Our innovative approach accurately predicted decomposition of a wide range of litters across different climates. Simulations correctly reproduced mass loss data and variations of selected molecular classes both in controlled conditions and in the field, across different plant molecular compositions and environmental conditions. Prediction accuracy emerged from the species-specific partitioning of molecular types and from the representation of intermolecular interactions. The ongoing model implementation and calibration are oriented at representing organic matter dynamics in soil, including processes of interaction between mineral and organic soil fractions as a function of soil texture, physical aggregation of soil organic particles, and physical protection of soil organic matter as a function of aggregate size and abundance. Prospectively, our model shall satisfactorily reproduce C sequestration as resulting from experimental data of soil amended with a range of organic materials with different biomolecular quality, ranging from biochar to crop residues. Further application is also planned based on

  5. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...... in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid....... In a properly specified VAR, it makes no difference whether return news and dividend news are both computed directly or one of them is backed out as a residual....

  6. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method.

    Science.gov (United States)

    da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen

    2017-04-01

    Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control.

  7. Structure-Function Relationship of a Plant NCS1 Member – Homology Modeling and Mutagenesis Identified Residues Critical for Substrate Specificity of PLUTO, a Nucleobase Transporter from Arabidopsis

    Science.gov (United States)

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M. Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  8. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    Science.gov (United States)

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.

  9. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sandra Witz

    Full Text Available Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.

  10. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    KAUST Repository

    Witz, Sandra

    2014-03-12

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz et al.

  11. Decomposição e liberação de nitrogênio, fósforo e potássio de resíduos da cultura do feijoeiro Decomposition and release of nitrogen, phosphorus and potassium from residues of common bean crop

    Directory of Open Access Journals (Sweden)

    Eduardo Chagas

    2007-08-01

    Full Text Available Este trabalho teve como objetivo mensurar a velocidade de decomposição e de liberação de nutrientes in situ de resíduos da cultura do feijoeiro (Phaseolus vulgaris L.. Em condições de campo, foram coletadas as folhas senescentes durante o ciclo da cultura, bem como os caules e a palhada de vagens após trilhagem dos grãos, de cultivares de feijoeiro. Esses resíduos continham 2,3 Mg ha-1 de massa, 31 kg ha-1 de N e 2,4 kg ha-1 de P, que correspondiam a 63, 41 e 28 % do total de massa, N e P, respectivamente, acumulados durante o ciclo da cultura. Foram realizados dois ensaios, nos períodos de inverno-primavera e primavera-verão, quando os caules, as vagens e as folhas senescentes foram colocados separadamente em litterbags, dispostos sobre o solo, e coletados entre 2 e 120 dias. As quantidades de matéria seca e nutrientes remanescentes em cada tipo de resíduo foram ajustadas a um modelo exponencial simples. O tempo de meia-vida dos resíduos foi de, no primeiro e segundo ensaios, respectivamente, 133 e 179 dias para caules, 70 e 80 dias para folhas e 64 dias para vagens. A relativamente lenta decomposição dos resíduos pode ser associada à sua alta relação C:N - acima de 60 para caule e palhada de vagens. A liberação de N e P pelos resíduos foi similar à dinâmica de decomposição, enquanto a liberação de K foi mais rápida. Os resultados indicam que as folhas senescentes e os resíduos produzidos após trilhagem dos grãos podem restituir parte da demanda de nutrientes do feijoeiro, assumindo relevância para sistemas de agricultura sustentável.The objective of this study was to measure the speed of decomposition and nutrient release in situ from residues of common bean (Phaseolus vulgaris L. crop. In field conditions, leaves of common bean cultivars senesced during the growth cycle and stems and podwalls after pod threshing were collected. These residues contained 2.3 Mg ha-1 of mass, 31 kg ha-1 of N and 2.4 kg ha-1 of

  12. Molecular markers indicate different dynamics of leaves and roots during litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Palviainen, Marjo; Kalbitz, Karsten

    2010-05-01

    Up to now there is only a poor understanding of the sources contributing to organic carbon in forest soils, especially the contribution of leaves and roots. Studies of the last 2 decades have shown that methods like pyrolysis and CuO oxidation are suitable tools to trace back the main contributors of organic matter in water, sediments and soils. Lignin derived monomers, extractable lipids, cutin and suberin derived compounds have been used frequently for identification of plant material. However, for the selection of suitable biomarker the decomposition patterns and stability of these compounds are of high importance but they are only poorly understood. In this study we focused on following questions: (I) Which compounds are characteristic to identify certain plant parts and plant species? (II) How stable are these compounds during the first 3 years of litter decomposition? We studied the chemical composition of samples from a 3-year litterbag decomposition experiment with roots and leaves of spruce, pine and birch which was done in Finland. Additionally to mass loss, carbon and nitrogen contents, free lipids were extracted; by alkaline hydrolysis non extractable lipids were gained. The extracts were analyzed afterwards by GC-MS, the insoluble residues were analyzed by curie-point Pyrolysis GC-MS. In addition to the identification and quantification of a variety of different compounds and compound ratios we used statistical classification methods to get deeper insights into the patterns of leaf and root-derived biomarkers during litter decomposition. The mass loss was largely different between the litter species and we always observed larger mass loss for leaf-derived litter in comparison to root derived litter. This trend was also observed by molecular analysis. The increase of the ratio of vanillic acid to vanillin was correlated to the mass loss of the samples over time. This shows that the degree of decomposition of plant material was linked with the degree of

  13. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography - MS/MS in various food matrices.

    Science.gov (United States)

    Danezis, G P; Anagnostopoulos, C J; Liapis, K; Koupparis, M A

    2016-10-26

    One of the recent trends in Analytical Chemistry is the development of economic, quick and easy hyphenated methods to be used in a field that includes analytes of different classes and physicochemical properties. In this work a multi-residue method was developed for the simultaneous determination of 28 xenobiotics (polar and hydrophilic) using hydrophilic interaction liquid chromatography technique (HILIC) coupled with triple quadrupole mass spectrometry (LC-MS/MS) technology. The scope of the method includes plant growth regulators (chlormequat, daminozide, diquat, maleic hydrazide, mepiquat, paraquat), pesticides (cyromazine, the metabolite of the fungicide propineb PTU (propylenethiourea), amitrole), various multiclass antibiotics (tetracyclines, sulfonamides quinolones, kasugamycin and mycotoxins (aflatoxin B1, B2, fumonisin B1 and ochratoxin A). Isolation of the analytes from the matrix was achieved with a fast and effective technique. The validation of the multi-residue method was performed at the levels: 10 μg/kg and 100 μg/kg in the following representative substrates: fruits-vegetables (apples, apricots, lettuce and onions), cereals and pulses (flour and chickpeas), animal products (milk and meat) and cereal based baby foods. The method was validated taking into consideration EU guidelines and showed acceptable linearity (r ≥ 0.99), accuracy with recoveries between 70 and 120% and precision with RSD ≤ 20% for the majority of the analytes studied. For the analytes that presented accuracy and precision values outside the acceptable limits the method still is able to serve as a semi-quantitative method. The matrix effect, the limits of detection and quantification were also estimated and compared with the current EU MRLs (Maximum Residue Levels) and FAO/WHO MLs (Maximum Levels) or CXLs (Codex Maximum Residue Limits). The combined and expanded uncertainty of the method for each analyte per substrate, was also estimated.

  14. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  15. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  16. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2011-02-01

    Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a) ) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Le(a) epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.

  17. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  18. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    Science.gov (United States)

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  19. A DECOMPOSITION METHOD OF STRUCTURAL DECOMPOSITION ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    LI Jinghua

    2005-01-01

    Over the past two decades,structural decomposition analysis(SDA)has developed into a major analytical tool in the field of input-output(IO)techniques,but the method was found to suffer from one or more of the following problems.The decomposition forms,which are used to measure the contribution of a specific determinant,are not unique due to the existence of a multitude of equivalent forms,irrational due to the weights of different determinants not matching,inexact due to the existence of large interaction terms.In this paper,a decomposition method is derived to overcome these deficiencies,and we prove that the result of this approach is equal to the Shapley value in cooperative games,and so some properties of the method are obtained.Beyond that,the two approaches that have been used predominantly in the literature have been proved to be the approximate solutions of the method.

  20. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    Science.gov (United States)

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  1. 冬季水生植物分解过程及其对水质的影响研究%Decomposition of Aquatic Plants During Winter and Its Influence on Water Quality

    Institute of Scientific and Technical Information of China (English)

    曹勋; 韩睿明; 章婷曦; 王国祥; 魏宏农; 马月; 冀峰; 马杰

    2015-01-01

    In winter large proportion of aquatic plants die, decompose and then release nitrogen and phosphorous nutrients into water, which consequently impacts water quality. An indoor simulation experiment was carried out to study the decomposition process of three aquatic plants including Phragmites australis, Potamogeton malaianus and Limnanthemun nymphoides, typical in Lake Taihu, in winter and the sub—sequent influence on water quality. Phragmites australis, P. malaianus and L. nymphoides had a fast decomposition rate during the first 4 days but decomposed much slowly from day 5 to day 48 in terms of biomass loss. The dry matter of these three plants respectively decreased by 15.9%, 12.9%and 38.8%in 4 days. Significant differences were observed in the remained dry matter of three plants(PP. australis>P. mala—ianus>L. nymphoides. Total N levels reached the maximum value at the second day and TP attained the highest value at the fourth day. The influence of decomposition of aquatic plants on water quality was transient as no significant difference was observed in water quality parame—ters at the end of the experiment.%通过室内模拟实验,研究太湖3种常见水生植物芦苇(Phragmites australis)、马来眼子菜(Potamogeton malaianus)和荇菜(Limnanthemun nymphoides)冬季分解过程以及对水质的影响。结果表明:芦苇、马来眼子菜和荇菜的快速分解期为前4 d,在这4 d内干物质分别减少了15.9%、12.9%和38.8%;第4~48 d为缓慢分解期,3种水生植物干物质剩余量差异显著(P<0.01)。分解速率k与植物残体内的C/N显著负相关(P<0.01,n=54),与C/P呈显著负相关(P<0.01,n=54)。实验前4 d,植物组水体pH、DO值迅速下降,之后缓慢上升,总体都表现为对照组>芦苇组>马来眼子菜组>荇菜组;实验初期,植物分解向水体中释放大量N、P营养物质,水体TN、TP分别在第2、4 d达到最大,但是其对水

  2. Exploring Patterns of Soil Organic Matter Decomposition with Students through the Global Decomposition Project (GDP) and the Interactive Model of Leaf Decomposition (IMOLD)

    Science.gov (United States)

    Steiner, S. M.; Wood, J. H.

    2015-12-01

    As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.

  3. Intraspecific diversity within Ganoderma lucidum in the production of laccase and Mn-oxidizing peroxidases during plant residues fermentation.

    Science.gov (United States)

    Simonić, Jasmina; Vukojević, Jelena; Stajić, Mirjana; Glamoclija, Jasmina

    2010-09-01

    Comparison of the potential for laccase and Mn-oxidizing peroxidases synthesis by ten strains of Ganoderma lucidum, originating from different worldwide areas, during solid-state fermentation of selected plant raw materials was the aim of this study. The great intraspecific variability in the production of analyzed enzymes as well as the dependence of the enzyme activity on plant raw materials were reported. The strain HAI 957 was the best laccase producer in the presence of corn stem, as a unique carbon source (129.46 U/L). The highest level of Mn-dependent peroxidase activity was noted after wheat straw fermentation by G. lucidum HAI 246 (78.64 U/L), while the maximal versatile peroxidase production (59.72 U/L) was observed in strain HAI 957 in the medium with oak sawdust.

  4. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  5. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    Goutsias, J.; Heijmans, H.J.A.M.

    1998-01-01

    [PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis and synthes

  6. Development of a method for the analysis of four plant growth regulators (PGRs) residues in soybean sprouts and mung bean sprouts by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Fengzu; Zhao, Pengyue; Shan, Weili; Gong, Yong; Jian, Qiu; Pan, Canping

    2012-09-01

    A method has been developed for the simultaneous determination of four plant growth regulators (PGRs) residues in soybean sprouts and mung bean sprouts. The sample preparation procedure was based on a QuEChERS method. The method showed excellent linearity (r(2) ≥ 0.9985) and precision (RSDs ≤ 13.0%). Average recoveries of four PGRs ranged between 74.9% and 106.3% at spiking levels 0.05, 0.5 and 1 mg kg(-1). The LODs and LOQs were in the ranges of 0.27-9.3 μg kg(-1) and 0.90-31 μg kg(-1), respectively. The procedure was applied to 18 bean sprout samples, and benzyladenine was found in some of the analyzed samples.

  7. Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control

    DEFF Research Database (Denmark)

    Morato, Josep; Knüppel, Thyge; Østergaard, Jacob

    2013-01-01

    oscillation damping. The feasibility of implementing this control needs to be assessed. This paper studies how the damping contribution of a WPP is affected by different operating conditions and its dependence to selected feedback signals. The WPP model used includes individual WTGs to study how internal......As wind power plants (WPPs) gradually replace the power production of the conventional generators, many aspects of the power system may be affected, in which the small signal stability is included. Additional control may be needed for wind turbine generators (WTGs) to participate in the power...... changes may affect this contribution. The study is based on the changes suffered by the residues of the electromechanical modes, which indicate the sensitivity of the modes to this particular feedback. The results show that a park level control for the entire WPP is possible, although it may not provide...

  8. Protein architecture and core residues in unwound α-helices provide insights to the transport function of plant AtCHX17.

    Science.gov (United States)

    Czerny, Daniel D; Padmanaban, Senthilkumar; Anishkin, Andriy; Venema, Kees; Riaz, Zoya; Sze, Heven

    2016-09-01

    Using Arabidopsis thaliana AtCHX17 as an example, we combine structural modeling and mutagenesis to provide insights on its protein architecture and transport function which is poorly characterized. This approach is based on the observation that protein structures are significantly more conserved in evolution than linear sequences, and mechanistic similarities among diverse transporters are emerging. Two homology models of AtCHX17 were obtained that show a protein fold similar to known structures of bacterial Na(+)/H(+) antiporters, EcNhaA and TtNapA. The distinct secondary and tertiary structure models highlighted residues at positions potentially important for CHX17 activity. Mutagenesis showed that asparagine-N200 and aspartate-D201 inside transmembrane5 (TM5), and lysine-K355 inside TM10 are critical for AtCHX17 activity. We reveal previously unrecognized threonine-T170 and lysine-K383 as key residues at unwound regions in the middle of TM4 and TM11 α-helices, respectively. Mutation of glutamate-E111 located near the membrane surface inhibited AtCHX17 activity, suggesting a role in pH sensing. The long carboxylic tail of unknown purpose has an alternating β-sheet and α-helix secondary structure that is conserved in prokaryote universal stress proteins. These results support the overall architecture of AtCHX17 and identify D201, N200 and novel residues T170 and K383 at the functional core which likely participates in ion recognition, coordination and/or translocation, similar to characterized cation/H(+) exchangers. The core of AtCHX17 models according to EcNhaA and TtNapA templates faces inward and outward, respectively, which may reflect two conformational states of the alternating access transport mode for proteins belonging to the plant CHX family.

  9. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    Science.gov (United States)

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix.

  10. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  11. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues.

    Science.gov (United States)

    O'Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H; Fry, Stephen C

    2015-08-01

    During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). 'Pectins' and 'hemicelluloses', operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, 'U', was characterized by (1)H/(13)C-nuclear magnetic resonance spectroscopy and also enzymically. 'U' was identified as 3-O-methyl-D-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in 'higher' charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of 'higher' charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3

  12. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail.

  13. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  14. Organic Matter Decomposition in Red Soil as Affected by Earthworms

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The earthworms Pheretima carnosa, Drawida gisti and Eisenia foetida were studied to compare their contributions to the decomposition of various organic materials surface-applied on red soil in a 165-day greenhouse experiment. The native species Pheretima carnosa and Drawida gisti were equally effective in accelerating the decomposition of maize residue, according to fresh body weight, while commercial species Eisenia foetida had no significant influence on dry mass loss of maize residue. Liming with CaCO3 or CaO showed little effect on maize residue breakdown involved by Pheretima carnosa, but it inhibited this process involved by Drawida gisti. The capability of Pheretima carnosa to the decomposition of five kinds of organic materials was thoroughly examined. The dry mass losses in worm treatments were in the order of soybean residue > maize residue > pig manure > semi-decayed maize > ryegrass. However, the relative contributions of the earthworm to dry mass loss were in the order of pig manure (89.8%) > semi-decayed maize residue (49.1%) > maize residue (29.4%) > soybean residue (20.9%) > ryegrass residue (16.5%). Pheretima carnosa consumed 20~120 mg dry weight of organic material per gram fresh weight of biomass per day.

  15. CO2 emission and structural characteristics of two calcareous soils amended with municipal solid waste and plant residue

    Science.gov (United States)

    Yazdanpanah, N.

    2016-01-01

    This investigation examines the effect of different amendments on selected soil physical and biological properties over a 24-month period in two cropland fields. Urban municipal solid waste (MSW) compost and alfalfa residue (AR) were used as different organic amendments at the rates of 0 (control), 10 and 30 Mg ha-1 to a clay loam soil and a loamy sand soil in a semiarid region. Results showed that the soil improvement was controlled by the application rate and decomposability of amendments and soil type. The addition of organic amendments to the soils improved aggregate stability and consequently enhanced total porosity, especially macropore fraction. The increased soil organic carbon (SOC) and total porosity values as compared to the control treatment were greater in the loamy sand soil than in the clay loam soil. Moreover, compared to the microbial respiration of control plots, the application of MSW resulted in higher values of microbial respiration in the clay loam soil than in the loamy sand soil, whereas the reverse was found for AR. Linear and power functions were provided for the relationships between microbial respiration and SOC in the loamy sand and clay loam soils, respectively. Also, CO2 emission was stimulated significantly as power functions of the total porosity and the ratio of macroporosity to microporosity. However, the soil microbial respiration and carbon storage improved aggregate stability and pore size distribution, and as a response, soil porosity, especially the macropore fraction, controlled CO2 flux.

  16. Reequipment of a GST-power plant operating with natural gas for the adaptation to coal gas - gasification of residual substances. Umruestung eines GuD-Erdgaskraftwerkes auf Kohlegas - Vergasung von Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Jelich, W. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Klauke, F. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Koenig, D. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany))

    1994-04-01

    The paper deals with the possibility of readjusting a planned GST gas-fired power station to brown coal gasification plant to be installed at a later date. It comments on measures to be taken into consideration for the natural gas power plant project with regard to a subsequent reequipment of the plant. In addition to this, the article describes the gasification technology as well as the components needed for gasification quoting data on the efficiency, availability and experience gained from the operation of existing plants. In conclusion, the paper gives a brief description of the disposal of residues by gasification. (orig.)

  17. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species.

    Science.gov (United States)

    Zukswert, Jenna M; Prescott, Cindy E

    2017-09-08

    Litter 'quality' or decomposability has historically been estimated through measuring chemical attributes, such as concentrations of nitrogen or 'lignin'. More recently, foliar functional traits, which may incorporate indications of the physical structures of tissues, have been found to correlate with litter mass loss rates. However, these traits may not be adequate to predict early rates of mass loss, in which two factors are crucial: the amount of material quickly lost through leaching, and the ease of access of decomposer organisms to the more labile tissues in the interior of the litter. We investigated relationships among physical and chemical traits in foliage and litter of 12 species native to British Columbia and then observed how these traits related to mass loss during the first 3 months (Phase I) and between 3 and 12 months (Phase II). Novel traits measured in this study include cuticle thickness, litter leaching loss, and litter water uptake. Foliar and litter traits both co-varied along spectra, but several chemical traits, such as nitrogen concentration, changed from foliage to litter, i.e., during senescence. Phase I mass loss was best predicted by leaching loss and traits relating to leaching, such as cuticle thickness and specific leaf area. Phase II mass loss was predicted by traits that may relate to decomposer access and activity, such as leaf dry matter content and foliar nitrogen. Physical traits predicted mass loss as well or better than chemical traits, suggesting that physical characteristics of litter are important in determining early rates of decomposition.

  18. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  19. 天津化工厂废渣综合利用工程%Waste residue utilization projects of Tianjin Chemical Plant

    Institute of Scientific and Technical Information of China (English)

    张炳慧

    2001-01-01

    120 kt/a cement production project and 30 thiu,nd m3/a small hollow load-carrying brick project from waste residue of Tianjin Chemical Plant of Bohai Chemical Industry Group Inc. are introduced, including process, key equipment and process characteristics. Although currently the cement production process with waste residue of calcium carbide as main material and liquid waste residue as acessory material has the advantage of energy conservation,the capacity should be expanded to largescale production. The small hollow load-carrying brick from liquid waste residue,fly-ash containing much calcia,and fine coal fly-ash has high strength up to 14.4 MPa, low water absorption and low rate of water content,and is in accord with GB- 8239-87. Considerable benefit was obtained from the process,and the aim was achieved that waste treated waste,and waste supported waste.%从工艺流程、主要设备、工艺特点等方面介绍了渤海化工(集团)股份有限公司天津化工厂利用废渣生产12万t/a水泥、3万m3/a承重小型空心砌块项目。虽然目前以废电石渣为主要原料、配以液态渣辅料生产水泥已具有节能优势,但宜扩大生产规模以达到经济规模。利用液态渣、增钙飞灰、粉煤灰生产的承重小型空心砌块强度可高达14.4 MPa,吸水率低,含水率低,不仅符合GB8239-87的要求,而且效益可观,由此做到了"以废养废、以废治废"。

  20. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  1. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    Science.gov (United States)

    Beyer, W.N.; Moore, J.

    1980-01-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1-7.4 ppm lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6-5.3 ppm). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates

  2. The Buggenum coal gasification power plant - associated material and residue investigations; Das Kohlevergasungswerk Buggenum - begleitende Werkstoff- und Rueckstandsuntersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Liere, J. van [N.V. KEMA, Arnheim (Netherlands); Bakker, W.T. [EPRI, Palo Alto, CA (United States); Bolt, N. [N.V. KEMA, Arnheim (Netherlands)

    1995-01-01

    Following an introduction on the present status of coal gasification technology, a review follows of current knowledge about materials for high-reducing synthetic gas in coal gasification plants. Present practice indicates that most metal alloys are used as heat exchangers for evaporation at 350 to 450 C. Materials for gasification technology have been researched since the end of the 1970s; several commercially available materials have been investigated. In addition, the utilization of slag is being examined. Today, a multiplicity of applications are available. (orig.) [Deutsch] Nach der Vorstellung des heutigen Standes der Kohlevergasungstechnologie folgt eine Uebersicht der heutigen Kenntnisse ueber Werkstoffe fuer hochreduzierendes Syngas in Kohlevergasungsanlagen. Die heutige Praxis zeigt, dass die meisten Metallegierungen als Waermeaustauscher benutzt werden fuer das Verdampfen bei 350 bis 450 C. Werkstoffe fuer die Vergasungstechnologie werden seit Ende der 70er Jahre erforscht; mehrere kommerziell erhaeltliche Werkstoffe wurden untersucht. Auch die Verwendung der Schlacke ist untersucht worden. Heute steht eine Vielzahl von Anwendungen zur Verfuegung. (orig.)

  3. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N.; Moore, J.

    1980-02-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae), and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1 to 7.4 ppM lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6 to 5.3 ppM). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates.

  4. Thermal decomposition of mercuric sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, J.H.; Nulf, L.E.

    1994-10-28

    The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

  5. Modelacio de sedimentadors en plantes de tractament d'aigues residuals. Aplicacio al proces de fermentacio - elutracio de fangs primaris

    Science.gov (United States)

    Ribes Bertomeu, Josep

    Wastewater treatments require the execution of many conversion processes simultaneously and/or consecutively, making them a tricky object of study. Furthermore, complexity of treatment processes is increasing not only for the more stringent effluent standards required, but also for the new trends towards sustainable development, which in this process are mainly focused on energy saving and nutrient recovery from wastewaters in order to improve their life cycle. For this reason it becomes necessary to use simulation tools which are able to represent all these processes by means of a suitable mathematical model. They can help in determining and predicting the behaviour of the different treatment schemes. These simulators have become essential for the design, control and optimization of wastewater treatment plants (WWTP). Settling processes have a significant role in the accomplishment of effluent standards and the correct operation of the plant. However, many models that are currently employed for WWTP design and simulation do not take into account settling processes or they are handled in a very simple way, by neglecting the biochemical processes that can occur during sedimentation. People of CALAGUA research group have focussed their efforts towards a new philosophy of simulating treatment plants, which is based on the use of a unique model to represent all physical, chemical and biological processes taking place in WWTPs. In this research topic, they have worked on the development of a general quality model that considers biological conversion processes carried out by different microorganism groups, acid base chemical interactions affecting the pH value in the system, and gas-liquid transfer processes. However, a generalized use of such a quality model requires its combination with a flux model, principally for those processes where completely mixture can not be assumed, as for instance, settlers and thickeners in WWTPs. The main objective of this work has been

  6. Assessing a sustainable sugarcane production system in Tucumán, Argentina: Part 1: Dynamics of sugarcane harvest residue (trash decomposition Evaluación de un sistema sustentable de producción de caña de azúcar en Tucumán, R. Argentina. Parte I: Dinámica de la descomposición del residuo de la cosecha en verde de la caña de azúcar

    Directory of Open Access Journals (Sweden)

    Patricia A. Digonzelli

    2011-06-01

    Full Text Available The elimination of burning practices in sugarcane harvest has led to more sustainable productive systems, with lower impact on the environment and on communities. The present paper is part of a study in which two sugarcane management systems were compared: (a one with sugarcane harvest residue kept on the ground (trash blanketing; and (b one without trash blanketing (burnt residue. Cultivar LCP 85-384 was planted in macro-plots in a commercial field in Albarracín, Tucumán, Argentina. A split-plot experimental design with three replications was used. Each plot had five 30 m-long rows. Two crop cycles (2006/2007 and 2007/2008, i.e. second and third ratoon, were evaluated. From the end of harvest onwards, residue amount (dry matter/ha and residue C/N relationship were determined periodically. At the beginning and at the end of each crop cycle, residue P and K contents were assessed. Residue left after harvest amounted to 12 and 16 tons of dry matter per hectare in the first and second evaluated crop cycles, respectively, but decreased significantly throughout these periods. Residue C/N relationship was over 100 in both crop cycles (117 and 101, respectively, but decreased significantly in their course. Reductions in both sugarcane residue and C/N relationship were correlated with days after harvest and accumulated thermal time (∑ mean daily air temperature. Trash initial C concentration was similar in both crop cycles and amounted to approximately 45%, whereas initial N concentration differed (0.4% and 0.6% in second and third ratoon, respectively. Residue decomposition contributed 3800 to 5700 kg of C, 7 to 50 kg of N and 45 to 40 kg of K per ha to the agro-ecosystem in both crop cycles studied.La eliminación de la quema durante la cosecha de la caña de azúcar llevó a la implementación de sistemas productivos más sustentables, con menos impacto ambiental y más amigables con las poblaciones vecinas. El presente trabajo forma parte de un

  7. 应用Vc发酵弃渣防治保护地病害%Application of Vc fermentation waste residue on prevention and control of plant diseases in protective ground

    Institute of Scientific and Technical Information of China (English)

    朱可丽; 苏振成; 吕素霞; 张忠泽

    2003-01-01

    The prevention and control of tomato plant diseases were conducted in protective ground using Vc fermentation waste residue treated by enzymolysis and ultrasonic wave. The results showed that the seedlings planted for 3 weeks on the protective ground soil continuously cropped tomato plant for 9 years and fertilized 75, 150 and 300kg·hm-2 grew well. Their biomass were increased by 123%, 164% and 182%, and the disease incidence rates were decreased by 59%, 78% and 85%, respectively. Under application of 300 kg·hm-2 Vc fermentation waste residue, the products of tomato grown for 10 weeks on the soil continuously cropped tomato plant for 9, 6 and 2 years were increased by 60%, 43% and 14%, respectively, and the disease incidence rates were all de-creased by 50% .

  8. The contents and structure of a-oriented saccharides in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle by enzyme-decomposition%酶解法测定罗汉景深加工市主流液中α构型糖含量的研究

    Institute of Scientific and Technical Information of China (English)

    康如龙; 苏小建; 张道平; 刘倩; 黄继来

    2012-01-01

    This study is to measure the contents and structure of a-oriented sacchaddes in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle through enzyme- decomposition in order to provide a theoretical basis for the further study of Siraitia grosvenorii Swing~e. And improve its utilization and economic benefits. By measuring the content of saccharides in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle, the total reducing saccharides is 23.50% and the free reducing saccharides is 12.55%. When the 0.4 g a-glycoside hydrolase is added in the optimal condition of enzymatic hydrolysis, that is pH5.5, temperature 65 ℃, time of heating 1 h, the content of (]-oriented saccharides in the dried solid of column residues is 6.78%.%用酶解的方法测定罗汉果深加工柱流液中糖的α型结构及含量,为进一步研究和利用罗汉果资源,提高其利用率增加经济效益提供理论基础。首先测得罗汉果深加工柱流液中总还原糖含量为23.50%和游离还原糖含量为12.55%;在α-糖苷酶最佳酶水解条件pH值为5.5、温度为65℃、加热时间为1h、α-糖苷酶用量为0.4g下,测得柱流液干燥固体中仪构型糖的含量为6.78%。

  9. 酶解法测定罗汉果深加工柱流液中β构型糖含量的研究%Studies on to measure the contents of β-oriented saccharides in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle by enzyme decomposition

    Institute of Scientific and Technical Information of China (English)

    黄世好; 康如龙; 苏小建; 张道平; 刘倩

    2012-01-01

    This study was to measure the contents of β-oriented saccharides in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle by enzyme decomposition in order to provide a theoretical basis for the further study of Siraitia grosvenorii Swingle.and improve its utilization and economic benefits. By measuring the content of saccharides in the residues of column chromatography from the processing of Siraitia grosvenorii Swingle, the total reducing saccharides was 23.50% and the free reducing saccharides was 12.55%.When the 0.05g β-amylase was added in the optimal condition of enzymatic hydrolysis, that pH value 4.5; temperature 45℃; time of heating 40min, the content of β-oriented saccharides in the dried solid of column residues was 3.85%.%本研究是用酶解的方法测定罗汉果深加工柱流液中β构型糖的含量,为进一步研究和利用罗汉果资源,提高其利用率增加经济效益提供理论基础.首先测得罗汉果深加工柱流液中总糖含量为23.50%,游离还原糖含量为12.97%;在β-葡萄糖苷酶最佳酶水解条件pH值为4.5,温度为45℃,加热时间为40min,β-葡萄糖苷酶用量为0.2g下,测得柱流液干燥固体中β构型糖的含量为3.43%.

  10. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases.

    Science.gov (United States)

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K; Cosgrove, Daniel J; Anderson, Charles T; Roberts, Alison W; Haigler, Candace H

    2016-05-01

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.

  11. Dominant modal decomposition method

    Science.gov (United States)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  12. Litter Decomposition Rates, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains decomposition rates for litter of Salicornia pacifica, Distichlis spicata, and Deschampsia cespitosa buried at 7 tidal marsh sites in 2015....

  13. Spectral proper orthogonal decomposition

    CERN Document Server

    Sieber, Moritz; Paschereit, Christian Oliver

    2015-01-01

    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...

  14. Decomposition of Polynomials

    CERN Document Server

    Blankertz, Raoul

    2011-01-01

    This diploma thesis is concerned with functional decomposition $f = g \\circ h$ of polynomials. First an algorithm is described which computes decompositions in polynomial time. This algorithm was originally proposed by Zippel (1991). A bound for the number of minimal collisions is derived. Finally a proof of a conjecture in von zur Gathen, Giesbrecht & Ziegler (2010) is given, which states a classification for a special class of decomposable polynomials.

  15. Modelling pesticides residues

    OpenAIRE

    2004-01-01

    This work is a contribution to the development of a specific method to assess the presence of residues in agricultural commodities. The following objectives are formulated: to identify and describe main processes in environment — plant exchanges, to build of a model to assess the residue concentration at harvest in agricultural commodities, to understand the functioning of the modelled system, to characterise pesticides used in field crops and identify optimisation potentials in phytosanitary...

  16. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.

    Science.gov (United States)

    Chen, Ting; Xu, Yongpeng; Zhu, Shijun; Cui, Fuyi

    2015-12-01

    Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2 Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5 Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2 Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2 mg/L and 0.071-4.382 cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    Science.gov (United States)

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  18. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water.

    Science.gov (United States)

    Conte, Danieli; Palmeiro, Jussara Kasuko; da Silva Nogueira, Keite; de Lima, Thiago Marenda Rosa; Cardoso, Marco André; Pontarolo, Roberto; Degaut Pontes, Flávia Lada; Dalla-Costa, Libera Maria

    2017-02-01

    Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of blaCTX-M (51/55, 92.7%) and blaSHV (8/55, 14.5%) ESBLs, and blaGES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may

  19. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.

    Science.gov (United States)

    Rasoulnia, P; Mousavi, S M; Rastegar, S O; Azargoshasb, H

    2016-06-01

    Each year a tremendous volume of V-Ni rich ashes is produced by fuel oil consuming power plants throughout the world. Recovery of precious metals existing in these ashes is very important from both economic and environmental aspects. The present research was aimed at investigating bioleaching potential of Penicillium simplicissimum for the recovery of metals from power plant residual ash (PPR ash) using different bioleaching methods such as one-step, two-step, and spent-medium bioleaching at 1% (w/v) pulp density. Furthermore, the effects of thermal pretreatment on leaching of V, Ni, and Fe, as major elements present in PPR ash, were studied. Thermal pretreatment at various temperatures removed the carbonaceous and volatile fraction of the ash and affected the fungal growth and metal leachability. The highest extraction yields of V and Ni were achieved for the original PPR ash, using spent-medium bioleaching in which nearly 100% of V and 40% of Ni were extracted. The maximum extraction yield of Fe (48.3%) was obtained for the pretreated PPR ash at 400°C by spent-medium bioleaching. In addition, the fungal growth in pure culture was investigated through measurement of produced organic acids via high performance liquid chromatography (HPLC). Chemical leaching experiments were performed, using commercial organic acids at the same concentrations as those produced under optimum condition of fungal growth (5237ppm citric, 3666ppm gluconic, 1287ppm oxalic and 188ppm malic acid). It was found that in comparison to chemical leaching, bioleaching improved V and Ni recovery up to 19% and 12%, respectively. Moreover, changes in physical and chemical properties as well as morphology of the samples utilizing appropriate analytical methods such as XRF, XRD, FTIR, and FE-SEM were comprehensively investigated.

  20. Divisions S-4 - soil fertility and plant nutrition: residual value of lime and leaching of calcium in a kaolinitic ultisol in the high rainfall tropics

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, D.K.; Juo, A.S.R.; Miller, M.H.

    1982-01-01

    A long-term experiment was conducted on a highly acidic (pH 4.6), coarse-textured Ultisol in the high rainfall region of southeastern Nigeria in order to evaluate the requirement for and residual value of lime (Ca(OH)/sub 2/) to a continuous crop rotation, and to determine the fate of applied Ca in the soil profile. The initial lime rates used were 0, 0.5, 1, 2, and 4 t of Ca(OH)/sub 2/ per hectare. Maize (Zea mays) was planted in the first season and cowpea (Vigna unguiculata) in the second season under a no-tillage, stubble conservation system. Relatively low rates of lime are adequate to sustain yields in a continuous maize-cowpea rotation system. Liming at a rate of 0.5 t/ha maintained maize yield near maximum for 2 years after application. Sustained maize yields for 5 years or more were possible with a lime rate of 2 t/ha. Cowpeas performed well and showed strong tolerance to soil acidity when planted as a late second-season crop after maize without additional fertilizer application. The critical level of exchangeable Al ranged from 25 to 55% depending upon rate of chemical fertilizer as well as cowpea variety used. Leaching losses of Ca from the surface soil during the first 3 years were <0.5 t/ha of Ca(OH)/sub 2/-equivalents in the 0- to 2-t/ha treatments. Exchangeable-Al saturation in all subsoil layers of all treatments 3 years after liming exceeded 40% and soil pH (H/sub 2/O) was <4.3 indicating that lime was leached as neutral Ca salts and had little effect in ameliorating subsoil acidity. 17 references, 5 figures, 5 tables.

  1. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.

    Science.gov (United States)

    Barbe, Lou; Jung, Vincent; Prinzing, Andreas; Bittebiere, Anne-Kristel; Butenschoen, Olaf; Mony, Cendrine

    2017-02-16

    Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter.

  2. Scale-up study on combustibility and emission formation with two biomass fuels (B quality wood and pepper plant residue) under BFB conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Atif Ahmed; de Jong, Wiebren; Jansens, Peter Johannes [Department of Process and Energy, Section Energy Technology, Faculty 3ME, Delft University of Technology, Leeghwaterstraat 44, NL-2628 CA, Delft (Netherlands); Aho, Martti; Vainikka, Pasi [VTT Processes, P.O. Box 1603, 40101 Jyvaeskylae (Finland); Spliethoff, Hartmut [TU Munich, Lehrstuhl fuer Thermische Kraftanlagen, Boltzmannstrasse 15, D-85748 Garching (Germany)

    2008-12-15

    Combustion of two biomass fuels: demolition wood (DW) and pepper plant residue (PPR), was investigated from an emission viewpoint in a 20 kW{sub th} fluidized bubbling bed reactor and a 1 MW{sub th} fluidized bubbling bed test boiler. Fluidization velocity and boiler output were varied in the larger facility whereas they were kept constant in the smaller reactor. Traditional flue gases were analyzed. In addition, impactor measurements were carried out to determine the mass flow of the finest fly ash and toxic elements. These measurements were compared with EU emission directives for biomass co-incineration. It was possible to combust DW without operational problems. However, the DW was contaminated with lead, which tended to get strongly enriched in the fine fly ash. Pb tends to be adsorbed on the measurement line surfaces stronger than many other toxic elements and therefore proved difficult to collect and measure. Enrichment of Pb in the fine fly ash can be weakened by co-firing DW with PPR. Increasing the share of PPR up to 50% markedly reduces the toxic metal concentration in the finest fly ash. This, however, leads to increased mass flow of fine fly ash and increases the potential risks of operational problems such as bed agglomeration and fouling. (author)

  3. Combining mechanical-biological residual waste treatment plants with the carbonisation-combustion process; Kombination MBA mit dem Schwel-Brenn-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, J.; Wiehn, G. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany). Bereich Energieerzeugung

    1998-09-01

    The disposal market for household waste is strongly influenced by the legal framework governing it. A further factor that makes it difficult for the authorities responsible for disposal to decide on residual waste disposal by means of thermal or mechanical-biological treatment plants is the downward pressure on disposal prices from inexpensive, underused landfills. This makes it all the more important for a future-oriented waste management to develop a both economically and ecologically optimised waste disposal concept. In this situation there is much in favour of adopting a concept consisting of a combination of mechanical, mechanical-biological, and thermal treatment which takes due account of waste disposal concepts at the regional and supraregional scale. [Deutsch] Der Entsorgungsmarkt fuer Siedlungsabfaelle wird stark durch die Entwicklung der rechtlichen Rahmenbedingungen beeinflusst. Hinzu kommt, dass der Entscheidungsprozess der oeffentlichen Entsorgungstraeger zur Restabfallentsorgung mittels thermischer oder mechanisch-biologischer Anlagen durch den Druck auf die Entsorgungspreise aufgrund der kostenguenstigen, nicht ausgelasteten Deponien erschwert wird. Umso mehr muss das Ziel einer zukunftsorientierten Abfallwirtschaft sein, unter oekonomischen und oekologischen Gesichtspunkten ein optimiertes Abfallkonzept aufzubauen. Hier kann es sehr hilfreich sein, sich eines Konzeptes, bestehend aus der Kombination von mechanischer, mechanisch-biologischer und thermischer Behandlung unter Beruecksichtigung des regionalen und ueberregionalen Abfallkonzeptes zu bedienen. (orig./SR)

  4. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    Science.gov (United States)

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  5. Decomposing Nekrasov Decomposition

    CERN Document Server

    Morozov, A

    2015-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions - this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition - into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  6. Decomposing Nekrasov decomposition

    Science.gov (United States)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  7. Symmetric tensor decomposition

    CERN Document Server

    Brachat, Jerome; Mourrain, Bernard; Tsigaridas, Elias

    2009-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on th...

  8. Patrones de sucesión vegetal sobre los depósitos de material residual en minas de gravas - Santa Fe de Bogotá Plant succession patterns on residual open-pit gravel mines deposits Bogota

    Directory of Open Access Journals (Sweden)

    Mora Goyes Ricardo A.

    1999-11-01

    Full Text Available Con Base en el estudio de la composicion y estructura de las comunidades vegetales y el analisis de las caracteristicas fisicoquimicas de los desechos, se determinaron los patrones iniciales de sucesion primaria, presentes en tres depositos de material residual de 18, 36, 120 meses de abandono, provenientes de la explotacion minera de gravas a cielo abierto al sur de Santafe de Bogota. La composicion, riqueza y diversidad floristica fueron maximas a los 36 meses de abandono del deposito. La dominancia alcanzo los maximos valores en el deposito de 120 meses. Los dos primeros parches de vegetacion presentaron un mejor ajuste al modelo de distribucion especie-abundancia logaritmico, y el tercero a un normal logaritimico. El azar es el patron de distribucion espacial-horizontal que mas abunda entre todas las especies,. seguido por patrones de micro y macroheterogeneidad. Las formas de crecimiento dominantes pasan de hierbas acaulirrosulas y postradas, en la comunidad pionera, a hierbas rastreras y arbustos, en el parche de 120 meses de edad. Las estrategias de historias de vida y las relaciones intraespecificas propuestas por Grime (1989, permitieron determinar que las plantas en la colonizacion de los primeros ambientes, se comportan como ruderales tolerantes a restricciones, y hacia el final del periodo sucesionall, como competidoras tolerantes a restricciones. Los modelos establecidos por Connell y Slatyer (1977 y Noble y Slatyer (1980, y los mecanimos de sucesion vegetal: arribo, establecimiento, facilitacion, tolerancia, inhibicion, extincion y maximo dominio, explican claramente los patrones de sucesion vegetal establecidos a traves de la dinamica de colonizacion y establecimiento de las especies vegetales sobre estos depositos. Cambios a traves del tiempo en la disponibilidad de condiciones y recursos en los sustratos expuestos a la colonizacion vegetal, medidos a partir de la caracterizacion de N, P, K, Ca, Na, Mg, porcentaje de arcillas

  9. Mueller matrix differential decomposition.

    Science.gov (United States)

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-05-15

    We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. © 2011 Optical Society of America

  10. Application of environmental management system for a energetic plant with oil residual biomass; Aplicacion de un sistema de gestion medio ambiental a una planta generadora de energia que utiliza la biomasa residual del olivar

    Energy Technology Data Exchange (ETDEWEB)

    Linan Veganzones, M.J.; Soca Olazabal, N.; Pizarro Camacho, D

    1998-12-01

    Being the alpechin one of the most contaminant residues by the mediterranean agrarian industry, as of today there is no integral depuration procedure. In this paper we show the innovative approach being used to eliminate the alpechin along with the oil miller residual biomass. What it more, the only agroindustrial complex which has introduced such approach is using an EMAS so that actual achievements could be realistically measured. (Author) 12 refs.

  11. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.

    Science.gov (United States)

    Medina, A; Roldán, A; Azcón, R

    2010-12-01

    Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply.

  12. A contribution to the knowledge of HMX decomposition and application of results. [at atmospheric pressure

    Science.gov (United States)

    Kraeutle, K. J.

    1980-01-01

    The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.

  13. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  14. Consequences of biodiversity loss for litter decomposition across biomes.

    Science.gov (United States)

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-08

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

  15. Liberação de fósforo e potássio durante a decomposição de resíduos culturais em plantio direto Phosphorus and potassium release during decomposition of crops residues in no-tillage system

    Directory of Open Access Journals (Sweden)

    Sandro José Giacomini

    2003-09-01

    and potassium were determined. It was adjusted the asymptotic model [(Pr and Kr = Ae-kt + (100 - A] to observed values for the remaining P and K (Pr and Kr which was used to estimate the rate (k of P and K release and the proportion of these nutrients of the labile (A and recalcitrant (100 - A pools of crop residues. The rate of K release was 4.5 times greater than was for phosphorus. The amount of remaining P in the initial phase of the decomposition was inversely proportional to the concentration of water soluble P in the residues. In the residues of the oat + vetch mixture the P and K release were slower than the observed for single species. These results indicate a greater potential of synchrony between commercial crops P and K demand and P and K release from residues of oat + vetch mixture as compared to single vetch.

  16. Domain Decomposition Methods for Hyperbolic Problems

    Indian Academy of Sciences (India)

    Pravir Dutt; Subir Singh Lamba

    2009-04-01

    In this paper a method is developed for solving hyperbolic initial boundary value problems in one space dimension using domain decomposition, which can be extended to problems in several space dimensions. We minimize a functional which is the sum of squares of the 2 norms of the residuals and a term which is the sum of the squares of the 2 norms of the jumps in the function across interdomain boundaries. To make the problem well posed the interdomain boundaries are made to move back and forth at alternate time steps with sufficiently high speed. We construct parallel preconditioners and obtain error estimates for the method. The Schwarz waveform relaxation method is often employed to solve hyperbolic problems using domain decomposition but this technique faces difficulties if the system becomes characteristic at the inter-element boundaries. By making the inter-element boundaries move faster than the fastest wave speed associated with the hyperbolic system we are able to overcome this problem.

  17. Stabilization and plant uptake of N from 15N-labelled pea residue 16.5 years after incorporation in soil

    DEFF Research Database (Denmark)

    Laberge, G.; Ambus, P.; Hauggaard-Nielsen, H.;

    2006-01-01

    The decline of N from N-15-labelled mature pea residues was followed in unplanted soil over 16.5 yr. Eight years after residue incorporation, 24% of the residue N-15 input was still present in the soil and, after 16.5 yr, 16% of the residue N-15 input remained. A double exponential model successf......The decline of N from N-15-labelled mature pea residues was followed in unplanted soil over 16.5 yr. Eight years after residue incorporation, 24% of the residue N-15 input was still present in the soil and, after 16.5 yr, 16% of the residue N-15 input remained. A double exponential model......-amended soils were obtaining 1.7% of their N from residue N. This is, to our knowledge, the longest study on decay of N in soils from N-15-labelled crop residues. The current study thus provides a unique data set for our empirical understanding of N-dynamics in agricultural systems, which is a prerequisite...

  18. Bacterial diversity in agricultural soils during litter decomposition

    NARCIS (Netherlands)

    Dilly, O.; Bloem, J.; Vos, A.; Munch, J.C.

    2004-01-01

    Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band. Furth

  19. Optimization of Lead and Silver Extraction from Zinc Plant Residues in the Presence of Calcium Hypochlorite Using Statistical Design of Experiments

    Science.gov (United States)

    Behnajady, Bahram; Moghaddam, Javad

    2014-12-01

    In this work, a chloride/hypochlorite leaching process was performed for zinc plant residues. Sodium chloride and calcium hypochlorite were used as leaching and oxidizing agents, respectively. Fractional factorial method has been used to test main effects, and interactions among factors were investigated. The statistical software named Design-Expert 7 has been utilized to design experiments and subsequent analysis. Parameters and their levels were reaction time ( t = 16 and 120 minutes), reaction temperature [ T = 303 K and 343 K (30 °C and 70 °C)], solid-to-liquid ratio ( S/ L = 1/6 and 1/38), pH (pH = 0.5 and 2), and Ca(OCl)2 concentration ( C = 0.6 and 3 g/L). Analysis of variance was also employed to determine the relationship between experimental conditions and yield levels. Results showed that reaction temperature and pH were significant parameters for both lead and silver extractions but solid-to-liquid ratio had significant effect only on lead extraction. Increasing pH reduced leaching efficiency of lead and silver. However, increasing reaction temperature promoted the extraction of lead and silver. Ultimate optimum conditions from this study were t 1: 16 min, T 2: 343 K (70 °C), ( S/ L)2: 1/38, pH1: 0.5, and C 1: 0.6 g/L. Under these conditions, extractions of lead and silver were 93.60 and 49.21 pct, respectively.

  20. Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis.

    Science.gov (United States)

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (PUV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (PUV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (PUV-B exposure intensity (30%) had significant direct effects on litter decomposition (PUV-B on litter decomposition.

  1. Tree decompositions with small cost

    NARCIS (Netherlands)

    Bodlaender, H.L.; Fomin, F.V.

    2002-01-01

    The f-cost of a tree decomposition ({Xi | i e I}, T = (I;F)) for a function f : N -> R+ is defined as EieI f(|Xi|). This measure associates with the running time or memory use of some algorithms that use the tree decomposition. In this paper we investigate the problem to find tree decompositions

  2. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    Science.gov (United States)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  3. Decomposition of semigroup algebras

    CERN Document Server

    Boehm, Janko; Nitsche, Max Joachim

    2011-01-01

    Let A \\subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.

  4. Exergo-economic analysis of biogas production from residual and waste materials for use in energy conversion plants; Exergooekonomische Analyse der Biogaserzeugung aus Rest- und Abfallstoffen fuer den Einsatz in Energieumwandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Janet [Beuth Hochschule fuer Technik Berlin (Germany)

    2015-07-01

    Biogenic residual and waste materials are subject to fundamentally different conditions than other renewable resources. Also the purposes for their use in conversion plants are different. Whereas the use of renewable energies in energy conversions plants serves to produce power and heat, biogenic residual and waste materials are primarily focused to be disposed. Considering the sustainable philosophy ''cradle to cradle'' an additional use for these input materials is gaining interest. Energy and exergy balances show that plant and process concepts have a great influence on the energetic conversion. Especially by looking at an exergy-analysis an overall assessment is made based on the working part of the product like power or heat. If economic factors are added, local, regional, and supra-regional influences can be observed and a comprehensive overview of the optimal energetic and economic use of the input materials can be given. A decision which concept of converting biogenic residual and waste materials is to be preferred cannot be made yet. Furthermore, additional ecologic/energetic, economic, and social factors should be taken into account. These factors could be included into the exergoeconomic analysis using a scoring system with economic values.

  5. Dynamics of mature pea residue nitrogen turnover in unplanted soil under field conditions

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1994-01-01

    mineralizable after 2 yr of decomposition, indicating that the remaining residue N-15 was present in rather recalcitrant soil organic matter. After 90 days of decomposition N-15 unaccounted for corresponded to 10% of the input, increasing to 20-30% after 2-3 yr of decomposition. The main part of the N......The dynamics of N-15-labelled mature, pea (Pisum sativum L.) residue turnover in soil were studied in two 3 yr experiments, using residue sizes of decomposition there was a sharp decline in the amount of N-15 in organic...... to the biomass N-15, but the size of the potentially-mineralizable N-15 pool was much smaller than the biomass N-15 pool. After 3 yr of decomposition, 28% (Expt 1) and 45% (Expt 2) of the residue N-15 input was present in the topsoil in organic forms. Only 1-2% of the residual organic N-15 was potentially...

  6. Effects of amendments on soil availability and phytoremediation potential of aged p,p'-DDT, p,p'-DDE and p,p'-DDD residues by willow plants (Salix sp.).

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Peña, Aránzazu; Miglioranza, Karina S B

    2012-02-15

    Combining technologies offer a great potential to phytoremediate contaminated soils. As sequestration occurs, pollutants availability decline and organic amendments could counterbalance that situation. This work studies the potential of willow plants to phytoremediate soil containing p,p'-DDT (101.3 ng g(-1)) and p,p'-DDE (381.4 ng g(-1)) residues. The effect of root exudates, Tween 80 and citric and oxalic acids on DDTs desorption and availability from soil was tested together with the plant uptake and translocation. Treatments increased the p,p'-DDE/p,p'-DDT ratio when compared with control (water) soil. Watering with carboxylic acids led to a significant enhancement of the quantities of p,p'-DDT and p,p'-DDE desorbed from soil that was related with an increase of organic carbon in solution. Willow plants accumulated DDTs under all treatments although plants watered with carboxylic acids showed the highest leaves translocation factor for both p,p'-DDT and p,p'-DDE. Results indicate that the addition of carboxylic acids enhanced DDTs bioavailability which further increases plant uptake and translocation. The effect of surfactants on the soil-plant systems needs to be better assessed for this particular soil and plant species. The enhancement of soluble organic carbon is crucial at the moment of evaluating DDTs release from soil as well as to establish cleaning strategies.

  7. Potential nitrogen credits from peanut residue

    Science.gov (United States)

    Availability of residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Following peanut (Arachis hypogaea L.) production, extension currently recommends 22-67 kg N ha-1 credit to subsequent crops, but these recommendations are not supported in the liter...

  8. Roots Stimulate Expression of Decomposition Transcripts in the Soil Microbiome

    Science.gov (United States)

    Nuccio, E. E.; Karaoz, U.; Zhou, J.; Brodie, E.; Firestone, M.; Pett-Ridge, J.

    2016-12-01

    The soil surrounding plant roots, the rhizosphere, has long been recognized as a zone of great functional importance in terrestrial ecosystems. Rhizosphere microorganisms can affect the breakdown of plant tissues and root litter, and can accelerate the decomposition of detrital plant biomass, which is a process commonly described as "priming." However, the molecular mechanisms underlying rhizosphere C cycling are poorly understood, and the carbohydrate and lignolytic gene transcripts mediating the decomposition of root litter in soil are largely unidentified. We hypothesized that root exudates stimulate the expression of enzymes that are involved in decomposition of macromolecular C compounds. To assess how the abundance and diversity of decomposition enzymes differs in the rhizosphere relative to the surrounding bulk soil, we sequenced the community gene expression (metatranscriptomes) and single cell genomes of rhizosphere and bulk soil associated with wild oat (Avena fatua) over time (3, 6, 12, and 22 days). To isolate roots of a defined age in a mature plant, we used microcosms with a transparent experimental sidecar to track roots as they grew. Our results showed that a large number of C decomposition enzymes were more highly expressed in the rhizosphere compared to bulk soil, and that overall, transcripts tended to be elevated in younger roots than older roots. Genes relevant to aromatic C breakdown (nitroreductase, 4-hydroxybenzoate degradation, pectin methylesterase) and organic N cycling (ammonification) were elevated in the rhizosphere. This work identifies the potential molecular mechanisms that underpin priming in rhizosphere soil.

  9. Micro thermoelectric power plant with residual biomass in a rice industry - efficiency increase due to a technological alteration; Micro central termeletrica com biomassa residual em uma industria de arroz - aumento de eficiencia por alteracao da tenologia

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ronaldo; Hoffmann, Rejane S.; Lagemann, Angela M.; Cremonese, Guilherme; Collazzo, Gabriela C. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Engenharia Quimica; Machado, Luis A. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Eletromecanica e Sistemas de Potencia; Mayer, Flavio D. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Curso de Pos-Graduacao em Engenharia de Producao]. E-mail: f.mayer@mail.ufsm.br

    2006-07-01

    A thermal electric system was implanted at Sao Pedro do Sul, Rio Grande do Sul, BR, for electric power self production. The initial analysis confirm the economic viability of the project and his contribution for the environment, through elimination of residue deposits and mitigation of the 4612 tCO{sub 2} equivalent greenhouse gases. Besides, an emphasis must be given to the contribution of the electric power decentralized generation for the regional development.

  10. Aluminate solution decomposition new technology development

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, V.Ya.; Stelmakova, G.D. [Scientific Technical Centre Reactor, Moscow (Russian Federation)

    1996-10-01

    Scientific Technical Centre Reactor together with SC Aluminy carried out the number of investigations in the field of aluminum solution decomposition new technology development. It was based on large prime ratio on one hand, and liquid-solid countercurrent flow movement on the other hand. Practically the suggested technology was considered to be the result of unstationary, mass-transfer theory, which had been checked up at 100 m3 plot scale plant. Hydrate washing was accomplished at the first stage under the condition of countercurrent flow and less than 1 m3 water discharge. The experiments of 3.2--3.3 caustic module aluminate solution decomposition were carried out at the second stage. While full reactor 20 hour regime operation the caustic module increased till 4.1. Usually it accounts 3.7 under the analogous conditions and time.

  11. Efeito residual de herbicidas em pré-plantio do feijoeiro, em dois sistemas de aplicação em plantio direto e sua viabilidade econômica Economic viability of residual herbicides in dry bean pre-planting under two aplication methods

    Directory of Open Access Journals (Sweden)

    T. Cobucci

    2004-12-01

    Full Text Available A pesquisa teve como objetivo avaliar a eficiência e a viabilidade econômica de controle de plantas daninhas com alguns herbicidas residuais (registrados ou não, aplicados em pré-plantio na cultura do feijoeiro. O experimento foi realizado em Santo Antônio de Goiás, no ano agrícola de 1999/2000. Os herbicidas foram aplicados em cobertura das plantas daninhas Commelina benghalensis e Bidens pilosa, com 3 t ha-1 de biomassa seca. Os tratamentos foram constituídos do fatorial 2x10x3, arranjados em parcelas subsubdivididas no delineamento de blocos ao acaso, com três repetições; o primeiro fator consistiu de sistemas de dessecação da área [Sistema Integrado de Controle (SIC e Aplique e Plante]. No SIC foi usado o sulfosate (720 g ha-1 aos 20 dias antes do plantio e paraquat (200 g ha¹ adicionado aos herbicidas com efeitos residuais, aplicados imediatamente após o plantio do feijoeiro. No sistema Aplique e Plante foi aplicado o sulfosate (720 g ha¹ adicionado aos residuais, cinco dias antes do plantio do feijoeiro. O segundo fator representa a aplicação dos herbicidas com efeitos residuais, em g ha-1: sulfentrazone (200 e 300, dimethenamid (900 e 1.125, clomazone (360, pendimethalin (2.500, smetolachlor (768 e 1.152, diclosulan (12,45 e testemunha; e o terceiro, as doses dos herbicidas de pós-emergência: imazamox (15 + bentazon (240, imazamox (30 + bentazon (480 e testemunha. Os herbicidas residuais aplicados nos sistemas SIC e Aplique e Plante reduziram o crescimento inicial de Bidens pilosa. Para Euphorbia heterophylla somente os herbicidas diclosulan e sulfentrazone proporcionaram efeito semelhante. A aplicação de herbicidas residuais em pré-plantio mostrou ser viável economicamente, em virtude da redução dos de pós-emergência, exceto para os herbicidas dimethenamid e s-metolachlor.The objective of this study was to evaluate the efficiency and economic viability of controlling weeds with residual herbicides, applied in

  12. Adaptive Integrand Decomposition

    CERN Document Server

    Mastrolia, Pierpaolo; Primo, Amedeo; Bobadilla, William J Torres

    2016-01-01

    We present a simplified variant of the integrand reduction algorithm for multiloop scattering amplitudes in $d = 4 - 2\\epsilon$ dimensions, which exploits the decomposition of the integration momenta in parallel and orthogonal subspaces, $d=d_\\parallel+d_\\perp$, where $d_\\parallel$ is the dimension of the space spanned by the legs of the diagrams. We discuss the advantages of a lighter polynomial division algorithm and how the orthogonality relations for Gegenbauer polynomilas can be suitably used for carrying out the integration of the irreducible monomials, which eliminates spurious integrals. Applications to one- and two-loop integrals, for arbitrary kinematics, are discussed.

  13. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  14. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of total degree d as a sum of powers of linear forms (Waring’s problem), incidence properties on secant varieties of the Veronese variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester’s approach from the dual point of view...

  15. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  16. Hydrogen peroxide catalytic decomposition

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  17. Application of sparse time-frequency decomposition to seismic data

    Institute of Scientific and Technical Information of China (English)

    Wang Xiong-Wen; Wang Hua-Zhong

    2014-01-01

    The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function (IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse time-frequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.

  18. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...... decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \\tt TT-DMRG-cross to obtain the TT decomposition of tensors resulting from suitable...

  19. MACH: Fast Randomized Tensor Decompositions

    CERN Document Server

    Tsourakakis, Charalampos E

    2009-01-01

    Tensors naturally model many real world processes which generate multi-aspect data. Such processes appear in many different research disciplines, e.g, chemometrics, computer vision, psychometrics and neuroimaging analysis. Tensor decompositions such as the Tucker decomposition are used to analyze multi-aspect data and extract latent factors, which capture the multilinear data structure. Such decompositions are powerful mining tools, for extracting patterns from large data volumes. However, most frequently used algorithms for such decompositions involve the computationally expensive Singular Value Decomposition. In this paper we propose MACH, a new sampling algorithm to compute such decompositions. Our method is of significant practical value for tensor streams, such as environmental monitoring systems, IP traffic matrices over time, where large amounts of data are accumulated and the analysis is computationally intensive but also in "post-mortem" data analysis cases where the tensor does not fit in the availa...

  20. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  1. Composting plant of sewage sludges in Calles, Valencia (Spain); Planta de compostaje de fangos en la localidad de Calles (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Jimenez Sanchez, J.; Zorrilla Soriano, F.; Manuelcandela, V.

    2000-07-01

    This article explains the operation of the composting plant of muds of residual waters in the location of Calles, in Valencia. Through the composting, the sludge is transformed in wet material. This process is developed by aerobic thermopile fermentation of the organic fraction of the muds. The composting is a biological process aerobic and thermopile by decomposition of organic waste in solid phase and in controlled conditions. (Author)

  2. Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing Decomposição térmica de briquetes torrificados e carbonizados de resíduos do processamento dos grãos de café

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-06-01

    Full Text Available The use of biomass has been recognized as a potential renewable energy and an alternative substitute that contributes to the decrease of fossil fuels consumption. Therefore, this research aimed to analyze the thermal behavior of briquettes made of residues from coffee grain processing in different conditions: in natura, torrefied and carbonized. Eucalyptus sawdust was used for comparison. The briquettes were carbonized considering final temperature of 450° C (kept for 30 min. The briquettes torrefaction was performed in an electric oven (muffle using two heating rates until 250° C (kept 60 min. The thermal-gravimetric analysis was made in nitrogen atmosphere until the temperature of 600° C. The contents of fixed carbon and volatile matter of the fuels were determined. The carbonized briquette of residues from coffee grain processing presented higher stability and low thermal decomposition. It was observed a low influence of torrefaction heating rate under thermal properties of briquettes, and fixed carbon and volatile matter content. Regarding the raw biomass, lower total mass loss was observed for the residues from coffee grain processing when compared to Eucalyptus sawdust. The carbonized and torrefied briquettes presented higher hydrophobicity than raw briquettes.O uso da biomassa tem sido reconhecido como uma energia potencial renovável e um substituto alternativo que contribua para a redução do consumo de combustíveis fósseis. Portanto, objetivou-se analisar o comportamento térmico de briquetes de resíduos do processamento dos grãos de café, em diferentes formas: in natura, torrificados e carbonizados. Utilizou-se a serragem de Eucalyptus como parâmetro de comparação. Os briquetes foram carbonizados considerando a temperatura final de 450° C (mantida por 30 min. A torrefação dos briquetes foi realizada em uma mufla em duas taxas de aquecimento até 250° C (mantida por 60 min. Realizou-se a análise termogravimétrica em

  3. Stochiometry, Microbial community composition and decomposition, a modelling analysis

    Science.gov (United States)

    Berninger, Frank; Zhou, Xuan; Aaltonen, Heidi; Köster, Kajar; Heinonsalo, Jussi; Pumpanen, Jukka

    2017-04-01

    Enzyme activity based litter decomposition models describe the decomposition of soil organic matter as a function of microbial biomass and its activity. In these models, decomposition depends largely on microbial and litter stoïchiometry. We, used the model of Schimel and Weintraub (Soil Biology & Biochemistry 35 (2003) 549-563 largely relying on the modification of Waring B et al. Ecology Letters, (2013) 16: 887-894) and we modified the model to include bacteria, fungi and mycorrizal fungi as decomposer groups assuming different stochiometries. The model was tested against previously published data from a fire chronosequence from northern Finland. The model reconstructed well the development of soil organic matter, microbial biomasses, enzyme actitivies with time after fire. In a theoretical model analysis we tried to understand how the exchange of carbon and nitrogen between mycorrhiza and the plant as different litter stoïchiometries interact. The results indicate that if a high percentage of fungal N uptake is transferred to the plant mycorrhizal biomass will decrease drastically and does decrease, due to low mycorrhizal biomasses, the N uptake of plants. If a lower proportion of the fungal N uptake is transferred to the plant the N uptake of the plants is reasonable stable while the proportion of mycorrhiza of the total fungal biomass varies. The model is also able to simulate priming of soil organic matter decomposition.

  4. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material

    NARCIS (Netherlands)

    Magid, J.; Kjaergaard, C.; Gorissen, A.; Kuikman, P.J.

    1999-01-01

    Drying and subsequent rewetting of soils has been recognized as an important process for accelerating the decomposition of soil organic matter. This effect has been attributed to (1) increasing solubility of humic substances (molecular level) (2), microbial death during desiccation and due to osmore

  5. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material

    NARCIS (Netherlands)

    Magid, J.; Kjaergaard, C.; Gorissen, A.; Kuikman, P.J.

    1999-01-01

    Drying and subsequent rewetting of soils has been recognized as an important process for accelerating the decomposition of soil organic matter. This effect has been attributed to (1) increasing solubility of humic substances (molecular level) (2), microbial death during desiccation and due to

  6. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  7. Results of a Study Investigating the Plant Uptake of Explosive Residues From Compost of Explosives-Contaminated Soil Obtained from the Umatilla Army Depot Activity

    Science.gov (United States)

    1998-11-01

    and explosive by-products in nine plant species. These plant species included: Radish ( Raphanus sativus L. variety Cherry Belle), Kale (Brassica...Umatilla Army Depot Activity Vegetable Crops: • Radish ( Raphanus sativus L. variety Cherry Belle) - A quick-growing root crop which can be grown to...seeds of radish ( Raphanus sativus variety Cherry Belle), lettuce Plant Uptake of Explosives 3-18 Umatilla Army Depot Activity o < o ft <u Q >> T3

  8. Metaproteome analysis of the microbial community during leaf litter decomposition - the impact of stoichiometry and temperature perturbations

    Science.gov (United States)

    Keiblinger, K. M.; Schneider, T.; Leitner, S.; Hämmerle, I.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-04-01

    nitrogen and litter pH. Freeze treatments resulted in increased fungal abundance and a decline in residual plant litter material, indicating slightly accelerated decomposition. Extracellular enzyme activities were especially blocked by heat treatment. Using metaproteomics enabled us to link the composition of the microbial community to its ecosystem function.

  9. Resíduos de plantas de cobertura e mobilidade dos produtos da dissolução do calcário aplicado na superfície do solo Cover plant residues and mobility of dissolution products of surface applied lime

    Directory of Open Access Journals (Sweden)

    A. S. Amaral

    2004-02-01

    em profundidade. Seus efeitos restringiram-se na camada de 0-2,5 cm, tanto isoladamente como junto com o calcário.Cover plants have received extra attention due to their release of low molecular weight organic acids that form organic complexes with aluminum, calcium and magnesium. Besides neutralizing toxic aluminum, such compounds can increase the mobility in the soil profile of the dissolution products of lime applied on the soil surface. Objectives of this research were (a to identify the low molecular weight organic acids found in different cover plant species and in soil solution, (b to evaluate the effects of the residues, alone or together with surface lime application, in relation to acidity neutralization of subsoil layers in no-tillage systems, and (c to verify the relation between organic acids of low molecular weight, released during the decomposition of plant residues, with the effect on soil acidity properties in the soil profile due to surface lime application. The experiment was carried out in a greenhouse in undisturbed Inceptisol (Haplumbrept soil samples in columns, collected in a field experiment under no-tillage for five years. Nine treatments were applied: residue (10 Mg ha-1 of black oat (1, common vetch (2, oil seed radish (3, lime (13 Mg ha-1 (4, lime plus residue of black oat (5, of common vetch (6, of oil seed radish (7, and lime plus citric acid (0.91 Mg ha-1, (8 and no treatment (9, arranged in randomized blocks. The liquid chromatography method (HPLC allowed an identification of the main low molecular weight organic acids in the plant residues. Trans-aconitic acid was the most important in black oat, malic acid in common vetch, and citric and malic acids in oil seed radish. It was not possible to detect organic acids in the percolate or soil solution. Plant residues had no effect on acidity neutralization in the deeper soil since the effects, alone or with lime application on the soil surface, were restricted to the soil surface layer

  10. Autonomous Gaussian Decomposition

    CERN Document Server

    Lindner, Robert R; Murray, Claire E; Stanimirović, Snežana; Babler, Brian L; Heiles, Carl; Hennebelle, Patrick; Goss, W M; Dickey, John

    2014-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21cm absorption spectra from the 21cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the HI line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the up...

  11. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  12. Differentially Private Spatial Decompositions

    CERN Document Server

    Cormode, Graham; Shen, Entong; Srivastava, Divesh; Yu, Ting

    2011-01-01

    Differential privacy has recently emerged as the de facto standard for private data release. This makes it possible to provide strong theoretical guarantees on the privacy and utility of released data. While it is well-known how to release data based on counts and simple functions under this guarantee, it remains to provide general purpose techniques to release different kinds of data. In this paper, we focus on spatial data such as locations and more generally any data that can be indexed by a tree structure. Directly applying existing differential privacy methods to this type of data simply generates noise. Instead, we introduce a new class of "private spatial decompositions": these adapt standard spatial indexing methods such as quadtrees and kd-trees to provide a private description of the data distribution. Equipping such structures with differential privacy requires several steps to ensure that they provide meaningful privacy guarantees. Various primitives, such as choosing splitting points and describi...

  13. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions.

    Science.gov (United States)

    Wang, Xiaoyue; Sun, Bo; Mao, Jingdong; Sui, Yueyu; Cao, Xiaoyan

    2012-07-03

    Straw decomposition plays an important role in soil carbon sequestration. Litter quality and climate condition are considered to be key factors that regulate straw decomposition. This study investigated the decomposition characteristics of wheat and maize straw under cold temperate, warm temperate, and midsubtropic climate conditions, and examined whether the chemical structures of straw residues became similar during decomposition under different climate conditions. Straws were put in 0.074-mm-mesh size litter bags to exclude soil fauna and buried in black soil plots at three experimental stations located in the aforementioned climate regions to rule out the impact of soil type. The decomposition rate constants of wheat straw and maize straw increased linearly with temperature, and the former was more sensitive to temperature. Climate conditions and straw quality had marked effects on the residual material structure in the first half year of decomposition, but then decreased. Wheat and maize straw showed common decomposition characteristics with a decrease of O/N-alkyl carbons and di-O-alkyls, and a simultaneous increase of alkyl carbons, aromatic carbons, aromatic C-O groups, and COO/N-C ═ O groups. Overall, the results indicated that the chemical compositions of the two types of straw became similar after 2-year decomposition under different climate conditions.

  14. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis

    National Research Council Canada - National Science Library

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    .... We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens...

  15. Synthesis, thermal decomposition and sensitivity study of CsDNBF

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaozong; Zhang, Tonglai; Yang, Li; Zhang, Jianguo; Sun, Yuanhua [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2007-02-15

    CsDNBF (cesium 7-hydroxy-4,6-dinitro-5,7-dihydrobenzofuroxanide) was synthesized from the sodium salt of DNBF and cesium nitrate. The thermal decomposition process has been investigated and the results show that the solid residues at 240 C are RCOOCs, CsNCO, RNO{sub 2} and CsNO{sub 3}. The sensitivity results demonstrate that CsDNBF has better properties than KDNBF, which has been widely used. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    Science.gov (United States)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  17. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    Science.gov (United States)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  18. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    Science.gov (United States)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  19. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding to their genera......This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  20. A decomposition method based on a model of continuous change.

    Science.gov (United States)

    Horiuchi, Shiro; Wilmoth, John R; Pletcher, Scott D

    2008-11-01

    A demographic measure is often expressed as a deterministic or stochastic function of multiple variables (covariates), and a general problem (the decomposition problem) is to assess contributions of individual covariates to a difference in the demographic measure (dependent variable) between two populations. We propose a method of decomposition analysis based on an assumption that covariates change continuously along an actual or hypothetical dimension. This assumption leads to a general model that logically justifies the additivity of covariate effects and the elimination of interaction terms, even if the dependent variable itself is a nonadditive function. A comparison with earlier methods illustrates other practical advantages of the method: in addition to an absence of residuals or interaction terms, the method can easily handle a large number of covariates and does not require a logically meaningful ordering of covariates. Two empirical examples show that the method can be applied flexibly to a wide variety of decomposition problems. This study also suggests that when data are available at multiple time points over a long interval, it is more accurate to compute an aggregated decomposition based on multiple subintervals than to compute a single decomposition for the entire study period.

  1. Effects of Herbicide Residues in Paddy Field Water on Growth of the Aquatic Plant Pistia stratiotes%稻田除草剂水体残留对水生植物大薸的影响

    Institute of Scientific and Technical Information of China (English)

    王子臣; 朱普平; 郑建初; 盛婧; 陈留根

    2012-01-01

    采用模拟方法研究了稻田3种常用除草剂丁草胺、苄嘧磺隆、2甲4氯钠残留水体对大薸生长的影响.结果显示:(1)3种除草剂水体残留对大薸植株形态影响以苄嘧磺隆处理最为明显,残留浓度大于0.01 mg/L可导致大薸植株大量死亡.4.25 mg/L的丁草胺和3.36 mg/L的2甲4氯钠残留对大薸的生长均有一定的抑制作用,但短期内不能致死.当水体除草剂残留降低至田间常规管理施用浓度的1/8时,即丁草胺0.53 mg/L、苄嘧磺隆0.01 mg/L、2甲4氯钠0.42 mg/L,大薸植株形态的药害影响已经明显减轻.(2)苄嘧磺隆水体残留大于0.01 mg/L时大薸干物质产量显著降低,分株生长受到严重抑制.丁草胺残留浓度为0.53 mg/L时促进大薸干物质积累和分株生长,当残留浓度大于1.06 mg/L时大薸干物质积累和分株生长受到抑制.2甲4氯钠残留浓度低于3.36 mg/L对大薸的干物质产量、分株数及植株含水率影响一般.%Effects of three herbicide (butachlor, bensulfuron - methyl and MCPA - Na) residues in the paddy field water on growth of the aquatic plant Pistia stratiotes were studied by a simulation method. The results showed that: (1) among three herbicides,bensulfuron -methyl residues presented obvious effect on the morphological characters of Pistia stratiotes, and it can lead to Pistia stratiotes large number of death while its concentration reached more than 0.01 mg/L. Both 4.25 mg/L butachlor and 3.36 mg/L MCPA - Na had a certain degree inhibition on the growth of Pistia stratiotes, but can't lead to death during the short period of time. When the concentration of herbicide residues in water reduced to 1/8 of the conventional concentration level applied in the field i. e. 0. S3 mg/L butachlor,0.01 mg/L bensulfuron - methyl,0.42 mg/L MCPA-Na,the influence of herbicide residues on plant morphology of Pistia stratiotes reduced significantly. (2) When the concentration of bensulfuron - methyl residues in

  2. Drying of Dewatered Sludge from Large-scale WWTP by Boiler Flue Gas Residual Heat in Power Plant%大型污水厂利用电厂锅炉烟气余热干化脱水污泥

    Institute of Scientific and Technical Information of China (English)

    孙卫东; 姜立安; 汪泳; 黄志强; 严平; 肖斌; 李辉; 赖志强

    2012-01-01

    Shenzhen Nanshan WWTP is near the Shenzhen Nanshan Power Plant, so the sludge treatment has an advantage in the use of residual heat from the power plant. Through reconstructing the heating surface of boiler, the boiler flue gas residual heat can be transformed into the heating source for sludge drying, which can reduce the water content of dewatered sludge from 80% to 10% -30%. The dried sludge can be used as the raw materials for auxiliary fuel, organic fertilizer and building material industry, and the comprehensive utilization of the waste is achieved.%深圳S污水处理厂毗邻热电厂,污泥处理具备了利用电厂余热资源的优势.通过对电厂锅炉受热面进行改造,将烟气余热转换为污泥干化的热源使用,可将污水厂脱水污泥的含水率从80%降至10%~30%.干化污泥可用作辅助燃料、有机制肥及建材等行业原料,实现了废物的综合利用.

  3. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous ...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  4. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  5. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  6. Carbon sequestration potential of residues of different types of cover crops in olive groves under mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Repullo-Ruiberriz de Torres, M. A.; Carbonell-Bojollo, R.; Alcantara-Brana, C.; Rodriguez-Lizana, A.; Ordonez-Fernandez, R.

    2012-11-01

    The maintenance of plant cover between olive grove lanes until the beginning of spring is a soil management alternative that is gradually being adopted by olive growers. As well as protecting the soil from erosion, plant covers have other advantages such as improving the physicochemical properties of the soil, favouring its biodiversity and contributing towards the capturing of atmospheric carbon and its fixation in the soil. A trial was conducted over three growing seasons in an olive plantation situated in southern Spain. It was designed to evaluate the C fixation potential of the residues of the cover species Brachypodium distachyon, Eruca vesicaria, Sinapis alba and of spontaneous weeds; and also to study the decomposition dynamics of plant residues after mowing cover. After 156 and 171 days of decomposition, the species that released the largest amount of C was Brachypodium with values of 2,157 and 1,666 kg ha{sup -}1 respectively, while the lowest values of 461 and 509 kg ha{sup -}1 were obtained by spontaneous weeds. During the third season (163 days of decomposition) and due to the weather conditions restricting the emergence and growth of cover, spontaneous weeds released the most C with a value of 1,494 kg ha{sup -}1 . With respect to the fixation of C, Sinapis records the best results with an increase in soil organic C (SOC) concentration of 7,690 kg ha{sup -}1 . Considering the three seasons and a depth of 20 cm, the behaviour sequence of the different species in favouring the fixation of soil organic C was Sinapis > Brachypodium > spontaneous weeds > Eruca. (Author) 34 refs.

  7. Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, southwest China. Ⅲ. Enzyme dynamics

    Institute of Scientific and Technical Information of China (English)

    Ruiqing ZHANG; Zhenjun SUN; Chong WANG; Tangyu YUAN

    2009-01-01

    We tested the dynamics of nine enzymes during leaf litter decomposition in Xishuangbanna tropical rain-forest both in the field and laboratory to explore the response of enzyme dynamics to decomposition under different food-web structures. We used coarse and fine (1 mm and 100 μm mesh size, respectively) litterbags in the field to create different food-web structures during litter decomposition. Most soil macrofauna such as nematodes could access only the coarse mesh litterbags, leaving only microbiota, such as mites, in the fine mesh litterbags. In the laboratory, sterilization and inoculation were adopted to investigate different enzyme dynamics with nematodes or only microbiota participating in litter decomposition.Invertase and amylase increased more for shorter food webs at the early stages of decomposition, while activities of endocellulase, β-glucosidase, xylanase and polypheno-loxydase increased to their maxima at the later stages, but greater increase occurred with extended food webs.Invertase and amylase had negative relationships and endocellulase, β-glucosidase, xylanase and polyphenolox-ydase had positive relationships with litter decomposition (mass loss). The activities of enzymes responded to the process of litter decomposition. Invertase and amylase played key roles for microbiota utilizing the substrates at early stages of decomposition, while endocellulase, β-glucosidase, xylanase and polyphenoloxydase worked on the further decay of recalcitrant compounds at later stages.All enzymes related to carbon decay acted as effective indicators of litter decomposition. The decomposition of plant organic matter was essentially an enzymatic process.

  8. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  9. Combustion demonstration plant in circulant fluidized bed of residual coal; Planta de Demostracion de Combustion en Lecho Fluido Circulante de Carbones Residuales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report incorporates a summary of the operation results during the period of demonstration after started up. The report pretend to give an overview of the operation conditions along of the first year: Running hours, availability, electricity production, shooting downs, incidences, efficiency, fuel characteristics influence, pollutants emissions and standards comparations, etc. The main operation conclusions are: High availability, great number of running hours at full equivalent load; some months even over 100% regarding time scheduled. High reduction of gaseous emissions, really very low respecting the required by the applicable standards. It has been developed the engineering of a prototype project, by 30MW, using mixtures of solid fuels, residues and coals. (Author)

  10. The abiotic litter decomposition in the drylands

    Science.gov (United States)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  11. Decomposition of indwelling EMG signals

    OpenAIRE

    2008-01-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probab...

  12. TREE DECOMPOSITIONS OF MULTIGRAPHS

    Institute of Scientific and Technical Information of China (English)

    SHI Minyong

    1999-01-01

    For a graph G, ifE(G) can be partitioned into several pairwise disjointsets as { E1, E2,……,El} such thatthe subgraph induced by Ei is a tree of orderki, (i=1,2, ……, l), then G is said to have a {k1,k2,……, kl}-tree-decomposition, denoted by {k1,k2,……, kl}∈G.For k≥1 and l≥0, a collection(G)(k,l) is the setof multigraphs such that G∈(G)(k,l) if and only if ε(G) = k(|G|-1)-l and ε(H)≤max{(k-1)(|H|-1), k(|H|-1)-l} for any subgraph H of G.We prove that (1) If k≥2, 0≤l≤3 and G∈(G)(k,l) of order n≥l+1, then {n,n,……, n-l}∈ G. (2) If k≥2 and G∈(G)(k,2) oforder n≥3, then {n,n,……, n,n-2}∈G and {n,n,……, n,n-1,n-1}∈G. (3) If k3 and G∈(G)(k,3) oforder n≥4, then {n,n,……, n,n-3}∈G ,{ n,n,……, n,n-1,n-2}∈ G and {n,n, ……, n,n-1,n-1,n-1}∈G.

  13. Decomposition of indwelling EMG signals.

    Science.gov (United States)

    Nawab, S Hamid; Wotiz, Robert P; De Luca, Carlo J

    2008-08-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca (25, 26), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains.

  14. Chemical composition and decomposition rate of plants used as green manure Composição química e velocidade de decomposição de plantas visando a adubação verde

    Directory of Open Access Journals (Sweden)

    Gabriela Tavares Arantes Silva

    2008-01-01

    Full Text Available Productive systems in which green manure is the source of nutrients must develop more efficient ways to improve soil nutrient dynamics. A well-synchronized balance must be established between specific crop demands and supply of nutrients from decomposition. However, scientific data and information to help improve green manure management in Brazil is still insufficient. For that reason, a number of arboreal species was first chemically characterized and then subjected to decomposition analysis in order to establish a correlation between some parameters. Species were grouped together based on the similarity of chemical composition and decomposition rate. The lignin:N and (lignin+polyphenol:N ratios were found to have the greatest correlation coefficient with the dry matter decomposition rate and nitrogen release.Sistemas produtivos que utilizam a adubação verde prezam por uma dinâmica mais eficiente de nutrientes no solo. Nesse sentido, é importante buscar a sincronia entre a demanda nutricional da cultura e a disponibilidade de nutrientes provenientes da decomposição. Esse estudo objetivou estabelecer uma correlação entre a composição química e a velocidade de decomposição de espécies em um sistema agroflorestal. Para tanto, realizou-se a caracterização química de espécies arbóreas, seguida de estudos de decomposição e busca de correlação entre os parâmetros analisados. De posse dos resultados, foi possível agrupar espécies com composição química e taxas de decomposição semelhantes. As relações lignina:N e (lignina+polifenol:N apresentaram os maiores coeficientes de correlação com a velocidade de decomposição de massa seca e liberação de nitrogênio.

  15. Assessing the levels of food shortage using the traffic light metaphor by analyzing the gathering and consumption of wild food plants, crop partsand crop residues in Konso, Ethiopia

    NARCIS (Netherlands)

    Lemessa Ocho, D.; Struik, P.C.; Price, L.L.; Kelbessa, E.; Kolo, K.

    2012-01-01

    Background Humanitarian relief agencies use scales to assess levels of critical food shortage to efficiently target and allocate food to the neediest. These scales are often labor-intensive. A lesser used approach is assessing gathering and consumption of wild food plants. This gathering per se is

  16. Phytochemical Analysis and Antifungal Activity of Extracts from Leaves and Fruit Residues of Brazilian Savanna Plants Aiming Its Use as Safe Fungicides.

    Science.gov (United States)

    Breda, Caroline Alves; Gasperini, Alessandra Marcon; Garcia, Vera Lucia; Monteiro, Karin Maia; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Duarte, Marta Cristina Teixeira

    2016-08-01

    The increasing demand for safe food without preservatives or pesticides residues has encouraged several studies on natural products with antifungal activity and low toxicity. In this study, ethanolic extracts from leaves and fruit residues (peel and seeds) of three Brazilian savanna species (Acrocomia aculeata, Campomanesia adamantium and Caryocar brasiliense) were evaluated against phytopathogenic fungi. Additionally, the most active extract was chemically characterized by ESI-MS and its oral acute toxicity was evaluated. Extracts from C. brasiliense (pequi) peel and leaves were active against Alternaria alternata, Alternaria solani and Venturia pirina with minimal inhibitory concentrations between 350 and 1000 µg/mL. When incorporated in solid media, these extracts extended the lag phase of A. alternata and A. solani and reduced the growth rate of A. solani. Pequi peel extract showed better antifungal activity and their ESI-MS analysis revealed the presence of substances widely reported as antifungal such as gallic acid, quinic acid, ellagic acid, glucogalin and corilagin. The oral acute toxicity was relatively low, being considered safe for use as a potential natural fungicide.

  17. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  18. SVD analysis of Aura TES spectral residuals

    Science.gov (United States)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  19. Turbidez e cloro residual livre na monitoração de ETE tipo tanque séptico seguido de filtro anaeróbio - doi: 10.4025/actascitechnol.v33i4.9603 Turbidity and free residual chlorine for monitoring plants comprised by septic tank followed by anaerobic filter

    Directory of Open Access Journals (Sweden)

    Raimundo Oliveira de Souza

    2011-09-01

    Full Text Available A avaliação dos dados agrupados da monitoração de 16 ETEs do tipo tanque séptico (TSEP seguido por filtro anaeróbio (FAN mostrou remoção média global de 55% para DQO e SST. O desempenho alcançado foi abaixo do sugerido pela literatura, porém compatível com o de estudos recentes sobre sistemas em escala real no país. A remoção média global de bactérias do grupo coliforme, após desinfecção com solução de hipoclorito de sódio, foi de 3,0 unidades de log. Remoção mais elevada ocorreu com Escherichia coli como indicador (3,5 logs. Em geral, as maiores remoções de coliformes foram alcançadas com concentrações de cloro residual livre (CRL variando de 2,0 a 2,5 mg L-1. Os resultados mostraram a aplicabilidade da turbidez para estimar concentrações de SST e DQO no efluente tratado. Observou-se também que a concentração de CRL é útil para estimar as concentrações de bactérias do grupo coliforme.Grouped monitoring data of 16 wastewater treatment plants was investigated. The plants were comprised by septic tanks followed by anaerobic filters and effluent disinfection with sodium hypochlorite. Removal of COD and total suspended solids was about 55%. This number was below values observed by the literature. However, the results were in accordance with recent findings in Brazilian full-scale plants. Coliform removal was about 3.0 log units with better results for Escherichia coli (3.5 logs. Best results were achieved with free residual chorine concentrations ranging from 2.0 to 2.5 mg L-1. Findings showed that turbidity is a useful parameter to estimate COD and TSS concentrations in the treated effluent. Free residual chlorine may also be applied to estimate coliform numbers.

  20. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    Science.gov (United States)

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  1. Real interest parity decomposition

    Directory of Open Access Journals (Sweden)

    Alex Luiz Ferreira

    2009-09-01

    Full Text Available The aim of this paper is to investigate the general causes of real interest rate differentials (rids for a sample of emerging markets for the period of January 1996 to August 2007. To this end, two methods are applied. The first consists of breaking the variance of rids down into relative purchasing power pariety and uncovered interest rate parity and shows that inflation differentials are the main source of rids variation; while the second method breaks down the rids and nominal interest rate differentials (nids into nominal and real shocks. Bivariate autoregressive models are estimated under particular identification conditions, having been adequately treated for the identified structural breaks. Impulse response functions and error variance decomposition result in real shocks as being the likely cause of rids.O objetivo deste artigo é investigar as causas gerais dos diferenciais da taxa de juros real (rids para um conjunto de países emergentes, para o período de janeiro de 1996 a agosto de 2007. Para tanto, duas metodologias são aplicadas. A primeira consiste em decompor a variância dos rids entre a paridade do poder de compra relativa e a paridade de juros a descoberto e mostra que os diferenciais de inflação são a fonte predominante da variabilidade dos rids; a segunda decompõe os rids e os diferenciais de juros nominais (nids em choques nominais e reais. Sob certas condições de identificação, modelos autorregressivos bivariados são estimados com tratamento adequado para as quebras estruturais identificadas e as funções de resposta ao impulso e a decomposição da variância dos erros de previsão são obtidas, resultando em evidências favoráveis a que os choques reais são a causa mais provável dos rids.

  2. A biogas plant for the digestion of distillery residue in combination with waste water treatment; Biogasanlage fuer die Vergaerung von Destillationsrueckstaenden in Kombination mit der Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Voigtlaender, A.; Vetter, H.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project at a Swiss food-processing company that produces fruit juices and beverages containing fruit components. The company uses an anaerobic pre-treatment plant to treat effluents before they are discharged to a local municipal waste water treatment plant (WWTP). The report describes the installation, which generates biogas that is used to provide heating energy for the processes used in the extraction process. The monitoring and measurement system is described and figures are quoted for energy production in the company's facilities. Also, the energy savings in the local WWTP resulting from the reduced energy consumption of the aeration blowers as a result of the pre-treatment of the wastes are discussed. Operational aspects of the installation are examined. including temperature effects on the digestion process, control strategies and waste air treatment.

  3. Investigation of Dioxin formation- and destruction mechanisms in waste incineration plants in order to improve the quality of the residues. Phase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jan; Dahl, J.; Akoh Hove, E. (FORCE Technology, Kgs. Lyngby (Denmark)); Baun, D.L.; Hulgaard, T. (Ramboell, Copenhagen (Denmark)); Marklund, S. (Umeaa Univ., Umeaa (Sweden)); Astrup, T. (Technical Univ. of Denmark. Dept. of Environmental Engineering, Kgs. Lyngby (Denmark)); Lundtorp, K. (Babcock and Wilcox Voelund, Esbjerg (Denmark))

    2009-11-15

    The aim of this project was to produce a theory and a model for the formation of dioxin suitable for prediction of dioxin formation in flue gas, based on experiments conducted at Umeaa University. Furthermore the model should be tested using data from another project, where measurements on the FASAN waste incineration plant has been carried out. A theory has been proposed and a model has been programmed and implemented into the FLUENT CFD software package. The predictions show qualitative and quantitative correlation between the model and the Umeaa test reactor. When the developed model was implemented on the full scale plant, it was however not possible to obtain a quantitative correlation between the model results and the measurements of dioxins in ash samples. There was however a reasonable qualitative correlation. The model needs further work to produce better quantitative results for full scale plants. This work must focus more on full scale measurements, in order to obtain good data for tuning and comparison. It is also recommended to do some work on a more basic level at the Umeaa test reactor to tune the more basic echanisms in the model. The model shows a very small region in the full scale boiler where the vast majority of the dioxin formation takes place. This knowledge is useful as it can point to uncontaminated ash fractions in waste incineration plants. The discovery of a small region where dioxin formation takes place is also an inspiration for potential future evelopments in boiler design for minimizing dioxin formation. Dioxin measurements in ash samples from the full scale test runs show dioxin levels in the same order of magnitude for all experiments with minor differences between the various experiments. This indicates that changes in waste input within the range of products tested is likely to have limited effect on dioxin formation in the boiler, and hence the dioxin content of fly ash and flue gas upstream the flue gas treatment system. (LN)

  4. Wood decomposition and fungal community dynamics mediated by temperature and endophytes

    Science.gov (United States)

    Song, Z.; Schilling, J. S.

    2013-12-01

    Wood decomposition is primarily fulfilled by brown rot and white rot fungi in temperate and boreal forests. The competition balance between these fungi determines the patterns of wood decomposition and carbon cycle in forests. But this balance may shift in a warmer future, especially in high latitude forests. Additionally, endophytes may assert influence over the fungal competition through priority effect and interact with the effect of climate change. In this study, we use paper birch and two common fungi to answer two questions 1) How does increased temperature affect the competition between brown rot and white rot fungi? 2) How do endophytes interact with fungi from the soil and influence wood decomposition? A microcosm system was used to simulate competition between Piptoporus betulinus (brown rot fungi) and Fomes fomentarius (white rot fungi) on small birch stem on the effect of increased temperature and endophytes. Activity of P. betulinus was slower in higher temperature, but F. fomentarius was not affected. Character of residue showed that when both fungi were present, wood tend to have white rot in higher temperature. Presence of endophytes significantly reduced the decay rate when they were competing with external fungi, indicating that part of their energy was allocated to interspecies antagonism from metabolizing wood. In the absence of external fungus, endophytes alone caused significant amount of wood decay. Higher temperature also tends to shift the community of endophyte toward more white rot fungi. Our results highlighted the role of endophytes in wood decomposition. Major wood decomposers, not just plant pathogen, may remain dormant in live trees and regain their activity right after tree death. The endophytes could be an important part of assembly history in forming microbial community in dead wood and may have complex interactions with fungi and bacteria in soil. An increased temperature obviously favors white rot fungi, which is in accordance

  5. Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xinzhang Song

    Full Text Available Ultraviolet-B (UV-B exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05. UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT (P<0.05 and litter chemistry (e.g., lignin content (P<0.01. Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation, litter forms (leaf vs. needle, and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001. Additionally, relatively small changes in UV-B exposure intensity (30% had significant direct effects

  6. Progress of Research on the Detection Techniques of Pesticides Residue in Plant-based Food%植物性食品中农药残留检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    李畅

    2013-01-01

    The paper describes the detection techniques including gas chromatography,liquid chromatography,GC-MS/MS,HPLC-MS/MS,ampere assay and the immune analysis technology of pesticides in plant-based foods in re⁃cent years and put forward the development trend in the detection techniques of pesticide residues determination in future.%  综述了近年来在植物性食品中农药残留分析技术中广泛应用的气相色谱法、液相色谱法、气质联用法、液质联用法、安培检测法和免疫分析技术等几种分析检测技术,并展望了植物性食品中农药残留检测技术的发展前景。

  7. Piecewise-adaptive decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.I. [Room I-320-D, E.T.S. Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)], E-mail: jirs@lcc.uma.es

    2009-05-30

    Piecewise-adaptive decomposition methods are developed for the solution of nonlinear ordinary differential equations. These methods are based on some theorems that show that Adomian's decomposition method is a homotopy perturbation technique and coincides with Taylor's series expansions for autonomous ordinary differential equations. Piecewise-decomposition methods provide series solutions in intervals which are subject to continuity conditions at the end points of each interval, and their adaption is based on the use of either a fixed number of approximants and a variable step size, a variable number of approximants and a fixed step size or a variable number of approximants and a variable step size. It is shown that the appearance of noise terms in the decomposition method is related to both the differential equation and the manner in which the homotopy parameter is introduced, especially for the Lane-Emden equation. It is also shown that, in order to avoid the use of numerical quadrature, there is a simple way of introducing the homotopy parameter in the two first-order ordinary differential equations that correspond to the second-order Thomas-Fermi equation. It is also shown that the piecewise homotopy perturbation methods presented here provide more accurate results than a modified Adomian decomposition technique which makes use of Pade approximants and the homotopy analysis method, for the Thomas-Fermi equation.

  8. Design and simulation of a process of seawater desalination (MED) using the residual heat of a PBMR nuclear power plant; Diseno y simulacion de un proceso de desalinizacion de agua de mar (MED) utilizando el calor residual de una planta nucleoelectrica PBMR

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, Julio; Morales S, J.B. [UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2008-07-01

    In the present work it is demonstrated as the thermodynamic recuperative Brayton cycle with which operates a nuclear power plant type PBMR (Pebble Bed Modular Reactor) it allows to use the residual heat, removed in the coolers of the compression stage of the system, to produce vapor and to desalt seawater. The desalination process selected, starting from its operation characteristics and the derived advantages of them using nuclear heat, it the one of Multi-Effect Distillation, MED for its abbreviations in English, which described and it is justified to detail. This distillation process widely studied, allows us to use water vapor pressurized to temperatures between 70 and 110 C like energy source to evaporate the seawater in the first stage or effect of the process. The relatively low temperatures with which the vapor takes place of feeding to the process is it makes to the plant PBMR ideal for desalination of seawater, since does not require majors modifications to its design its operation, and on the contrary it allows to use the heat that previously was rejected, to produce the vapor. In this work an unit MED of six effects is designed, which undergoes a successive fall of pressure in each of them. Once obtained the agreed design to the conditions of operation of PBMR plant, it was model mathematically the MED process, including the coupling stage with the reactor coolers. The mathematical model was obtained by means of differential equations of mass balance and energy in the system, and with this it was implemented in SIMULINK a model equivalent to the MED process which is interconnected to the simulator coolers of the PBMR plant, constructed previously. One ran the program being obtained the results that are reported at the end of this article. (Author)

  9. In situ spectroscopic studies on vapor phase catalytic decomposition of dimethyl oxalate.

    Science.gov (United States)

    Hegde, Shweta; Tharpa, Kalsang; Akuri, Satyanarayana Reddy; K, Rakesh; Kumar, Ajay; Deshpande, Raj; Nair, Sreejit A

    2017-03-15

    Dimethyl Oxalate (DMO) has recently gained prominence as a valuable intermediate for the production of compounds of commercial importance. The stability of DMO is poor and hence this can result in the decomposition of DMO under reaction conditions. The mechanism of DMO decomposition is however not reported and more so on catalytic surfaces. Insights into the mechanism of decomposition would help in designing catalysts for its effective molecular transformation. It is well known that DMO is sensitive to moisture, which can also be a factor contributing to its decomposition. The present work reports the results of decomposition of DMO on various catalytic materials. The materials studied consist of acidic (γ-Al2O3), basic (MgO), weakly acidic (ZnAl2O4) and neutral surfaces such as α-Al2O3 and mesoporous precipitated SiO2. Infrared spectroscopy is used to identify the nature of adsorption of the molecule on the various surfaces. The spectroscopy study is done at a temperature of 200 °C, which is the onset of gas phase decomposition of DMO. The results indicate that the stability of DMO is lower than the corresponding acid, i.e. oxalic acid. It is also one of the products of decomposition. Spectroscopic data suggest that DMO decomposition is related to surface acidity and the extent of decomposition depends on the number of surface hydroxyl groups. Decomposition was also observed on α-Al2O3, which was attributed to the residual surface hydroxyl groups. DMO decomposition to oxalic acid was not observed on the basic surface (MgO).

  10. Phytoremediation of carbofuran residues in soil

    Directory of Open Access Journals (Sweden)

    Mullika Teerakun

    2004-02-01

    Full Text Available In this study, the ability of plants to clean up carbofuran residues in rice field soil was examined. Plants were grown in 8 inches diameter plastic pots filled with soils containing 5 mg/kg carbofuran. Phytoremediated samples were analyzed for carbofuran concentration. The results showed that carbofuran was rapidly degraded under planted soil and non-planted soil with half-lives ranging from 2-7 days. These facts suggest that phytoremediation could accelerate the degradation of carbofuran residues in soil and carbofuran was not persistent in the soil environment.

  11. 安徽何郢遗址植物残体切割形态与脱粒农具的关系%Study of cutting patterns of plant residues and threshing tools from Heying site of Anhui province

    Institute of Scientific and Technical Information of China (English)

    吴妍; 王昌燧; Linda Scott Cummings; Patricia C. Anderson

    2012-01-01

    石器和植物残体的相关研究证明,脱粒板曾大规模应用于近东地区。为探索古代中国或远东是否也曾使用过这种工具或类似工具,本研究对何郢遗址植物残体形态进行了研究,结果表明中国商周遗址存在切割形态植物残体的证据,以此推测类似脱粒板的农具在商周时期曾被使用。无疑,这一发现对我国古代农作物的脱粒加工方式具有重要的启示,可望深化我国农业考古的探索。%Related studies of stone tools and cutting patterns on plant residues has indicated that the bladed threshing sledge was used on a large scale in the Near East.However,up to now,there has been no evidence that either threshing-boards or threshing-sledges were used in China or anywhere the Far East.As described in this paper,cutting patterns on plant residues found at the Heying site provide first evidence that the bladed threshing sledges may have been used in China as far back as the Shang-Zhou period of China.This discovery has important implications with reard to threshing and processing methods used for ancient crops and for development of agricultural archaeology in China.

  12. 农药残留检测用植物酯酶筛选研究%Selection of Phytoesterases and Reaction Conditions for Using Plant Esterases to Detect Pesticide Residues

    Institute of Scientific and Technical Information of China (English)

    刘洋; 赵红艳; 刘如芬; 诸正典

    2012-01-01

    目的:选用4种块茎马铃薯、红薯、茨菇、芋头提取植物酯酶,研究其检测有机磷农药的最佳条件,拟选取适宜的植物酶源;方法:使用酶抑制法,研究4种块茎中提取出的植物酯酶对农药敌敌畏、敌百虫、甲胺磷、辛硫磷灵敏度及其最低检测限;结果:4种植物酯酶均对农药敌百虫的灵敏度最好,最高可达37.184,检测限也低于国家标准;结论:因此,该酶可作为新的有机磷农药残留检测用酶。%Objective : Using Plant esterase obtain Four tuber (Solanum tuberosum L, lpomoea batatas, Sagittaria sagittifolia, Colocasia esculenta (L.) Schoot),This article reports optimal condition for detection of Organophosphorus Pesticide Resi- due. in order to select the optimal esterase for the detection ; Method:Based on the inhibiting mechanism of enzyme, phy- toesterases from various plant sources are investigated the sensitivity and the limit of detectable to dichlorvos (DDVP) .dip- terex,trichlorphon . Methamidophos, phoxim. Results:The results showed that the limits of detection were lower than the maximum of residue limit ,which meets the national standard of detection. Conclusion:The results indicated that the esterase obtained from Ipomoea and Colocasia esculenta make an optimal enzyme source for detecting agricultural pesticides residue.

  13. Isolation of Whole-plant Multiple Oscillations via Non-negative Spectral Decomposition%基于非负频谱分解的厂级多重振荡源的分离研究

    Institute of Scientific and Technical Information of China (English)

    夏春明; 郑建荣; J.Howell

    2007-01-01

    Constrained spectral non-negative matrix factorization (NMF) analysis of perturbed oscillatory process control loop variable data is performed for the isolation of multiple plant-wide oscillatory sources.The technique is described and demonstrated by analyzing data from both simulated and real plant data of a chemical process plant.Results show that the proposed approach can map multiple oscillatory sources onto the most appropriate control loops, and has superior performance in terms of reconstruction accuracy and intuitive understanding compared with spectral independent component analysis (ICA).

  14. Distributed k-Core Decomposition

    CERN Document Server

    Montresor, Alberto; Miorandi, Daniele

    2011-01-01

    Among the novel metrics used to study the relative importance of nodes in complex networks, k-core decomposition has found a number of applications in areas as diverse as sociology, proteinomics, graph visualization, and distributed system analysis and design. This paper proposes new distributed algorithms for the computation of the k-core decomposition of a network, with the purpose of (i) enabling the run-time computation of k-cores in "live" distributed systems and (ii) allowing the decomposition, over a set of connected machines, of very large graphs, that cannot be hosted in a single machine. Lower bounds on the algorithms complexity are given, and an exhaustive experimental analysis on real-world graphs is provided.

  15. Thermal decomposition of ammonium hexachloroosmate

    DEFF Research Database (Denmark)

    Asanova, T I; Kantor, Innokenty; Asanov, I. P.

    2016-01-01

    Structural changes of (NH4)2[OsCl6] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH4)2[OsCl6] transforms directly...... to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl4}x with a possible...... polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before....

  16. Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Han, Yongtao; Song, Le; Zhao, Pengyue; Li, Yanjie; Zou, Nan; Qin, Yuhong; Li, Xuesheng; Pan, Canping

    2016-04-15

    A sensitive and specific method for the determination of glufosinate in plant origin foods was developed. The method involves extraction using modified QuPPe method, clean-up by multi-walled carbon nanotubes (MWCNTs), derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) and detection with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated on twelve matrices spiked at 10 or 20, 100 and 500 μg/kg. The recovery ranged from 80% to 108% with intra-day RSDs (n=5) of 0.6-9.8% and inter-day RSDs (n=15) of 3.0-9.4%. Good linearities (R(2)⩾0.9991) were obtained for all matrices. The limit of detection (LOD) and limit of quantification (LOQ) for the selected matrices ranged from 0.3 to 3.3 μg kg(-1) and from 1 to 10 μg kg(-1), respectively. The method was demonstrated to be reliable and sensitive for the routine monitoring of glufosinate in plant origin foods.

  17. Assessing the levels of food shortage using the traffic light metaphor by analyzing the gathering and consumption of wild food plants, crop parts and crop residues in Konso, Ethiopia

    Directory of Open Access Journals (Sweden)

    Ocho Dechassa

    2012-08-01

    Full Text Available Abstract Background Humanitarian relief agencies use scales to assess levels of critical food shortage to efficiently target and allocate food to the neediest. These scales are often labor-intensive. A lesser used approach is assessing gathering and consumption of wild food plants. This gathering per se is not a reliable signal of emerging food stress. However, the gathering and consumption of some specific plant species could be considered markers of food shortage, as it indicates that people are compelled to eat very poor or even health-threatening food. Methods We used the traffic light metaphor to indicate normal (green, alarmingly low (amber and fully depleted (red food supplies and identified these conditions for Konso (Ethiopia on the basis of wild food plants (WFPs, crop parts (crop parts not used for human consumption under normal conditions; CPs and crop residues (CRs being gathered and consumed. Plant specimens were collected for expert identification and deposition in the National Herbarium. Two hundred twenty individual households free-listed WFPs, CPs, and CRs gathered and consumed during times of food stress. Through focus group discussions, the species list from the free-listing that was further enriched through key informants interviews and own field observations was categorized into species used for green, amber and red conditions. Results The study identified 113 WFPs (120 products/food items whose gathering and consumption reflect the three traffic light metaphors: red, amber and green. We identified 25 food items for the red, 30 food items for the amber and 65 food items for the green metaphor. We also obtained reliable information on 21 different products/food items (from 17 crops normally not consumed as food, reflecting the red or amber metaphor and 10 crop residues (from various crops, plus one recycled stuff which are used as emergency foods in the study area clearly indicating the severity of food stress (red metaphor

  18. Compostos orgânicos hidrossolúveis de resíduos vegetais e seus efeitos nos atributos químicos do solo Water-soluble organic compounds in plant residue and the effects on soil chemical properties

    Directory of Open Access Journals (Sweden)

    Raquel Cátia Diehl

    2008-12-01

    Full Text Available Compostos orgânicos hidrossolúveis de resíduos vegetais depositados na superfície do solo podem melhorar a fertilidade do subsolo, pela neutralização da acidez e transporte de Ca e Mg. Com o objetivo de avaliar o efeito dos compostos orgânicos hidrossolúveis de materiais vegetais nos atributos químicos de um Latossolo Vermelho distroférrico, foi desenvolvido um experimento no Instituto Agronômico do Paraná (IAPAR, Londrina, com amostras de solo acondicionadas em colunas nas quais se aplicaram os tratamentos: água destilada, calcário incorporado na camada 0-5 cm de profundidade, calcário e percolação com extratos de nabo forrageiro, aveia preta, palha de trigo, milho e soja. No extrato percolado, foram determinados os teores de ligantes orgânicos hidrossolúveis (LOH por potenciometria com eletrodo seletivo de Cu2+; ácidos orgânicos tituláveis (AOT por titulação ácido-base e ânions orgânicos (AO pela soma de bases. As concentrações de AO e AOT variaram de 7,0 a 32,0 mmol L-1 e de LOH de 0,60 a 2,23 mmol L-1. Todos os extratos vegetais aumentaram o pH, os teores de Ca, Mg e K trocável e diminuíram a acidez potencial e o Al trocável até 15 cm de profundidade, enquanto o efeito da calagem sem extrato foi observado somente até 10 cm de profundidade. A concentração de compostos orgânicos solúveis oriundos dos materiais vegetais correlacionou-se com o pH, Al trocável, H+Al e V % do solo na camada de 0-20 cm, confirmando a participação destes na melhoria dos atributos químicos do solo e ação da calagem superficial quando o material vegetal está presente.The water-soluble organic compounds of plant residues released on the soil surface can improve the subsoil fertility, due to the neutralization of acidity and Ca and Mg transport. An experiment was conducted at the Instituto Agronomico do Parana (IAPAR, Londrina, to evaluate the effect of water-soluble organic compounds of plant extracts on the chemical

  19. 不同栽培方式下豇豆中4种农药的残留消解%Degradation of Four Pesticide Residues in Cowpea among Different Planting Patterns

    Institute of Scientific and Technical Information of China (English)

    李建国; 韩丙军; 谢德芳; 吕岱竹; 任红; 许如意

    2012-01-01

    The protected and open field experiments were conducted to study the degradation of beta cypermethrin, difenoconazole, dimethoate and acephate residues in cowpea. The GC with ECD and FPD were used to determine the residues of the four pesticides. The four pesticide residues degradation dynamics equations were calculated by a simple first-order kinetics equation. Compared with the open field planting pattern, the degradation rates of the four pesticides under protected field were slower. The pesticides used in cowpea under protected field could control the pests longer, but there was more safety risks in cowpea. In order to ensure the safety of cowpea, the rational use of pesticides must be paid attention to and the shorter half-life pesticides should be used in cowpea planting.%为了研究保护地和露地2种栽培模式下高效氯氰菊酯、苯醚甲环唑、乐果和乙酰甲胺磷4种农药在豇豆中降解残留规律,分别采用气相色谱法电子捕获检测器和火焰光度检测器测定豇豆中高效氯氰菊酯、苯醚甲环唑和乐果、乙酰甲胺磷的残留量.结果表明:4种农药在豇豆中的消解都遵循指数型降解规律.保护地栽培下农药的降解速率总体上比露地的慢,一方面可更长时间的对害虫产生防治作用,但另一方面可能更易引起农药残留的安全隐患.因此,在豇豆的种植中,应当规范农药的使用,选用半衰期较短、降解较快的农药.

  20. Improvement of the residual water treatment in the EDAR of Alcoi (Alicante). Study with plant pilot; Mejora del tratamiento de aguas residuales en la EDAR de Alcoi (Alicante). Estudio con plant piloto

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Canigral Ferrer, C.; Martinez Muro, M. A.; Sanchez Betran, A. V.; Minana Mira, J. L.

    2005-07-01

    The present installations of Wastewater Treatment Plant of Alcoi receive industrial spills, that deteriorate to the effectiveness of the biological process and therefore the quality of the treated effluent. To initiative of the Entidad Publica de Saneamiento de Aguas Residuales de Valencia (EPSAR) has been made a study to investigate in the factors that affect the process and the possible technical solutions. For it has resorted to the use of a portable pilot plant, able to reproduce the treatment of a real installation on reduced scale of experimental form. (Author) 10 refs.